
An OASIS DITA Adoption Technical Committee Publication

DITA 1.3 Feature Article:
Making the Most of the New Math Specializations in DITA
1.3

Author: Autumn Cuellar, Design Science
On behalf of the DITA Adoption Technical Committee

Date: 31 March 2015

This is a Non-Standards Track Work Product and is not subject to the patent
provisions of the OASIS IPR Policy.

OASIS White Paper

2 Last revision 31 March 2015

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

OASIS (Organization for the Advancement of Structured Information Standards) is a not-for-profit, international
consortium that drives the development, convergence, and adoption of e-business standards. Members
themselves set the OASIS technical agenda, using a lightweight, open process expressly designed to promote
industry consensus and unite disparate efforts. The consortium produces open standards for Web services,
security, e-business, and standardization efforts in the public sector and for application-specific markets. OASIS
was founded in 1993. More information can be found on the OASIS website at http://www.oasis-open.org.

The OASIS DITA Adoption Technical Committee members collaborate to provide expertise and resources
to educate the marketplace on the value of the DITA OASIS standard. By raising awareness of the benefits
offered by DITA, the DITA Adoption Technical Committee expects the demand for, and availability of, DITA
conforming products and services to increase, resulting in a greater choice of tools and platforms and an
expanded DITA community of users, suppliers, and consultants.

DISCLAIMER: All examples presented in this article were produced using one or more tools chosen
at the author's discretion and in no way reflect endorsement of the tools by the OASIS DITA Adoption
Technical Committee.

This white paper was produced and approved by the OASIS DITA Adoption Technical Committee as a
Committee Draft. It has not been reviewed and/or approved by the OASIS membership at-large.

Copyright © 2015 OASIS. All rights reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website. This
document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in
whole or in part, without restriction of any kind, provided that the above copyright notice and this section are
included on all such copies and derivative works. However, this document itself may not be modified in any
way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of
developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules
applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it
into languages other than English. The limited permissions granted above are perpetual and will not be revoked
by OASIS or its successors or assigns. This document and the information contained herein is provided on an
"AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Table of Contents

Introduction.. 4
Equation Specialization...5

Block vs. Inline...5
Figure... 6
Equation Numbering.. 7

MathML in DITA..8
Advantages of MathML.. 8

MathML Is XML...8
Accessibility.. 8
Searchability... 9

Disadvantages of MathML.. 9
Differences in Rendering Engines... 9
Authoring MathML..10

The DITA 1.3 MathML Specialization.. 10
MathML Output...11

PDF Output.. 11
HTML-based Outputs..11
Independent MathML Rendering Engines..12

Conclusion... 13

OASIS White Paper

4 Last revision 31 March 2015

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

Introduction
Mathematics and DITA, because of its use in technical communications, have gone hand-in-hand for
years. MathML is the W3C standard for encoding mathematical information in XML. DITA is largely
implemented as an XML model. For this reason, the two standards seem a natural fit, and in part due to
requirements for MathML support in DITA, the DITA 1.1 specification introduced the <foreign> element
as a way in which to add MathML and other separately maintained vocabularies to DITA documents.
Thus, many organizations have been successfully using MathML in DITA since version 1.1 became a
recommendation.

In recent years, HTML5 and EPUB 3 have been finalized as recommendations and have become popular
outputs for DITA documents. As it happens, HTML5 and EPUB 3 both include support for MathML.
As support and awareness for MathML have grown and as the DITA community also has grown, it
has become increasingly clear that the DITA community would benefit from standardized domain
specializations for mathematical content. In response, the DITA Technical Committee has approved
the introduction of two new math specializations to DITA 1.3: an equation specialization and a MathML
specialization. Presumably if you’re using an XML implementation of DITA, you would want to store your
mathematical content in MathML, but in recognition of the fact that organizations may have reasons to use
other formats for mathematical expressions, the DITA Technical Committee maintains the two separate
math specializations.

