
Achitectural specification: Base

Contents

Introduction to DITA... 5
DITA terminology and notation..5
Basic concepts..9
File extensions..10
Producing different deliverables from a single source...11

DITA markup ...12
DITA topics..12

The topic as the basic unit of information...12
The benefits of a topic-based architecture... 12
Disciplined, topic-oriented writing...13
Information typing...14
Generic topics.. 14
Topic structure..15
Topic content..16

DITA maps.. 17
Definition of DITA maps... 17
Purpose of DITA maps... 17
DITA map elements..18
DITA map attributes... 20
Examples of DITA maps...23

Subject scheme maps and their usage...27
Subject scheme maps..27
Defining controlled values for attributes... 27
Binding controlled values to an attribute.. 28
Processing controlled attribute values... 29
Extending subject schemes... 30
Scaling a list of controlled values to define a taxonomy...31
Classification maps.. 32
Examples of subject scheme maps..32

DITA metadata.. 37
Metadata elements...37
Metadata attributes.. 38
Metadata in maps and topics... 40
Cascading of metadata attributes in a DITA map...41
Reconciling topic and map metadata elements... 43
Map-to-map cascading behaviors.. 46
Context hooks and window metadata for user assistance... 49

DITA addressing..51
ID attribute.. 51
DITA linking...52
URI-based (direct) addressing..53
Indirect key-based addressing..55

Core concepts for working with keys..55

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 2 of 177 Generated 07/14/2015

Key scopes...57
Using keys for addressing..58
Addressing keys across scopes...59
Cross-deliverable addressing and linking.. 60
Processing key references...62
Processing key references for navigation links and images.. 62
Processing key references on <topicref> elements..63
Processing key references to generate text or link text... 63
Examples of keys...65

DITA processing..80
Navigation...80

Table of contents..80
Indexes...80

Content reference (conref)..81
Conref overview... 81
Processing conrefs...82
Processing attributes when resolving conrefs..82
Processing xrefs and conrefs within a conref...83

Conditional processing (profiling)..85
Conditional processing values and groups.. 85
Filtering.. 86
Flagging... 88
Conditional processing to generate multiple deliverable types.. 88
Examples of conditional processing...89

Branch filtering..91
Overview of branch filtering..91
Branch filtering: Single condition set for a branch..91
Branch filtering: Multiple condition sets for a branch..92
Branch filtering: Impact on resource and key names... 92
Branch filtering: Implications of processing order.. 95
Examples of branch filtering...96

Chunking...105
Using the @chunk attribute... 105
Chunking examples..107

Translation and localization...110
The @xml:lang attribute...110
The @dir attribute...112

Processing documents with different values of the @domains attribute...113
Sorting...114

Configuration, specialization, generalization, and constraints115
Overview of DITA extension facilities.. 115
Configuration...116

Overview of document-type shells... 116
Rules for document-type shells.. 117
Equivalence of document-type shells...117
Conformance of document-type shells...118

Specialization.. 118
Overview of specialization..118
Modularization.. 119

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 3 of 177 Generated 07/14/2015

Vocabulary modules... 119
Specialization rules for element types..120
Specialization rules for attributes... 121
@class attribute rules and syntax.. 121
@domains attribute rules and syntax.. 122
Specializing to include non-DITA content...125
Sharing elements across specializations... 127

Generalization...127
Overview of generalization...127
Element generalization...128
Processor expectations when generalizing elements.. 128
Attribute generalization.. 130
Generalization with cross-specialization dependencies...131

Constraints..131
Overview of constraints..131
Constraint rules..132
Constraints, processing, and interoperability... 133
Weak and strong constraints..133
Conref compatibility with constraints..133
Examples: Constraints... 136

Coding practices for DITA grammar files... 142
Recognized XML-document grammar mechanisms... 142
Normative versions of DITA grammar files... 142
DTD coding requirements...143

DTD: Overview of coding requirements... 143
DTD: Coding requirements for document-type shells.. 144
DTD: Coding requirements for element type declarations... 147
DTD: Coding requirements for structural modules...150
DTD: Coding requirements for element domain modules.. 151
DTD: Coding requirements for attribute domain modules..152
DTD: Coding requirements for constraint modules.. 152

RELAX NG coding requirements.. 154
RELAX NG: Overview of coding requirements.. 154
RELAX NG: Coding requirements for document-type shells... 155
RELAX NG: Coding requirements for element type declarations.. 158
RELAX NG: Coding requirements for structural modules.. 160
RELAX NG: Coding requirements for element domain modules... 162
RELAX NG: Coding requirements for attribute domain modules... 163
RELAX NG: Coding requirements for constraint modules... 164

XML Schema coding requirements...165
XML Schema: Overview and limitations of coding requirements... 165
XML Schema: Coding requirements for document-type shells.. 166
XML Schema: Coding requirements for element type declarations....................................... 169
XML Schema: Coding requirements for structural modules...170
XML Schema: Coding requirements for attribute domain modules..171
XML Schema: Coding requirements for constraint modules..171

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 4 of 177 Generated 07/14/2015

Introduction to DITA
The Darwin Information Typing Architecture (DITA) is an XML-based architecture for authoring, producing, and
delivering topic-oriented, information-typed content that can be reused and single-sourced in a variety of ways.
While DITA historically has been driven by the requirements of large-scale technical documentation authoring,
management, and delivery, it is a standard that is applicable to any kind of publication or information that might
be presented to readers, including interactive training and educational materials, standards, reports, business
documents, trade books, travel and nature guides, and more.

DITA is designed for creating new document types and describing new information domains based on existing
types and domains. The process for creating new types and domains is called specialization. Specialization
enables the creation of specific, targeted XML grammars that can still use tools and design rules that were
developed for more general types and domains; this is similar to how classes in an object-oriented system can
inherit the methods of ancestor classes.

Because DITA topics are conforming XML documents, they can be readily viewed, edited, and validated using
standard XML tools, although realizing the full potential of DITA requires using DITA-aware tools.

DITA terminology and notation
The DITA specification uses specific notation and terms to define the components of the DITA standard.

Notation
The following conventions are used throughout the specification:

attribute types
Attribute names are preceded by @ to distinguish them from elements or surrounding text, for example,
the @props or the @class attribute.

element types
Element names are delimited with angle brackets (< and >) to distinguish them from surrounding text, for
example, the <keyword> or the <prolog> element.

In general, the unqualified use of the term map or topic can be interpreted to mean "a <map> element and any
specialization of a <map> element " or "a <topic> element or any specialization of a <topic> element." Similarly,
the unqualified use of an element type name (for example, <p>) can be interpreted to mean the element type or
any specialization of the element type.

Normative and non-normative information
The DITA specification contains normative and non-normative information:

Normative information
Normative information is the formal portion of the specification that describes the rules and requirements
that make up the DITA standard and which must be followed.

Non-normative information
Non-normative information includes descriptions that provide background, examples, notes, and other
useful information that are not formal requirements or rules that must be followed.

All information in the specification should be considered normative unless it is an example, a note, an appendix,
or is explicitly labeled as non-normative. The DITA specification contains examples to help clarify or illustrate

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 5 of 177 Generated 07/14/2015

specific aspects of the specification. Because examples are specific rather than general, they might not illustrate all
aspects or be the only way to accomplish or implement an aspect of the specification. Therefore all examples are
non-normative.

Basic DITA terminology
The following terminology is used to discuss basic DITA concepts:

DITA document
An XML document that conforms to the requirements of this specification. A DITA document MUST have
as its root element one of the following elements:

• <map> or a specialization of the <map> element
• <topic> or a specialization of the <topic> element
• <dita>, which cannot be specialized, but which allows documents with multiple sibling topics

DITA document type
A unique set of structural modules, domain modules, and constraint modules that taken together provide
the XML element and attribute declarations that define the structure of DITA documents.

DITA document-type shell
A set of DTD, XSD, or RELAX NG declarations that implement a DITA document type by using the rules
and design patterns that are included in the DITA specification. A DITA document-type shell includes and
configures one or more structural modules, zero or more domain modules, and zero or more constraint
modules. With the exception of the optional declarations for the <dita> element and its attributes, DITA
document-type shells do not declare any element or attribute types directly.

DITA element
An XML element instance whose type is a DITA element type. DITA elements must exhibit a @class
attribute that has a value that conforms to the rules for specialization hierarchy specifications.

DITA element type
An element type that is either one of the base element types that are defined by the DITA specification, or a
specialization of one of the base element types.

map instance
An occurrence of a map type in a DITA document.

map type
A map or a specialization of map that defines a set of relationships among topic instances.

structural type instance
An occurrence of a topic type or a map type in a DITA document.

topic instance
An occurrence of a topic type in a DITA document.

topic type
A topic or a specialization of topic that defines a complete unit of content.

Specialization terminology
The following terminology is used to discuss DITA specialization:

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 6 of 177 Generated 07/14/2015

base type
An element or attribute type that is not a specialization. All base types are defined by the DITA
specification.

extension element
Within a vocabulary module, an element type that can be extended, replaced, or constrained for use in a
DITA document type.

generalization
The process by which a specialized element is transformed into a less-specialized ancestor element or a
specialized attribute is transformed into a less-specialized ancestor attribute. The original specialization-
hierarchy information can be preserved in the generalized instance; this allows the original specialized
type to be recreated from the generalized instance.

specialization
(1) The act of defining new element or attribute types as a semantic refinement of existing element or
attribute types
(2) An element or attribute type that is a specialization of a base type
(3) A process by which a generalized element is transformed into one of its more specialized element types
or a generalized attribute is transformed into a more specialized attribute.

specialization hierarchy
The sequence of element or attribute types, from the most general to most specialized, from which a given
element or attribute type is specialized. The specialization hierarchy for a DITA element is formally
declared through its @class attribute.

structural type
A topic type or map type.

DITA modules
The following terminology is used to discuss DITA modules:

attribute domain module
A domain module that defines a specialization of either the @base or @props attribute.

constraint module
A set of declarations that imposes additional constraints onto the element or attribute types that are
defined in a specific vocabulary module.

domain module
A vocabulary module that defines a set of element types or an attribute type that supports a specific
subject or functional area.

element domain module
A domain module that defines one or more element types for use within maps or topics.

structural module
A vocabulary module that defines a top-level map type or topic type.

vocabulary module
A set of element or attribute declarations.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 7 of 177 Generated 07/14/2015

Linking and addressing terms
The following terminology is used to discuss linking and addressing terms:

referenced element
An element that is referenced by another DITA element. See also referencing element.
Example

Consider the following code sample from a installation-reuse.dita topic. The <step> element that
it contains is a referenced element; other DITA topics reference the <step> element by using the @conref
attribute.

<step id="run-startcmd-script">
 <cmd>Run the startcmd script that is applicable to your operating-system
environment.</cmd>
</step>

referencing element
An element that references another DITA element by specifying an addressing attribute. See also referenced
element and addressing attribute
Example

The following <step> element is a referencing element. It uses the @conref attribute to reference a <step>
element in the installation-reuse.dita topic.

<step conref="installation-reuse.dita#reuse/run-startcmd-script">
 <cmd/>
</step>

addressing attribute
An attribute, such as @conref, @conkeyref, @keyref, and @href, that specifies an address.

Terminology related to keys
The following terminology is used to discuss keys:

resource
For the purposes of keys and key resolution, one of the following:

• An object addressed by URI
• Metadata specified on a resource, such as a @scope or @format attribute
• Text or metadata located within a <topicmeta> element

key
A name for a resource. See Using keys for addressing on page 58 for more information.

key definition
A <topicref> element that binds one or more key names to zero or more resources.

key reference
An attribute that references a key, such as @keyref or @conkeyref.

key space
A list of key definitions that are used to resolve key references.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 8 of 177 Generated 07/14/2015

effective key definition
The definition for a key within a key space that is used to resolve references to that key. A key might have
multiple definitions within a key space, but only one of those definitions is effective.

key scope
A map or section of a map that defines its own key space and serves as the resolution context for its key
references.

Map terms
root map

The DITA map that is provided as input for a processor.

submap
A DITA map that is referenced with a @scope attribute that evaluates as "local". The value of the scope
attribute might be explicitly set, be defaulted, or cascade from another element.

peer map
A DITA map that is referenced with a @scope attribute that evaluates as "peer". The value of the scope
attribute might be explicitly set, be defaulted, or cascade from another element.

map branch
A <topicref> element or a specialization of <topicref>, along with any child elements and all resources
that are referenced by the original element or its children.

Basic concepts
DITA has been designed to satisfy requirements for information typing, semantic markup, modularity, reuse,
interchange, and production of different deliverable forms from a single source. These topics provide an overview
of the key DITA features and facilities that serve to satisfy these requirements.

DITA topics
In DITA, a topic is the basic unit of authoring and reuse. All DITA topics have the same basic structure: a
title and, optionally, a body of content. Topics can be generic or more specialized; specialized topics
represent more specific information types or semantic roles, for example, <concept>, <task>, or
<reference> Topics can be generic or more specialized; specialized topics represent more specific
information types or semantic roles, for example, <concept>, <task>, <reference>, or
<learningContent>. See DITA topics for more information.

DITA maps
DITA maps are documents that organize topics and other resources into structured collections of
information. DITA maps specify hierarchy and the relationships among the topics; they also provide the
contexts in which keys are defined and resolved. DITA maps SHOULD have .ditamap as the file
extension. See DITA maps for more information.

Information typing
Information typing is the practice of identifying types of topics, such as concept, reference, and task, to
clearly distinguish between different types of information. Topics that answer different reader questions
(How ...? What is ...?) can be categorized with different information types. The base information types
provided by DITA specializations (for example, technical content, machine industry, and learning and

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 9 of 177 Generated 07/14/2015

training) provide starter sets of information types that can be adopted immediately by many technical and
business-related organizations. See Information typing for more information.

DITA addressing
DITA provides two addressing mechanisms. DITA addresses either are direct URI-based addresses, or
they are indirect key-based addresses. Within DITA documents, individual elements are addressed by
unique identifiers specified on the @id attribute. DITA defines two fragment-identifier syntaxes; one is the
full fragment-identifier syntax, and the other is an abbreviated fragment-identifier syntax that can be used
when addressing non-topic elements from within the same topic. See DITA addressing for more
information.

Content reuse
The DITA @conref, @conkeyref, @conrefend, and @conaction attributes provide mechanisms for reusing
content within DITA topics or maps. These mechanisms can be used both to pull and push content. See
Content reuse for more information

Conditional processing
Conditional processing, also known as profiling, is the filtering or flagging of information based on
processing-time criteria. See Conditional processing for more information.

Configuration
A document type shell is an XML grammar file that specifies the elements and attributes that are allowed
in a DITA document. The document type shell integrates structural modules, domain modules, and
constraint modules. In addition, a document type shell specifies whether and how topics can nest. See
Configuration on page 116 for more information.

Specialization
The specialization feature of DITA allows for the creation of new element types and attributes that are
explicitly and formally derived from existing types. This facilitates interchange of conforming DITA
content and ensures a minimum level of common processing for all DITA content. It also allows
specialization-aware processors to add specialization-specific processing to existing base processing. See
Specialization for more information.

Constraints
Constraint modules define additional constraints for vocabulary modules in order to restrict content
models or attribute lists for specific element types, remove certain extension elements from an integrated
domain module, or replace base element types with domain-provided, extension element types. See
Constraints for more information.

File extensions
DITA uses certain file extensions for topics, maps, and conditional processing profiles.

Files that contain DITA content SHOULD use the following file extensions:

DITA topics
• *.dita (preferred)
• *.xml

DITA maps
*.ditamap

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 10 of 177 Generated 07/14/2015

Conditional processing profiles
*.ditaval

Producing different deliverables from a single source
DITA is designed to enable the production of multiple deliverable formats from a single set of DITA content. This
means that many rendition details are specified neither in the DITA specification nor in the DITA content; the
rendition details are defined and controlled by the processors.

Like many XML-based applications for human-readable documentation, DITA supports the separation of content
from presentation. This is necessary when content is used in different contexts, since authors cannot predict how
or where the material that they author will be used. The following features and mechanisms enable users to
produce different deliverable formats from a single source:

DITA maps
Different DITA maps can be optimized for different delivery formats. For example, you might have a book
map for printed output and another DITA map to generate online help; each map uses the same content
set.

Specialization
The DITA specialization facility enables users to create XML elements that can provide appropriate
rendition distinctions. Because the use of specializations does not impede interchange or interoperability,
DITA users can safely create the specializations that are demanded by their local delivery and rendition
requirements, with a minimum of additional impact on the systems and business processes that depend on
or use the content. While general XML practices suggest that element types should be semantic,
specialization can be used to define element types that are purely presentational in nature. The
highlighting domain is an example of such a specialization.

Conditional processing
Conditional processing makes it possible to have a DITA topic or map that contains delivery-specific
content.

Content referencing
The conref mechanism makes it possible to construct delivery-specific maps or topics from a combination
of generic components and delivery-context-specific components.

Key referencing
The keyref mechanism makes it possible to have key words be displayed differently in different
deliverables. It also allows a single link to resolve to different targets in different deliverables.

@outputclass attribute
The @outputclass attribute provides a mechanism whereby authors can indicate specific rendition intent
where necessary. Note that the DITA specification does not define any values for the @outputclass
attribute; the use of the @outputclass attribute is processor specific.

While DITA is independent of any particular delivery format, it is a standard that supports the creation of
human-readable content. As such, it defines some fundamental document components including paragraphs,
lists, and tables. When there is a reasonable expectation that such basic document components be rendered
consistently, the DITA specification defines default or suggested renderings.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 11 of 177 Generated 07/14/2015

DITA markup
Topics and maps are the basic building blocks of the Darwin Information Typing Architecture (DITA). Metadata
attributes and values can be added to DITA topics and maps, as well as to elements within topics, to allow for
conditional publishing and content reuse.

DITA topics and maps are XML documents that conform to the XML specification. As such, they can be viewed,
edited, validated, and processed with standard XML tools, although some DITA-specific features, such as content
reference, key reference, and specialization require DITA-specific processing for full implementation and
validation.

DITA topics
DITA topics are the basic units of DITA content and the basic units of reuse. Each topic contains a single subject.
Topics may be of specific specialized information types, such as task, concept, or reference, or may be generic, that
is, without a specified information type.

The topic as the basic unit of information

In DITA, a topic is the basic unit of authoring and reuse. All DITA topics have the same basic structure: a title and,
optionally, a body of content. Topics can be generic or more specialized; specialized topics represent more specific
information types or semantic roles, for example, <concept>, <task>, or <reference> Topics can be generic or
more specialized; specialized topics represent more specific information types or semantic roles, for example,
<concept>, <task>, <reference>, or <learningContent>.

DITA topics consist of content units that can be as generic as sets of paragraphs and unordered lists or as specific
as sets of instructional steps in a procedure or cautions to be considered before a procedure is performed. Content
units in DITA are expressed using XML elements and can be conditionally processed using metadata attributes.

Classically, a DITA topic is a titled unit of information that can be understood in isolation and used in multiple
contexts. It should be short enough to address a single subject or answer a single question but long enough to
make sense on its own and be authored as a self-contained unit. However, DITA topics also can be less self-
contained units of information, such as topics that contain only titles and short descriptions and serve primarily
to organize subtopics or links or topics that are designed to be nested for the purposes of information
management, authoring convenience, or interchange.

DITA topics are used by reference from DITA maps. DITA maps enable topics to be organized in a hierarchy for
publication. Large units of content, such as complex reference documents or book chapters, are created by nesting
topic references in a DITA map. The same set of DITA topics can be used in any number of maps.

DITA topics also can be used and published individually; for example, one can represent an entire deliverable as
a single DITA document that consists of a root topic and nested topics. This strategy can accommodate the
migration of legacy content that is not topic-oriented; it also can accommodate information that is not meaningful
outside the context of a parent topic. However, the power of DITA is most fully realized by storing each DITA
topic in a separate XML document and using DITA maps to organize how topics are combined for delivery. This
enables a clear separation between how topics are authored and stored and how topics are organized for delivery.

The benefits of a topic-based architecture

Topics enable the development of usable and reusable content.

While DITA does not require the use of any particular writing practice, the DITA architecture is designed to
support authoring, managing, and processing of content that is designed to be reused. Although DITA provides

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 12 of 177 Generated 07/14/2015

significant value even when reuse is not a primary requirement, the full value of DITA is realized when content is
authored with reuse in mind. To develop topic-based information means creating units of standalone information
that are meaningful with little or no surrounding context.

By organizing content into topics that are written to be reusable, authors can achieve several goals:

• Content is readable when accessed from an index or search, not just when read in sequence as part of an
extended narrative. Since most readers do not read technical and business-related information from beginning
to end, topic-oriented information design ensures that each unit of information can be read independently.

