
An OASIS DITA Adoption Technical Committee Publication

DITA 1.3 Feature Article:
Understanding Scoped Keys in DITA 1.3

Author: Leigh W. White, IXIASOFT Technologies
On behalf of the DITA Adoption Technical Committee

Date: 20 July 2015

This is a Non-Standards Track Work Product and is not subject to the patent
provisions of the OASIS IPR Policy.

OASIS White Paper

2 Last revision 20 July 2015

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

OASIS Legal New
OASIS (Organization for the Advancement of Structured Information Standards) is a not-for-profit, international
consortium that drives the development, convergence, and adoption of e-business standards. Members
themselves set the OASIS technical agenda, using a lightweight, open process expressly designed to promote
industry consensus and unite disparate efforts. The consortium produces open standards for Web services,
security, e-business, and standardization efforts in the public sector and for application-specific markets. OASIS
was founded in 1993. More information can be found on the OASIS website at http://www.oasis-open.org.

The OASIS DITA Adoption Technical Committee members collaborate to provide expertise and resources
to educate the marketplace on the value of the DITA OASIS standard. By raising awareness of the benefits
offered by DITA, the DITA Adoption Technical Committee expects the demand for, and availability of, DITA
conforming products and services to increase, resulting in a greater choice of tools and platforms and an
expanded DITA community of users, suppliers, and consultants.

DISCLAIMER: All examples presented in this article were produced using one or more tools chosen
at the author's discretion and in no way reflect endorsement of the tools by the OASIS DITA Adoption
Technical Committee.

This white paper was produced and approved by the OASIS DITA Adoption Technical Committee as a
Committee Draft. It has not been reviewed and/or approved by the OASIS membership at-large.

Copyright © 2015 OASIS. All rights reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website. This
document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in
whole or in part, without restriction of any kind, provided that the above copyright notice and this section are
included on all such copies and derivative works. However, this document itself may not be modified in any
way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of
developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules
applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it
into languages other than English. The limited permissions granted above are perpetual and will not be revoked
by OASIS or its successors or assigns. This document and the information contained herein is provided on an
"AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Document History
Revision Date Author Summary

First Draft 2015-07-13 White Initial draft
Second Draft White
Last Draft White
Final White Approved

DITA 1.3 Feature Article: Understanding Scoped Keys in DITA 1.3 3

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

Revision Date Author Summary

Committee
Approved
Draft

Adoption TC approved final draft

OASIS White Paper

4 Last revision 20 July 2015

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

Table of Contents

Summary... 5
Key limitations in DITA 1.2.. 6
Scoped keys.. 8
Parallel key spaces..9
Nested key spaces.. 12
Sharing keys between key spaces.. 13
Cross-deliverable linking... 17
Takeaways for scoped keys...18

Summary
DITA 1.3 introduces scoped keys, which represent an extension of keys as introduced in DITA 1.2. In a
nutshell, DITA 1.2 allowed for only one definition of a given key per root map. If you wanted your product-name
key to be resolved as "Widget" in some topics and as "Gadget" in other topics, too bad.

On the other hand, scoped keys in DITA 1.3 allow you to do just this kind of thing. Scoped keys apply to a
defined key space within a map. This key space, defined by the keyscope attribute, can be the entire root map,
a sub-map, a topichead or topicgroup, or even a single topicref. A map can contain multiple key spaces. In the
case of parallel key spaces, if the same key is defined in more than one key space, each definition holds only
for the key space that includes it. In the case of nested key spaces, the definition in the parent key space holds
for all child key spaces. A key definition at the root map necessarily overrides any definitions of the same key at
a lower level within the root map.

This feature article does not include a full discussion of key functionality. For a complete description of keys as
introduced in DITA 1.2, refer to the Understanding DITA Keys and Key Spaces feature article on that subject at
oasis-open.org.

The following sections first briefly discuss the limitations of keys in DITA 1.2 and then explain several different
possible configurations of scoped keys and give examples of each.

https://www.oasis-open.org/committees/download.php/40936/understanding-dita-keys-and-key-spaces.pdf
sjd_basement

sjd_basement

sjd_basement
perhaps "you're out of luck."

Joann Hackos
Stan, why are you removing the verb in this sentence?