This paper provides an explanation of the elements of the equation specialization, gives an introduction
to the MathML specialization, covers benefits and drawbacks of MathML in DITA, and finally gives an
overview of tools to aid you in adding MathML support to your DITA documents today.

ekimber
Cross-Out

ekimber
Cross-Out

ekimber
Inserted Text
-

Equation Specialization
The equation specialization gives a general way in which to add formulae to your DITA documents.
Equations, if numbered, usually follow a different numbering sequence than other figures in your
documents; therefore, equations are categorized separately from figures. The DITA Technical Committee
recognizes that there are a number of formats in which an equation can be specified: as bitmap images,
SVG, or TeX strings, to name a few in addition to MathML. Because of this, the equation specialization is
format-agnostic.

In fact, the DITA 1.3 specification allows that one may want to include alternative forms of a single equation
within the DITA source. The DITA processor would then be allowed to choose the format most appropriate
for the output or use all formats as may be preferable in some outputs. For example, HTML5 currently
includes support for MathML, but not all browsers can render MathML as yet. Thus, if you are serving
dynamic webpages that can respond to the browser in which the page is being loaded, you have the option
of outputting both MathML and fallback images to cover all cases.

A note of caution, however: though DITA 1.3 does allow you to specify alternative formats for a single
equation, it does not require that the processor give precedence to any format nor does it deem that
precedence should be determined by the order in which the alternative equations appear. Therefore,
you may wish to institute your own policies for resolving conflicts or differences that may arise between
alternative versions of a single equation.

Block vs. Inline
The equation specialization features two main equation types: <equation-block> and <equation-
inline>. The use of these two equation types implies different formatting for each. The differences
between these two equation types are probably intuitive: equation-block is for equations that appear on
their own line, typically centered within the page or column, and sometimes numbered; equation-inline, on
the other hand, appears in line with the text.

DITA 1.3’s <equation-inline> element is derived from <ph> and can therefore be used wherever
<ph> is available, such as in a general line of text or in a title. DITA 1.3’s <equation-block> element,
on the other hand, is derived from <div>, a new element in DITA 1.3. This gives authors a great deal of
flexibility in placement of block equations. For example, an equation can occur after a paragraph or within a
paragraph:

After a paragraph Within a paragraph

<p>... to a fraction.</p>
<equation-block><image keyref=”percent-to-
fraction”/></equation-block>
<p>From that point,... </p>

<p>Thus, the expression
 <equation-block><image
 keyref=”summation1”/></equation-block>
 is a solution for... </p>

An equation-block can also contain <equation-number>. This will be covered in more detail shortly.

ekimber
Cross-Out

ekimber
Inserted Text
Domain

I think "domain", meaning a vocabulary domain module, is more accurate and correct then "specialization". I try to reserve the term "specialization" to either its verb usage ("to do specialization") or as a qualification of a specific element type ("equation is a specialization of <div>").

"Module" might be the better choice: Equation Module".

But in DITA there is a fundamental difference between domain, structural, and constraint modules, so I think "domain" is the best term in this case.

ekimber
Cross-Out

ekimber
Inserted Text
domain

ekimber
Cross-Out

ekimber
Inserted Text
A

ekimber
Inserted Text
 For example, you might use specific @outputclass values on different alternatives to indicate the deliverable type to which they apply.

ekimber
Cross-Out

ekimber
Inserted Text
domain

ekimber
Sticky Note
Nice use of keyref for the image.

OASIS White Paper

6 Last revision 31 March 2015

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

If either <equation-block> or <equation-inline> has more than one child, it should be assumed
that each child represents the same equation. For instance, using the following DITA, one would expect
that the expression given in the image equation1.png is the same as the expression given by the contained
MathML string:

<equation-block>
 <image href="equation1.png" />
 <mathml>
 <m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
 <m:mfrac>
 <m:mn>1</m:mn>
 <m:mn>2</m:mn>
 </m:mfrac>
 </m:math>
 </mathml>
</equation-block>

Figure
Though <equation-block> and <equation-inline> will likely suffice for most organizations
adding mathematics to DITA content, DITA 1.3 also introduces <equation-figure> for more complex
mathematical descriptions. Equation-figure, much like the general DITA <fig> element from which it is
derived, allows captions or descriptions in the form of titles, paragraphs, and lists.

