
UML 2 Use Case Diagrams

 Home | AMDD | Best Practices | Architecture | Requirements | Analysis | Design
| Documentation | Models | Modeling Style | Contact Us | Mailing List | FAQ

Search

Use case diagrams depict:

 Use cases. A use case describes a sequence of actions that provide something of measurable value to an actor and is drawn as
a horizontal ellipse.

 Actors. An actor is a person, organization, or external system that plays a role in one or more interactions with your system.
Actors are drawn as stick figures.

 Associations. Associations between actors and use cases are indicated in use case diagrams by solid lines. An association
exists whenever an actor is involved with an interaction described by a use case. Associations are modeled as lines connecting
use cases and actors to one another, with an optional arrowhead on one end of the line. The arrowhead is often used to
indicating the direction of the initial invocation of the relationship or to indicate the primary actor within the use case. The
arrowheads are typically confused with data flow and as a result I avoid their use.

 System boundary boxes (optional). You can draw a rectangle around the use cases, called the system boundary box, to
indicates the scope of your system. Anything within the box represents functionality that is in scope and anything outside the box
is not. System boundary boxes are rarely used, although on occasion I have used them to identify which use cases will be
delivered in each major release of a system. Figure 2 shows how this could be done.

 Packages (optional). Packages are UML constructs that enable you to organize model elements (such as use cases) into
groups. Packages are depicted as file folders and can be used on any of the UML diagrams, including both use case diagrams
and class diagrams. I use packages only when my diagrams become unwieldy, which generally implies they cannot be printed on
a single page, to organize a large diagram into smaller ones. Figure 3 depicts how Figure 1 could be reorganized with packages.

In the example depicted in Figure 1 students are enrolling in courses with the potential help of registrars. Professors input the marks
students earn on assignments and registrars authorize the distribution of transcripts (report cards) to students. Note how for some use
cases there is more than one actor involved. Moreover, note how some associations have arrowheadsany given use case association
will have a zero or one arrowhead. The association between Student and Enroll in Seminar (in the version shown in Figure 4) indicates
this use case is initially invoked by a student and not by a registrar (the Registrar actor is also involved with this use case).
Understanding that associations don’t represent flows of information is important; they merely indicate an actor is somehow involved
with a use case. Information is flowing back and forth between the actor and the use case, for example, students would need to indicate
which seminars they want to enroll in and the system would need to indicate to the students whether they have been enrolled. However,
use case diagrams don’t model this sort of information. Information flow can be modeled using UML activity diagrams. The line
between the Enroll in Seminar use case and the Registrar actor has no arrowhead, indicating it is not clear how the interaction between
the system and registrars start. Perhaps a registrar may notice a student needs help and offers assistance, whereas other times, the
student may request help from the registrar, important information that would be documented in the description of the use case. Actors
are always involved with at least one use case and are always drawn on the outside edges of a use case diagram.

Figure 1. System use case diagram.

UML 2 use case diagrams overview the usage requirements for a system. They are useful for
presentations to management and/or project stakeholders, but for actual development you will
find that use cases provide significantly more value because they describe "the meat" of the
actual requirements. Figure 1 provides an example of a UML 2 use case diagram.

Ads by Google
 UML Diagram
 Draw UML
 UML Tutorial
 Sample UML
 Examples

Page 1 of 6Introduction to UML 2 Use Case Diagrams

6/8/2010http://www.agilemodeling.com/artifacts/useCaseDiagram.htm

Figure 2. Using System boundary boxes to indicate releases.

Figure 3. Applying packages to simplify use case diagrams.

Page 2 of 6Introduction to UML 2 Use Case Diagrams

6/8/2010http://www.agilemodeling.com/artifacts/useCaseDiagram.htm

Creating Use Case Diagrams

I like to start by identifying as many actors as possible. You should ask how the actors interact with the system to identify an initial set of
use cases. Then, on the diagram, you connect the actors with the use cases with which they are involved. If an actor supplies
information, initiates the use case, or receives any information as a result of the use case, then there should be an association between
them. I generally don’t include arrowheads on the association lines because my experience is that people confuse them for indications
of information flow, not initial invocation. As I begin to notice similarities between use cases, or between actors, I start modeling the
appropriate relationships between them (see the Reuse Opportunities section).

The preceding paragraph describes my general use case modeling style, an “actors first” approach. Others like to start by identifying
one actor and the use cases that they’re involved with first and then evolve the model from there. Both approaches work. The
important point is that different people take different approaches so you need to be flexible when you’re following AM’s practice of
Model With Others.