OASIS White Paper

6 Last revision 20 July 2015

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

Key limitations in DITA 1.2
To fully grasp the significance of scoped keys, it's helpful to understand how keys worked—and did not work
—in DITA 1.2. Keys were introduced as a means of indirect addressing, meaning that the reference is to the
name of the link target rather than to the location of the link target.

To clarify the difference, consider a conref, which is an example of direct addressing. The syntax for a conref is
similar to the following:

<p conref="myconrefstore.dita#conrefstore/para1"/>

where the conref references a topic named myconrefstore.dita, whose id is "conrefstore." Within that topic, the
conref specifically references a paragraph whose id is "para1." Regardless of the context in which the topic is
used, the example paragraph is always resolved to the same content because the path is explicit and fixed.

On the other hand, indirect addressing using keys takes a form similar to the following example:

<p conkeyref="conrefstore/para1"/>

where the conkeyref references a target named "conrefstore" and within that target, references a specific
element whose id is "para1."

The value of conrefstore is then defined within the current context. The value can come from a key definition
added directly to the root map, or from a key definition added to a separate map, which is then referenced by
the root map.

By this means, the topic can include different content for different outputs, depending on the context-specific
definition of the conrefstore key.

The introduction of keys in DITA 1.2 was therefore a huge step forward in facilitating content reuse.
Unfortunately, it contained a major limitation. Within a root map, a key could have only one value, which made it
impossible, for example, to define a key with one value in one sub-map and with another value in a second sub-
map, both referenced by a single root map.

Here is a common example of this scenario. You write documentation for a product that has several modules.
The documentation for each of these modules is contained in separate sub-maps which you then reference
from a master root map to create one large publication. There is a topic which is similar enough for all modules
that you have written it once in such a way that it is suitable for use in all the module maps, thus maximizing
your reuse of that information. The only thing that must differ between occurrences of the topic is the module
name used.

Before DITA 1.2, you tackled this problem with conditions:

<ph module="widget">Widget</ph><ph module="gadget">Gadget</ph><ph module="doodad">Doodad</ph>

Eager to reduce the overhead of condition management, as soon as you learned of the new key functionality in
DITA 1.2, you converted all these instances into a single key: <ph keyref="module-name"/>.

Note: The examples in this article use simple keyword keys. While these are a less sophisticated use of
keys, they are a visually simple example to follow. Generally speaking, keys have a greater value when
used for image or link replacement or, as part of conkeyref, pointers to alternating topics in different
contexts. The scoped key principles hold true for any kind of key definition.

Then, in each module sub-map, you added a definition for the module-name key that corresponded to the
name of the module. In your root map, the Widget sub-map was referenced first, followed by the Gadget sub-
map, followed by the Doodad sub-map. With great anticipation, you created your first output with the new keys,

sjd_basement

Joann Hackos

Joann Hackos

Joann Hackos
no comma in this sentence …to the root map or from …

Joann Hackos
I tripped over this phrase several times. How about just “This means that ..

DITA 1.3 Feature Article: Understanding Scoped Keys in DITA 1.3 7

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

expecting the first occurrence of the topic in the Widget sub-map to feature the module name "Widget," the
second (in the Gadget sub-map) to feature the module name "Gadget," and the third (in the Doodad sub-map)
to feature the module name "Doodad." Your disappointment was crushing when you discovered that all three
instances of the topic in all three sub-maps featured the product name "Widget."

You had run up against the major limitation of keys in DITA 1.2: that in all cases, the first definition of the key
was the one that prevailed throughout the root map.

What exactly does "first definition" mean? It means slightly different things in different contexts—for example,
depending on whether you are processing a single map, or a root map and sub-maps, and whether the keys
are defined directly in the root map or in referenced maps. The full explanation is too lengthy to include here,
so if you want the details, refer to this article published by the OASIS DITA Technical Committee: http://
dita.xml.org/resource/dita-tc-faq-about-keys, which clarifies how a processor should determine which key
definition is in use.

Until this one-map, one-definition limitation could be resolved, the full power of keys would lie outside the reach
of DITA content creators and Information Architects.

http://dita.xml.org/resource/dita-tc-faq-about-keys
http://dita.xml.org/resource/dita-tc-faq-about-keys

OASIS White Paper

8 Last revision 20 July 2015

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

Scoped keys
The solution to the key limitations found in DITA 1.2 was to allow a key to be defined multiple times within a
map, with each definition being effective within a specific scope. DITA 1.3 introduces that functionality with
scoped keys.