With <equation-figure>, authors have the option of including the equation directly (such as by adding
<mathml> or <image> as a child element of <equation-figure>) or by including the equation as an
<equation-block> or <equation-inline>. The <equation-figure> element is an option for
grouping equations by containing multiple equation-blocks. As with equation-block, equation-figures can
be numbered. Furthermore, the numbering of an equation-figure can be separate from the numbering of
equation-blocks contained within an equation-figure.

<equation-figure>
 <title>Laplace transform, with acceptable functions
 <equation-inline>
 <mathml>...</mathml>
 </equation-inline>
 ...
 </title>
 <equation-block>
 <equation-number/>
 <mathml>...</mathml>
 </equation-block>
 <equation-block>
 <equation-number/>
 <mathml>...</mathml>
 </equation-block>
</equation-figure>

DITA 1.3 Feature Article: Making the Most of the New Math Specializations in DITA 1.3 7

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

Equation Numbering
DITA 1.3 accommodates the numbering of equations with the <equation-number> element. Authors
have the choice of specifying that an equation number should be auto-generated by leaving <equation-
number> empty or by explicitly providing the equation number for a given formula by providing content
for the <equation-number>; e.g. <equation-number>3.1.2</equation-number>. If an equation
number is explicitly provided, it is recommended that only the equation number be listed so that any
punctuation for demarcation purposes be added by the DITA processor for the sake of consistency.

<equation-block>
 <equation-number>
 3.6.1
 </equation-number>
 <image href=“eqn1752.png”/>
</equation-block>

The DITA 1.3 specification allows for some flexibility on the part of the DITA processor, as it should. The
only guidance it provides is with the statement, “common practice is to present the equation number to the
right (in left-to-right reading order) of the equation, centered vertically within the vertical extent of the block
equation.” When DITA processors provide support for equation numbering, hopefully content architects will
be given wiggle room to customize how the equation number is generated and formatted.

OASIS White Paper

8 Last revision 31 March 2015

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

MathML in DITA
MathML, the W3C standard for encoding mathematical information as XML, is a natural fit for DITA XML,
but as with any organizational decision, one should be aware of the pros and cons of moving to MathML for
mathematical content before making the leap from a different storage format.

Advantages of MathML
Since MathML is XML, by using MathML you’ll derive many of the same benefits for mathematics as you
derive from the rest of your content being in XML: separation of style and content, localization, and reuse.
In addition, MathML is required for accessibility purposes and is the format of choice for searchability of
your content.

MathML Is XML
First and foremost, MathML allows the separation of the style of your equations from the content, giving you
the opportunity to make document-wide changes to the formulae with XSLT or other stylesheets. Applying
the style of the equations during the output process allows for professional-looking documents in all delivery
formats, in which the formulae can match the surrounding text. For example, some organizations prefer to use
sans serif fonts for web output but serif fonts for print. Considering that mathematical expressions are generally
an integral part of the document, further explaining information introduced in the text, the mathematical
expressions will often need to be in the same font for alphanumeric characters as used in the main body of the
text, in this case sans serif fonts on the web and serif fonts in print.

Secondly, MathML eases your localization burdens. While math is a universal language and semantically one
expression will carry the same meaning in one spoken language as another, the notation to express a given
formula may vary from region to region. For instance, abbreviations for trigonometric functions will look different
depending on where you are. Though tan() is generally used for the tangent function in the United States,
variants in other locales include tn(), tag(), and tang(). Again, a stylesheet can be used to easily localize the
notation in your mathematical expressions. Furthermore, if your mathematical expressions include words that
need to be translated, the use of MathML can speed the translation process because only the words in the
formulae will need to be translated rather than requiring a re-creation of an image with the new word in place.

As with the rest of your DITA content, you can take advantage of re-use of mathematical expressions that
are stored in MathML. Since MathML is a standard, it has been implemented in a wide variety of applications
including computer algebra systems, such as Mathematica and Maple, document systems, and educational
software. If your team is using engineering software in its workflow, it’s possible that the MathML can be auto-
generated. If so, generating the MathML may save content authors some time. Additionally, should you need to
consider a different venue for your content (such as, turning a journal article into a presentation), chances are
high that you will be able to re-use the MathML created originally.

