
White Paper: Release Management Domain

 | Contents | 2

Contents

The problem.. 3
In general.. 3
In DITA...3

The solution... 4
Introducing the release management domain...4
Release management domain elements..4
Elements in detail... 5
Example release notes.. 5
Sample output showing date filtering.. 6

 | The problem | 3

The problem

In general
Documenting the workings of complex machines - a jet fighter or a CAT scanner - requires the marshalling of
thousands of facts. Even with a very low error rate, corrections will be required; in a large document, a revision could
mean hundreds of changes. Most readers will complain if given an update without some list of significant changes.

The key word here is significant. Machines are notoriously bad at recognizing the significance of human language,
so it is nearly impossible for a computer to distinguish between trivial changes and significant ones. For large books,
automatic lists or difference documents risk obscuring the significant changes in a snowstorm of trivial ones.

Recording these changes then becomes the responsibility of the content worker.

In DITA
As the use of DITA spreads into such realms, a bit of help for its practicioners is welcome. Up to now, those of us
who use DITA for such documents have had to resort to workarounds: spreadsheets, text files, or maybe a special-
purpose topic. Some lucky few might have a content management system with good metadata facilities. But it's
always external to the content.

But why not record the changes in the topic itself? This would offer numerous advantages:

• For authors, it eliminates the time-consuming and error-prone step of getting the separate topic and recording the
change there. If a cross reference is desired, this would no longer be a separate process.

• It eliminates reliance on the CMS metadata, if such is used.
• For readers, it means in all likelihood more accurate documents, since compliance will improve.
• In a topic-based display, such as infocenter or wiki, it would facilitate a tabbed display: one tab for content, one

for history. (Wikipedia has such a display.)

Thus was born the new DITA release management domain. This document will introduce the domain, describe its
elements, and give examples of its use.

Available with this document is an XQuery and some sample files. The XQuery follows a DITA map and extracts
release notes from the dita topics in the map; these release notes are put into a table in a newly generated topic that
can be included in a publication or used alone.

 | The solution | 4

The solution

Introducing the release management domain
Although I referred earlier to the release management domain as new, it's really based on prior DITA work (on
bookmap's bookchangehistory element, but release management works in both maps and topics). It can be used in the
prolog of topic types and in the metadata element of maps.

Release management is an element-only domain; current processing simply ignores the new elements. Those who
want to use it will need to supply their own processing, such as that of the sample XQuery. In addition, all the
elements are optional. They all support select attributes as well, since the domain was intended for use in shared
document environments.

For some organizations, the use of select attributes is insufficient by itself. Release notes may belong in one and
only one document. In other words, once the release note has appeared in print, it should never appear again. Note,
however, that this model is not imposed by the release management domain, which can also easily support cumulative
documents.

Release management domain elements
Here are the elements of the release management domain. <change-historylist> is a child of prolog. It can be included
in maps as a child of <metadata>.

[how to present?]

change-historylist?
 change-item*
 (change-person | change-organization)*
 change-revisionid?
 change-request-reference?
 change-request-system?
 change-request-id?
 change-started?
 change-completed?
 change-summary?
 data*

Figure 1: Release Management Elements

[[show both?]]

 | The solution | 5

All these elements are derived from <data>; thus, except for the containers change-historylist, change-item, and
change-request-reference, they have CDATA content models. All the elements are optional; the user is free to use as
little or as much of the domain as is needed. Additional data elements of any number may be used as is or specialized
to meet requirements not foreseen. All release management elements support select attribution.

Elements in detail
This section describes the elements in greater detail.

change-item Contains a single release note. It holds information
about when and by whom the topic was edited during its
history.

change-person The person making the change to the document

change-organization An organization that requires or instigates a change.
Examples include government agencies or standards
bodies.

change-revisionid? Contains an identifier associated with the change
described by the release note

change-request-reference? Changes may result from tickets filed in defect tracking
systems or other databases. This element is a container
for the next two elements

change-request-system? The tracking system or database from which the change
originated (see change-request-reference)

change-request-id? The id or other key number linking the change back to
the tracking system or database (see change-request-
reference)

change-started? The date work on the change began. Recommended date
format is ISO-8601, with or without time information,
(for example 2014-06-17) unless a machine timestamp is
used.

change-completed? The date work on the change was completed.
Recommended date format is ISO-8601, with or without
time information, (for example 2014-06-17) unless a
machine timestamp is used.

change-summary? A text description of the change. This should represent
the actual text describing the change as presented to the
reader.

Example release notes
This figure shows three simple release notes added to a single topic. This topic is used in documentation for two
products, A and B.

<prolog>
...
 <changehistory-list>
 <change-item product="productA productB">
 <change-person>Bill Carter</change-person>
 <change-completed>2013-03-23</change-completed>
 <change-summary>Made change 1 to both products</change-summary>

 | The solution | 6

 <data>Details of change 1</data>
 </change-item>
 <change-item product="productA">
 <change-person>Phil Carter</change-person>
 <change-completed>2013-06-07</change-completed>
 <change-summary>Made change 2 to product A</change-summary>
 <data>Details of change 2</data>
 </change-item>
 <change-item product="productA productB">
 <change-person>Bill Carter</change-person>
 <change-completed>2013-07-20</change-completed>
 <change-summary>Made change 3 to both products</change-summary>
 <data>Details of change 3</data>
 </change-item>
 </changehistory-list>
...
</prolog>

Figure 2: Excerpt from prolog of topic myTopic

Sample output showing date filtering
One presentation of the data from the above release notes might be as a table. The example XQuery outputs a topic
containing such a table.

To illustrate the use of date filtering, in this scenario revision 5 of product A's manual was published on June 1, while
product B's manual hasn't been published since February 10 (revision 2). Then, on September 3, both manuals are
being published. Here is a timeline of events:

product A

product B

time

Feb 10

rev 5

change 1

Jun1 Sep 3July 20Jun 7Mar 23

change 2 change 3

rev 3

rev 6

rev 2

Figure 3: Example timeline

Thus, product A's release notes for revision 6 should include only those changes since June 2, while those for revision
2 of product B should start with changes made on February 11. Here is what these documents' release notes should
contain for this topic:

Table 1: Excerpt from product A's revision 6 release notes, September 3 (last published June 1)

Change Site details

Topic X Made change 2 to product A

Topic X Made change 3 to both products

 | The solution | 7

Table 2: Excerpt from product B's revision 3 release notes, September 3 (last published February
10)

Change Site details

Topic X Made change 1 to both products

Topic X Made change 3 to both products

Note that change 1 already appeared in the revision 5 release notes of product A on June 1. Therefore, it should not
appear in the revision 6 release notes, or it will confuse and annoy customers by alerting them to something that hasn't
actually changed since the previous revision.

	Contents
	The problem
	In general
	In DITA

	The solution
	Introducing the release management domain
	Release management domain elements
	Elements in detail
	Example release notes
	Sample output showing date filtering