Keys are scoped by virtue of being defined within a specific key space. The mechanism for defining a key
space is simple. DITA 1.3 includes a new attribute, keyscope, which defines a given "section" of a map as a key
space. This section can be the root map, a sub-map, a mapref, a topichead, a topicgroup, or even an individual
topicref, as shown in the following simple map:

<map keyscope="Keys1"> [1]
 *<keydef keys="module-name">Widget
 <topichead navtitle="Section One" keyscope="Keys2"> [2]
 *<keydef keys="location">Milwaukee
 <topicref href="TopicA.dita"/>
 </topichead>
 <topicgroup keyscope="Keys3"> [3]
 *<keydef keys="section">3C
 <topicref href="TopicB.dita"/>
 </topicgroup>
 <topicref href="TopicC.dita" keyscope="Keys4"> [4]
 **<keydef keys="bin-no">8463
 </topicref>
 <mapref href="MapD.ditamap" keyscope="Keys5"> [5]
 *<keydef keys="part-no">AE483H5
 </mapref>
</map>

Note: To make the example clearer and less visually cluttered, the syntax for defining a keyword key is
greatly simplified, as indicated by the * notation.

In this map, the module-name key is defined in the "Keys1" key space, within the root map. By definition, the
root map always has an implicit key space; it's not necessary to explicitly declare the key space for the root
map. There are advantages and disadvantages to doing so, depending on your use case.

The location key is defined in the "Keys2" key space, within the topichead. The section key is defined within
the "Keys3" keyspace, within the topicgroup. The bin-no key is defined within the "Keys4" key space, within the
topicrefref. (Note that keys cannot be defined within topics themselves, though they can be defined within a
topicref that references a topic.) Finally, the part-no key is defined in the "Keys5" key space, within the mapref.

As you see, a key space can be very broad or very specific. A key defined within a key space can only be
referenced by its (unqualified) key name from within that same key space. In effect, a key space is a "fence"
around a certain set of content. No other content set can use the key definitions found within the scoped
content set unless explicitly directed to do so via another new mechanism, which we will look at shortly. You
might guess that this mechanism has something to do with the "(unqualified)" phrase just now, and you would
be correct.

The fact that key definitions are inherently effective only within their defined scope allows content creators a
great deal more flexibility when reusing topics at different locations within a map, or when combining multiple
maps into a single publication. At this point, though, scoped keys probably still seem a bit abstract, so let's look
at some specific examples of scoped keys in action.

sjd_basement
Not sure about the format of the example code. The likelihood that anyone who has limited experience with DITA will be working with scoped keys is remote. The audience is probably OK with complete examples -- perhaps with line numbers and other highlighting.
Just me, Leigh. If everyone else is good, disregard. :-)

Joann Hackos

spelling

Joann Hackos
I agree with Stan’s comment. Best to show people exactly how to write the keyscopes.

Joann Hackos
no comma here

Parallel key spaces
Parallel key spaces, or those that do not overlap in any way, represent the most straightforward use of scoped
keys.

As explained, a key space can be defined at multiple levels within a map. The highest level at which a key
space can be defined is the root map level. One of the most common uses of scoped keys is likely to be the
case of multiple sub-maps within a root map (this is the example mentioned earlier in this article). For example,
a content creator might need to produce an omnibus publication that combines several smaller publications.
Here is a root map that references two sub-maps:

<map>
 <title>Training Courses</title>
 <mapref href="widget.ditamap"/>
 <mapref href="gadget.ditamap"/>
</map>

The widget.ditamap map defines a key, module-name, with the value "Widget." It also references the topic
get-started.dita [1].

<map>
 <title>Using the Widget</title>
 <keydef keys="module-name">
 <topicmeta>
 <keywords>
 <keyword>Widget</keyword>
 </keywords>
 </topicmeta>
 </keydef>
 <topicref href="get-started.dita"/> [1]
</map>

The get-started.dita topic contains a paragraph with a reference to the module-name key:

<p>Now that you have integrated the <ph keyref="module-name">, many new options are available to you.</p>

Likewise, the gadget.ditamap map defines the same key, module-name, with the value "Gadget." It also
references the topic get-started.dita [2]:

<map>
 <title>Using the Gadget</title>
 <keydef keys="module-name">
 <topicmeta>
 <keywords>
 <keyword>Gadget</keyword>
 </keywords>
 </topicmeta>
 </keydef>
 <topicref href="get-started.dita"/> [2]
</map>

In DITA 1.2, this scenario would have resulted in the key being resolved to "Widget" in both occurrences of get-
started.dita.