Accessibility
At some point you may face government regulations enforcing the accessibility of your content for audiences
with special needs. MathML is the encoding format of choice for the accessibility community because MathML
marks up every single component of a mathematical expression allowing assistive technology, including screen
readers and braille translation software, to navigate and translate the expression to aid comprehension for
blind, low vision, and learning disability audiences. This is why accessibility standards such as DAISY, NIMAS,
and PDF/UA require mathematical information be encoded as MathML. If you are using MathML in your DITA
source, you will be better prepared to meet any mandates for accessible content.

DITA 1.3 Feature Article: Making the Most of the New Math Specializations in DITA 1.3 9

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

Searchability
As a text format, MathML generally allows better search and replace functionality than some other formats,
especially images. Research is currently underway for better math search capabilities that would allow a
search for a+b to not only turn up results with b+a, but also x+y, and so on. Improved search of mathematical
expressions could have a range of applications, from use as an educational tool to finding similar patterns
between remote disciplines. The detailed markup of MathML appears to be the path forward towards improved
search functionality, allowing canonicalization of expressions for comparison purposes. See MathWebSearch
(search.mathweb.org) for further information. By using MathML in your content now, you can not only take
advantage of basic text search today, but also prepare your content for improved math search and other
developments.

Disadvantages of MathML
While moving to MathML for mathematical content does offer a number of solid benefits, it may require a
paradigm shift in the way organizations approach mathematical content. In particular, content teams seem
to have difficulties with inconsistencies between rendering engines and with the shift in thinking required for
authoring MathML.

Differences in Rendering Engines
The cost of the flexibility that MathML offers as discussed in the previous section is that MathML is often
handed off to different rendering engines. On the upside, when a mathematical expression is rendered at
the time the document is loaded, the rendering engine can take into account the environment (font settings,
background and foreground colors, pixel density, and so on) and can display the equation so that it matches
the surrounding document. This provides for a seamless user experience with high quality output. On the
downside, however, your content is subject to the characteristics of whatever rendering engine by which your
content is being processed. In other words, you lose some control over the output.

If you have any experience in web design, you are familiar with this phenomenon: your web content may look
slightly different depending on which browser a web page is loaded in. This is often true of MathML, as well.
Though the MathML specification provides rules for rendering engines in some situations, it leaves a lot of room
for interpretation. Therefore, what looks correct in one MathML rendering engine might look different in another.

One example of this is the stretchy arc used in geometry: . In Unicode, one can find a few codepoints that
could potentially be used for the arc character, but, due to font limitations, most rendering engines will only
support the stretching of one of those arcs. The MathFlow rendering engine will only stretch Unicode character
U+02322, while the MathJax rendering engine will only stretch Unicode character U+023DC. This issue can be
addressed by pre-processing the MathML before it is loaded into one or the other rendering engine, but this is
the sort of problem that you may have to prepare for when adopting MathML.

In addition to the general rendering discrepancies, there is also the matter of which version of MathML the
rendering engines support. Most rendering engines support MathML 2.0, but some, such as Apple iBooks, only
support a subset of the MathML 2.0 standard. Developers are still in the midst of adding support for MathML
3.0, which became a W3C recommendation a few years ago, and most are adding support for MathML 3.0
in stages. MathML 3.0 introduced some long-awaited features including new features for elementary math
notation, line breaking, and right-to-left languages. To give you an idea of the range of MathML version support,
at the time of writing, the popular open-source MathML rendering engine jEuclid, which is not under active
development, only supports MathML 2.0. MathJax has some support for MathML 3.0’s elementary math
notation and for most of MathML 3.0’s linebreaking functionality. Finally, the MathFlow Windows rendering
engine has extensive support for MathML 3.0.

search.mathweb.org

OASIS White Paper

10 Last revision 31 March 2015

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

Authoring MathML
Teams have a number of options for generating MathML. One could use a text editor and manually write
the MathML. One could write TeX/LaTeX and convert it to MathML. A standalone equation editor such as
MathType or MathMagic could be used with conversion to MathML. Most likely, however, you will use a
dedicated MathML editor, such as MathFlow. No matter how you choose to create your MathML, equation
authors will need to keep in mind the hierarchical nature of MathML, its rules, and its limitations. Though
MathML editors generally hide the MathML as much as possible to ease the transition to MathML, just as
with moving to any XML authoring system, users of MathML may need to adjust how they think about the
mathematical expression to better work with MathML.