Reuse Opportunities

Figure 4 shows the three types of relationships between use cases -- extends, includes, and inheritance -- as well as inheritance
between actors. I like to think of extend relationships as the equivalent of a "hardware interrupt" because you don't know when or if the
extending use case will be invoked (perhaps a better way to look at this is extending use cases are conditional). Include relationships
as the equivalent of a procedure call. Inheritance is applied in the same way as you would on UML class diagrams -- to model
specialization of use cases or actors in this case. The essay Reuse in Use Case Models describes these relationships in greater detail.

Figure 4. Use case reuse.

Page 3 of 6Introduction to UML 2 Use Case Diagrams

6/8/2010http://www.agilemodeling.com/artifacts/useCaseDiagram.htm

Remaining Agile

So how can you keep use case modeling agile? First, focus on keeping it as simple as possible. Use simple, flexible tools to model
with. I’ll typically create use case diagrams on a whiteboard, as you see in Figure 5 which is an example of an initial diagram that I
would draw with my project stakeholders. AM tells us that Content is More Important Than Representation so it isn’t a big issue that
the diagram is hand drawn, it’s just barely good enough and that’s all that we need. It’s also perfectly okay that the diagram isn’t
complete, there’s clearly more to a university than what is depicted, because we can always modify the diagram as we need to.

Figure 5. Whiteboard sketch.

Page 4 of 6Introduction to UML 2 Use Case Diagrams

6/8/2010http://www.agilemodeling.com/artifacts/useCaseDiagram.htm

In parallel to creating the sketch I would also write a very brief description of each use case, often on a whiteboard as well. The goal is
to record just enough information about the use case so that we understand what it is all about. If we need more details we can always
add them later either as an essential/business use case or a system use case.

Source

This artifact description is excerpted from Chapter 5 of The Object Primer 3rd Edition: Agile Model Driven Development with UML
2.

Suggested Reading

 Agile Data Home Page
 Artifacts for Agile Modeling: The UML and Beyond
 Introduction to the Diagrams of UML 2
 Introduction to Object Orientation (OO) and UML
 Modeling Style Guidelines
 Pavel Hruby's UML 2.0 Stencil for Visio
 Why Extend the UML Beyond Object and Component Technology?

 This is the best book to read if you want to learn how how write use cases effectively.

The Object Primer 3rd Edition: Agile Model Driven Development with UML 2 is an important reference book
for agile modelers, describing how to develop 35 types of agile models including all 13 UML 2 diagrams.
Furthermore, this book describes the techniques of the Full Lifecycle Object Oriented Testing (FLOOT)
methodology to give you the fundamental testing skills which you require to succeed at agile software
development. The book also shows how to move from your agile models to source code (Java examples are
provided) as well as how to succeed at implementation techniques such as refactoring and test-driven
development (TDD). The Object Primer also includes a chapter overviewing the critical database development
techniques (database refactoring, object/relational mapping, legacy analysis, and database access coding)
from my award-winning Agile Database Techniques book.

Agile Modeling: Effective Practices for Extreme Programming and the Unified Process is the seminal book
describing how agile software developers approach modeling and documentation. It describes principles and
practices which you can tailor into your existing software process, such as XP, the Rational Unified Process
(RUP), or the Agile Unified Process (AUP), to streamline your modeling and documentation efforts. Modeling
and documentation are important aspects of any software project, including agile projects, and this book
describes in detail how to elicit requirements, architect, and then design your system in an agile manner.

The Elements of UML 2.0 Style describes a collection of standards, conventions, and guidelines for creating
effective UML diagrams. They are based on sound, proven software engineering principles that lead to diagrams
that are easier to understand and work with. These conventions exist as a collection of simple, concise
guidelines that if applied consistently, represent an important first step in increasing your productivity as a
modeler. This book is oriented towards intermediate to advanced UML modelers, although there are numerous
examples throughout the book it would not be a good way to learn the UML (instead, consider The Object
Primer). The book is a brief 188 pages long and is conveniently pocket-sized so it's easy to carry around.

Page 5 of 6Introduction to UML 2 Use Case Diagrams

6/8/2010http://www.agilemodeling.com/artifacts/useCaseDiagram.htm

Translations

 Japanese

Let Me Help

I actively work with clients around the world to improve their information technology (IT) practices as both a mentor/coach and trainer. A
full description of what I do, and how to contact me, can be found here.

 This is a very good book describing techniques for working with your stakeholders, including use case modeling.

Other artifact
overviews

 System Use Cases and Essential Use Cases.

Other Use-Case
Related
Whitepapers

 UML Use Case Diagram Style Guidelines
 Reuse in Use Case Models
 Use Cases of Mass Destruction

Copyright © 2003-2009 Scott W. Ambler

This site owned by Ambysoft Inc.
Agile Data (AD) | Agile Unified Process (AUP) | Enterprise Unified Process
(EUP) | My Writings | IT Surveys

Page 6 of 6Introduction to UML 2 Use Case Diagrams

6/8/2010http://www.agilemodeling.com/artifacts/useCaseDiagram.htm