Note: Clearly, the processor must create two copies of get-started.dita to resolve the key to two
different values, and this requirement is stated in the DITA 1.3 specification. The processor will likely
name the copies based on its own algorithm (the specification does not outline requirements for this
aspect of processing). If you need specific URIs for the copies, you can use the copy-to attribute to
specify an appropriate URI for each reference to a topic.

By adding distinct key spaces to each sub-map using the new keyscope attribute, it's possible to specify that
within the "widget" keyscope, which encompasses the widget.ditamap, the module-name key should be

Joann Hackos

Joann Hackos
this example is mentioned earlier in this article

OASIS White Paper

10 Last revision 20 July 2015

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

defined as "widget." Within the "gadget" keyscope, which encompasses the gadget.ditamap, the module-name
key should be defined as "gadget."

<map>
 <title>Training Courses</title>
 <mapref href="widget.ditamap" keyscope="widget"/>
 <mapref href="gadget.ditamap" keyscope="gadget"/>
</map>

The keyscope attributes ensure that all key definitions within each sub-map are applicable only within that
map and that no key definition in gadget.ditamap is overidden by a different definition for the same key in
widget.ditamap, or vice-versa.

As mentioned earlier, a key space need not be an entire map. The keyscope attribute can be used with the
topichead and topicgroup elements as well, facilitating the definition of a key space at various levels within a
map. In the following example, the topic get-started.dita is included in a root map twice, once as a child of a
topicgroup [1] and again as a child of a topichead [2]:

<map>
 <title>Training Courses</title>
 <topicgroup keyscope="widget"> [1]
 <keydef keys="module-name">
 <topicmeta>
 <keywords>
 <keyword>Widget</keyword>
 </keywords>
 </topicmeta>
 </keydef>
 <topicref href="get-started.dita"/>
 </topicgroup>
 <topichead keyscope="gadget" navtitle="Using the Gadget"> [2]
 <keydef keys="module-name">
 <topicmeta>
 <keywords>
 <keyword>Gadget</keyword>
 </keywords>
 </topicmeta>
 </keydef>
 <topicref href="get-started.dita"/>
 </topichead>
</map>

Again, assume an implicit use of the copy-to attribute to create two copies of the topic. The result of this
scenario is that the first occurrence of the get-started.dita topic (and any other topic within the topicgroup) is
output with the module-name key resolved to "Widget." Likewise, the second occurrence of the get-started.dita
topic (and any other topic within the topichead) is output with the module-name key resolved to "Gadget."

Finally, a key space can be as granular as a single topic. The following scenario illustrates this use case.

In many cases, there is no need to create sub-maps for a simple publication. Likewise, it's simply extra work to
create topichead or topicgroup elements within the map just to define separate key spaces. In such cases, the
key space can be defined on the topicref itself. In this example, the same map is used to produce a deliverable
for both the Widget and the Gadget. The Information Architect does not want authors to edit the map itself (to
change key definitions, for example) and so everything must be set up once and the output managed via a
combination of keys and conditional attributes. Therefore, the topic get-started.dita appears twice in the map,
conditionalized using the product attribute:

<map>
 <title>Training Courses</title>
 <topicref href="get-started.dita" keyscope="widget" product="widget">
 <keydef keys="module-name">
 <topicmeta>
 <keywords>
 <keyword>Gadget</keyword>
 </keywords>

DITA 1.3 Feature Article: Understanding Scoped Keys in DITA 1.3 11

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

 </topicmeta>
 </keydef>
 </topicref>
 <topicref href="get-started.dita" keyscope="gadget" product="gadget">
 <keydef keys="module-name">
 <topicmeta>
 <keywords>
 <keyword>Widget</keyword>
 </keywords>
 </topicmeta>
 </keydef>
 </topicref>
</map>

This topic includes the following paragraph:

If you also choose to integrate the <ph keyref="module-name"/>, many more options are available to you.

The topic as it applies to the Widget should resolve the module-name key as "Gadget" so that the paragraph
reads "If you also choose to integrate the Gadget, many more options are available to you" (because, if
someone is reading the output as produced for the Widget, they obviously already have the Widget but they
might also want to know that there is a Gadget available.)