• Content can be organized differently for online and print delivery. Authors can create task flows and concept
hierarchies for online delivery and create a print-oriented hierarchy to support a narrative content flow.

• Content can be reused in different collections. Since a topic is written to support random access (as by search),
it should also be understandable when included as part of various product deliverables. Topics permit authors
to refactor information as needed, including only the topics that apply to each unique scenario.

• Content is more manageable in topic form whether managed as individual files in a traditional file system or
as objects in a content management system.

• Content authored in topics can be translated and updated more efficiently and less expensively than
information authored in larger or more sequential units.

• Content authored in topics can be filtered more efficiently, encouraging the assembly and deployment of
information subsets from shared information repositories.

Topics written for reuse should be small enough to provide opportunities for reuse but large enough to be
coherently authored and read. When each topic is written to address a single subject, authors can organize a set of
topics logically and achieve an acceptable narrative content flow.

Disciplined, topic-oriented writing

Topic-oriented writing is a disciplined approach to writing that emphasizes modularity and reuse of concise units
of information: topics. Well-designed DITA topics can be reused in many contexts, as long as writers are careful to
avoid unnecessary transitional text.

Conciseness and appropriateness
Readers who are trying to learn or do something quickly appreciate information that is written in a structure that
is easy to follow and contains only the information needed to complete that task or grasp a fact. Recipes,
encyclopedia entries, car repair procedures--all serve up a uniquely focused unit of information. The topic
contains everything required by the reader.

Locational independence
A well-designed topic is reusable in other contexts to the extent that it is context free, meaning that it can be
inserted into a new document without revision of its content. A context-free topic avoids transitional text. Phrases
like "As we considered earlier ..." or "Now that you have completed the initial step ..." make little sense if a topic is
reused in a new context in which the relationships are different or no longer exist. A well-designed topic reads
appropriately in any new context because the text does not refer the reader outside the topic.

Navigational independence
Most print publications or web pages are a mixture of content and navigation. Internal links lead a reader
through a sequence of choices as he or she navigates through a website. DITA supports the separation of
navigation from content by assembling independent topics into DITA maps. Nonetheless, writers may want to
provide links within a topic to additional topics or external resources. DITA does not prohibit such linking within
individual topics. The DITA relationship table enables links between topics and to external content. Since it is
defined in the DITA map, it is managed independently of the topic content.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 13 of 177 Generated 07/14/2015

Links in the content are best used for cross-references within a topic. Links from within a topic to additional
topics or external resources should be avoided because they limit the reusability of the topic. To link from a term
or keyword to its definition, use the DITA keyref facility to avoid creating topic-to-topic dependencies that are
difficult to maintain. See Key-based addressing.

Information typing

Information typing is the practice of identifying types of topics, such as concept, reference, and task, to clearly
distinguish between different types of information. Topics that answer different reader questions (How ...? What
is ...?) can be categorized with different information types. The base information types provided by DITA
specializations (for example, technical content, machine industry, and learning and training) provide starter sets
of information types that can be adopted immediately by many technical and business-related organizations.

Note: The specializations of <topic>, such <concept>, <task>, <reference>, and <learningContent>
are not included in the DITA 1.3 base edition.

Information typing has a long history of use in the technical documentation field to improve information quality.
It is based on extensive research and experience, including Robert Horn's Information Mapping and Hughes
Aircraft's STOP (Sequential Thematic Organization of Proposals) technique. Note that many DITA topic types are
not necessarily closely connected with traditional Information Mapping.

Information typing is a practice designed to keep documentation focused and modular, thus making it clearer to
readers, easier to search and navigate, and more suitable for reuse. Classifying information by type helps authors
perform the following tasks:

• Develop new information more consistently
• Ensure that the correct structure is used for closely related kinds of information (retrieval-oriented structures

like tables for reference information and simple sequences of steps for task information)
• Avoid mixing content types, thereby losing reader focus
• Separate supporting concept and reference information from tasks, so that users can read the supporting

information if needed and ignore if it is not needed
• Eliminate unimportant or redundant detail
• Identify common and reusable subject matter

DITA currently defines a small set of well-established information types that reflects common practices in certain
business domains, for example, technical communication and instruction and assessment. However, the set of
possible information types is unbounded. Through the mechanism of specialization, new information types can
be defined as specializations of the base topic type (<topic>) or as refinements of existing topics types, for
example, <concept>, <task>, <reference>, or <learningContent>.

You need not use any of the currently-defined information types. However, where a currently-defined
information type matches the information type of your content, the currently-defined information type should be
used, either directly, or as a base for specialization. For example, information that is procedural in nature should
use the task information type or a specialization of task. Consistent use of established information types helps
ensure smooth interchange and interoperability of DITA content.

Generic topics

The element type <topic> is the base topic type from which all other topic types are specialized. All topics have
the same basic structure.

For authors, typed content is preferred to support consistency in writing and presentation to readers. The generic
topic type should only be used if authors are not trained in information typing or when a specialized topic type is
inappropriate. The OASIS DITA standard provides several specialized topic types, including concept, task, and
reference that are critical for technical content development.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 14 of 177 Generated 07/14/2015

For those pursuing specialization, new specialized topic types should be specialized from appropriate ancestors
to meet authoring and output requirements.

Topic structure

All topics have the same basic structure, regardless of topic type: title, description or abstract, prolog, body,
related links, and nested topics.

All DITA topics must have an XML identifier (the @id attribute) and a title. The basic topic structure consists of
the following parts, some of which are optional:

Topic element
The topic element holds the required @id attribute and contains all other elements.

Title
The title contains the subject of the topic.

Alternate titles
Titles specifically for use in navigation or search. When not provided, the base title is used for all contexts.

Short description or abstract
A short description of the topic or a longer abstract with an embedded short description. The short
description may be used both in topic content (as the first paragraph), in generated summaries that include
the topic, and in links to the topic. Alternatively, the abstract lets you create more complex introductory
content and uses an embedded short description element to define the part of the abstract that is suitable
for summaries and link previews.
While short descriptions aren't required, they can make a dramatic difference to the usability of an
information set and should generally be provided for all topics.

Prolog
The prolog is the container for topic metadata, such as change history, audience, product, and so on.

Body
The topic body contains the topic content: paragraphs, lists, sections, and other content that the
information type permits.

Related links
Related links connect to other topics. When an author creates a link as part of a topic, the topic becomes
dependent on the other topic being available. To reduce dependencies between topics and thereby increase
the reusability of each topic, authors may use DITA maps to define and manage links between topics,
instead of embedding links directly in each related topic.

Nested topics
Topics can be defined inside other topics. However, nesting requires special care because it can result in
complex documents that are less usable and less reusable. Nesting may be appropriate for information that
is first converted from desktop publishing or word processing files or for topics that are unusable
independent from their parent or sibling topics.
The rules for topic nesting can be configured in a document-type shells. For example, the standard DITA
configuration for concept topics only allows nested concept topics. However, local configuration of the
concept topic type could allow other topic types to nest or disallow topic nesting entirely. In addition, the
@chunk attribute enables topics to be equally re-usable regardless of whether they are separate or nested.
The standard DITA configuration for ditabase document-type documents allows unrestricted topic nesting

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 15 of 177 Generated 07/14/2015

and may be used for holding sets of otherwise unrelated topics that hold re-usable content. It may also be
used to convert DITA topics from non-DITA legacy source without first determining how individual topics
should be organized into separate XML documents.

Topic content

The content of all topics, regardless of topic type, is built on the same common structures.

Topic body
The topic body contains all content except for that contained in the title or the short description/abstract.
The topic body can be constrained to remove specific elements from the content model; it also can be
specialized to add additional specialized elements to the content model. The topic body can be generic
while the topic title and prolog are specialized.

Sections and examples
The body of a topic might contain divisions, such as sections and examples. They might contain block-
level elements like titles and paragraphs and phrase-level elements like API names or text. It is
recommend that sections have titles, whether they are entered directly into the <title> element or
rendered using a fixed or default title.
Either body divisions or untitled sections or examples may be used to delimit arbitrary structures within a
topic body. However, body divisions may nest, but sections and examples cannot contain sections.

<sectiondiv>
The <sectiondiv> element enables the arbitrary grouping of content within a section for the purpose of
content reuse. The <sectiondiv> element does not include a title. Content that requires a title should use
<section> or <example>.

<bodydiv>
The <bodydiv> element enables the arbitrary grouping of content within the body of a topic for the
purpose of content reuse. The <bodydiv> element does not include a title. Content that requires a title
should use <section> or <example>.

<div>
The <div> element enables the arbitrary grouping of content within a topic. The <div> element does not
include a title. Content that requires a title should use <section> or <example> or, possibly, <fig>.

Block-level elements
Paragraphs, lists, figures, and tables are types of "block" elements. As a class of content, they can contain
other blocks, phrases, or text, though the rules vary for each structure.

Phrases and keywords
Phrase level elements can contain markup to label parts of a paragraph or parts of a sentence as having
special semantic meaning or presentation characteristics, such as <uicontrol> or . Phrases can usually
contain other phrases and keywords as well as text. Keywords can only contain text.

Images
Images can be inserted to display photographs, illustrations, screen captures, diagrams, and more. At the
phrase level, they can display trademark characters, icons, toolbar buttons, and so forth.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 16 of 177 Generated 07/14/2015

Multimedia
The <object> element enables authors to include multimedia, such as diagrams that can be rotated and
expanded. The <foreign> element enables authors to include media within topic content, for example,
SVG graphics, MathML equations, and so on.

DITA maps
This topic collection contains information about DITA maps and the purposes that they serve. It also includes
high-level information about DITA map elements, attributes, and metadata.

Definition of DITA maps

DITA maps are documents that organize topics and other resources into structured collections of information.
DITA maps specify hierarchy and the relationships among the topics; they also provide the contexts in which
keys are defined and resolved. DITA maps SHOULD have .ditamap as the file extension.

Maps draw on a rich set of existing best practices and standards for defining information models, such as
hierarchical task analysis. They also support the definition of non-hierarchical relationships, such as matrices and
groups, which provide a set of capabilities that has similarities to Resource Description Framework (RDF) and
ISO topic maps.

DITA maps use <topicref> elements to reference DITA topics, DITA maps, and non-DITA resources, for
example, HTML and TXT files. The <topicref> elements can be nested or grouped to create relationships among
the referenced topics, maps, and non-DITA files; the <topicref> elements can be organized into hierarchies in
order to represent a specific order of navigation or presentation.

DITA maps impose an architecture on a set of topics. Information architects can use DITA maps to specify what
DITA topics are needed to support a given set of user goals and requirements; the sequential order of the topics;
and the relationships that exist among those topics. Because DITA maps provide this context for topics, the topics
themselves can be relatively context-free; they can be used and reused in multiple different contexts.

DITA maps often represent a single deliverable, for example, a specific Web site, a printed publication, or the
online help for a product. DITA maps also can be subcomponents for a single deliverable, for example, a DITA
map might contain the content for a chapter in a printed publication or the troubleshooting information for an
online help system. The DITA specification provides specialized map types; book maps represent printed
publications, subject scheme maps represent taxonomic or ontological classifications, and learning maps represent
formal units of instruction and assessment. However, these map types are only a starter set of map types
reflecting well-defined requirements.

DITA maps establish relationships through the nesting of <topicref> elements and the application of the
@collection-type attribute. Relationship tables may also be used to associate topics with each other based on
membership in the same row; for example, task topics can be associated with supporting concept and reference
topics by placing each group in cells of the same row. During processing, these relationships can be rendered in
different ways, although they typically result in lists of "Related topics" or "For more information" links. Like
many aspects of DITA, the details about how such linking relationships are presented is determined by the DITA
processor.

DITA maps also define keys and organize the contexts (key scopes) in which key references are resolved.

Purpose of DITA maps

DITA maps enable the scalable reuse of content across multiple contexts. They can be used by information
architects, writers, and publishers to plan, develop, and deliver content.

DITA maps support the following uses:

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 17 of 177 Generated 07/14/2015

Defining an information architecture
Maps can be used to define the topics that are required for a particular audience, even before the topics
themselves exist. DITA maps can aggregate multiple topics for a single deliverable.

Defining what topics to build for a particular output
Maps reference topics that are included in output processing. Information architects, authors, and
publishers can use maps to specify a set of topics that are processed at the same time, instead of processing
each topic individually. In this way, a DITA map can serve as a manifest or bill of materials.

Defining navigation
Maps can define the online navigation or table of contents for a deliverable.

Defining related links
Maps define relationships among the topics they reference. These relationships are defined by the nesting
of elements in the DITA map, relationship tables, and the use of elements on which the @collection-type
attribute is set. On output, these relationships might be expressed as related links or the hierarchy of a
table of contents (TOC).

Defining an authoring context
The DITA map can define the authoring framework, providing a starting point for authoring new topics
and integrating existing ones.

Defining keys and key scopes
Maps can define keys, which provide an indirect addressing mechanism that enhances portability of
content. The keys are defined by <topicref> elements or specializations of <topicref> elements, such as
<keydef>. The <keydef> element is a convenience element; it is a specialized type of a <topicref>
element with the following attributes:

• A required @keys attribute
• A @processing-role attribute with a default value of "resource-only".

Maps also define the context or contexts for resolving key-based references, such as elements that specify
the @keyref or @conkeyref attribute. Elements within a map structure that specify a @keyscope attribute
create a new context for key reference resolution. Key references within such elements are resolved against
the set of effective key definitions for that scope.

Specialized maps can provide additional semantics beyond those of organization, linking, and indirection. For
example, the subjectScheme map specialization adds the semantics of taxonomy and ontology definition.

DITA map elements

A DITA map describes the relationships among a set of DITA topics. The DITA map and map-group domain
elements organize topics into hierarchies, groups, and relationships; they also define keys.

A DITA map is composed of the following elements:

<map>
The <map> element is the root element of the DITA map.

<topicref>
The <topicref> elements are the basic elements of a map. A <topicref> element can reference a DITA
topic, a DITA map, or a non-DITA resource. A <topicref> element also can have a title, short description,
and the same kind of prolog-level metadata that is available in topics.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 18 of 177 Generated 07/14/2015

The <topicref> elements can be nested to create a hierarchy, which can be used to define a table of
contents (TOC) for print output, online navigation, and parent/child links. Hierarchies can be annotated
using the @collection-type attribute to define a particular type of relationship, such as a set of choices, a
sequence, or a family. These collection types can affect link generation, and they may be interpreted
differently for different outputs.

<reltable>
Relationship tables are defined with the <reltable> element. Relationship tables can be used to define
relationships among DITA topics or among DITA topics and non-DITA resources. In a relationship table,
the columns define common attributes, metadata, or information types (for example, task or
troubleshooting) for the resources that are referenced in that column. The rows define relationships
between the resources in different cells of the same row.

The <relrow>, <relcell>, <relheader>, and <relcolspec> elements are used to define the components
of the relationship table. Relationships defined in the relationship table also can be further refined by using
the @collection-type attribute.

<topicgroup>
The <topicgroup> element defines a group or collection outside of a hierarchy or relationship table. It is a
convenience element that is equivalent to a <topicref> element without an @href attribute or navigation
title. Groups can be combined with hierarchies and relationship tables, for example, by including a
<topicgroup> element within a set of siblings in a hierarchy or within a table cell. The <topicref>
elements so grouped can then share inherited attributes and linking relationships with no effect on the
navigation or table of contents.

<topicmeta>
Most map-level elements, including the map itself, can contain metadata inside the <topicmeta> element.
Metadata typically is applied to an element and its descendants.

<ux-window>
The <ux-window> element enables authors to define windowing information for the display of output
topics that are appropriate to the delivery platform. Window management is important in user assistance
and help system outputs, as well as for other hypertext and electronic delivery modes.

<topichead>
The <topichead> element provides a navigation title; it is a convenience element that is equivalent to a
<topicref> element with a navigation title but no associated resource.

<anchor>
The <anchor> element provides an integration point that another map can reference in order to insert its
navigation into the referenced map's navigation tree. For those familiar with Eclipse help systems, this
serves the same purpose as the <anchor> element in that system. It might not be supported for all output
formats.

<navref>
The <navref> element represents a pointer to another map which should be preserved as a transcluding
link in the result deliverable rather than resolved when the deliverable is produced. Output formats that
support such linking can integrate the referenced resource when displaying the referencing map to an end
user.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 19 of 177 Generated 07/14/2015

<keydef>
Enables authors to define keys. This element is a convenience element; it is a specialization of <topicref>
that sets the default value of the @processing-role attribute to "resource-only". Setting the @processing-
role attribute to resource-only ensures that the resource referenced by the key definition is not directly
included in the navigation that is defined by the map.

<mapref>
Enables authors to reference an entire DITA map, including hierarchy and relationship tables. This
element is a convenience element; it is a specialization of <topicref> that sets the default value of the
@format attribute to "ditamap". The <mapref> element represents a reference from a parent map to a
subordinate map.

<topicset>
Enables authors to define a branch of navigation in a DITA map so that it can be referenced from another
DITA map.

<topicsetref>
Enables authors to reference a navigation branch that is defined in another DITA map.

<anchorref>
Enables authors to define a map fragment that is pushed to the location defined by an anchor.

DITA map attributes

DITA maps have unique attributes that are designed to control the way that relationships are interpreted for
different output purposes. In addition, DITA maps share many metadata and linking attributes with DITA topics.

DITA maps often encode structures that are specific to a particular medium or output, for example, Web pages or
a PDF document. Attributes, such as @deliveryTarget and @toc, are designed to help processors interpret the
DITA map for each kind of output. Many of these attributes are not available in DITA topics; individual topics,
once separated from the high-level structures and dependencies associated with a particular kind of output,
should be entirely reusable regardless of the intended output format.

@collection-type
The @collection-type attribute specifies how the children of a <topicref> element relate to their parent
and to each other. This attribute, which is set on the parent element, typically is used by processors to
determine how to generate navigation links in the rendered topics. For example, a @collection-type
value of "sequence" indicates that children of the specifying <topicref> element represent an ordered
sequence of topics; processors might add numbers to the list of child topics or generate next/previous links
for online presentation. This attribute is available in topics on the <linklist> and <linkpool> elements,
where it has the same behavior. Where the @collection-type attribute is available on elements that
cannot directly contain elements (such as <reltable> or <topicref>), the behavior of the attribute is
reserved for future use.

@linking
By default, the relationships between the topics that are referenced in a map are reciprocal:

• Child topics link to parent topics and vice versa.
• Next and previous topics in a sequence link to each other.
• Topics in a family link to their sibling topics.
• Topics referenced in the table cells of the same row in a relationship table link to each other. A topic

referenced within a table cell does not (by default) link to other topics referenced in the same table cell.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 20 of 177 Generated 07/14/2015

This behavior can be modified by using the @linking attribute, which enables an author or information
architect to specify how a topic should participate in a relationship. The following values are valid:

linking="none"
Specifies that the topic does not exist in the map for the purposes of calculating links.

linking="sourceonly"
Specifies that the topic will link to its related topics but not vice versa.

linking="targetonly"
Specifies that the related topics will link to it but not vice versa.

linking="normal"
Default value. It specifies that linking will be reciprocal (the topic will link to related topics, and
they will link back to it).

Authors also can create links directly in a topic by using the <xref> or <link> elements, but in most cases
map-based linking is preferable, because links in topics create dependencies between topics that can
hinder reuse.

Note that while the relationships between the topics that are referenced in a map are reciprocal, the
relationships merely imply reciprocal links in generated output that includes links. The rendered
navigation links are a function of the presentation style that is determined by the processor.

@toc
Specifies whether topics are excluded from navigation output, such as a Web site map or an online table of
contents. By default, <topicref> hierarchies are included in navigation output; relationship tables are
excluded.

@navtitle
Specifies a navigation title. This is a shorter version of the title that is used in the navigation only. By
default, the @navtitle attribute is ignored; it serves only to help the DITA map author keep track of the
title of the topic.

Note: The @navtitle attribute is deprecated in favor of the <navtitle> element. When both a
<navtitle> element and a @navtitle attribute are specified, the <navtitle> element should be
used.

@locktitle
If @locktitle is set to "yes", the <navtitle> element or @navtitle attribute is used if it is present.
Otherwise, the <navtitle> element or @navtitle attribute is ignored and the navigation title is retrieved
from the referenced file.

Note: The @navtitle attribute is deprecated in favor of the <navtitle> element. When both a
<navtitle> element and a @navtitle attribute are specified, the <navtitle> element should be
used.

@print
Specifies whether the topic should be included in printed output.

Note: Beginning with DITA 1.3, the @print attribute is deprecated. It is replaced with a conditional
processing attribute: @deliveryTarget. See @deliveryTarget for more details.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 21 of 177 Generated 07/14/2015

@search
Specifies whether the topic should be included in search indexes.

