An OASIS DITA Adoption Technical Committee Publication

DITA 1.3 Feature Article:
A Brief Introduction to XSL for Processing DITA Content

Author: Leigh W. White
On behalf of the DITA Adoption Technical Committee

Date: 28 March 2017

This is a Non-Standards Track Work Product and is not subject to the patent
provisions of the OASIS IPR Policy.

JOASIS

q OASIS White Paper

OASIS (Organization for the Advancement of Structured Information Standards) is a not-for-profit, international
consortium that drives the development, convergence, and adoption of e-business standards. Members
themselves set the OASIS technical agenda, using a lightweight, open process expressly designed to promote
industry consensus and unite disparate efforts. The consortium produces open standards for Web services,
security, e-business, and standardization efforts in the public sector and for application-specific markets. OASIS
was founded in 1993. More information can be found on the OASIS website at http://www.oasis-open.org.

The OASIS DITA Adoption Technical Committee members collaborate to provide expertise and resources
to educate the marketplace on the value of the DITA OASIS standard. By raising awareness of the benefits
offered by DITA, the DITA Adoption Technical Committee expects the demand for, and availability of, DITA
conforming products and services to increase, resulting in a greater choice of tools and platforms and an
expanded DITA community of users, suppliers, and consultants.

DISCLAIMER: All examples presented in this article were produced using one or more tools chosen
at the author's discretion and in no way reflect endorsement of the tools by the OASIS DITA Adoption
Technical Committee.

This white paper was produced and approved by the OASIS DITA Adoption Technical Committee as a
Committee Dratft. It has not been reviewed and/or approved by the OASIS membership at-large.

Copyright © 2018 OASIS. All rights reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website. This
document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in
whole or in part, without restriction of any kind, provided that the above copyright notice and this section are
included on all such copies and derivative works. However, this document itself may not be modified in any
way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of
developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules
applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it
into languages other than English. The limited permissions granted above are perpetual and will not be revoked
by OASIS or its successors or assigns. This document and the information contained herein is provided on an
"AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Document History

Revision Date Author Summary

First Draft 28 Mar 2017 Leigh W. White Initial draft

Second Draft |30 Mar 2017 Leigh W. White Incorporating edits based on comments from
Nancy Harrison

Third Draft 9 Apr 2017 Leigh W. White Incorporated edits based on comments from lan
Balanza.

Last revision 28 March 2017

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

Revision

Third Draft

12 Feb 2018

Fourth Draft 16 Feb 2018

Fifth Draft

12 Apr 2018

Author

Leigh W. White Added OASIS frontmatter amd minor tweaks.

Leigh W. White Incorporated edits based on comments from Tom
Magliery.

Leigh W. White Incorporated edits based on comments from Eliot
Kimber.

DITA 1.3 Feature Article: A Brief Introduction to XSL for Processing DITA Content

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

q OASIS White Paper

Table of Contents

L L S 1 PP PP PP 5
How does XSL turn your XML content into OUIPUL?...........ooeriiiiii e 6
The DITA OT StyleShEEtS.o a e e e e e e aeeaees 7
WHt 10 00 NEXE. ..t e e e e e 8

Last revision 28 March 2017

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

What is XSL(T)?

If you have ever used the DITA Open Toolkit to transform DITA content into HTML, online help, PDF, or any
other output type, you have used XSL. If everything went well, you probably didn’t think too much about how
the transformation happened. If things did not go well, you probably gave the transformation a little more
(unkind) thought.

If things did not go well, were you inclined to pass the problem off to someone else on your team? Or did

you want to have a look under the hood to examine the DITA Open Toolkit (DITA OT) to understand the
transformation? The DITA OT is a collection of Java files, scripts, build files, and some other stuff, all of which
prepare DITA files for transformation using XSLT.

This article first focuses on the basics of understanding XSL—the heart of the DITA OT—to transform your XML
content, and then turns to a couple of examples of XSL within the DITA OT, specifically for transforming DITA
content.

The simplest way to describe XSL is that it transforms DITA, or any other kind of XML, into something else—
like HTML, Web help or a PDF. XSL has several parts:1

* XSLT, or XSL Transformations. XSLT is a language for transforming XML documents.