Likewise, the topic as it applies to the Gadget should resolve the module-name key as "Widget" so that the
paragraph reads "If you also choose to integrate the Widget, many more options are available to you" (again,
because, if someone is reading the output as produced for the Gadget, they obviously already have the Gadget
but they might also want to know that there is a Widget available.)

Interaction between scoped keys and ditaval filtering
This example also brings up the interesting question of how scoped keys and ditaval filtering—also introduced
in DITA 1.3—are going to interact. Again, a full discussion of this interaction is outside the scope of this article.
Briefly, though, say a map branch specifies two ditaval files that result in two copies of a topic, each filtered
using the conditions specified in the associated ditaval file, such as this example, taken from the DITA 1.3
specification:

<topicref href="productFeatures.dita" keys="features" keyscope="prodFeatures">
 <ditavalref href="novice.ditaval"/>
 <ditavalref href="admin.ditaval"/>
 <topicref href="newFeature.dita" keys="newThing"/>
</topicref>

Post ditavalref processing, there will be two copies of both productFeatures.dita and newFeature.dita, each
with different content based on the associated ditaval filtering.
The conflict is that if another topic references the features key, for example, it's not apparent which copy of
productFeatures.dita should be the target.
New ditavalref metadata elements have been included to allow you to specify prefixes or suffixes to be added
to the start and end of resource or key scope names for each resource or key scope in the branch. These
prefixes and suffixes create predictable resource names and key scopes for each copy of a branch that is
filtered using the conditions specified by the associated ditavals. The prefixed or suffixed key scope names can
be used to explicitly refer to the copy of the topic created by application of the corresponding ditavalref.
A more complete explanation is available in the DITA 1.3 specification on the oXygen XML website.
The relationship, or rather, lack of relationship, between keys in parallel key spaces should be clear at this
point. Let's take a look now at a more complex use case—that of nested key spaces.

http://www.oxygenxml.com/dita/1.3/specs/index.html#archSpec/base/branch-filtering-resource-names.html
sjd_basement
terminal punctuation needed.

sjd_basement
terminal punctuation needed.

sjd_basement
Run-on sentence?

Joann Hackos
I would start a second sentence at If someone is reading … And get rid of the parentheses.

Joann Hackos
Same comment here. Start a new sentence.

OASIS White Paper

12 Last revision 20 July 2015

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

Nested key spaces
Nested key spaces represent a more complex use of scoped keys, and it's critical for content creators and
Information Architects to understand how nested key spaces interact.

In the following example, the root map [1] is within a key space named "Keys1." The sub-map [2] is within a
key-space named "Keys2." Within the sub-map, the topicgroup [3] is within a key space named "Keys3."

<map keyscope="Keys1"> [1]
 *<keydef keys="module-name">Widget
 <map keyscope="Keys2"> [2]
 *<keydef keys="module-name">Gadget
 <topicgroup keyscope="Keys3"> [3]
 *<keydef keys="module-name">Doodad
 <topicref href="get-started.dita"/>
 </topicgroup>
 </map>
</map>

Within "Keys1," the module-name key is defined as "Widget." Within "Keys2," the same key is defined as
"Gadget." Within "Keys3," the key is defined as "Doodad."

Note: Again, to make the example clearer and less visually cluttered, the syntax for defining a keyword
key is greatly simplified, noted by *.

The topic get-started.dita contains the following paragraph: The <ph keyref="module-name"/> will give you
years of reliable use.

Intuitively, one might conclude that the module-name key should ultimately be resolved to "Doodad" in the
output, because it is the key definition closest to the topicref. It's not illogical to think that the key is first resolved
to "Widget," and then that definition is overridden when the processor encounters the "Gadget" definition and
then that definition is overridden when the processor encounters the "Doodad" definition.

While this is a logical thought process, it is not what happens. The key actually resolves to "Widget."

To understand why, keep in mind that with the introduction of scoped keys, there is a mandate to retain
complete backwards-compatibility with keys as they functioned in DITA 1.2. Recall that in DITA 1.2, the "first"
definition of a key within a root map was the one that held throughout the publication. Many documentation
teams have a large body of content that was designed around this principle. To require re-architecting of that
content to accommodate a different method of key resolution would be quite burdensome. The architectural
complexity of managing nested or overlapping key spaces in heavy reuse situations would also be quite
considerable.

The point to remember is that if the same key is defined at both a parent and child level, the parent definition
always wins.