For example, some equation editors allow an author to create a sub- or superscript that is not attached to a
base. This feature often is employed when an author is trying to stagger a sub- and superscript on the same
base, e.g. xm

n. A MathML authoring system, on the other hand, cannot allow someone to simply place the n in
the preceding example in the superscript position without a base. This would create an invalid MathML string.
The author must understand that the n superscript must be attached to either the base x or the base xm. Until
an author understands minor rules such as this one, the authoring experience, because it is different, can be a
frustrating one. Some training may be necessary to ease the transition.

The DITA 1.3 MathML Specialization
The new MathML specialization in DITA 1.3 simply standardizes what many organizations have already put
into use: a DITA <mathml> element that is derived from <foreign> serves as a container for MathML. If
the MathML is entered directly into the DITA document, the use of a namespace prefix is required on the
MathML string to help with parsing of the document by DITA processors. Furthermore, the use of named
entities (such as, α for the Greek alpha character) is discouraged when MathML is directly included.
In fact, the DITA 1.3 schemas ignore the entity definitions in the MathML schemas, thus named entities will
cause validation and parsing errors. It's better to use numeric references (e.g., α for alpha) unless
you are referencing an external document.

Alternatively, the <mathml> element can contain a <mathmlref> DITA reference that either references
the location of an external non-DITA document with MathML in it directly using @href or indirectly using
@keyref. Note that the external document can either contain a single MathML string with the MathML
<math> element as its root, or it can contain a number of MathML strings. In the latter case, you can
identify the string to include with the URI hash fragment identifier, referencing the XML ID of a MathML
<math> tag.

XML Referenced DITA 1.3

EquationLibrary.xml

<?xml version="1.0" encoding="UTF-8"?>
<library>
 <math
 id="equation_01"
 xmlns="http://www.w3.org/1998/Math/
MathML">
 ...
 </math>
 <math
 id="equation_02"
 xmlns="http://www.w3.org/1998/Math/
MathML">
 ...
 </math>

@href

<equation-block>
 <mathml>
 <mathmlref
 href="EquationLibrary.xml#equation_02"
 />
 </mathml>
</equation-block>

ekimber
Cross-Out

ekimber
Inserted Text
Domain

As for equation above, I think "domain" is the better term.

ekimber
Cross-Out

ekimber
Inserted Text
domain

ekimber
Cross-Out

ekimber
Inserted Text
,

ekimber
Cross-Out

ekimber
Inserted Text
, that

ekimber
Inserted Text
 (for DTD-based documents)

RNG and XSD-based documents simply require the use of the correct MathML namespace. Not sure you need to cover that detail here.

ekimber
Inserted Text
character

ekimber
Cross-Out

ekimber
Cross-Out

ekimber
Inserted Text
, either

ekimber
Cross-Out

ekimber
Inserted Text
element

The term "string" does not really have a meaning in this context. (Or rather, the string nature of the XML is only of interest to parsers--conceptually you are referring to the XML element, not the sequence of characters the parser interprets as the XML element.

ekimber
Cross-Out

ekimber
Cross-Out

ekimber
Inserted Text
have

ekimber
Cross-Out

ekimber
Inserted Text
elements

ekimber
Cross-Out

ekimber
Inserted Text
element

ekimber
Cross-Out

ekimber
Cross-Out

ekimber
Inserted Text
element

ekimber
Typewritten Text

DITA 1.3 Feature Article: Making the Most of the New Math Specializations in DITA 1.3 11

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

XML Referenced DITA 1.3
</library>

<keydef
 keys=“Equation_02"
 href="math/EquationLibrary.xml#Equation_02"
 format="mathml"
/>

@keyref

<equation-inline>
 <mathml>
 <mathmlref keyref=“Equation_02"/>
 </mathml>
</equation-inline>

Whether including the MathML directly or referencing an external document, the MathML string must start
with the MathML <math> element.