@chunk
Specifies that the processor generates an interim set of DITA topics that are used as the input for the final
processing. This can produce the following output results:

• Multi-topic files are transformed into smaller files, for example, individual HTML files for each DITA
topic.

• Individual DITA topics are combined into a single file.

Specifying a value for the @chunk attribute on a <map> element establishes chunking behavior that applies
to the entire map, unless overridden by @chunk attributes that are set on more specific elements in the
DITA map. For a detailed description of the @chunk attribute and its usage, see Chunking on page 105.

@copy-to
In most situations, specifies whether a duplicate version of the topic is created when it is transformed. This
duplicate version can be either literal or virtual. The value of the @copy-to attribute specifies the uniform
resource identifier (URI) by which the topic can be referenced by a @conref attribute, <topicref>
element, or <xref> element. The duplication is a convenience for output processors that use the URI of the
topic to generate the base address of the output. The @keys and @keyref attributes provide an alternative
mechanism; they enable references to topics in specific-use contexts.

The @copy-to attribute also can be used to specify the name of a new chunk when topics are being
chunked; it also can be used to determine the name of the stub topic that is generated from a <topicref>
element that contains a title but does not specify a target. In both of those cases, no duplicate version of the
topic is generated.

For information on how the @copy-to attribute can be used with the @chunk attribute, see Chunking on
page 105.

@processing-role
Specifies whether the topic or map referenced should be processed normally or treated as a resource that is
only included in order to resolve key or content references.

processing-role="normal"
The topic is a readable part of the information set. It is included in navigation and search results.
This is the default value for the <topicref> element.

processing-role="resource-only"
The topic should be used only as a resource for processing. It is not included in navigation or search
results, nor is it rendered as a topic. This is the default value for the <keydef> element.

If the @processing-role attribute is not specified locally, the value cascades from the closest element in
the containment hierarchy.

@cascade
Specifies whether the default rules for the cascading of metadata attributes in a DITA map apply. In
addition to the following specified values, processors also MAY define additional values.

cascade="merge"
The metadata attributes cascade; the values of the metadata attributes are additive. This is the
processing default for the @cascade attribute and was the only defined behavior for DITA 1.2 and
earlier.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 22 of 177 Generated 07/14/2015

cascade="nomerge"
The metadata attributes cascade; however, they are not additive for <topicref> elements that
specify a different value for a specific metadata attribute. If the cascading value for an attribute is
already merged based on multiple ancestor elements, that merged value continues to cascade until a
new value is encountered (that is, setting cascade="nomerge" does not undo merging that took
place on ancestors).

For more information, see Example: How the cascade attribute functions on page 26.

@keys
Specifies one or more key names.

@keyscope
Defines a new scope for key definition and resolution, and gives the scope one or more names. For more
information about key scopes, see Indirect key-based addressing on page 55.

Attributes in the list above are used exclusively or primarily in maps, but many important map attributes are
shared with elements in topics. DITA maps also use many of the following attributes that are used with linking
elements in DITA topics, such as <link> and <xref>:

• @format
• @href
• @keyref
• @scope
• @type
The following metadata and reuse attributes are used by both DITA maps and DITA topics:

• @product, @platform, @audience, @otherprops, @rev, @status, @importance
• @dir, @xml:lang, @translate
• @id, @conref, @conrefend, @conkeyref, @conaction
• @props and any attribute specialized from @props (such as @deliveryTarget)
• @search
When new attributes are specialized from @props or @base as a domain, they can be incorporated into both map
and topic structural types.

Examples of DITA maps

This section of the specification contains simple examples of DITA maps. The examples illustrate a few of the
ways that DITA maps are used.

Example: DITA map that references a subordinate map
This example illustrates how one map can reference a subordinate map using either <mapref> or the basic
<topicref> element.

The following code sample illustrates how a DITA map can use the specialized <mapref> element to reference
another DITA map:

<map>
 <title>DITA work at OASIS</title>
 <topicref href="oasis-dita-technical-committees.dita">
 <topicref href="dita_technical_committee.dita"/>
 <topicref href="dita_adoption_technical_committee.dita"/>
 </topicref>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 23 of 177 Generated 07/14/2015

 <mapref href="oasis-processes.ditamap"/>
 <!-- ... -->
</map>

The <mapref> element is a specialized <topicref> intended to make it easier to reference another map; use of
<mapref> is not required for this task. This map also could be tagged in the following way:

<map>
 <title>DITA work at OASIS</title>
 <topicref href="oasis-dita-technical-committees.dita">
 <topicref href="dita_technical_committee.dita"/>
 <topicref href="dita_adoption_technical_committee.dita"/>
 </topicref>
<topicref href="oasis-processes.ditamap" format="ditamap"/>
<!-- ... -->
</map>

With either of the above examples, during processing, the map is resolved in the following way:

<map>
 <title>DITA work at OASIS</title>
 <topicref href="oasis-dita-technical-committees.dita">
 <topicref href="dita_technical_committee.dita"/>
 <topicref href="dita_adoption_technical_committee.dita"/>
 </topicref>
 <!-- Contents of the oasis-processes.ditamap file -->
 <topicref href="oasis-processes.dita">
 <!-- ... -->
 </topicref>
 <!-- ... -->
</map>

Example: DITA map with a simple relationship table
This example illustrates how to interpret a basic three-column relationship table used to maintain links between
concept, task, and reference material.

The following example contains the markup for a simple relationship table:

<map>
<!-- ... -->
<reltable>
 <relheader>
 <relcolspec type="concept"/>
 <relcolspec type="task"/>
 <relcolspec type="reference"/>
 </relheader>
 <relrow>
 <relcell>
 <topicref href="A.dita"/>
 </relcell>
 <relcell>
 <topicref href="B.dita"/>
 </relcell>
 <relcell>
 <topicref href="C1.dita"/>
 <topicref href="C2.dita"/>
 </relcell>
 </relrow>
</reltable>
</map>

A DITA-aware tool might represent the relationship table graphically:

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 24 of 177 Generated 07/14/2015

type="concept" type="task" type="reference"

A B C1
C2

When the output is generated, the topics contain the following linkage:

A
Links to B, C1, and C2

B
Links to A, C1, and C2

C1, C2
Links to A and B

Example: How the @collection-type and @linking attributes determine
links
In this scenario, a simple map establishes basic hierarchical and relationship table links. The @collection-type
and @linking attributes are then added to modify how links are generated.

The following example illustrates how linkage is defined in a DITA map:

<topicref href="A.dita" collection-type="sequence">
 <topicref href="A1.dita"/>
 <topicref href="A2.dita"/>
</topicref>
<reltable>
 <relrow>
 <relcell><topicref href="A.dita"/></relcell>
 <relcell><topicref href="B.dita"/></relcell>
 </relrow>
</reltable>

Figure 1: Simple linking example

When the output is generated, the topics contain the following linkage. Sequential (next/previous) links between
A1 and A2 are present because of the @collection-type attribute on the parent:

A
Links to A1, A2 as children
Links to B as related

A1
Links to A as a parent
Links to A2 as next in the sequence

A2
Links to A as a parent
Links to A1 as previous in the sequence

B
Links to A as related

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 25 of 177 Generated 07/14/2015

The following example illustrates how setting the @linking attribute can change the default behavior:

<topicref href="A.dita" collection-type="sequence">
 <topicref href="B.dita" linking="none"/>
 <topicref href="A1.dita"/>
 <topicref href="A2.dita"/>
</topicref>
<reltable>
 <relrow>
 <relcell><topicref href="A.dita"/></relcell>
 <relcell linking="sourceonly"><topicref href="B.dita"/></relcell>
 </relrow>
</reltable>

Figure 2: Linking example with the @linking attribute

When the output is generated, the topics contain the following linkage:

A
Links to A1, A2 as children
Does not link to B as a child or related topic

A1
Links to A as a parent
Links to A2 as next in the sequence
Does not link to B as previous in the sequence

A2
Links to A as a parent
Links to A1 as previous in the sequence

B
Links to A as a related topic

Example: How the @cascade attribute functions
The following example illustrates how the @cascade attribute can be used to fine tune how the values for the
@platform attribute apply to topics referenced in a DITA map.

Here a DITA map contains a collection of topics that apply to Windows, Linux, and Macintosh OS; it also contains
a topic that is only applicable to users running the application on Linux.

<map product="PuffinTracker" platform="win linux mac" cascade="nomerge">
 <title>Puffin Tracking Software</title>
 <topicref href="intro.dita" navtitle="Introduction"/>
 <topicref href="setup.dita" navtitle="Setting up the product"/>
 <topicref href="linux-instructions.dita" navtitle="Linux instructions" platform="linux"/>
</map>

The values of the @platform attribute set at the map level cascade throughout the map and apply to the
"Introduction" and "Setting up the product" topics. However, since the value of the @cascade attribute is set to
"nomerge", the value of the @platform attribute for the "Linux instructions" topic does not merge with the values
that cascade from above in the DITA map. The effective value of the @platform attribute for linux-
instructions.dita is "linux".

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 26 of 177 Generated 07/14/2015

The same results are produced by the following mark-up:

<map product="PuffinTracker" platform="win linux mac">
 <title>Puffin Tracking Software</title>
 <topicref href="intro.dita" navtitle="Introduction"/>
 <topicref href="setup.dita" navtitle="Setting up the product"/>
 <topicref href="linux-instructions.dita" navtitle="Linux instructions" platform="linux"
cascade="nomerge"/>
</map>

Subject scheme maps and their usage
Subject scheme maps can be used to define controlled values and subject definitions. The controlled values can be
bound to attributes, as well as element and attribute pairs. The subject definitions can contain metadata and
provide links to more detailed information; they can be used to classify content and provide semantics that can be
used in taxonomies and ontologies.

A DITA map can reference a subject scheme map by using a <mapref> element. Processors also MAY provide
parameters by which subject scheme maps are referenced.

Subject scheme maps

Subject scheme maps use key definitions to define collections of controlled values and subject definitions.

Controlled values are keywords that can be used as values for attributes. For example, the @audience attribute can
take a value that identifies the users that are associated with a particular product. Typical values for a medical-
equipment product line might include "therapist", "oncologist", "physicist", and "radiologist". In a subject scheme
map, an information architect can define a list of these values for the @audience attribute. Controlled values can
be used to classify content for filtering and flagging at build time.

Subject definitions are classifications and sub-classifications that compose a tree. Subject definitions provide
semantics that can be used in conjunction with taxonomies and ontologies. In conjunction with the classification
domain, subject definitions can be used for retrieval and traversal of the content at run time when used with
information viewing applications that provide such functionality.

Key references to controlled values are resolved to a key definition using the same precedence rules as apply to
any other key. However, once a key is resolved to a controlled value, that key reference does not typically result in
links or generated text.

Defining controlled values for attributes

Subject scheme maps can define controlled values for DITA attributes without having to define specializations or
constraints. The list of available values can be modified quickly to adapt to new situations.

Each controlled value is defined using a <subjectdef> element, which is a specialization of the <topicref>
element. The <subjectdef> element is used to define both a subject category and a list of controlled values. The
parent <subjectdef> element defines the category, and the children <subjectdef> elements define the
controlled values.

The subject definitions can include additional information within a <topicmeta> element to clarify the meaning
of a value:

• The <navtitle> element can provide a more readable value name.
• The <shortdesc> element can provide a definition.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 27 of 177 Generated 07/14/2015

In addition, the <subjectdef> element can reference a more detailed definition of the subject, for example,
another DITA topic or an external resource..

The following behavior is expected of processors:

• Authoring tools SHOULD use these lists of controlled values to provide lists from which authors can select
values when they specify attribute values.

• Authoring tools MAY give an organization a list of readable labels, a hierarchy of values to simplify selection,
and a shared definition of the value.

• An editor MAY support accessing and displaying the content of the subject definition resource in order to
provide users with a detailed explanation of the subject.

• Tools MAY produce a help file, PDF, or other readable catalog to help authors better understand the controlled
values.

Example: Controlled values that provide additional information about the
subject
The following code fragment illustrates how a subject definition can provide a richer level of information about
a controlled value:

<subjectdef keys="terminology" href="https://www.oasis-open.org/policies-guidelines/
keyword-guidelines">
 <subjectdef keys="rfc2119" href="rfc-2119.dita">
 <topicmeta>
 <navtitle>RFC-2119 terminology</navtitle>
 <shortdesc>The normative terminology that the DITA TC uses for the DITA
specification</shortdesc>
 </topicmeta>
 </subjectdef>
 <subjectdef keys="iso" href="iso-terminology.dita">
 <topicmeta>
 <navtitle>ISO keywords</navtitle>
 <shortdesc>The normative terminology used by some other OASIS technical
committees</shortdesc>
 </topicmeta>
 </subjectdef>
</subjectdef>

The content of the <navtitle> and <shortdesc> elements provide additional information that a processor
might display to users as they select attribute values or classify content. The resources referenced by the @href
attributes provide even more detailed information; a processor might render clickable links as part of a user
interface that implements a progressive disclosure strategy

Binding controlled values to an attribute

The controlled values defined in a subject scheme map can be bound to an attribute or an element and attribute
pair. This affects the expected behavior for processors and authoring tools.

The <enumerationdef> element binds the set of controlled values to an attribute. Valid attribute values are those
that are defined in the set of controlled values; invalid attribute values are those that are not defined in the set of
controlled values. An enumeration can specify an empty <subjectdef> element. In that case, no value is valid for
the attribute. An enumeration also can specify an optional default value by using the <defaultSubject> element.

If an enumeration is bound, processors SHOULD validate attribute values against the controlled values that are
defined in the subject scheme map. For authoring tools, this validation prevents users from entering misspelled or
undefined values. Recovery from validation errors is implementation specific.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 28 of 177 Generated 07/14/2015

The default attribute values that are specified in a subject scheme map apply only if a value is not otherwise
specified in the DITA source or as a default value by the XML grammar.

To determine the effective value for a DITA attribute, processors check for the following in the order outlined:

1. An explicit value in the element instance
2. A default value in the XML grammar
3. Cascaded value within the document
4. Cascaded value from a higher level document to the document
5. A default controlled value, as specified in the <defaultSubject> element
6. A value set by processing rules

Example: Binding a list of controlled values to the @audience attribute
The following example illustrates the use of the <subjectdef> element to define controlled values for types of
users. It also binds the controlled values to the @audience attribute:

<subjectScheme>
 <!-- Define types of users -->
 <subjectdef keys="users">
 <subjectdef keys="therapist"/>
 <subjectdef keys="oncologist"/>
 <subjectdef keys="physicist"/>
 <subjectdef keys="radiologist"/>
 </subjectdef>

 <!-- Bind the "users" subject to the @audience attribute.
 This restricts the @audience attribute to the following
 values: therapist, oncologist, physicist, radiologist -->
 <enumerationdef>
 <attributedef name="audience"/>
 <subjectdef keyref="users"/>
 </enumerationdef>
</subjectScheme>

When the above subject scheme map is used, the only valid values for the @audience attribute are "therapist",
"oncologist", "physicist", and "radiologist". Note that "users" is not a valid value for the @audience attribute; it
merely identifies the parent or container subject.

Example: Binding an attribute to an empty set
The following code fragment declares that there are no valid values for the @outputclass attribute.

<subjectScheme>
 <enumerationdef>
 <attributedef name="outputclass"/>
 <subjectdef/>
 </enumerationdef>
</subjectScheme>

Processing controlled attribute values

An enumeration of controlled values can be defined with hierarchical levels by nesting subject definitions. This
affects how processors perform filtering and flagging.

The following algorithm applies when processors apply filtering and flagging rules to attribute values that are
defined as a hierarchy of controlled values and bound to an enumeration:

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 29 of 177 Generated 07/14/2015

1. If an attribute specifies a value in the taxonomy, and a DITAVAL or other categorization tool is configured
with that value, the rule matches.

2. Otherwise, if the parent value in the taxonomy has a rule, that matches.
3. Otherwise, continue up the chain in the taxonomy until a matching rule is found.

The following behavior is expected of processors:

• Processors SHOULD be aware of the hierarchies of attribute values that are defined in subject scheme maps for
purposes of filtering, flagging, or other metadata-based categorization.

• Processors SHOULD validate that the values of attributes that are bound to controlled values contain only
valid values from those sets. (The list of controlled values is not validated by basic XML parsers.) If the
controlled values are part of a named key scope, the scope name is ignored for the purpose of validating the
controlled values.

• Processors SHOULD check that all values listed for an attribute in a DITAVAL file are bound to the attribute by
the subject scheme before filtering or flagging. If a processor encounters values that are not included in the
subject scheme, it SHOULD issue a warning.

Example: A hierarchy of controlled values and conditional processing
The following example illustrates a set of controlled values that contains a hierarchy.

<subjectScheme>
 <subjectdef keys="users">
 <subjectdef keys="therapist">
 <subjectdef keys="novice-therapist"/>
 <subjectdef keys="expert-therapist"/>
 </subjectdef>
 <subjectdef keys="oncologist"/>
 <subjectdef keys="physicist"/>
 <subjectdef keys="radiologist"/>
 </subjectdef>
 <enumerationdef>
 <attributedef name="audience"/>
 <subjectdef keyref="users"/>
 </enumerationdef>
</subjectScheme>

Processors that are aware of the hierarchy that is defined in the subject scheme map will handle filtering and
flagging in the following ways:

• If "therapist" is excluded, both "novice-therapist" and "expert-therapist" are by default excluded (unless they
are explicitly set to be included).

• If "therapist" is flagged and "novice-therapist" is not explicitly flagged, processors automatically should flag
"novice" since it is a type of therapist.

Extending subject schemes

The <schemeref> element provides a mechanism for extending a subject scheme. This makes it possible to add
new relationships to existing subjects and extend enumerations of controlled values.

The <schemeref> element provides a reference to another subject scheme map. Typically, the referenced subject-
scheme map defines a base set of controlled values that are extended by the current subject-scheme map. The
values in the referenced subject-scheme map are merged with the values in the current subject-scheme map; the
result is equivalent to specifying all of the values in a single subject scheme map.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 30 of 177 Generated 07/14/2015

Scaling a list of controlled values to define a taxonomy

Optional classification elements make it possible to create a taxonomy from a list of controlled values.

A taxonomy differs from a controlled values list primarily in the degree of precision with which the metadata
values are defined. A controlled values list sometimes is regarded as the simplest form of taxonomy. Regardless of
whether the goal is a simple list of controlled values or a taxonomy:

• The same core elements are used: <subjectScheme> and <subjectdef>.
• A category and its subjects can have a binding that enumerates the values of an attribute.

Beyond the core elements and the attribute binding elements, sophisticated taxonomies can take advantage of
some optional elements. These optional elements make it possible to specify more precise relationships among
subjects. The <hasNarrower>, <hasPart>, <hasKind>, <hasInstance>, and <hasRelated> elements specify the
kind of relationship in a hierarchy between a container subject and its contained subjects.

While users who have access to sophisticated processing tools benefit from defining taxonomies with this level of
precision, other users can safely ignore this advanced markup and define taxonomies with hierarchies of
<subjectdef> elements that are not precise about the kind of relationship between the subjects.

Example: A taxonomy defined using subject scheme elements
The following example defines San Francisco as both an instance of a city and a geographic part of California.

<subjectScheme>
 <hasInstance>
 <subjectdef keys="city" navtitle="City">
 <subjectdef keys="la" navtitle="Los Angeles"/>
 <subjectdef keys="nyc" navtitle="New York City"/>
 <subjectdef keys="sf" navtitle="San Francisco"/>
 </subjectdef>
 <subjectdef keys="state" navtitle="State">
 <subjectdef keys="ca" navtitle="California"/>
 <subjectdef keys="ny" navtitle="New York"/>
 </subjectdef>
 </hasInstance>
 <hasPart>
 <subjectdef keys="place" navtitle="Place">
 <subjectdef keyref="ca">
 <subjectdef keyref="la"/>
 <subjectdef keyref="sf"/>
 </subjectdef>
 <subjectdef keyref="ny">
 <subjectdef keyref="nyc"/>
 </subjectdef>
 </subjectdef>
 </hasPart>
</subjectScheme>

Sophisticated tools can use this subject scheme map to associate content about San Francisco with related
content about other California places or with related content about other cities (depending on the interests of
the current user).

The subject scheme map also can define relationships between subjects that are not hierarchical. For instance,
cities sometimes have "sister city" relationships. An information architect could add a <subjectRelTable>
element to define these associative relationships, with a row for each sister-city pair and the two cities in
different columns in the row.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 31 of 177 Generated 07/14/2015

Classification maps

A classification map is a DITA map in which the classification domain has been made available.

The classification domain provides elements that enable map authors to indicate information about the subject
matter of DITA topics. The subjects must be defined in subjectScheme maps, and the map authors references the
subjects using the @keyref attribute.

Examples of subject scheme maps

This section contains examples and scenarios that illustrate the use of subject scheme maps.