Sharing keys between key spaces
There are theoretically two approaches to sharing keys between key spaces. The first is to simply allow a key
definition at a higher level to be "inherited" at a lower level if no lower-level definition is present. This approach
is not possible with scoped keys as implemented in DITA 1.3. The second approach is to explicitly include
the name of the key space when referencing a key, and this approach is accommodated by the scoped key
functionality. The following sections take a look at both approaches.

Using inherited or "fallback" key definitions
The fact that a key definition at a higher level always takes precedence over one at a lower level would seem to
prevent the use of inherited, or fallback key definitions, and that is indeed the case. By "fallback," we mean the
following situation:
You have used keys widely in your content. You now have a very large root map, and you are not sure exactly
which keys have been used or if they have all been properly defined, but to make sure there are no empty
spots in your output, you've created a "master keydef map" of all your keys with "fallback" values. Your intention
is to add this master keydef map to the root map so that any keys not explicitly defined elsewhere can pick up
a fallback value from the master keydef map. As we have seen, this approach does not work. The key values in
the master keydef map override any other values for the same keys defined elsewhere in the root map or sub-
maps.
Here's an example.
The root map [1] defines a key, trim, with a value of "TR". The second sub-map [5] defines the same key with a
value of "XR". Of course, the trusty module-name key is defined in both sub-maps [2,4] as well.

<map>
 <title>Training Courses</title>
 *<keydef keys="trim"/>TR [1]
 <mapref href="widget.ditamap" keyscope="widget"/>
 *<keydef keys="module-name"/>Widget [2]
 *<keydef keys="version"/>4.2 [3]
 <mapref href="gadget.ditamap" keyscope="gadget"/>
 *<keydef keys="module-name"/>Gadget [4]
 *<keydef keys="trim"/>XR [5]
 <topicref href="get-started.dita"/>
</map>

Within the get-started.dita topic in the second sub-map, there is a paragraph that references both the module-
name and trim keys:

<p>The <keyword keyref="module-name"/><keyword keyref="widget.trim"/> does everything but walk your dog.</p>

In this example, the "TR" definition of the trim key was meant to be only a fallback; the "XR" definition, added
specifically to the sub-map that references the get-started.dita topic, was the one that the Information
Architect intended to be used. As we now understand, the parent, or highest-level definition of the trim key
takes precedence over any subsequent definitions of the key and so it is actually the "TR" value that is used
throughout this publication.

Using the key space name in the key reference (scope-qualification)
There is, however, a way to use keys in one key space that are defined in another key space.

<map>
 <title>Training Courses</title>
 <mapref href="widget.ditamap" keyscope="widget"/>
 *<keydef keys="module-name"/>Widget
 *<keydef keys="version"/>4.2
 <mapref href="gadget.ditamap" keyscope="gadget"/>
 *<keydef keys="module-name"/>Gadget

sjd_basement
Hmm . . . lost me. Why not possible - briefly?

sjd_basement
The focus of the discussion shifts from "sharing" key values between key spaces to using a key value defined outside the current key scope.

OASIS White Paper

14 Last revision 20 July 2015

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

 *<keydef keys="trim"/>XR
 <topicref href="get-started.dita"/>
</map>

In this example, within the get-started.dita topic, there is a paragraph that references both the module-name
and version keys:

<p>The <keyword keyref="module-name"/><keyword keyref="version"/> does everything but walk your dog.</p>

When this map is output, the version key will be unresolved. Why? Because there is no definition for the version
key in the "gadget" key space. Remember that there is a "fence" around the second sub-map, created by the
definition of the "gadget" key space. No key definitions from other key spaces can get inside this fence, and no
key definitions from inside this fence can escape to other key spaces. By default, the reference to the version
key in the get-started.dita topic cannot see the definition for the version key that is within the "widget" key
space.
There is, however, a way to make key definitions in one key space visible to key references in another key
space—by including the name of the key space in the key reference:

<p>The <keyword keyref="module-name"/><keyword keyref="widget.version"/> does everything but walk your dog.</p>

Because the name of the key space, "widget," is in the key reference, a compliant processor can locate that
key space and within it, locate the referenced key. It's analogous to including the path in a link to ensure the link
can locate the referenced file.
And, just as a file path can be relative or full, the path to a key space can also be relative or full. Consider this
example:

<map>
 <mapref keyscope="widget"> [1]
 <topichead keyscope="gadget"> [2]
 <topicgroup keyscope="doodad"> [3]
 *<keydef keys="trim"/>XR [4]
 </topicgroup>
 </topichead>
 </mapref>
 <mapref>
 <topicref href="get-started.dita"/>
 </mapref>
</map>

In this (fairly improbable) example, the root map references two sub-maps. The "widget" key space is defined
for the first sub-map [1]. Within that map, a nested "gadget" key space is defined on the topichead [2] and
within the topichead, another nested key space, "doodad," is defined on the topicgroup [3]. Within the "doodad"
key space, the trim key is defined [4].
Within the second sub-map, the topic get-started.dita includes a paragraph that references the trim key:

<p>The <keyword keyref="widget.gadget.doodad.trim"/> line of tools offers the best value.</p>

Notice that the full path to the "doodad" key space is included in the key reference. It is not sufficient to simply
include "doodad.trim" as the keyref because the "doodad" key space is not at the highest level in the map; it is
nested within other key spaces. You must start at the shared parent level and navigate down to the correct key
space.

Resolving duplicate keys in parent and child scopes
There is one more important use case to look at for shared keys. Take a look at this map:

<map>
 <topicgroup keyscope="widget">
 <keydef key="intro" href="get-started.dita"/>
 </topicgroup>

sjd_basement

DITA 1.3 Feature Article: Understanding Scoped Keys in DITA 1.3 15

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

 <keydef key="widget.intro" href="welcome.dita"/>
</map>

Here, it appears the key resolution is ambiguous—for all practical purposes, the intro and widget.intro keys are
the same thing in this scenario, yet they point to two different topics. In fact, there is no ambiguity.
The scope-qualified keys from any scope are taken to occur within the parent scope at the point of occurrence
of the child scope, meaning that a key defined in a child scope overrides the same qualified key name that
occurs later in the parent scope. What this means for the example above is that the intro key that occurs within
the topicgroup (the child scope) is taken to occur at the topicgroup point within the root map—that is, before the
widget.intro key definition.
Effectively, the map becomes this:

<map>
 <keydef key="widget.intro" href="get-started.dita"/>
 <topicgroup keyscope="widget">
 <keydef key="intro" href="get-started.dita"/>
 </topicgroup>
 <keydef key="widget.intro" href="welcome.dita"/>
</map>

Given this structure, and the fact that the "first" definition of a key always wins, it's clear that the widget.intro key
will be resolved to get-started.dita.

Reuse implications for named key spaces
Not surprisingly, there are considerations when reusing a topic that contains a key reference with a named
key space. For example, in another context where the topic get-started.dita is used, there might not be a
"widget" key space with a nested "gadget" key space with a nested "doodad" key space that includes a trim
key definition. Depending on the specific situation, it might be feasible to build out this key space hierarchy
and create a nested trim key definition. More than likely though, this kind of architecture is a bit complex to
reproduce for the sake of resolving a key (not to mention the added complexity when there are multiple keys
with multiple hierarchies).
In such cases, or in any case where you want to avoid having to create a multi-level key space, you
can simply define the key as "fully scope qualified" in the reused topic as the key name. For example,
to reuse get-started.dita in a simple map without named key spaces, define the key with the name
widget.gadget.doodad.trim:

<map>
 *<keydef keys="widget.gadget.doodad.trim"/>XR
 <topicref href="get-started.dita"/>
 <topicref href="instructions.dita"/>
 <topicref href="error-codes.dita"/>
</map>

Being able to define a key in this way makes it much easier to reuse topics that reference keys with key spaces
in their names, but it does not take care of the need to know that a topic includes key references in the first
place. This need is not unique to scoped keys or to DITA 1.3. It still falls to tool vendors to develop tools that
help content creators identify keys within their content, and to Information Architects to develop best practices
around key usage.

To name or not to name the root map key space?
As mentioned earlier, all root maps have an implicit key space; it's not necessary to explicitly name it. In fact, it
might be a best practice not to do so. For example, the following map references two sub-maps, both of which
define their own key space at the map reference level:

<map>
 <mapref keyscope="Keys1" href="map1.ditamap"/>
 <mapref keyscope="Keys2" href="map2.ditamap"/>

OASIS White Paper

16 Last revision 20 July 2015

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

</map>

The Information Architect who created this map does not have access to map1.ditamap; he or she merely
knows it must be a sub-map of the root map for this publication.
Looking at map1.ditamap, we see that it defines its own key space, which is unfortunately also named "Keys2."