MathML Output
As of the writing of this article, the DITA Open Toolkit (DITA-OT) does not yet support MathML, but
MathML support is expected to be added soon. If you cannot wait for a DITA-OT release with official
support for MathML, you can use the DITA For Publishers (http://dita4publishers.sourceforge.net/) open
source project as a model for your customization of the DITA-OT. DITA For Publishers is an extension of
the DITA-OT developed by Eliot Kimber primarily for publishers who use DITA in document workflows. The
most recent version of DITA For Publishers does include a MathML specialization and supports MathML to
HTML output using MathJax (see below). The DITA For Publishers MathML specialization, however, was
developed prior to DITA 1.3’s equation specializations. Thus, some updates will need to be made to the
DITA Open Toolkit plug-in before it can be used with the standardized specializations.

PDF Output
Most users of DITA and the DITA-OT will use one of three XSL-FO engines when producing PDF output:
Antenna House Formatter, Apache FOP, or RenderX XEP. Antenna House’s Formatter is the only one of these
three XSL-FO processors that has native support for MathML. If you use Apache FOP or RenderX XEP, you
will likely want to use one of the independent MathML rendering engines discussed below to pre-process the
MathML before converting your DITA to XSL-FO and PDF. The jEuclid MathML rendering engine does have an
Apache FOP plug-in, but it requires a version of Apache FOP that is now several years old.

HTML-based Outputs
Some browsers include native support for MathML, and because e-readers are often built on browser
technology, some e-readers also will display MathML. A classic example is Apple’s Safari browser and iBooks
e-reader application; both use the WebKit rendering engine, which has limited support for MathML, and,
therefore, both can display the MathML in your web/ebook content.

Unfortunately, not all browsers and e-readers are so advanced. Notably Internet Explorer and Chrome fail to
render MathML. For maximum coverage you’ll need to implement a different solution other than relying on
native support for MathML. You have the option of 1) converting the MathML to an image during the DITA
conversion process using one of the independent rendering engines described below, 2) setting up MathML-
to-image conversion on the web server for processing of the MathML at load time, or 3) using the Javascript
MathML rendering library, MathJax (mathjax.org).

MathJax is a free open-source library for rendering MathML in all modern browsers. To use MathJax with your
content, you merely need to link your web pages to the MathJax library, either installed on your own server
or hosted on the MathJax CDN site. Using MathJax allows you to leverage the benefits of using MathML as
previously discussed: by serving the equations as MathML your mathematical content will remain searchable
and accessible to audiences with special needs. The primary complaint about MathJax is its speed, or lack
thereof, especially on pages with a large number of equations. The MathJax Consortium is working to address

http://dita4publishers.sourceforge.net/
mathjax.org
ekimber
Cross-Out

ekimber
Cross-Out

ekimber
Inserted Text
use

ekimber
Cross-Out

ekimber
Cross-Out

ekimber
Sticky Note
Need to say:

At the time of writing, the DITA Open Toolkit version 2 supports the equation and MathML domains for PDF and XHTML output by generating inline MathML. For HTML it supports the optional use of the MathJax libraries from the general HTML pages. For PDF it depends on support for embedded MathML in XSL-FO engines. In addition, a separate Open Toolkit plugin is available for use with version 1 of the DITA Open Toolkit provides the same HTML and PDF support as is built into Version 2 of the Open Toolkit. In addition, the latest DITA For Publishers plugins support both the older DITA for Publishers MathML integration as well as the DITA 1.3 integration. DITA for Publishers also supports capture of MathML from Word documents using either Microsoft's proprietary equation markup or inline MathML markup as produced by the MathType Word plugin from MathType equations. Future enhancements to the Open Toolkit's math support may include the generation of bitmap or vector versions of MathML equations.

WEK: I'm working with the OT team to make the above be true as soon as possible. The OT 1.x plugin already exists.