Example: How hierarchies defined in a subject scheme map affect filtering
This scenario demonstrates how a processor evaluates attribute values when it performs conditional processing
for an attribute that is bound to a set of controlled values.

A company defines a subject category for "Operating system," with a key set to "os. There are sub-categories for
Linux, Windows, and z/OS, as well as specific Linux variants: Red Hat Linux and SuSE Linux. The company
then binds the values that are enumerated in the "Operating system" category to the @platform attribute.

<!-- This examples uses @navtitle rather than <navtitle> solely
to conserve space. Best practises for translate include using <navtitle>. -->
<subjectScheme>
 <subjectdef keys="os" navtitle="Operating system">
 <subjectdef keys="linux" navtitle="Linux">
 <subjectdef keys="redhat" navtitle="RedHat Linux"/>
 <subjectdef keys="suse" navtitle="SuSE Linux"/>
 </subjectdef>
 <subjectdef keys="windows" navtitle="Windows"/>
 <subjectdef keys="zos" navtitle="z/OS"/>
 </subjectdef>
 <enumerationdef>
 <attributedef name="platform"/>
 <subjectdef keyref="os"/>
 </enumerationdef>
</subjectScheme>

The enumeration limits valid values for the @platform attribute to the following: "linux", "redhat", "suse",
"windows", and "zos". If any other values are encountered, processors validating against the scheme should
issue a warning.

The following table illustrates how filtering and flagging operate when the above map is processed by a
processor. The first two columns provide the values specified in the DITAVAL file; the third and fourth columns
indicate the results of the filtering or flagging operation

att="platform"
val="linux"

att="platform"
val="redhat"

How platform="redhat"
is evaluated

How platform="linux" is
evaluated

action="exclude" action="exclude"" Excluded. Excluded.

action="include"or
action="flag"

Excluded. This is an error
condition, because if all
"linux" content is
excluded, "redhat" also is
excluded. Applications
may recover by

Excluded.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 32 of 177 Generated 07/14/2015

att="platform"
val="linux"

att="platform"
val="redhat"

How platform="redhat"
is evaluated

How platform="linux" is
evaluated

generating an error
message.

Unspecified Excluded, because
"redhat" is a kind of
"linux", and "linux" is
excluded.

Excluded.

action="include" action="exclude" Excluded, because all
"redhat" content is
excluded.

Included.

action="include" Included. Included.

action="flag" Included and flagged with
the "redhat" flag.

Included.

Unspecified Included, because all
"linux" content is
included.

Included.

action="flag" action="exclude" Excluded, because all
"redhat" content is
excluded.

Included and flagged
with the "linux" flag.

action="include" Included and flagged with
the "linux" flag, because
"linux" is flagged and
"redhat" is a type of
"linux".

Included and flagged
with the "linux" flag.

action="flag" Included and flagged with
the "redhat" flag, because
a flag is available that is
specifically for "redhat".

Included and flagged
with the "linux" flag.

Unspecified Included and flagged with
the "linux" flag, because
"linux" is flagged and
"redhat" is a type of linux

Included and flagged
with the "linux" flag.

Unspecified action="exclude" Excluded, because all
"redhat" content is
excluded

If the default for
@platform values is
"include", this is
included. If the default
for @platform values is
"exclude", this is
excluded.

action="include" Included. Included, because all
"redhat" content is
included, and general
Linux content also
applies to RedHat

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 33 of 177 Generated 07/14/2015

att="platform"
val="linux"

att="platform"
val="redhat"

How platform="redhat"
is evaluated

How platform="linux" is
evaluated

action="flag" Included and flagged with
the "redhat" flag.

Included, because all
"redhat" content is
included, and general
Linux content also
applies to RedHat

Unspecified If the default for
@platform values is
"include", this is included.
If the default for
@platform values is
"exclude", this is
excluded.

If the default for
@platform values is
"include", this is
included. If the default
for @platform values is
"exclude", this is
excluded.

Example: Extending a subject scheme
You can extend a subject scheme by creating another subject scheme map and referencing the original map using
a <schemeref> element. This enables information architects to add new relationships to existing subjects and
extend enumerations of controlled values.

A company uses a common subject scheme map (baseOS.ditamap) to set the values for the @platform
attribute.

<subjectScheme>
 <subjectdef keys="os" navtitle="Operating system">
 <subjectdef keys="linux" navtitle="Linux">
 <subjectdef keys="redhat" navtitle="RedHat Linux"/>
 <subjectdef keys="suse" navtitle="SuSE Linux"/>
 </subjectdef>
 <subjectdef keys="windows" navtitle="Windows"/>
 <subjectdef keys="zos" navtitle="z/OS"/>
 </subjectdef>
 <enumerationdef>
 <attributedef name="platform"/>
 <subjectdef keyref="os"/>
 </enumerationdef>
</subjectScheme>

The following subject scheme map extends the enumeration defined in baseOS.ditamap. It adds "macos" as a
child of the existing "os" subject; it also adds special versions of Windows as children of the existing "windows"
subject:

<subjectScheme>
 <schemeref href="baseOS.ditamap"/>
 <subjectdef keyref="os">
 <subjectdef keys="macos" navtitle="Macintosh"/>
 <subjectdef keyref="windows">
 <subjectdef keys="winxp" navtitle="Windows XP"/>
 <subjectdef keys="winvis" navtitle="Windows Vista"/>
 </subjectdef>
 </subjectdef>
</subjectScheme>

Note that the references to the subjects that are defined in baseOS.ditamap use the @keyref attribute. This
avoids duplicate definitions of the keys and ensures that the new subjects are added to the base enumeration.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 34 of 177 Generated 07/14/2015

The effective result is the same as the following subject scheme map:

<subjectScheme>
 <subjectdef keys="os" navtitle="Operating system">
 <subjectdef keys="linux" navtitle="Linux">
 <subjectdef keys="redhat" navtitle="RedHat Linux"/>
 <subjectdef keys="suse" navtitle="SuSE Linux"/>
 </subjectdef>
 <subjectdef keys="macos" navtitle="Macintosh"/>
 <subjectdef keys="windows" navtitle="Windows">
 <subjectdef keys="winxp" navtitle="Windows XP"/>
 <subjectdef keys="win98" navtitle="Windows Vista"/>
 </subjectdef>
 <subjectdef keys="zos" navtitle="z/OS"/>
 </subjectdef>
 <enumerationdef>
 <attributedef name="platform"/>
 <subjectdef keyref="os"/>
 </enumerationdef>
</subjectScheme>

Example: Extending a subject scheme upwards
You can broaden the scope of a subject category by creating a new subject scheme map that defines the original
subject category as a child of a broader category.

The following subject scheme map creates a "Software" category that includes operating systems as well as
applications. The subject scheme map that defines the operation system subjects is pulled in by reference, while
the application subjects are defined directly in the subject scheme map below.

<subjectScheme>
 <schemeref href="baseOS.ditamap"/>
 <subjectdef keys="sw" navtitle="Software">
 <subjectdef keyref="os"/>
 <subjectdef keys="app" navtitle="Applications">
 <subjectdef keys="apacheserv" navtitle="Apache Web Server"/>
 <subjectdef keys="mysql" navtitle="MySQL Database"/>
 </subjectdef>
 </subjectdef>
</subjectScheme>

If the subject scheme that is defined in baseOS.ditamap binds the "os" subject to the @platform attribute, the
app subjects that are defined in the extension subject scheme do not become part of that enumeration, since
they are not part of the "os" subject

To enable the upward extension of an enumeration, information architects can define the controlled values in
one subject scheme map and bind the controlled values to the attribute in another subject scheme map. This
approach will let information architects bind an attribute to a different set of controlled values with less rework.

An adopter would use the extension subject scheme as the subject scheme that governs the controlled values.
Any subject scheme maps that are referenced by the extension subject scheme are effectively part of the
extension subject scheme.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 35 of 177 Generated 07/14/2015

Example: Defining values for @deliveryTarget
You can use a subject scheme map to define the values for the @deliveryTarget attribute. This filtering attribute,
which is new in DITA 1.3, is intended for use with a set of hierarchical, controlled values.

In this scenario, one department produces electronic publications (EPUB, EPUB2, EPUB3, Kindle, etc.) while
another department produces traditional, print-focused output. Each department needs to exclude a certain
category of content when they build documentation deliverables.

The following subject scheme map provides a set of values for the @deliveryTarget attribute that
accommodates the needs of both departments.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE subjectScheme PUBLIC "-//OASIS//DTD DITA Subject Scheme Map//EN"
"subjectScheme.dtd">
<subjectScheme>
 <subjectHead>
 <subjectHeadMeta>
 <navtitle>Example of values for the @deliveryTarget attribute</navtitle>
 <shortdesc>Provides a set of values for use with the
 @deliveryTarget conditional-processing attribute. This set of values is
 illustrative only; you can use any values with the @deliveryTarget
 attribute.</shortdesc>
 </subjectHeadMeta>
 </subjectHead>
 <subjectdef keys="deliveryTargetValues">
 <topicmeta><navtitle>Values for @deliveryTarget attributes</navtitle></topicmeta>
 <!-- A tree of related values -->
 <subjectdef keys="print">
 <topicmeta><navtitle>Print-primary deliverables</navtitle></topicmeta>
 <subjectdef keys="pdf">
 <topicmeta><navtitle>PDF</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="css-print">
 <topicmeta><navtitle>CSS for print</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="xsl-fo">
 <topicmeta><navtitle>XSL-FO</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="afp">
 <topicmeta><navtitle>Advanced Function Printing</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="ms-word">
 <topicmeta><navtitle>Microsoft Word</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="indesign">
 <topicmeta><navtitle>Adobe InDesign</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="open-office">
 <topicmeta><navtitle>Open Office</navtitle></topicmeta>
 </subjectdef>
 </subjectdef>
 <subjectdef keys="online">
 <topicmeta><navtitle>Online deliverables</navtitle></topicmeta>
 <subjectdef keys="html-based">
 <topicmeta><navtitle>HTML-based deliverables</navtitle></topicmeta>
 <subjectdef keys="html">
 <topicmeta><navtitle>HTML</navtitle></topicmeta>
 <subjectdef keys="html5">
 <topicmeta><navtitle>HTML5</navtitle></topicmeta>
 </subjectdef>
 </subjectdef>
 <subjectdef keys="help">
 <topicmeta><navtitle>Contextual help</navtitle></topicmeta>
 <subjectdef keys="htmlhelp">

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 36 of 177 Generated 07/14/2015

 <topicmeta><navtitle>HTML Help</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="webhelp">
 <topicmeta><navtitle>Web help</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="javahelp">
 <topicmeta><navtitle>Java Help</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="eclipseinfocenter">
 <topicmeta><navtitle>Eclipse InfoCenter</navtitle></topicmeta>
 </subjectdef>
 </subjectdef>
 <subjectdef keys="epub">
 <topicmeta><navtitle>EPUB</navtitle></topicmeta>
 <subjectdef keys="epub2">
 <topicmeta><navtitle>EPUB2</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="epub3">
 <topicmeta><navtitle>EPUB3</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="ibooks">
 <topicmeta><navtitle>iBooks</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="nook">
 <topicmeta><navtitle>nook</navtitle></topicmeta>
 </subjectdef>
 </subjectdef>
 <subjectdef keys="kindle">
 <topicmeta><navtitle>Amazon Kindle</navtitle></topicmeta>
 <subjectdef keys="kindle8">
 <topicmeta><navtitle>Kindle Version 8</navtitle></topicmeta>
 </subjectdef>
 </subjectdef>
 </subjectdef>
 </subjectdef>
 </subjectdef>
 <enumerationdef>
 <attributedef name="deliveryTarget"/>
 <subjectdef keyref="deliveryTargetValues"/>
 </enumerationdef>
</subjectScheme>

DITA metadata
Metadata can be applied in both DITA topics and DITA maps. Metadata that is assigned in DITA topics can be
supplemented or overridden by metadata that is assigned in a DITA map; this design facilitates the reuse of DITA
topics in different DITA maps and use-specific contexts.

Metadata elements

The metadata elements, many of which map to Dublin core metadata, are available in topics and DITA maps. This
design enables authors and information architects to use identical metadata markup in both topics and maps.

The <metadata> element is a wrapper element that contains many of the metadata elements. In topics, the
<metadata> element is available in the <prolog> element. In maps, the <metadata> element is available in the
<topicmeta> element.

In DITA maps, the metadata elements also are available directly in the <topicmeta> element. Collections of
metadata can be shared between DITA maps and topics by using the conref or keyref mechanism.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 37 of 177 Generated 07/14/2015

In general, specifying metadata in a <topicmeta> element is equivalent to specifying it in the <prolog> element
of a referenced topic. The value of specifying the metadata at the map level is that the topic then can be reused in
other maps where different metadata might apply. Many items in the <topicmeta> element also cascade to
nested <topicref> elements within the map.

Note: Not all metadata elements are available in the <metadata> element. However, they are available in
either the topic <prolog> element or the map <topicmeta> element.

Metadata attributes

Certain attributes are common across most DITA elements. These attributes support content referencing,
conditional processing, application of metadata, and globalization and localization.

Conditional processing attributes
The metadata attributes specify properties of the content that can be used to determine how the content should be
processed. Specialized metadata attributes can be defined to enable specific business-processing needs, such as
semantic processing and data mining.

Metadata attributes typically are used for the following purposes:

• Filtering content based on the attribute values, for example, to suppress or publish profiled content
• Flagging content based on the attribute values, for example, to highlight specific content on output
• Performing custom processing, for example, to extract business-critical data and store it in a database

Typically @audience, @platform, @product, @otherprops, @props, @deliveryTarget, and specializations of the
@props attributes are used for filtering; the same attributes plus the @rev attribute are used for flagging. The
@status and @importance attributes, as well as custom attributes specialized from @base, are used for
application-specific behavior, such as identifying metadata to aid in search and retrieval.

Filtering and flagging attributes
The following conditional-processing attributes are available on most elements:

@product
The product that is the subject of the discussion.

@platform
The platform on which the product is deployed.

@audience
The intended audience of the content.

@deliveryTarget
The intended delivery target of the content, for example "html", "pdf", or "epub". This attribute is a
replacement for the now deprecated @print attribute.

The @deliveryTarget attribute is specialized from the @props attribute. It is defined in the
deliveryTargetAttDomain, which is integrated into all OASIS-provided document-type shells. If this
domain is not integrated into a given document-type shell, the @deliveryTarget attribute will not be
available.

@rev
The revision or draft number of the current document. (This is used only for flagging.)

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 38 of 177 Generated 07/14/2015

@otherprops
Other properties that do not require semantic identification.

@props
A generic conditional processing attribute that can be specialized to create new semantic conditional-
processing attributes.

Other metadata attributes
Other attributes are still considered metadata on an element, but they are not designed for filtering or flagging.

@importance
The degree of priority of the content. This attribute takes a single value from an enumeration.

@status
The current state of the content. This attribute takes a single value from an enumeration.

@base
A generic attribute that has no specific purpose, but is intended to act as the basis for specialized attributes
that have a simple value syntax like the conditional processing attributes (one or more alphanumeric
values separated by whitespace or parenthesized groups of values).

@outputclass
Provides a label on one or more element instances, typically to specify a role or other semantic distinction.
As the @outputclass attribute does not provide a formal type declaration or the structural consistency of
specialization, it should be used sparingly, usually only as a temporary measure while a specialization is
developed. For example, <uicontrol> elements that define button labels could be distinguished by
adding an @outputclass attribute:

<uicontrol outputclass="button">Cancel</uicontrol>

The value of the @outputclass attribute can be used to trigger XSLT or CSS rules, while providing a
mapping to be used for future migration to a more specialized set of user interface elements.

Translation and localization attributes
DITA elements have several attributes that support localization and translation.

@xml:lang
Identifies the language of the content, using the standard language and country codes. For instance,
French Canadian is identified by the value fr-CA. The @xml:lang attribute asserts that all content and
attribute values within the element bearing the attribute are in the specified language, except for contained
elements that declare a different language.

@translate
Determines whether the element requires translation. A default value can often be inferred from the
element type. For example, <apiname> may be untranslated by default, whereas <p> may be translated by
default.

@dir
Determines the direction in which the content should be rendered.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 39 of 177 Generated 07/14/2015

Architectural attributes
The architectural attributes specify the version of DITA that the content supports; they also identify the DITA
domains, structural types, and specializations that are in use by the content.

The architectural attributes should not be marked up in the source DITA map and topics. Instead, the values of
the architectural attributes are handled by the processor when the content is processed, preferably through
defaults set in the XML grammar. This practice ensures that the DITA content instances do not specify invalid
values for the architectural attributes.

The architectural attributes are as follows:

@class
This attribute identifies the specialization hierarchy for the element type. Every DITA element (except the
<dita> element that is used as the root of a ditabase document) MUST declare a @class attribute.

@domains
This attribute identifies the domain modules (and optionally the structural modules) that are used in a
map or topic. Each module also declares its module dependencies. The root element of every topic and
map MUST declare a @domains attribute.

@DITAArchVersion
This attribute identifies the version of the DITA architecture that is used by the XML grammar. The root
element of every topic and map MUST declare a @DITAArchVersion attribute. The attribute is declared in
a DITA namespace to allow namespace-sensitive tools to detect DITA markup.

To make the document instance usable in the absence of an XML grammar, a normalization process can set the
architectural attributes in the document instance.

Metadata in maps and topics

Topic metadata can be specified in a DITA map as well as in the topics that the map references. By default,
metadata in the map supplements or overrides metadata that is specified at the topic level, unless the @lockmeta
attribute of the <topicmeta> element is set to "no".

Where metadata about topics can be specified
Information about topics can be specified as metadata on the map, as attributes on the <topicref> element, or as
metadata attributes or elements in the topic itself:

DITA map: Metadata elements
At the map level, properties can be set by using metadata elements. They can be set for an individual topic,
for a set of topics, or globally for the entire document. The metadata elements are authored within a
<topicmeta> element, which associates metadata with the parent element and its children. Because the
topics in a branch of the hierarchy typically have some common subjects or properties, this is a convenient
mechanism to define properties for a set of topics. For example, the <topicmeta> element in a
<relcolspec> can associate metadata with all the topics that are referenced in the <reltable> column.

A map can override or supplement everything about a topic except its primary title and body content. All
the metadata elements that are available in a topic also are available in a map. In addition, a map may
provide alternate titles and a short description. The alternate titles can override their equivalents in the
topic. The short description in the map MAY override the short description in the topic if the <topicref>
element specifies a @copy-to attribute.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 40 of 177 Generated 07/14/2015

DITA map: Attributes of the <topicref> element
At the map level, properties can be set as attributes of the <topicref> element.

DITA topic
Within a topic, authors can either set metadata attributes on the root element or add metadata elements in
the <prolog> element.

How metadata set at both the map and topic level intersects
In a topic, the metadata elements apply to the entire topic. In a map, they supplement or override any metadata
that is provided in the referenced topics. When the same metadata element or attribute is specified in both a map
and a topic, by default the value in the map takes precedence; the assumption here is that the author of the map
has more knowledge of the reusing context than the author of the topic. The @lockmeta attribute on the
<topicmeta> element controls whether map-specified values override values in the referenced topic.

The <navtitle> element is an exception to the rule of how metadata specified by the <topicmeta> element
cascades. The content of the <navtitle> element is used as a navigation title only if the @locktitle attribute of
the parent <topicref> element is set to "yes".

Cascading of metadata attributes in a DITA map

Certain map-level attributes cascade throughout a map, which facilitates attribute and metadata management.
When attributes cascade, they apply to the elements that are children of the element where the attributes were
specified. Cascading applies to a containment hierarchy, as opposed to a element-type hierarchy.

The following attributes cascade when set on the <map> element or when set within a map:

• @audience, @platform, @product, @otherprops, @rev
• @props and any attribute specialized from @props
• @linking, @toc, @print, @search
• @format, @scope, @type
• @xml:lang, @dir, @translate
• @processing-role
• @cascade
Cascading is additive for attributes that accept multiple values, except when the @cascade attribute is set to avoid
adding values to attributes. For attributes that take a single value, the closest value defined on a containing
element takes effect. In a relationship table, row-level metadata is considered more specific than column-level
metadata, as shown in the following containment hierarchy:

• <map> (most general)

• <topicref> container (more specific)

• <topicref> (most specific)
• <reltable> (more specific)

• <relcolspec> (more specific)

• <relrow> (more specific)

• <topicref> (most specific)

Merging of cascading attributes
The @cascade attribute can be used to modify the additive nature of attribute cascading (though it does not turn
off cascading altogether). The attribute has two predefined values: "merge" and "nomerge".