<map keyscope="Keys2">
 ...
</map>

References to key names qualified with the "Keys2" key space will resolve to map1.ditamap, not map2.ditamap,
and it might not be immediately obvious why, creating confusion for everyone.
Similarly, it's not difficult to imagine a situation where an Information Architect defines a key space for a map at
the map reference level ("Keys2"):

<map>
 <mapref href="map1.ditamap" keyscope="Keys2"/>
 <mapref href="map2.ditamap"/>
</map>

while the same map (map1.ditamap) defines a different key space ("Keys3") for itself at the map level:

<map keyscope="Keys3">
 ...
</map>

In short, the best policy for avoiding potential double or conflicting key space definitions is simply never to
define a key space on a map element and instead always define it on the map reference.

Cross-deliverable linking
There is one final use case to discuss for scoped keys: cross-deliverable linking.

It has been a goal of DITA content creators and Information Architects for a long time to find a mechanism
that could reliably create links from one publication to another. For example, say a company uses two maps to
create two independent help systems. There are numerous occasions when it makes sense to link from a topic
in Help System One to a topic in Help System Two. Many groups have "rolled their own" solutions to this need,
but there has been no out-of-the-box mechanism in DITA to facilitate it.

Scoped keys introduces that mechanism. Take a look at this simple scenario.

The widget.ditamap is used to create a help system for the Widget product. Of course, it includes a number
of topicref elements, including one to get-started-widget.dita. It also includes a reference to gadget.ditamap,
which is the map used to create the help system for the Gadget product. Notice that gadget.ditamap is
referenced as a peer map [1] and that it defines a key space for itself, "gadget."

<map>
 <title>Widget Online Help</title>
 <mapref href="gadget.ditamap" scope="peer" keyscope="gadget"/> [1]
 <topicref href="get-started-widget.dita"/>
</map>

The gadget.ditamap also includes a number of topicref elements, as well as a key definition, which defines the
key integ-gadget as the topic integrating-gadget.dita [2].

<map>
 <title>Gadget Online Help</title>
 <keydef keys="integ-gadget" href="integrating-gadget.dita"/> [2]
</map>

The final piece of this example is the topic get-started-widget.dita. In this topic, we want to include a link to the
integrating-gadget.dita topic, which we do by including a reference to the integ-gadget key [3]:

<concept id="getstartwidget">
 <title>Getting started with the Widget</title>
 <conbody>
 <p>If you choose to <xref keyref="gadget.integ-gadget">integrate the Gadget
 module</xref>, many more options will be available to you.</p> [3]
 </conbody>
</concept>

Because this key definition is available to integrating-gadget.dita by virtue of having been defined in
gadget.ditamap, which in turn names the "gadget" keyspace, a processor can resolve the xref as <xref
href="[some path]/integrating-gadget.dita"/> and perhaps ultimately as an active hyperlink.

The "perhaps" is important. The DITA 1.3 specification does not outline how a processor should implement
generation of cross-deliverable links. Logically, a processor would create active links but that implementation
is entirely up to the developers of the DITA Open Toolkit and other tools vendors. The DITA 1.3 specification
simply outlines the basic mechanism for setting up the potential for cross-deliverable linking.

OASIS White Paper

18 Last revision 20 July 2015

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

Takeaways for scoped keys
To summarize this feature article, here are the key (pun intended) points to remember.

• DITA 1.3 introduces a mechanism to define the same key with multiple values within a single root map: the
keyscope attribute.

• Yo can define a key space on the entire root map, a sub-map, a topichead, topicgroup, or even an individual
topicref.

• An unqualified key defined within a key space applies only within that key space.
• In the case of nested key spaces, definitions in the highest-level key space always win.
• A key reference in one key space can use a definition in another key space by including the name of the key

space in the keyref (scope qualification).
• Reuse becomes more complex with scoped keys.
• Scoped keys include a mechanism for cross-deliverable linking.
• It is up to individual processors and tools to determine how to render cross-deliverable links.

	Table of Contents
	Summary
	Key limitations in DITA 1.2
	Scoped keys
	Parallel key spaces
	Nested key spaces
	Sharing keys between key spaces
	Cross-deliverable linking
	Takeaways for scoped keys