« XPath, or the XML Path Language. XPath is an expression language used by XSLT to access or refer to
parts of an XML document.

* XSL-FO, or XSL Formatting Objects. XSL-FO is an XML vocabulary for specifying formatting semantics. It's
used as the basis for PDF transformation.

Informally, “XSL" often refers to XSLT only. In turn, “XSLT” often refers informally to both XSLT itself and
XPath, since most XSLT documents use XPath expressions. XSLT is the focus of this article, which looks first
at the basics of understanding XSL in general and then discusses XSLT within the DITA OT.

! These definitions are from the World Wide Web Consortium (W3C) (https://www.w3.0rg), which is an
international community that develops open standards to ensure the long-term growth of the Web. Much
like OASIS (Organization for the Advancement of Structured Information Standards, https://www.oasis-
open.org/) develops and maintains the specifications for DITA, the W3C develops and maintains the
specifications for HTML (Hypertext Markup Language), CSS (Cascading Style Sheets), XSLT, and other
Web-related standards. Like DITA, the XSL technologies are open standards, and so their workings are
transparent, platform independent, and have a robust architecture.

DITA 1.3 Feature Article: A Brief Introduction to XSL for Processing DITA Content

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

https://www.w3.org
https://www.oasis-open.org/
https://www.oasis-open.org/

q OASIS White Paper

How does XSL turn your XML content into output?

Before talking specifically about the stylesheets in the DITA OT, which are a bit unusual in how they identify
elements, it is important to have a general understanding of how XSL works. The first thing to understand

is that XSL doesn’t turn XML into something else by itself. A stylesheet is simply a static file. However, the
stylesheet gives instructions to an XSLT processor such as Xalan (https://xalan.apache.org/) or Saxon (http://
saxon.sourceforge.net/) and the processor uses those instructions to turn XML into HTML (or into XSL-FO for
PDF output).

,y\lote: Not all XSLT processors are created equal. Some work only with older versions of XSLT. Be sure
" to use a processor that's appropriate for the version of XSLT you're using.

If you have ever used a desktop publishing application, you should be familiar with templates. In the desktop
publishing world, a template usually includes page definitions, paragraph and character formats, table formats,
and so forth. As you edit your document, you apply styles manually based on your knowledge of how the text
should look.

When you transform XML, you do not have the opportunity to apply specific styles to the text manually; you are
depending on an automatic process to do that. You have to supply the process with the correct instructions,
such as "When you encounter a title element, check to see if it is part of a topic that is nested in another topic. If
so, indent it and make it bold and 14 points. If not, don't indent it and make it bold and 18 points."

These kinds of instructions are found in XSL stylesheets. Each stylesheet contains a number of templates—not
to be confused with DTP templates!—maost of which are designed to process a specific element. The templates

1. test an element for its context (because some elements should be processed differently depending on
where they occur)

2. transform the DITA element into an HTML element or an XSL-FO element

3. apply formatting to the new element

XSLT processors iterate through the input XML and as they encounter a specific element, they find the
matching template and follow the instructions in that template to create a corresponding HTML element with
appropriate formatting attributes (or better, formatted by an accompanying CSS) or an XSL-FO element with
formatting attributes that are appropriate for PDF output.

(PDF can also now be done with HTML and CSS, and that may well be the future path. For now, though, XSL-
FO is still the more common approach for PDF output.)

This is a very general explanation. If you're curious to know more, the DITA OT documentation fully explains
the whole process. This article is more concerned with explaining how XSLT itself transforms XML content to
an output format, so let's move on to that.

Last revision 28 March 2017

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

https://xalan.apache.org/
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/

The DITA OT stylesheets

Now that you've seen a basic XSL stylesheet, let's look specifically at stylesheets in the DITA OT.

When you process, or build output for a ditamap, you send it to the DITA OT. The DITA OT consists mainly

of a bunch of build files and stylesheets. (It contains other important files as well, but they don’t matter for this
article.) These build files and stylesheets are grouped together into plugins. Generally, each plugin corresponds
to a particular output type. When you specify that you want XHTML/HTML output, or Webhelp, or a PDF, or any
other kind of output, you (or the tool you are using) sends an instruction to the DITA OT telling it which plugin

to use in order to process the content you are sending to it. The specified plugin could be one of the default
plugins that come with the DITA OT, or it could be a custom plugin developed specifically for your outputs.