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 41 of 177 Generated 07/14/2015

cascade="merge"
The metadata attributes cascade; the values of the metadata attributes are additive. This is the processing
default for the @cascade attribute and was the only defined behavior for DITA 1.2 and earlier.

cascade="nomerge"
The metadata attributes cascade; however, they are not additive for <topicref> elements that specify a
different value for a specific metadata attribute. If the cascading value for an attribute is already merged
based on multiple ancestor elements, that merged value continues to cascade until a new value is
encountered (that is, setting cascade="nomerge" does not undo merging that took place on ancestors).

Implementers MAY define their own custom, implementation-specific tokens. To avoid name conflicts between
implementations or with future additions to the standard, implementation-specific tokens SHOULD consist of a
prefix that gives the name or an abbreviation for the implementation followed by a colon followed by the token or
method name.

For example, a processor might define the token "appToken:audience" in order to specify cascading and merging
behaviors for only the @audience attribute. The following rules apply:

• The predefined values for the @cascade attribute MUST precede any implementation-specific tokens, for
example, cascade="merge appToken:audience".

• Tokens can apply to a set of attributes, specified as part of the @cascade value. In that case, the syntax for
specifying those values consists of the implementation-specific token, followed by a parenthetical group that
uses the same syntax as groups within the @audience, @platform, @product, and @otherprops attributes. For
example, a token that applies to only @platform and @product could be specified as
cascade="appname:token(platform product)".

Examples of the @cascade attribute in use
Consider the following code examples:

<map audience="a b" cascade="merge">
 <topicref href="topic.dita" audience="c"/>
</map>

Figure 3: Map A

<map audience="a b" cascade="nomerge">
 <topicref href="topic.dita" audience="c"/>
</map>

Figure 4: Map B

For map A, the values for the attribute are merged, and the effective value of the @audience attribute for
topic.dita is "a b c". For map B, the values for the attribute are not additive, and the effective value of the
@audience attribute for topic.dita is "c".

In the following example, merging is active at the map level but turned off below:

<map platform="a" product="x" cascade="merge">
 <topicref href="one.dita" platform="b" product="y">
 <topicref href="two.dita" cascade="nomerge" product="z"/>
 </topicref>
</map>

Figure 5: Map C

In map C, the reference to one.dita has effective merged values of "a b" for @platform and "x y" for
@product.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 42 of 177 Generated 07/14/2015

The reference to two.dita turns off merging, so the explicit @product value of "z" is used (it does not merge
with ancestor values). The @platform attribute is not present, so the already-merged value of "a b" continues to
cascade and the effective value of @platform on this reference.

Order for processing cascading attributes in a map
When determining the value of an attribute, processors MUST evaluate each attribute on each individual element
in a specific order; this order is specified in the following list. Applications MUST continue through the list until a
value is established or until the end of the list is reached (at which point no value is established for the attribute).
In essence, the list provides instructions on how processors can construct a map where all attribute values are set
and all cascading is complete.

For example, in the case of <topicref toc="yes">, applications MUST stop at item 2 on page 43 in the list; a
value is specified for @toc in the document instance, so @toc values from containing elements will not cascade to
that specific <topicref> element. The toc="yes" setting on that <topicref> element will cascade to contained
elements, provided those elements reach item 5 on page 43 below when evaluating the @toc attribute.

For attributes within a map, the following processing order MUST occur:

1. The @conref and @keyref attributes are evaluated.
2. The explicit values specified in the document instance are evaluated. For example, a <topicref> element

with the @toc attribute set to "no" will use that value.
3. The default or fixed attribute values are evaluated. For example, the @toc attribute on the <reltable>

element has a default value of "no".
4. The default values that are supplied by a controlled values file are evaluated.
5. The attributes cascade.
6. The processing-supplied default values are applied.
7. After the attributes are resolved within the map, they cascade to referenced maps.

Note: The processing-supplied default values do not cascade to other maps. For example, most
processors will supply a default value of toc="yes" when no @toc attribute is specified. However, a
processor-supplied default of toc="yes" MUST not override a value of toc="no" that is set on a
referenced map. If the toc="yes" value is explicitly specified, is given as a default through a DTD,
XSD, RNG, or controlled values file, or cascades from a containing element in the map, it MUST
override a toc="no" setting on the referenced map. See Map-to-map cascading behaviors on page 46
for more details.

8. Repeat steps 1 on page 43 to 4 on page 43 for each referenced map.
9. The attributes cascade within each referenced map.
10. The processing-supplied default values are applied within each referenced map.
11. Repeat the process for maps referenced within the referenced maps.

Reconciling topic and map metadata elements

The <topicmeta> element in maps contains numerous elements that can be used to declare metadata. These
metadata elements have an effect on the parent <topicref> element, any child <topicref> elements, and – if a
direct child of the <map> element – on the map as a whole.

For each element that can be contained in the <topicmeta> element, the following table addresses the following
questions:

How does it apply to the topic?
This column describes how the metadata specified within the <topicmeta> element interacts with the
metadata specified in the topic. In most cases, the properties are additive. For example, when the

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 43 of 177 Generated 07/14/2015

<audience> element is set to "user" at the map level, the value "user" is added during processing to any
audience metadata that is specified within the topic.

Does it cascade to other topics in the map?
This column indicates whether the specified metadata value cascades to nested <topicref> elements. For
example, when an <audience> element is set to "user" at the map level, all child <topicref> elements
implicitly have an <audience> element set to "user" also. Elements that can apply only to the specific
<topicref> element, such as <linktext>, do not cascade.

What is the purpose when specified on the <map> element?
The map element allows metadata to be specified for the entire map. This column describes what effect, if
any, an element has when specified at this level.

Table 1: Topicmeta elements and their properties

Element
How does it apply to the
topic?

Does it cascade to child
<topicref> elements?

What is the purpose
when set on the <map>
element?

<audience> Add to the topic Yes Specify an audience for
the entire map

<author> Add to the topic Yes Specify an author for the
entire map

<category> Add to the topic Yes Specify a category for the
entire map

<copyright> Add to the topic Yes Specify a copyright for the
entire map

<critdates> Add to the topic Yes Specify critical dates for
the entire map

<data> Add to the topic No, unless specialized for
a purpose that cascades

No stated purpose, until
the element is specialized

<data-about> Add the property to the
specified target

No, unless specialized for
a purpose that cascades

No stated purpose, until
the element is specified

<foreign> Add to the topic No, unless specialized for
a purpose that cascades

No stated purpose, until
the element is specified

<keywords> Add to the topic No No stated purpose

<linktext> Not added to the topic;
applies only to links
created based on this
occurrence in the map

No No stated purpose

<metadata> Add to the topic Yes Specify metadata for the
entire map

<navtitle> Not added to the topic;
applies only to navigation
that is created based on
this occurrence in the
map. The navigation title

No No stated purpose

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 44 of 177 Generated 07/14/2015

Element
How does it apply to the
topic?

Does it cascade to child
<topicref> elements?

What is the purpose
when set on the <map>
element?

will be used whenever the
@locktitle attribute on
the containing
<topicref> element is set
to "yes".

<othermeta> Add to the topic No Define metadata for the
entire map

<permissions> Add to the topic Yes Specify permissions for
the entire map

<prodinfo> Add to the topic Yes Specify product info for
the entire map

<publisher> Add to the topic Yes Specify a publisher for the
map

<resourceid> Add to the topic No Specify a resource ID for
the map

<searchtitle> Replace the one in the
topic. If multiple
<searchtitle> elements
are specified for a single
target, processors may
choose to issue a warning.

No No stated purpose

<shortdesc> Only added to the topic
when the <topicref>
element specifies a @copy-
to attribute. Otherwise, it
applies only to links
created based on this
occurrence in the map.

Note: Processors
MAY or MAY
NOT implement
this behavior.

No Provide a description of
the map

<source> Add to the topic No Specify a source for the
map

<unknown> Add to the topic No, unless specialized for
a purpose that cascades

No stated purpose, until
the element is specified

<ux-window> Not added to the topic No Definitions are global, so
setting at map level is
equivalent to setting
anywhere else.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 45 of 177 Generated 07/14/2015

Example of metadata elements cascading in a DITA map
The following code sample illustrates how an information architect can apply certain metadata to all the DITA
topics in a map:

<map title="DITA maps" xml:lang="en-us">
 <topicmeta>
 <author>Kristen James Eberlein</author>
 <copyright>
 <copyryear year="2009"/>
 <copyrholder>OASIS</copyrholder>
 </copyright>
 </topicmeta>
 <topicref href="dita_maps.dita" navtitle="DITA maps">
 <topicref href="definition_ditamaps.dita" navtitle="Definition of DITA maps"></
topicref>
 <topicref href="purpose_ditamaps.dita" navtitle="Purpose of DITA maps"></
topicref>
 <!-- ... -->
 </topicref>
</map>

The author and copyright information cascades to each of the DITA topics referenced in the DITA map. When
the DITA map is processed to XHTML, for example, each XHTML file contains the metadata information.

Map-to-map cascading behaviors

When a DITA map (or branch of a DITA map) is referenced by another DITA map, by default, certain rules apply.
These rules pertain to the cascading behaviors of attributes, metadata elements, and roles assigned to content (for
example, the role of "Chapter" assigned by a <chapter> element). Attributes and elements that cascade within a
map generally follow the same rules when cascading from one map to another map, but there are some
exceptions and additional rules that apply.

Cascading of attributes from map to map
Certain elements cascade from map to map, although some of the attributes that cascade within a map do not
cascade from map to map.

The following attributes cascade from map to map:

• @audience, @platform, @product, @otherprops, @rev
• @props and any attribute specialized from @props
• @linking, @toc, @print, @search
• @type
• @translate
• @processing-role
• @cascade
Note that the above list excludes the following attributes:

@format
The @format attribute must be set to "ditamap" in order to reference a map or a branch of a map, so it
cannot cascade through to the referenced map.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 46 of 177 Generated 07/14/2015

@xml:lang and @dir
Cascading behavior for @xml:lang is defined in The xml:lang attribute on page 110. The @dir attribute
work the same way.

@scope
The value of the @scope attribute describes the map itself, rather than the content. When the @scope
attribute is set to "external", it indicates that the referenced map itself is external and unavailable, so the
value cannot cascade into that referenced map.

The @class attribute is used to determine the processing roles that cascade from map to map. See Cascading of
roles from map to map on page 48 for more information.

As with values that cascade within a map, the cascading is additive if the attribute permits multiple values (such
as @audience). When the attribute only permits one value, the cascading value overrides the top-level element.

Example of attributes cascading between maps
For example, assume the following references in test.ditamap:

<map>
 <topicref href="a.ditamap" format="ditamap" toc="no"/>
 <mapref href="b.ditamap" audience="developer"/>
 <topicref href="c.ditamap#branch1" format="ditamap" print="no"/>
 <mapref href="c.ditamap#branch2" platform="myPlatform"/>
</map>

• The map a.ditamap is treated as if toc="no" is specified on the root <map> element. This means that the
topics that are referenced by a.ditamap do not appear in the navigation generated by test.ditamap
(except for branches within the map that explicitly set toc="yes").

• The map b.ditamap is treated as if audience="developer" is set on the root <map> element. If the
@audience attribute is already set on the root <map> element within b.ditamap, the value "developer" is
added to any existing values.

• The element with id="branch1" within the map c.ditamap is treated as if print="no" is specified on
that element. This means that the topics within the branch with id="branch1" do not appear in the
printed output generated by test.ditamap (except for nested branches within that branch that explicitly
set print="yes").

• The element with id="branch2" within the map c.ditamap is treated as if platform="myPlatform"
is specified on that element. If the @platform attribute is already specified on the element with
id="branch", the value "myPlatform" is added to existing values.

Cascading of metadata elements from map to map
Elements that are contained within <topicmeta> or <metadata> elements follow the same rules for cascading
from map to map as the rules that apply within a single DITA map.

For a complete list of which elements cascade within a map, see the column "Does it cascade to child <topicref>
elements?" in the topic Reconciling topic and map metadata elements on page 43.

Note: It is possible that a specialization might define metadata that should replace rather than add to
metadata in the referenced map, but DITA (by default) does not currently support this behavior.

For example, consider the following code examples:

<map>
 <topicref href="a.ditamap" format="ditamap">
 <topicmeta>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 47 of 177 Generated 07/14/2015

 <shortdesc>This map contains information about Acme defects.</shortdesc>
 </topicmeta>
 </topicref>
 <topicref href="b.ditamap" format="ditamap">
 <topicmeta>
 <audience type="programmer"/>
 </topicmeta>
 </topicref>
 <mapref href="c.ditamap" format="ditamap"/>
 <mapref href="d.ditamap" format="ditamap"/>
 </map>

Figure 6: test-2.ditamap

<map>
 <topicmeta>
 <audience type="writer"/>
 </topicmeta>
 <topicref href="b-1.dita"/>
 <topicref href="b-2.dita"/>
</map>

Figure 7: b.ditamap

When test-2.ditamap is processed, the following behavior occurs:

• Because the <shortdesc> element does not cascade, it does not apply to the DITA topics that are referenced
in a.ditamap.

• Because the <audience> element cascades, the <audience> element in the reference to b.ditamap
combines with the <audience> element that is specified at the top level of b.ditamap. The result is that the
b-1.dita topic and b-2.dita topic are processed as though hey each contained the following child
<topicmeta> element:

<topicmeta>
 <audience type="programmer"/>
 <audience type="writer"/>
</topicmeta>

Cascading of roles from map to map
When specialized <topicref> elements (such as <chapter> or <mapref>) reference a map, they typically imply a
semantic role for the referenced content.

The semantic role reflects the @class hierarchy of the referencing <topicref> element; it is equivalent to having
the @class attribute from the referencing <topicref> cascade to the top-level <topicref> elements in the
referenced map. Although this cascade behavior is not universal, there are general guidelines for when @class
values should be replaced.

When a <topicref> element or a specialization of a <topicref> element references a DITA resource, it defines a
role for that resource. In some cases this role is straightforward, such as when a <topicref> element references a
DITA topic (giving it the already known role of "topic"), or when a <mapref> element references a DITA map
(giving it the role of "DITA map").

Unless otherwise instructed, a specialized <topicref> element that references a map supplies a role for the
referenced content. This means that, in effect, the @class attribute of the referencing element cascades to top-level
topicref elements in the referenced map. In situations where this should not happen - such as all elements from
the mapgroup domain - the non-default behavior should be clearly specified.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 48 of 177 Generated 07/14/2015

For example, when a <chapter> element from the bookmap specialization references a map, it supplies a role of
"chapter" for each top-level <topicref> element in the referenced map. When the <chapter> element references
a branch in another map, it supplies a role of "chapter" for that branch. The @class attribute for <chapter> ("-
map/topicref bookmap/chapter ") cascades to the top-level <topicref> element in the nested map, although it
does not cascade any further.

Alternatively, the <mapref> element in the mapgroup domain is a convenience element; the top-level <topicref>
elements in the map referenced by a <mapref> element MUST NOT be processed as if they are <mapref>
elements. The @class attribute from the <mapref> element ("+ map/topicref mapgroup-d/mapref ") does not
cascade to the referenced map.

In some cases, preserving the role of the referencing element might result in out-of-context content. For example,
a <chapter> element that references a bookmap might pull in <part> elements that contain nested <chapter>
elements. Treating the <part> element as a <chapter> will result in a chapter that nests other chapters, which is
not valid in bookmap and might not be understandable by processors. The result is implementation specific;
processors MAY choose to treat this as an error, issue a warning, or simply assign new roles to the problematic
elements.

Example of cascading roles between maps
Consider the scenario of a <chapter> element that references a DITA map. This scenario could take several
forms:

Referenced map contains a single top-level <topicref> element
The entire branch functions as if it were included in the bookmap; the top-level <topicref> element is
processed as if it were the <chapter> element.

Referenced map contains multiple top-level <topicref> elements
Each top-level <topicref> element is processed as if it were a <chapter> element (the referencing
element).

Referenced map contains a single <appendix> element
The <appendix> element is processed as it were a <chapter> element.

Referenced map contains a single <part> element, with nested <chapter> elements.
The <part> element is processed as it were a chapter element. Nested <chapter> elements might not be
understandable by processors; applications MAY recover as described above.

<chapter> element references a single <topicref> element rather than a map
The referenced <topicref> element is processed as if it were a <chapter> element.

Context hooks and window metadata for user assistance

Context hook information specified in the <resourceid> element in the DITA map or in a DITA topic enables
processors to generate the header, map, alias and other types of support files that are required to integrate the
user assistance with the application. Some user assistance topics might need to be displayed in a specific window
or viewport, and this windowing metadata can be defined in the DITA map within the <ux-window> element.

Context hook and windowing information is ignored if the processor does not support this metadata.

User interfaces for software application often are linked to user assistance (such as help systems and tool tips)
through context hooks. Context hooks are identifiers that associate a part of the user interface with the location of a
help topic. Context hooks can be direct links to URIs, but more they are indirect links (numeric context identifiers
and context strings) that can be processed into external resource files. Context hooks can be direct links to URIs,

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 49 of 177 Generated 07/14/2015

but more often they are indirect links (numeric context identifiers and context strings) that can processed into
external resource files. These external resource and mapping files are then used directly by context-sensitive help
systems and other downstream tream applications.

Context hooks can define either one-to-one or one-to-many relationships between user interface controls and
target help content.

The metadata that is available in <resourceid> and <ux-window> provides flexibility for content developers:

• You can overload maps and topics with all the metadata needed to support multiple target help systems. This
supports single-sourcing of help content and help metadata.

• You can choose whether to add <resourceid> metadata to <topicref> elements, <prolog> elements, or both.
Context-dependent metadata might be best be kept with maps, while persistent, context-independent
metadata might best stay with topics in <prolog> elements

Context hook information is defined within DITA topics and DITA maps through attributes of the <resourceid>
element:

@appid
Specifies an identifier that is used by an application to identify the topic.

@ux-context-string
Contains the value of a user-assistance context string that is used to identify the topic.

@ux-source-priority
(For <resourcid> elements within maps) Contains a value that indicates the precedence of context hooks
in the map and context hooks in the topic. This makes it possible to avoid problems where context hooks
defined in the DITA map potentially conflict with those defined in the topics; the values of the @ux-
source-priority attribute indicate how potential conflicts should be resolved.
(For <resourcid> elements within topics) This usage is undefined and reserved for future use. Processors
should ignore the @ux-source-priority attribute.

@ux-windowref
References the name of the window to be used to display the help topic. The window characteristics are
separately defined in a <ux-window> element in the DITA map.

In some help systems, a topic might need to be displayed in a specifically sized or featured window. For example,
a help topic might need to be displayed immediately adjacent to the user interface control that it supports in a
window of a specific size that always remains on top, regardless of the focus within the operating system.
Windowing metadata can be defined in the DITA map within the <ux-window> element.

The <ux-window> element provides the @top, @left, @height, @width, @on-top, @features, @relative, and
@full-screen attributes.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 50 of 177 Generated 07/14/2015

DITA addressing
DITA provides two addressing mechanisms. DITA addresses either are direct URI-based addresses, or they are
indirect key-based addresses. Within DITA documents, individual elements are addressed by unique identifiers
specified on the @id attribute. DITA defines two fragment-identifier syntaxes; one is the full fragment-identifier
syntax, and the other is an abbreviated fragment-identifier syntax that can be used when addressing non-topic
elements from within the same topic.

ID attribute
The @id attribute assigns an identifier to DITA elements so that the elements can be referenced.

The @id attribute is available for most elements. An element must have a valid value for the @id attribute before it
can be referenced using a fragment identifier. The requirements for the @id attribute differ depending on whether
it is used on a topic element, a map element, or an element within a topic or map.

All values for the @id attribute must be XML name tokens.

The @id attributes for topic and map elements are declared as XML attribute type ID; therefore, they must be
unique with respect to other XML IDs within the XML document that contains the topic or map element. The @id
attribute for most other elements within topics and maps are not declared to be XML IDs; this means that XML
parsers do not require that the values of those attributes be unique. However, the DITA specification requires that
all IDs be unique within the context of a topic. For this reason, tools might provide an additional layer of
validation to flag violations of this rule.

Within documents that contain multiple topics, the values of the @id attribute for all non-topic elements that have
the same nearest-ancestor-topic element should be unique with respect to each other. The values of the @id
attribute for non-topic elements can be the same as non-topic elements with different nearest-ancestor-topic
elements. Therefore, within a single DITA document that contains more than one topic, the values of the @id
attribute of the non-topic elements need only to be unique within each topic.

Within a map document, the values of the @id attributes for all elements SHOULD be unique. When two elements
within a map have the same value for the @id attribute, processors MUST resolve references to that ID to the first
element with the given ID value in document order.

Element XML attribute type for
@id

Must be unique
within

Required?