I have created plugins under the DITA Community GitHub organization: org.dita-community.dita13.equationdomain.html and *.pdf, as well as a plugin with the 1.3 grammars (org.oasis.dita13.doctypes, and two for the new div element (org.dita.dita13base.html and *.pdf)

ekimber
Sticky Note
I'm pretty sure the JEuclid integration works with FOP 1.1 but I can verify that.

OASIS White Paper

12 Last revision 31 March 2015

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

this complaint and in the latest release (version 2.5) has reported speed improvements of up to 40% over the
previous version.

Independent MathML Rendering Engines
You do have a few options to choose from should you need to use an independent MathML rendering engine.
The one you choose will likely depend on your requirements and resources.

fMath
The fMath (www.fmath.info) rendering engine is a free application under active development. It’s primarily
intended for use on a web server, with libraries in Java, Javascript, Flash, and C# producing PNG or Flash
output. fMath does include some support for MathML 3.0.

jEuclid
The jEuclid (jeuclid.sourceforge.net) rendering engine is a free open-source Java application that is not being
actively developed. For this reason, it does not include any support for MathML 3.0. jEuclid can produce JPG,
PNG, and BMP output files, and with the help of extension libraries can also produce SVG, PDF, and SWF files
among other file formats. jEuclid can be used as a command line utility or can be accessed through its API.

MathFlow Equation Composer
The MathFlow Equation Composer (dessci.com) is available as Java and Windows libraries, and, like jEuclid,
can be run from a command line or through an API. The Windows Equation Composer rendering engine was
used as the benchmark for testing of the MathML 3.0 test suite. It is the most advanced MathML rendering
engine available, but it is also a commercial application. The MathFlow Equation Composer can produce GIF,
PNG, and EPS output.

http://www.fmath.info/
http://jeuclid.sourceforge.net/
http://www.dessci.com

Conclusion
The new math specializations in DITA 1.3 are a welcome addition to DITA for organizations that have
mathematics in their content. Having a standard way in which to insert formulae will shorten DITA
implementation time and provide more portability for your DITA content. The math specializations are
separated into two specializations that can be used in conjunction: the equation specialization provides a
general method, regardless of the format of the equation, for typesetting equations in either block or inline
style and providing the option of adding captions and equation numbers, while the MathML specialization
allows for adding MathML to your DITA XML document.

Most organizations will choose to adopt the MathML format for equations because of the benefits it offers.
Since MathML is XML it has the same advantages as XML: MathML allows separation of content from
style, is cheaper to localize, and is a standard that can be re-used in other applications. In addition,
MathML broadens your audience with its use in accessibility standards and its searchability. However,
organizations that adopt MathML may also have to contend with inconsistent rendering of expressions and
the need to train authors.

Though the DITA-OT does not currently have support for MathML, a number of tools are available
to handle the MathML in your content, including Antenna House Formatter and MathJax, as well as
independent rendering engines fMath, jEuclid, and MathFlow Equation Composer. This author expects that
support for MathML will continue to grow as organizations and software vendors recognize the benefits to
be gained from adding it to XML and DITA workflows.

ekimber
Cross-Out

ekimber
Inserted Text
support

ekimber
Cross-Out

ekimber
Inserted Text
is

ekimber
Cross-Out

ekimber
Inserted Text

ekimber
Cross-Out

ekimber
Inserted Text
is

ekimber
Cross-Out

ekimber
Inserted Text
specialization domains

ekimber
Cross-Out

ekimber
Inserted Text
domain

ekimber
Cross-Out

ekimber
Inserted Text
including

ekimber
Cross-Out

ekimber
Inserted Text
provides

ekimber
Cross-Out

ekimber
Inserted Text
domain

ekimber
Cross-Out

ekimber
Inserted Text
A

	Table of Contents
	Introduction
	Equation Specialization
	Block vs. Inline
	Figure
	Equation Numbering

	MathML in DITA
	Advantages of MathML
	MathML Is XML
	Accessibility
	Searchability

	Disadvantages of MathML
	Differences in Rendering Engines
	Authoring MathML

	The DITA 1.3 MathML Specialization
	MathML Output
	PDF Output
	HTML-based Outputs
	Independent MathML Rendering Engines
	fMath
	jEuclid
	MathFlow Equation Composer

	Conclusion