Before we go into a discussion of the stylesheets, you should understand that there are a lot of things that
happen when you first start a DITA OT build. Your content is validated, your map is parsed (and filtered, if
applicable), keys and conrefs are resolved, and so forth. All of that is beyond the scope of this article. Here,
we’re going to focus just on how the stylesheets in the applicable plugin turn content from DITA XML to XHTML
or to a PDF.

To keep things simple for this article, we’ll look at only two of the DITA OT plugins: the one that generates
XHTML (org.dita.xhtml) and the one that generates PDF (org.dita.pdf2).

If you're creating XHTML-based output, the DITA OT outputs one XHTML file per DITA topic (unless you
specify otherwise). It's sufficient to transform the DITA XML directly to XHTML and that's mostly what the
templates in the org.dita.xhtml plugin do.

If you're creating PDF output, the process is a little more complex. You don't (usually) want a separate PDF file
for each topic; you want one PDF for the entire map. The first step, then, is to merge the entire map into one big
DITA XML file. That merged file is then sent forward for processing. To create a PDF from DITA XML, you need
a separate application called a PDF renderer. PDF renderers do not understand DITA XML, so the next step is
to transform the DITA XML into another form of XML called XSL-FO. This is what most of the templates in the
org.dita.pdf2 plugin do. The resulting XSL-FO file is then sent to the PDF renderer and it creates a PDF.

You might guess at this point that the templates in org.dita.xhtml and org.dita.pdf2 are going to be rather
different because they are doing different kinds of transforms—DITA to XHTML and DITA to XSL-FO. You'd be
correct, although they all have one important thing in common: they all use XSLT and XPath.

The simple addressbook example we looked at consisted of a single stylesheet. You'll quickly notice that each
of the plugins in the DITA OT consists of multiple stylesheets because it would be far too impractical to include
hundreds of templates in a single stylesheet. A stylesheet can import or include other stylesheets so that they

all end up functioning as if they were a single stylesheet.

DITA 1.3 Feature Article: A Brief Introduction to XSL for Processing DITA Content

This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

q OASIS White Paper

What to do next

If you're not responsible for maintaining the stylesheets for your content output, you can simply relax and
enjoy this new bit of high-level XSL knowledge. However, if you're curious to know more, you can continue to
research XSL on the Web or you can roll up your sleeves and dig in a little bit. There are many, many online
and print resources available for learning XML and XSL...and many of them are free!

Start simple. Create a simple XML file of your own (perhaps your own addressbook, or list of DVDs, or
international capitals with their populations and elevations, or whatever interests you). Then create a basic
stylesheet to transform them to HTML. (Sometimes it can be helpful to start by creating the HTML file to get the
output structure correct and then work it into XSL templates.)

If you are using an XML editor that includes transformation capability then you don't have any extra setup to do
for your practice. One or more XSLT processors and all the necessary associated files are already installed and
ready to go.

After you've had a little hands-on experience, you can dive into working with DITA OT stylesheets. If you have a
custom plugin, ask its owner if they can create a sandbox copy for you to play around with. Or create your own!
The DITA OT documentation (in the [DI TA- OT] \ doc\ dev_r ef folder) explains how the DITA OT plugins
work and how to create your own. Specifically, take a look at the plugins-overview.html topic. For a deep

dive into PDF plugins, DITA For Print; A DITA Open Toolkit Workbook, by Leigh White (yours truly), available
from XML Press, offers a full explanation of how the org.dita.pdf2 plugin works and provides step-by-step
instructions for creating your own PDF plugin.

Good luck!

Last revision 28 March 2017
This is a Non-Standards Track Work Product and is not subject to the patent provisions of the OASIS IPR Policy.

http://xmlpress.net/publications/dita/dita-for-print/

	Table of Contents
	What is XSL(T)?
	How does XSL turn your XML content into output?
	The DITA OT stylesheets
	What to do next