<map> ID document No

<topic> ID document Yes

sub-map (elements nested
within a map)

NMTOKEN document Usually no, with some
exceptions

sub-topic (elements nested
within a topic)

NMTOKEN individual topic Usually no, with some
exceptions

Figure 8: Summary of requirements for the @id attribute

Note: For all elements other than footnote (<fn>), the presence of a value for the @id attribute has no
impact on processing. For <fn>, the presence or absence of a valid @id attribute affects how the element is
processed. This is important for tools that automatically assign @id attributes to all elements.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 51 of 177 Generated 07/14/2015

DITA linking
DITA supports many different linking elements, but they all use the same set of attributes to describe
relationships between content.

URI-based addressing
URI-based links are described by the following attributes.

@href
The @href attribute specifies the URI of the resource that is being addressed.

@format
The @format attribute identifies the format of the resource being addressed. For example, references to
DITA topics are identified with format="dita", whereas references to DITA maps use
format="ditamap". References to other types of content should use other values for this attribute. By
default, references to non-XML content use the extension of the URI in the @href attribute as the effective
format.

@scope
The @scope attribute describes the closeness of the relationship between the current document and the
target resource. Resources in the same information unit are considered "local"; resources in the same
system as the referencing content but not part of the same information unit are considered "peer"; and
resources outside the system, such as Web pages, are considered "external".

@type
The @type attribute is used on cross-references to describe the target of the reference. Most commonly, the
@type attribute names the element type being referenced when format="dita".

These four attributes act as a unit, describing whatever link is established by the element that carries them.

The @format and @scope attributes are assigned default values based on the URI that is specified in the @href
attribute. Thus they rarely need to be explicitly specified in most cases. However, they can be useful in many non-
traditional linking scenarios or environments.

Indirect key-based addressing
DITA also supports indirect links and cross-references in which a DITA map assigns unique names, or keys, to the
resources being referenced by the publication. This is done using <topicref> elements that specify the @keys
attribute. Using the @keyref attribute, individual links, cross-references, and images then reference resources by
their keys instead of their URIs . Links defined using @keyref thus allow context-specific linking behavior. That
is, the links in a topic or map might resolve to one set of resources in one context, and a completely different set of
resources in another, without the need for any modifications to the link markup.

When links are defined using @keyref, values for the four linking attributes described above are typically all
specified (or given default values) on the key defining element.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 52 of 177 Generated 07/14/2015

URI-based (direct) addressing
Content reference and link relationships can be established from DITA elements by using URI references. DITA
uses URI references in @href, @conref, and other attributes for all direct addressing of resources.

URI references address resources and (in some cases) subcomponents of those resources. In this context, a resource
is a DITA document (map, topic, or DITA base document) or a non-DITA resource (for example, an image, a Web
page, or a PDF document).

URI references that are URLs must conform to the rules for URLs and URIs. Windows paths that contains a
backslash (\) are not valid URLs.

URIs and fragment identifiers
For DITA resources, fragment identifiers can be used with the URI to address individual elements. The fragment
identifier is the part of the URI that starts with a number sign (#), for example, #topicid/elementid. URI
references also can include a query component that is introduced with a question mark (?). DITA processors MAY
ignore queries on URI references to DITA resources. URI references that address components in the same
document MAY consist of just the fragment identifier.

For addressing DITA elements within maps and topics or individual topics within documents containing multiple
topics, URI references must include the appropriate DITA-defined fragment identifier. URI references can be
relative or absolute. A relative URI reference can consist of just a fragment identifier. Such a reference is a
reference to the document that contains the reference.

Addressing non-DITA targets using a URI
DITA can use URI references to directly address non-DITA resources. Any fragment identifier used must conform
to the fragment identifier requirements that are defined for the target media type or provided by processors.

Addressing elements within maps using a URI
When addressing elements within maps, URI references can include a fragment identifier that includes the ID of
the map element, for example, filename.ditamap#mapId or #mapId. The same-topic, URI-reference fragment
identifier of a period (.) must not be used in URI references to elements within maps.

Addressing topics using a URI
When addressing a DITA topic element, URI references may include a fragment identifier that includes the ID of
the topic element (filename.dita#topicId or #topicId). When addressing the DITA topic element that
contains the URI reference, the URI reference may include the same topic fragment identifier of "." (#.).

Topics always can be addressed by a URI reference whose fragment identifier consists of the topic ID. For the
purposes of linking, a reference to a topic-containing document addresses the first topic within that document in
document order. For the purposes of rendering, a reference to a topic-containing document addresses the root
element of the document.

Consider the following examples:

• Given a document whose root element is a topic, a URI reference (with no fragment identifier) that addresses
that document implicitly references the topic element.

• Given a <dita> document that contains multiple topics, for the purposes of linking, a URI reference that
addresses the <dita> document implicitly references the first child topic.

• Given a <dita> document that contains multiple topics, for the purposes of rendering, a URI reference that
addresses the <dita> document implicitly references all the topics that are contained by the <dita> element.
This means that all the topics that are contained by the<dita> element are rendered in the result.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 53 of 177 Generated 07/14/2015

Addressing non-topic elements using a URI
When addressing a non-topic element within a DITA topic, a URI reference must use a fragment identifier that
contains the ID of the ancestor topic element of the non-topic element being referenced, a slash ("/"), and the ID of
the non-topic element (filename.dita#topicId/elementId or #topicId/elementId). When addressing
a non-topic element within the topic that contains the URI reference, the URI reference can use an abbreviated
fragment-identifier syntax that replaces the topic ID with "." (#./elementId).

This addressing model makes it possible to reliably address elements that have values for the @id attribute that
are unique within a single DITA topic, but which might not be unique within a larger XML document that
contains multiple DITA topics.

Examples: URI reference syntax
The following table shows the URI syntax for common use cases.

Use case Sample syntax

Reference a table in a topic at a
network location

"http://example.com/file.dita#topicID/tableID"

Reference a section in a topic on a local
file system

"directory/file.dita#topicID/sectionID"

Reference a figure contained in the
same XML document

"#topicID/figureID"

Reference a figure contained in the
same topic of an XML document

"#./figureID"

Reference an element within a map "http://example.com/map.ditamap#elementID" (and a
value of "ditamap" for the @format attribute)

Reference a map element within the
same map document

"#elementID" (and a value of "ditamap" for the @format attribute)

Reference an external Web site "http://www.example.com", "http://
www.example.com#somefragment" or any other valid URI

Reference an element within a local
map

"filename.ditamap#elementid" (and a value of "ditamap" for
the @format attribute)

Reference a local map "filename.ditamap" (and a value of "ditamap" for the @format
attribute)

Reference a local topic Reference a local topic "filename.dita" or "path/
filename.dita"

Reference a specific topic in a local
document

"filename.dita#topicid" or "path/
filename.dita#topicid"

Reference a specific topic in the same
file

"#topicid"

Reference the same topic in the same
XML document

"#."

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 54 of 177 Generated 07/14/2015

Use case Sample syntax

Reference a peer map for cross-
deliverable linking

"../book-b/book-b.ditamap" (and a value of "ditamap" for the
@format attribute, a value of "peer" for the @scope attribute, and a
value for the @keyscope attribute)

Indirect key-based addressing
DITA keys provide an alternative to direct addressing. The key reference mechanism provides a layer of
indirection so that resources (for example, URIs, metadata, or variable text strings) can be defined at the DITA
map level instead of locally in each topic.

For information about using keys to define and reference controlled values, see Subject scheme maps and their usage
on page 27.

Note: The material in this section of the DITA specification is exceptionally complex; it is targeted at
implementers who build processors and other rendering applications.

Core concepts for working with keys

The concepts described below are critical for a full understanding of keys and key processing.

The use of the phases "<map> element" or "<topicref> element" should be interpreted as "<map> element and any
specialization of <map> element " or " <topicref> element or any specialization of <topicref> element."

Definitions related to keys
resource

For the purposes of keys and key resolution, one of the following:

• An object addressed by URI
• Metadata specified on a resource, such as a @scope or @format attribute
• Text or metadata located within a <topicmeta> element

key
A name for a resource. See Using keys for addressing on page 58 for more information.

key definition
A <topicref> element that binds one or more key names to zero or more resources.

key reference
An attribute that references a key, such as @keyref or @conkeyref.

key space
A list of key definitions that are used to resolve key references.

effective key definition
The definition for a key within a key space that is used to resolve references to that key. A key might have
multiple definitions within a key space, but only one of those definitions is effective.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 55 of 177 Generated 07/14/2015

key scope
A map or section of a map that defines its own key space and serves as the resolution context for its key
references.

Key definitions
A key definition binds one or more keys to zero or more resources. Resources can be:

• Any URI-addressed resource that is referenced directly by the @href attribute or indirectly by the @keyref
attribute on the key definition. References to the key are considered references to the URI-addressed resource.

• (If the key definition contains a child <topicmeta> element) The child elements of the <topicmeta> element.
The content of those elements can be used to populate the content of elements that reference the key.

If a key definition does not contain a <topicmeta> element and does not refer to a resource by @href or @keyref,
it is nonetheless a valid key definition. References to the key definition are considered resolvable, but no linking
or content transclusion occurs.

Key scopes
All key definitions and key references exist within a key scope. If the @keyscope attribute is never specified
within the map hierarchy, all keys exist within a single, default key scope.

Additional key scopes are created when the @keyscope attribute is used. The @keyscope attribute specifies a
name or names for the scope. Within a map hierarchy, key scopes are bounded by the following:

• The root map.
• The root element of submaps when the root elements of the submaps specify the @keyscope attribute
• Any <topicref> elements that specify the @keyscope attribute

Key spaces
The key space associated with a key scope is used to resolve all key references that occur immediately within that
scope. Key references in child scopes are resolved using the key spaces that are associated with those child scopes.

A key scope is associated with exactly one key space. That key space contains all key definitions that are located
directly within the scope; it may also contain definitions that exist in other scopes. Specifically, the key space
associated with a key scope is comprised of the following key definitions, in order of precedence:

1. All key definitions from the key space associated with the parent key scope, if any.
2. Key definitions within the scope-defining element, including those defined in directly-addressed, locally-

scoped submaps, but excluding those defined in child scopes. (Keys defined in child scopes cannot be
addressed without qualifiers.)

3. The key definitions from child scopes, with each key prepended by the child scope name followed by a
period. If a child scope has multiple names, the keys in that scope are addressable from the parent scope
using any of the scope names as a prefix.

Note: Because of rules 1 and 3, the key space that is associated with a child scope includes the scope-
qualified copies of its own keys that are inherited from the key space of the parent scope, as well as those
from other "sibling" scopes.

Effective key definitions
A key space can contain many definitions for a given key, but only one definition is effective for the purpose of
resolving key references.

When a key has a definition in the key space that is inherited from a parent scope, that definition is effective.
Otherwise, a key definition is effective if it is first in a breadth-first traversal of the locally-scoped submaps

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 56 of 177 Generated 07/14/2015

beneath the scope-defining element. Put another way, a key definition is effective if it is the first definition for that
key name in the shallowest map that contains that key definition. This allows higher-level map authors to
override keys defined in referenced submaps.

Note: A key definition that specifies more than one key name in its @keys attribute may be the effective
definition for some of its keys but not for others.

Within a key scope, keys do not have to be defined before they are referenced. The key space is effective for the
entire scope, so the order of key definitions and key references relative to one another is not significant. This has
the following implications for processors:

• All key spaces for a root map must be determined before any key reference processing can be performed.
• Maps referenced solely by key reference have no bearing on key space contents.

For purposes of key definition precedence, the scope-qualified key definitions from a child scope are considered
to occur at the location of the scope-defining element within the parent scope. See Example: How key scopes affect
key precedence on page 77 for more information.

Key scopes

Key scopes enable map authors to specify different sets of key definitions for different map branches.

A key scope is defined by a <map> or <topicref> element that specifies the @keyscope attribute. The @keyscope
attribute specifies the names of the scope, separated by spaces.

A key scope includes the following components:

• The scope-defining element
• The elements that are contained by the scope-defining element, minus the elements that are contained by child

key scopes
• The elements that are referenced by the scope-defining element or its descendants, minus the elements that are

contained by child key scopes

If the @keyscope attribute is specified on both a reference to a DITA map and the root element of the referenced
map, only one scope is created; the submap does not create another level of scope hierarchy. The single key scope
that results from this scenario has multiple names; its names are the union of the values of the @keyscope
attribute on the map reference and the root element of the submap. This means that processors can resolve
references to both the key scopes specified on the map reference and the key scopes specified on the root element
of the submap.

The root element of a root map always defines a key scope, regardless of whether a @keyscope attribute is
present. All key definitions and key references exist within a key scope, even if it is an unnamed, implicit key
scope that is defined by the root element in the root map.

Each key scope has its own key space that is used to resolve the key references that occur within the scope. The
key space that is associated with a key scope includes all of the key definitions within the key scope. This means
that different key scopes can have different effective key definitions:

• A given key can be defined in one scope, but not another.
• A given key also can be defined differently in different key scopes.

Key references in each key scope are resolved using the effective key definition that is specified within its own
key scope.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 57 of 177 Generated 07/14/2015

Example: Key scopes specified on both the map reference and the root element
of the submap
Consider the following scenario:

<map>
 <mapref keyscope="A" href="installation.ditamap"/>
 <!-- ... -->
</map>

Figure 9: Root map

<map keyscope="B">
 <!-- ... -->
</map>

Figure 10: installation.ditamap

Only one key scope is created; it has key scope names of "A" and "B".

Using keys for addressing

For topic references, image references, and other link relationships, resources can be indirectly addressed by
using the @keyref attribute. For content reference relationships, resources can be indirectly addressed by using
the @conkeyref attribute.

Syntax
For references to topics, maps, and non-DITA resources, the value of the @keyref attribute is simply a key name
(for example, keyref="topic-key").

For references to non-topic elements within topics, the value of the @keyref attribute is a key name, a slash ("/"),
and the ID of the target element (for example, keyref="topic-key/some-element-id".)

Example
For example, consider this topic in the document file.dita:

<topic id="topicid">
 <title>Example referenced topic</title>
 <body>
 <section id="section-01">Some content.</section>
 </body>
</topic>

and this key definition:

<map>
 <topicref keys="myexample"
 href="file.dita"
 />
</map>

A cross reference of the form xref="myexample/section-01" resolves to the <section> element in the
topic. The key reference is equivalent to the URI reference xref="file.dita#topicid/section-01".

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 58 of 177 Generated 07/14/2015

Addressing keys across scopes

When referencing key definitions that are defined in a different key scope, key names might need to be qualified
with key scope names.

A root map might contain any number of key scopes; relationships between key scopes are discussed using the
following terms:

child scope
A key scope that occurs directly within another key scope. For example, in the figure below, key scopes
"A-1" and "A-2" are child scopes of key scope "A".

parent scope
A key scope that occurs one level above another key scope. For example, in the figure below, key scope "A"
is a parent scope of key scopes "A-1" and "A-2".

ancestor scope
A key scope that occurs any level above another key scope. For example, in the figure below, key scopes
"A" and "Root" are both ancestor scopes of key scopes "A-1" and "A-2"

descendant scope
A key scope that occurs any level below another key scope. For example, in the figure below, key scopes
"A", "A-1", and "A-2" are all descendant scopes of the implicit, root key scope

sibling scope
A key scope that shares a common parent with another key scope. For example, in the figure below, key
scopes "A" and "B" are sibling scopes; they both are children of the implicit, root key scope.

key scope hierarchy
A key scope and all of its descendant scopes.

Figure 11: A key scope hierarchy

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 59 of 177 Generated 07/14/2015

Keys that are defined in parent key scopes
The key space that is associated with a key scope also includes all key definitions from its parent key scope. If a
key name is defined in both a key scope and its parent scope, the key definition in the parent scope takes
precedence. This means that a key definition in a parent scope overrides all definitions for the same key name in
all descendant scopes. This enables map authors to override the keys that are defined in submaps, regardless of
whether the submaps define key scopes.

In certain complex cases, a scope-qualified key name (such as "scope.key") can override an unqualified key name
from the parent scope. See Example: How key scopes affect key precedence on page 77.

Keys that are defined in child key scopes
The key space associated with a key scope does not include the unqualified key definitions from the child scopes.
However, it does include scope-qualified keys from the child scopes. This enables sibling key scopes to have
different key definitions for the same key name.

A scope-qualified key name is a key name, prepended by one or more key scope names and separated by periods.
For example, to reference a key "keyName" defined in a child scope named "keyScope", specify
keyref="keyScope.keyName".

If a key scope has multiple names, its keys can be addressed from its parent scope using any of the scope names.
For example, if a key scope is defined with keyscope="a b c", and it contains a key name of "product", that
key can be referenced from the parent scope by keyref="a.product", keyref="b.product", or
keyref="c.product"
Because a child scope contributes its scope-qualified keys to its parent scope, and that parent scope contributes its
scope-qualified keys to its parent scope, it is possible to address the keys in any descendant scope by using the
scope-qualified key name. For example, consider a key scope named "ancestorScope" that has a child scope
named "parentScope" which in turn has a child scope named "childScope". The scope "childScope" defines a key
named "keyName". To reference the key "keyName" from scope "ancestorScope", specify the scope-qualified key
name: keyref="parentScope.childScope.keyName".

Keys that are defined in sibling key scopes
Because a parent key scope contains scope-qualified keys from all of its child scopes, and a child scope inherits all
of the key definitions (including scope-qualified keys) from its parent scope, it is possible for a child scope to
reference its own scope-qualified keys, as well as those defined by its sibling scopes.

For example, consider two sibling scopes, "scope1" and "scope2". Each scope defines the key "productName".
References to "productName" in each scope resolve to the local definition. However, since each scope inherits the
scope-qualified keys that are available in their parent scope, either scope can reference "scope1.productName"
and "scope2.productName" to refer to the scope-specific definitions for that key.

Cross-deliverable addressing and linking

A map can use scoped keys to reference keys that are defined in a different root map. This cross-deliverable
addressing can support the production of deliverables that contain working links to other deliverables.

When maps are referenced and the value of the @scope attribute is set to "peer", the implications are that the two
maps are managed in tandem, and that the author of the referencing map might have access to the referenced
map. Adding a key scope to the reference indicates that the peer map should be treated as a separate deliverable
for the purposes of linking.

The keys that are defined by the peer map belong to any key scopes that are declared on the <topicref> element
that references that map. Such keys can be referenced from content in the referencing map by using scope-
qualified key names. However, processors handle references to keys that are defined in peer maps differently
from how they handle references to keys that are defined in submaps.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 60 of 177 Generated 07/14/2015

DITA processors are not required to resolve key references to peer maps. However, if all resources are available in
the same processing or management context, processors have the potential to resolve key references to peer maps.
There might be performance, scale, and user interface challenges in implementing such systems, but the ability to
resolve any given reference is ensured when the source files are physically accessible.

Note the inverse implication; if the peer map is not available, then it is impossible to resolve the key reference.
Processors that resolve key references to peer maps should provide appropriate messages when a reference to a
peer map cannot be resolved. Depending on how DITA resources are authored, managed, and processed,
references to peer maps might not be resolvable at certain points in the content life cycle.

The peer map might specify @keyscope on its root element. In that case, the @keyscope on the peer map is
ignored for the purpose of resolving scoped key references from the referencing map. This avoids the need for
processors to have access to the peer map in order to determine whether a given key definition comes from the
peer map.

Example: A root map that declares a peer map
Consider the DITA maps map-a.ditamap and map-b.ditamap. Map A designates Map B as a peer map by
using the following markup:

<map>
 <title>Map A</title>
 <topicref
 scope="peer"
 format="ditamap"
 keyscope="map-b"
 href="../map-b/map-b.ditamap"
 processing-role="resource-only"
 />
 <!-- ... -->
</map>

In this example, map-b.ditamap is not a submap of Map A; it is a peer map.

Example: Key resolution in a peer map that contains a @keyscope attribute on
the root element
Consider the map reference in map Map A:

<mapref
 keyscope="scope-b"
 scope="peer"
 href="map-b.ditamap"
/>

where map-b.ditamap contains the following markup:

<map keyscope="product-x">
 <!-- ... -->
</map>

From the context of Map A, key references of the form "scope-b.somekey" are resolved to keys that are defined
in the global scope of map B, but key references of the form "product-x.somekey" are not. The presence of a
@keyscope attribute on the <map> element in Map B has no effect. A key reference to the scope "scope-
b.somekey" is equivalent to the unscoped reference "somekey" when processed in the context of Map B as the
root map. In both cases, the presence of @keyscope on the root element of Map B has no effect; in the first case it
is explicitly ignored, and in the second case the key reference is within the scope "product-x" and so does not
need to be scope qualified.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 61 of 177 Generated 07/14/2015

Processing key references

Key references can resolve as links, as text, or as both. Within a map, they also can be used to create or
supplement information on a topic reference. This topic covers information that is common to all key processing,
regardless of how the key is used.

Processing of undefined keys
If both @keyref and @href attributes are specified on an element, the @href value MUST be used as a fallback
address when the key name is undefined. If both @conkeyref and @conref attributes are specified on an element,
the @conref value MUST be used as a fallback address when the key name is undefined.

Determining effective attributes on the key-referencing element
The attributes that are common to the key-defining element and the key-referencing element, other than the
@keys, @processing-role, and @id attributes, are combined as for content references, including the special
processing for the @xml:lang, @dir, and @translate attributes. There is no special processing associated with
either the @locktitle or the @lockmeta attributes when attributes are combined.

Keys and conditional processing
The effective key definitions for a key space might be affected by conditional processing (filtering). Processors
SHOULD perform conditional processing before determining the effective key definitions. However, processors
might determine effective key definitions before filtering. Consequently, different processors might produce
different effective bindings for the same map when there are key definitions that might be filtered out based on
their filtering attributes.

Note: In order to retain backwards compatibility with DITA 1.0 and 1.1, the specification does not mandate
a processing order for different DITA features. This makes it technically possible to determine an effective
key definition, resolve references to that key definition, and then filter out the definition. However, the
preferred approach is to take conditional processing into account when resolving keys, so that key
definitions which are excluded by processing are not used in resolving key references.

Reusing a topic in multiple key scopes
If a topic that contains key references is reused in multiple key scopes within a given root map such that its
references resolve differently in each use context, processors MUST produce multiple copies of the source topic in
resolved output for each distinct set of effective key definitions that are referenced by the topic. In such cases,
authors can use the @copy-to attribute to specify different source URIs for each reference to a topic.

Error conditions
If a referencing element contains a key reference with an undefined key, it is processed as if there were no key
reference, and the value of the @href attribute is used as the reference. If the @href attribute is not specified, the
element is not treated as a navigation link. If it is an error for the element to be empty, an implementation MAY
give an error message; it also MAY recover from this error condition by leaving the key reference element empty.

Processing key references for navigation links and images

Keys can be used to create or redirect links and cross references. Keys also can be used to address resources such
as images or videos. This topic explains how to evaluate key references on links and cross references to determine
a link target.

When a key definition is bound to a resource that is addressed by the @href or @keyref attributes, and does not
specify "none" for the @linking attribute, all references to that key definition become links to the bound resource.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 62 of 177 Generated 07/14/2015

When a key definition is not bound to a resource or specifies "none" for the @linking attribute, references to that
key definition do not become links.

When a key definition has no @href value and no @keyref value, references to that key will not result in a link,
even if they do contain an @href attribute of their own. If the key definition also does not contain a <topicmeta>
subelement, empty elements that refer to the key (such as <link keyref="a"/> or <xref keyref="a"
href="fallback.dita"/>) are ignored.

The <object> element has additional key-referencing attributes (@archivekeyrefs, @classidkeyref,
@codebasekeyref, and @datakeyref). Key names in these attributes are resolved using the same processing that
is described for the normal @keyref attribute.

Processing key references on <topicref> elements

While <topicref> elements are used to define keys, they also can reference keys that are defined elsewhere. This
topic explains how to evaluate key references on <topicref> elements and its specializations.

For topic references that use the @keyref attribute, the effective value of the <topicref> element is determined in
the following way:

Determining the effective resource
The effective resource bound to the <topicref> element is determined by resolving all intermediate key
references. Each key reference is resolved either to a resource addressed directly by URI reference in an
@href attribute, or to no resource. Processors MAY impose reasonable limits on the number of
intermediate key references that they will resolve. Processors SHOULD support at least three levels of key
references.

Note: This rule applies to all topic references, including those that define keys. The effective bound
resource for a key definition that uses the @keyref attribute cannot be determined until the key
space has been constructed.

Combining metadata
Content from a key-defining element cascades to the key-referencing element following the rules for
combining metadata between maps and other maps and between maps and topics. The @lockmeta
attribute is honored when metadata content is combined.

The combined attributes and content cascade from one map to another or from a map to a topic, but this is
controlled by existing rules for cascading, which are not affected by the use of key references.

If, in addition to the @keys attribute, a key definition specifies a @keyref attribute that can be resolved after the
key resolution context for the key definition has been determined, the resources bound to the referenced key
definition take precedence.

Processing key references to generate text or link text

Key references can be used to pull text from the key definition. This topic explains how to generate text from a
key definition, regardless of whether the key reference also results in a link.

Note: The processing described in this topic is unrelated to the @conkeyref attribute. In that case
@conkeyref is used to determine the target of a @conref attribute, after which the normal @conref rules
apply.

Empty elements that include a key reference with a defined key might get their effective content from the key
definition. Empty elements are defined as elements that meet the following criteria:

• Have no text content, including white space

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 63 of 177 Generated 07/14/2015

• Have no sub-elements
• Have no attributes that would be used as text content (such as @alt on the <image> element)

When an empty element as defined above references a key definition that has a child <topicmeta> element,
content from that <topicmeta> element is used to determine the effective content of the referencing element.
Effective content from the key definition becomes the element content, with the following exceptions:

• For empty <image> elements, effective content is used as alternate text, equivalent to creating an <alt> sub-
element to hold that content.

• For empty <link> elements, effective content is used as link text, equivalent to creating a <linktext> sub-
element to hold that content.

• For empty <link> and <xref> elements, a key definition can be used to provide a short description in
addition to the normal effective content. If the key definition includes <shortdesc> inside of <topicmeta>,
that <shortdesc> should be used to provide effective content for a <desc> sub-element.

• The <longdescref> and <longquoteref> elements are empty elements with no effective content. Key
definitions are not used to set effective text for these elements.

• The <param> element does not have any effective content, so key definitions do not result in any effective
content for <param> elements.

• The <indextermref> element is not completely defined, so determining effective content for this element is
also left undefined.

• The <abbreviated-form> element is an empty element with special rules that determine its effective content.

Effective text content is determined using the following set of rules:

1. For the <abbreviated-form> element, see the rules described in abbreviated-form
2. For elements that also exist as a child of <topicmeta> in the key definition, effective content is taken from the

first matching direct child of <topicmeta>. For example, given the following key definition, an empty
<author> element with the attribute keyref="justMe" would result in the matching content "Just M.
Name":

<keydef keys="justMe" href="http://www.example.com/my-profile" format="html"
scope="external">
 <topicmeta>
 <author>Just M. Name</author>
 </topicmeta>
</keydef>

3. For elements that do not allow the @href attribute, content is taken from the first <keyword> element inside
of <keywords> inside of the <topicmeta>. For example, given the following key definition, empty
<keyword>, <term>, and <dt> elements with the attribute keyref="nohref" would all result in the
matching content "first":

<keydef keys="nohref">
 <topicmeta>
 <keywords><keyword>first</keyword><keyword>second</keyword><keyword>third</
keyword></keywords>
 </topicmeta>
</keydef>

4. For elements that do allow @href, elements from within <topicmeta> that are legal within the element using
@keyref are considered matching text. For example, the <xref> element allows @href, and also allows
<keyword> as a child. Using the code sample from the previous item, an empty <xref> with
keyref="nohref" would use all three of these elements as text content; after processing, the result would
be equivalent to:

<xref keyref="test"><keyword>first</keyword><keyword>second</keyword><keyword>third</
keyword></xref>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 64 of 177 Generated 07/14/2015

5. Otherwise, if <linktext> is specified inside of <topicmeta>, the contents of <linktext> are used as the
effective content.

Note: Because all elements that get effective content will eventually look for content in the
<linktext> element, using <linktext> for effective content is a best practice for cases where all
elements getting text from a key definition should result in the same value.

6. Otherwise, if the element with the key reference results in a link, normal link text determination rules apply
as they would for <xref> (for example, using the <navtitle> or falling back to the URI of the link target).

When the effective content for a key reference element results in invalid elements, those elements SHOULD be
generalized to produce a valid result. For example, <linktext> in the key definition may use a domain
specialization of <keyword> that is not valid in the key reference context, in which case the specialized element
should be generalized to <keyword>. If the generalized content is also not valid, a text equivalent should be used
instead. For example, <linktext> may include <ph> or a specialized <ph> in the key definition, but neither of
those are valid as the effective content for a <keyword>. In that case, the text content of the <ph> should be used.

Examples of keys

This section of the specification contains examples and scenarios. They illustrate a wide variety of ways that keys
can be used.

Examples: Key definition
The <topicref> element, and any specialization of <topicref> that allows the @keys attribute, can be used to
define keys.

In the following example, a <topicref> element is used to define a key; the <topicref> element also contributes
to the navigation structure.

<map>
 <!--... -->
 <topicref keys="apple-definition" href="apple-gloss-en-US.dita" />
 <!--... -->
</map>

The presence of the @keys attribute does not affect how the <topicref> element is processed.

In the following example, a <keydef> element is used to define a key.

<map>
 <!--... -->
 <keydef keys="apple-definition" href="apple-gloss-en-US.dita"/>
 <!--... -->
</map>

Because the <keydef> element sets the default value of the @processing-role attribute to "resource-only", the
key definition does not contribute to the map navigation structure; it only serves as a key definition for the key
name "apple-definition".

Examples: Key definitions for variable text
Key definitions can be used to store variable text, such as product names and user-interface labels. Depending on
the key definition, the rendered output might have a link to a related resource.

In the following example, a "product-name" key is defined. The key definition contains a child <keyword>
element nested within a <keydef>element.

<map>
 <keydef keys="product-name">

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 65 of 177 Generated 07/14/2015

 <topicmeta>
 <keywords>
 <keyword>Thing-O-Matic</keyword>
 </keywords>
 </topicmeta>
 </keydef>
</map>

A topic can reference the "product-name" key by using the following markup:

<topic id="topicid">
 <p><keyword keyref="product-name"/> is a product designed to ...</p>
</topic>

When processed, the output contains the text "Thing-O-Matic is a product designed to ... ".

In the following example, the key definition contains both a reference to a resource and variable text.

<map>
 <keydef keys="product-name" href="thing-o-matic.dita">
 <topicmeta>
 <keywords>
 <keyword>Thing-O-Matic</keyword>
 </keywords>
 </topicmeta>
 </keydef>
</map>

When processed using the key reference from the first example, the output contains the "Thing-O-Matic is a
product designed to ... " text. The phrase "Thing-O-Matic" also is a link to the thing-o-matic.dita topic.

Example: Scoped key definitions for variable text
Scoped key definitions can be used for variable text. This enables you to use the same DITA topic multiple times
in a DITA map, and in each instance the variable text can resolve differently.

The Acme Tractor Company produces two models of tractor: X and Y. Their product manual contains sets of
instructions for each model. While most maintenance procedures are different for each model, the instructions for
changing the oil are identical for both model X and model Y. The company policies call for including the specific
model number in each topic, so a generic topic that could be used for both models is not permitted.

1. The authoring team references the model information in the changing-the-oil.dita topic by using the
following mark-up:

<keyword keyref="model"/>
2. The information architect examines the root map for the manual, and decides how to define key scopes.

Originally, the map looked like the following:

<map>
 <!-- Model X: Maintenance procedures -->
 <topicref href="model-x-procedures.dita">
 <topicref href="model-x/replacing-a-tire.dita"/>
 <topicref href="model-x/adding-fluid.dita"/>
 </topicref>

<!-- Model Y: Maintenance procedures -->
 <topicref href="model-y-procedures.dita">
 <topicref href="model-y/replacing-a-tire.dita"/>
 <topicref href="model-y/adding-fluid.dita"/>
 </topicref>
</map>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 66 of 177 Generated 07/14/2015

3. The information architect wraps each set of procedures in a <topicgroup> element and sets the @keyscope
attribute.

<map>
 <!-- Model X: Maintenance procedures -->
 <topicgroup keyscope="model-x">
 <topicref href="model-x-procedures.dita">
 <topicref href="model-x/replacing-a-tire.dita"/>
 <topicref href="model-x/adding-fluid.dita"/>
 </topicref>
 </topicgroup>

<!-- Model Y: Maintenance procedures -->
 <topicgroup keyscope="model-y">
 <topicref href="model-y-procedures.dita">
 <topicref href="model-y/replacing-a-tire.dita"/>
 <topicref href="model-y/adding-fluid.dita"/>
 </topicref>
 </topicgroup>
</map>

This defines the key scopes for each set of procedures.
4. The information architect then adds key definitions to each set of procedures, as well as a reference to the

changing-the-oil.dita topic.

<map>
 <!-- Model X: Maintenance procedures -->
 <topicgroup keyscope="model-x">
 <keydef keys="model">
 <topicmeta>
 <linktext>X</linktext>
 </topicmeta>
 </keydef>
 <topicref href="model-x-procedures.dita">
 <topicref href="model-x/replacing-a-tire.dita"/>
 <topicref href="model-x/adding-fluid.dita"/>
 <topicref href="common/changing-the-oil.dita"/>
 </topicref>
 </topicgroup>

<!-- Model Y: Maintenance procedures -->
 <topicgroup keyscope="model-y">
 <keydef keys="model">
 <topicmeta>
 <linktext>Y</linktext>
 </topicmeta>
 </keydef>
 <topicref href="model-y-procedures.dita">
 <topicref href="model-y/replacing-a-tire.dita"/>
 <topicref href="model-y/adding-fluid.dita"/>
 <topicref href="common/changing-the-oil.dita"/>
 </topicref>
 </topicgroup>
</map>

When the DITA map is processed, the changing-the-oil.dita topic is rendered twice. The model
variable is rendered differently in each instance, using the text as specified in the scoped key definition.
Without key scopes, the first key definition would win, and "model "X" would be used in all topics.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 67 of 177 Generated 07/14/2015

Example: Duplicate key definitions within a single map
In this scenario, a DITA map contains duplicate key definitions. How a processor finds the effective key definition
depends on document order and the effect of filtering applied to the key definitions.

In the following example, a map contains two definitions for the key "load-toner":

<map>
 <!--... -->
 <keydef keys="load-toner" href="model-1235-load-toner-proc.dita"/>
 <keydef keys="load-toner" href="model-4545-load-toner-proc.dita"
 />
 <!--... -->
</map>

In this example, only the first key definition (in document order) of the "load-toner" key is effective. All references
to the key within the scope of the map resolve to the topic model-1235-load-toner-proc.dita.

In the following example, a map contains two definitions for the "file-chooser-dialog" key; each key definition
specifies a different value for the @platform attribute.

<map>
 <!--... -->
 <keydef keys="file-chooser-dialog" href="file-chooser-osx.dita" platform="osx"/>
 <keydef keys="file-chooser-dialog" href="file-chooser-win7.dita" platform="windows7"/>
 <!--... -->
</map>

In this case, the effective key definition is determined not only by the order in which the definitions occur, but
also by whether the active value of the platform condition is "osx" or "windows7". Both key definitions are
potentially effective because they have distinct values for the conditional attribute. Note that if no active value is
specified for the @platform attribute at processing time, then both of the key definitions are present and so the
first one in document order is the effective definition.

If the DITAVAL settings are defined so that both "osx" and "windows" values for the @platform attribute are
excluded, then neither definition is effective and the key is undefined. That case can be avoided by specifying an
unconditional key definition after any conditional key definitions, for example:

<map>
 <!--... -->
 <keydef keys="file-chooser-dialog" href="file-chooser-osx.dita" platform="osx"/>
 <keydef keys="file-chooser-dialog" href="file-chooser-win7.dita" platform="windows7"/>
 <keydef keys="file-chooser-dialog" href="file-chooser-generic.dita"/>
 <!--... -->
</map>

If the above map is processed with both "osx" and "windows" values for the @platform attribute excluded, then
the effective key definition for "file-chooser-dialog" is the file-chooser-generic.dita resource.

Example: Duplicate key definitions across multiple maps
In this scenario, the root map contains references to two submaps, each of which defines the same key. The
effective key definition depends upon the document order of the direct URI references to the maps.

In the following example, a root map contains a key definition for the key "toner-specs" and references to two
submaps.

<map>
 <keydef keys="toner-specs" href="toner-type-a-specs.dita"/>
 <mapref href="submap-01.ditamap"/>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 68 of 177 Generated 07/14/2015

 <mapref href="submap-02.ditamap"/>
</map>

The first submap, submap-01.ditamap, contains definitions for the keys "toner-specs" and "toner-handling":

<map>
 <keydef keys="toner-specs" href="toner-type-b-specs.dita"/>
 <keydef keys="toner-handling" href="toner-type-b-handling.dita"/>
</map>

The second submap, submap-02.ditamap, contains definitions for the keys "toner-specs", "toner-handling", and
"toner-disposal":

<map>
 <keydef keys="toner-specs" href="toner-type-c-specs.dita"/>
 <keydef keys="toner-handling" href="toner-type-c-handling.dita"/>
 <keydef keys="toner-disposal" href="toner-type-c-disposal.dita"/>
</map>

For this example, the effective key definitions are listed in the following table.

Key Bound resource

toner-specs toner-type-a-specs.dita
toner-handling toner-type-b-handling.dita
toner-disposal toner-type-c-disposal.dita

The key definition for "toner-specs" in the root map is effective, because it is the first encountered in a breadth-
first traversal of the root map. The key definition for "toner-handling" in submap-01.ditamap is effective,
because submap-01 is included before submap-02 and so comes first in a breadth-first traversal of the submaps.
The key definition for "toner-disposal" is effective because it is the only definition of the key.

Example: Key definition with key reference
When a key definition also specifies a key reference, the key reference must also be resolved in order to determine
the effective resources bound to that key definition.

In the following example, a <topicref> element references the key "widget". The definition for "widget" in turn
references the key "mainProduct".

<map>
 <topicref keyref="widget" id="example"/>
 <keydef keys="widget" href="widgetInfo.dita" scope="local" format="dita" rev="v1r2"
 keyref="mainProduct">
 <topicmeta><navtitle>Information about Widget</navtitle></topicmeta>
 </keydef>
 <keydef keys="mainProduct" href="http://example.com/productPage" scope="external"
format="html"
 product="prodCode" audience="sysadmin">
 <topicmeta><navtitle>Generic product page</navtitle></topicmeta>
 </keydef>
</map>

For this example, the key reference to "widget" pulls resources from that key definition, which in turn pulls
resources from "mainProduct". The metadata resources from "mainProduct" are combined with the resources
already specified on the "widget" key definition, resulting in the addition of @product and @audience values.
Along with the navigation title, the @href, @scope, and @format attributes on the "widget" key definition override

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 69 of 177 Generated 07/14/2015

those on "mainProduct". Thus after key references are resolved, the original reference from <topicref> is
equivalent to:

<topicref id="example"
 href="widgetInfo.dita" scope="local" format="dita" rev="v1r2"
 product="prodCode" audience="sysadmin">
 <topicmeta><navtitle>Information about Widget</navtitle></topicmeta>
</topicref>

Example: References to scoped keys
You can address scoped keys from outside the key scope in which the keys are defined.

<map xml:lang="en">
 <title>Examples of scoped key references</title>

 <!-- Key scope #1 -->
 <topicgroup keyscope="scope-1">
 <keydef keys="key-1" href="topic-1.dita"/>
 <topicref keyref="key-1"/>
 <topicref keyref="scope-1.key-1"/>
 <topicref keyref="scope-2.key-1"/>
 </topicgroup>

 <!-- Key scope #2 -->
 <topicgroup keyscope="scope-2">
 <keydef keys="key-1" href="topic-2.dita"/>
 <topicref keyref="key-1"/>
 <topicref keyref="scope-1.key-1"/>
 <topicref keyref="scope-2.key-1" />
 </topicgroup>

 <topicref keyref="key-1" />
 <topicref keyref="scope-1.key-1" />
 <topicref keyref="scope-2.key-1" />

</map>

For this example, the effective key definitions are listed in the following tables.

Table 2: Effective key definitions for scope-1

Key reference Resource

key-1 topic-1.dita
scope-1.key-1 topic-1.dita
scope-2.key-1 topic-2.dita

Table 3: Effective key definitions for scope-2

Key reference Resource

key-1 topic-2.dita
scope-1.key-1 topic-1.dita
scope-2.key-1 topic-2.dita

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 70 of 177 Generated 07/14/2015

Table 4: Effective key definitions for the key scope associated with the root map

Key reference Resource

key-1 Undefined

scope-1.key-1 topic-1.dita
scope-2.key-1 topic-2.dita

Example: Key definitions in nested key scopes
In this scenario, the root map contains nested key scopes, each of which contain duplicate key definitions. The
effective key definition depends on key-scope precedence rules.

Consider the following DITA map:

<map>
 <title>Root map</title>
 <!-- Root scope -->
 <keydef keys="a"/>

 <!-- Key scope A -->
 <topicgroup keyscope="A">
 <keydef keys="b"/>

 <!-- Key scope A-1 -->
 <topicgroup keyscope="A-1">
 <keydef keys="c"/>
 </topicgroup>

 <!-- Key scope A-2 -->
 <topicgroup keyscope="A-2">
 <keydef keys="d"/>
 </topicgroup>
 </topicgroup>

 <!-- Key scope B -->
 <topicgroup keyscope="B">
 <keydef keys="a"/>
 <keydef keys="e"/>

 <!-- Key scope B-1 -->
 <topicgroup keyscope="B-1">
 <keydef keys="f"/>
 </topicgroup>

 <!-- Key scope B-2 -->
 <topicgroup keyscope="B-2">
 <keydef keys="g"/>
 </topicgroup>
 </topicgroup>
</map>

The key scopes in this map form a tree structure.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 71 of 177 Generated 07/14/2015

Figure 12: Graphical representation of the key scopes

Each box in the diagram represents a key scope; the name of the key scope is indicated in bold with upper-case
letters. Below the name of the key scope, the key definitions that are present in the scope are listed. Different
typographic conventions are used to indicate where the key definition occurs:

No styling
The key definition occurs in the immediate key scope and is not overriden by a key definition in a parent
scope. For example, key "a" in the root map.

Parentheses
The key definition occurs in a child scope. For example, keys "A-1.c" and "A-2.d" in key scope A.

Brackets
The key definition occurs in the immediate key scope, but it is overriden by a key definition in an ancestor
scope. For example, key "a" in key scope B.

Arrows points from child to parent scopes.

Assume that each key scope contains numerous key references. The following tables demonstrate how key
references resolve in key scopes A-2 and B. The first column shows the value used in key references; the second
column shows the resource to which the key resolves.

Table 5: Key scope A-2

Key reference Resource to which the key resolves

a "a", defined in the root map

d "d", as defined in the immediate key scope

A-2.d "d", as defined in the immediate key scope

c Undefined

A-1.c "A-1.c", as defined in key scope A-1. This key name is
available because it exists in the parent scope, key
scope A.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 72 of 177 Generated 07/14/2015

Key reference Resource to which the key resolves

A.A-1.c "A-1.c", as defined in key scope A-1. This key name is
available because it exists in the root key scope.

Table 6: Key scope B

Key reference Resource to which the key resolves

e "e", defined in the immediate key scope

a "a", as defined in the root key scope. (While a key
definition for "a" exists in the immediate key scope, it is
overriden by the key definition that occurs in the
parent key scope.)

B.a "a", as defined in the immediate key scope. Because the
key reference uses the scope-qualified names, it
resolves to the key "a" in scope B.

g Undefined. The key "g" is defined only in key scope
B-2, so no unqualified key named "g" is defined in
scope B.

B-2.g "g", as defined in key scope B-2.

Example: Link redirection
This scenario outlines how different authors can redirect links to a common topic by using key definitions. This
could apply to <xref>, <link>, or any elements (such as <keyword> or <term>) that become navigation links.

A company wants to use a common DITA topic for information about recycling: recycling.dita. However, the
topic contains a cross-reference to a topic that needs to be unique for each product line; each such topic contains
product-specific URLs.

1. The editing team creates a recycling.dita topic that includes a cross-reference to the product-specific
topic. The cross reference is implemented using a key reference:

<xref keyref="product-recycling-info" href="generic-recycling-info.dita"/>

The value of the @href attribute provides a fallback in the event that a product team forgets to include a key
definition for "product-recycling-info".

2. Each product documentation group creates a unique key definition for "product-recycling-info". Each group
authors the key definition in a DITA map, for example:

<map>
 <!-- ... -->
 <keydef keys="product-recycling-info" href="acme-server-recycling.dita"/>
 <!-- ... -->
</map>

Each team can use the recycling.dita topic, and the cross reference in the topic resolves differently for
each team.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 73 of 177 Generated 07/14/2015

3. A year later, there is an acquisition. The newly-acquired team wants to reuse Acme's common material, but it
needs to direct its users to an external Web site that lists the URLs, rather than a topic in the product
documentation. Their key definition looks like the following:

<topicref keys="product-recycling-info"
 href="http://acme.example.com/server/recycling"
 scope="external" format="html"/>

When newly-acquired team uses the recycling.dita topic, it resolves to the external Web site; however
for all other teams, the cross reference in the topic continues to resolves to their product-specific topic.

4. A new product team is formed, and the team forgets to include a key definition for "product-recycling-info"
in one of their root maps. Because the cross reference in the recycling.dita topic contains a value for the
@href attribute, the link falls back to generic-recycling-info.dita, thus avoiding a broken cross
reference in the output.

Example: Link modification or removal
This scenario outlines how different authors can effectively remove or modify a <link> element in a shared topic.

A company wants to use a shared topic for information about customer support. For most products, the shared
topic should include a link to a topic about extended warranties. But a small number of products do not offer
extended warranties.

1. Team one creates the shared topic: customer-support.dita. The topic contains the following mark-up:

 <related-links>
 <link keyref="extended-warranties" href="common/extended-warranties.dita"/>
 </related-links>

2. The teams that need the link to the topic about extended warranties can reference the customer-
support.dita topic in their DITA maps. When processed, the related link in the topic resolves to the
common/extended-warranties.dita topic.

3. The teams that do not want the related link to the topic about extended warranties can include a key
definition in their DITA map that does not include an @href attribute, for example:

<map>
 <!-- ... -->
 <keydef keys="extended-warranties"/>
 <!-- ... -->
</map>

When processed, the related link in the topic is not rendered.
4. Yet another team wants to simply have a paragraph about extended warranties printed. They define the key

definition for "extended-warranties" as follows:

<map>
 <!-- ... -->
 <keydef keys="extended-warranties"/>
 <topicmeta>
 <linktext>This product does not offer extended warranties.</linktext>
 </topicmeta>
 <!-- ... -->
</map>

When this team renders their content, there is no hyperlink in the output, just the text "This product does not
offer extended warranties" statement.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 74 of 177 Generated 07/14/2015

Example: Links from <term> or <keyword> elements
The @keyref attribute enables authors to specify that references to keywords or terms in a DITA topic can be
rendered as a link to an associated resource.

In this scenario, a company with well-developed glossary wants to ensure that instances of a term that is defined
in the glossary always include a link to the glossary topic.

1. An information architect adds values for the @keys attribute to all the of the <topicref> elements that are in
the DITA map for the glossary, for example:

<map>
 <title>Company-wide glossary</title>
 <topicref keys="term-1" href="term-1.dita"/>
 <topicref keys="term-2" href="term-2.dita"/>
 <topicref keys="term-3" href="term-3.dita"/>
 <topicref keys="term-4" href="term-4.dita"/>
</map>

2. When authors refer to a term in a topic, they use the following mark-up:

<term keyref="term-1"/>

When the <term> element is rendered, the content is provided by the <title> element of the glossary topic.
The <term> element also is rendered as a link to the glossary topic.

Example: conref redirection
The @conkeyref attribute enables authors to share DITA topics that reuse content. It also enables map authors to
specify different key definitions for common keys.

In this scenario, Acme produces content for a product that is also resold through a business partner. When the
DITA content is published for the partner, several items must be different, including the following:

• Product names
• Standard notes that contain admonitions

Simply using the @conref attribute would not be possible for teams that use a component content management
system where every DITA topic is addressed by a globally-unique identifier (GUID).

1. Authors reference the reusable content in their topics by using the @conkeyref attribute, for example:

<task id="reusable-product-content">
 <title><keyword conkeyref="reuse/product-name"/> prerequisites</title>
 <taskbody>
 <prereq><note conkeyref="reuse/warning-1"/></prereq>
 <!-- ... -->
 </taskbody>
</task>

2. Authors create two different topics; one topic contains elements appropriate for Acme, and the other topic
contains elements appropriate for the partner. Note that each reuse topic must use the same element types (or
compatible specializations) and values for the @id attribute. For example, the following reuse file is
appropriate for use by Acme:

<topic id="acme-reuse">
 <title>Reuse topic for Acme</title>
 <body>
 <note id="warning-1">Admonitions for Acme</note>
 <p><keyword id="product-name">Acme product name</keyword></p>
 <!-- ... -->

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 75 of 177 Generated 07/14/2015

 </body>
</topic>

The following reuse file is appropriate for use by the OEM partner:

<topic id="oem-reuse">
 <title>Reuse topic for OEM partner</title>
 <body>
 <note id="warning-1">Admonitions for partner</note>
 <p><keyword id="product-name">OEM product name</keyword></p>
 <!-- ... -->
 </body>
</topic>

3. The two versions of the DITA maps each contain different key definitions for the key name "reuse". (This
associates a key with the topic that contains the appropriate reusable elements.) For example:

<map>
 <!-- ... -->
 <keydef keys="reuse" href="acme-reuse.dita"/>
 <!-- ... -->
</map>

Figure 13: DITA map for Acme

<map>
 <!-- ... -->
 <keydef keys="reuse" href="oem-reuse.dita"/>
 <!-- ... -->
</map>

Figure 14: DITA map for OEM partner
When each of the DITA maps is published, the elements that are referenced by @conkeyref will use the reuse
topic that is referenced by the <keydef> element in the map. The product names and warnings will be different in
the output.

Example: Key scopes and omnibus publications
Key scopes enable you to create omnibus publications that include multiple submaps that define the same key
names for common items, such as product names or common topic clusters.

In this scenario, a training organization wants to produce a deliverable that includes all of their training course
materials. Each course manual uses common keys for standard parts of the course materials, including
"prerequisites," "overview", "assessment", and "summary.

An information architect creates a root map that contains the following markup:

<map xml:lang="en">
 <title>Training courses</title>
 <mapref href="course-1.ditamap"/>
 <mapref href="course-2.ditamap"/>
 <mapref href="course-3.ditamap"/>
 <topicref href="omnibus-summary.dita"/>
</map>

Each of the submaps contain <topicref> elements that refer to resources using the @keyref attribute. Each
submap uses common keys for standard parts of the course materials, including "prerequisites," "overview",

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 76 of 177 Generated 07/14/2015

"assessment", and "summary", and their key definitions bind the key names to course-specific resources. For
example:

<map xml:lang="en">
 <title>Training course #1</title>
 <mapref href="course-1/key-definitions.ditamap"/>
 <topicref keyref="prerequisites"/>
 <topicref keyref="overview"/>
 <topicref keyref="assessment"/>
 <topicref keyref="summary"/>
</map>

Without using key scopes, the effective key definitions for the common keys resolve to those found in
course-1.ditamap. This is not the desired outcome. By adding key scopes to the submaps, however, the
information architect can ensure that the key references in the submaps resolve to the course-specific key
definitions.

<map xml:lang="en">
 <title>Training courses</title>
 <mapref href="course-1.ditamap" keyscope="course-1"/>
 <mapref href="course-2.ditamap" keyscope="course-2"/>
 <mapref href="course-3.ditamap" keyscope="course-3"/>
 <topicref href="omnibus-summary.dita"/>
</map>

The information architect does not set keys="summary" on the <topicref> element in the root map. Doing so
would mean that all key references to "summary" in the submaps would resolve to omnibus-summary.dita,
rather than the course-specific summary topics. This is because key definitions located in parent scopes override
those located in child scopes.

Example: How key scopes affect key precedence
For purposes of key definition precedence, the scope-qualified key definitions from a child scope are considered
to occur at the location of the scope-defining element within the parent scope.

Within a single key scope, key precedence is determined by which key definition comes first in the map, or by the
depth of the submap that defines the key. This was true for all key definitions prior to DITA 1.3, because all key
definitions were implicitly in the same key scope. Scope-qualified key names differ in that precedence is
determined by the location where the key scope is defined.

This distinction is particularly important when key names or key scope names contain periods. While avoiding
periods within these names will avoid this sort of issue, such names are legal so processors will need to handle
them properly.

The following root map contains one submap and one key definition. The submap defines a key named "sample".

<map>
 <!-- The following mapref defines the key scope "scopeName" -->
 <mapref href="submap.ditamap" keyscope="scopeName"/>

 <!-- The following keydef defines the key "scopeName.sample" -->
 <keydef keys="scopeName.sample" href="losing-key.dita"/>

 <!-- Other content, key definitions, etc. -->
</map>

Figure 15: Root map

<map>
 <keydef keys="sample" href="winning-key.dita"/>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 77 of 177 Generated 07/14/2015

 <!-- Other content, key definitions, etc. -->
</map>

Figure 16: Submap

When determining precedence, all keys from the key scope "scopeName" occur at the location of the scope-
defining element -- in this case, the <mapref> element in the root map. Because the <mapref> comes first in the
root map, the scope-qualified key name "scopeName.sample" that is pulled from submap.ditamap occurs before
the definition of "scopeName.sample" in the root map. This means that in the context of the root map, the effective
definition of "scopeName.sample" is the scope-qualified key definition that references winning-key.dita.

The following illustration shows a root map and several submaps. Each submap defines a new key scope, and
each map defines a key. In order to aid understanding, this sample does not use valid DITA markup; instead, it
shows the content of submaps inline where they are referenced.

<map> <!-- Start of the root map -->

 <mapref href="submapA.ditamap" keyscope="scopeA">
 <!-- Contents of submapA.ditamap begin here -->
 <mapref href="submapB.ditamap" keyscope="scopeB">
 <!-- Contents of submapB.ditamap: define key MYKEY -->
 <keydef keys="MYKEY" href="example-ONE.dita"/>
 </mapref>
 <keydef keys="scopeB.MYKEY" href="example-TWO.dita"/>
 <!-- END contents of submapA.ditamap -->
 </mapref>

 <mapref href="submapC.ditamap" keyscope="scopeA.scopeB">
 <!-- Contents of submapC.ditamap begin here -->
 <keydef keys="MYKEY" href="example-THREE.dita"/>
 </mapref>

 <keydef keys="scopeA.scopeB.MYKEY" href="example-FOUR.dita"/>
</map>

Figure 17: Complex map with multiple submaps and scopes

The sample map shows four key definitions. From the context of the root scope, all have key names of
"scopeA.scopeB.MYKEY".

1. submapB.ditamap defines the key "MYKEY". The key scope "scopeB" is defined on the <mapref> to
submapB.ditamap, so from the context of submapA.ditamap, the scope-qualified key name is
"scopeB.MYKEY". The key scope "scopeA" is defined on the <mapref> to submapA.ditamap, so from the
context of the root map, the scope-qualified key name is "scopeA.scopeB.MYKEY".

2. submapA.ditamap defines the key "scopeB.MYKEY". The key scope "scopeA" is defined on the <mapref> to
submapA.ditamap, so from the context of the root map, the scope-qualified key name is
"scopeA.scopeB.MYKEY".

3. submapC.ditamap defines the key "MYKEY". The key scope "scopeA.scopeB" is defined on the <mapref> to
submapC.ditamap, so from the context of the root map, the scope-qualified key name is
"scopeA.scopeB.MYKEY".

4. Finally, the root map defines the key "scopeA.scopeB.MYKEY".

Because scope-qualified key definitions are considered to occur at the location of the scope-defining element, the
effective key definition is the one from submapB.ditamap (the definition that references example-ONE.dita).

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 78 of 177 Generated 07/14/2015

Example: Keys and collaboration
Keys enable authors to collaborate and work with evolving content with a minimum of time spent reworking
topic references.

In this scenario, authors collaborate on a publication that includes content for a product that is in the early stages
of development. The company documentation is highly-structured and uses the same organization for all
publications: "Introduction," "Example," and "Reference."

1. Author one creates a submap for the new product information. She knows the structure that the final content
will have, but she does not want to create empty topics for information that is not yet available. She decides
to initially author what content is available in a single topic. When more content is available, she'll create
additional topics. Her DITA map looks like the following:

<map>
 <title>New product content</title>
 <topicref keys="1-overview 1-intro 1-example 1-reference" href="1-overview.dita"/>
</map>

2. Author two knows that he needs to add a <topicref> to the "Example" topic that will eventually be
authored by author one. He references the not-yet-authored topic by key reference:

<topicref keyref="1-example"/>

His topic reference initially resolves to the 1-overview.dita topic.
3. Author one finally gets the information that she was waiting on. She creates additional topics and modifies

her DITA map as follows:

<map>
 <title>New product content</title>
 <topicref keys="1-overview" href="1-overview.dita">
 <topicref keys="1-intro" href="1-intro.dita"/>
 <topicref keys="1-example" href="1-example.dita"/>
 <topicref keys="1-reference" href="1-reference.dita"/>
 </topicref>
</map>

Without needing to make any changes to the content, author two's topic reference now resolves to the 1-
example.dita topic.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 79 of 177 Generated 07/14/2015

DITA processing
DITA processing is affected by a number of factors, including attributes that indicate the set of vocabulary and
constraint modules on which a DITA document depends; navigation; linking; content reuse (using direct or
indirect addressing); conditional processing; branch filtering; chunking; and more. In addition, translation of
DITA content is expedited through the use of the @dir, @translate, and @xml:lang attributes, and the <index-
sort-as> element.

Navigation
DITA includes markup that processors can use to generate reader navigation to or across DITA topics. Such
navigation behaviors include table of contents (TOCs) and indexes.

Table of contents

Processors can generate a table of contents (TOC) based on the hierarchy of the elements in a DITA map. By
default, each <topicref> element in a map represents a node in the TOC. These topic references define a
navigation tree.

When a map contains a topic reference to a map (often called a map reference), processors should integrate the
navigation tree of the referenced map with the navigation tree of the referencing map at the point of reference. In
this way, a deliverable can be compiled from multiple DITA maps.

Note: If a <topicref> element that references a map contains child <topicref> elements, the processing
behavior regarding the child <topicref> elements is undefined.

The effective navigation title is used for the value of the TOC node. A TOC node is generated for every
<topicref> element that references a topic or specifies a navigation title, except in the following cases:

• The @processing-role attribute that is specified on the <topicref> element or an ancestor element is set to
"resource-only".

• Conditional processing is used to filter out the node or an ancestor node.
• The @print attribute is specified on the <topicref> element or an ancestor element, and the current

processing does not match the value set by the @print attribute. For example, print="printonly" and the
output format is XHTML-based, or print="no" and the output format is PDF. (Note that the @print
attribute is deprecated in DITA 1.3; it is replaced by the @deliveryTarget attribute.)

• There is no information from which a TOC entry can be constructed; there is no referenced resource or
navigation title.

• The node is a <topicgroup> element, even if it specifies a navigation title.

To suppress a <topicref> element from appearing in the TOC, set the @toc attribute to "no". The value of the
@toc attribute cascades to child <topicref> elements, so if @toc is set to "no" on a particular <topicref>, all
children of the <topicref> element are also excluded from the TOC. If a child <topicref> overrides the
cascading operation by specifying toc="yes", then the node that specifies toc="yes" appears in the TOC
(minus the intermediate nodes that set @toc to "no").

Indexes

An index can be generated from index entries that occur in topic bodies, topic prologs, or DITA maps.

The specialized indexing domain also provides elements to enable additional indexing function, such as "See" and
"See also".

For more information, see Indexing group elements.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 80 of 177 Generated 07/14/2015

Content reference (conref)
The DITA conref attributes provide mechanisms for reusing content. DITA content references support reuse
scenarios that are difficult or impossible to implement using other XML-based inclusion mechanisms like
XInclude and entities. Additionally, DITA content references have rules that help ensure that the results of content
inclusion remain valid after resolution

Conref overview

The DITA @conref, @conkeyref, @conrefend, and @conaction attributes provide mechanisms for reusing
content within DITA topics or maps. These mechanisms can be used both to pull and push content.

This topic uses the definitions of referenced element on page 0 and referencing element on page 0 as defined in
DITA terminology and notation on page 5.

Pulling content to the referencing element
When the @conref or @conkeyref attribute is used alone, the referencing element acts as a placeholder for
the referenced element, and the content of the referenced element is rendered in place of the referencing
element.

The combination of the @conrefend attribute with either @conref or @conkeyref specifies a range of
elements that is rendered in place of the referencing element. Although the start and end elements must be
of the same type as the referencing element (or specialized from that element type), the elements inside the
range can be any type.

Pushing content from the referencing element
The @conaction attribute reverses the direction of reuse from pull to push. With a push, the referencing
element is rendered before, after, or in place of the referenced element. The location (before, after, or in
place of) is determined by the value of the @conaction attribute. Because the @conaction and @conrefend
attributes cannot both be used within the same referencing element, it is not possible to push a range of
elements.

A fragment of DITA content, such as an XML document that contains only a single paragraph without a topic
ancestor, does not contain enough information for the conref processor to be able to determine the validity of a
reference to it. Consequently, the value of a conref must specify one of the following items:

• A referenced element within a DITA map
• A referenced element within a DITA topic
• An entire DITA map
• An entire DITA topic

Related information
The conaction attribute
The conkeyref attribute
The conref attribute
The conrefend attribute

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 81 of 177 Generated 07/14/2015

Processing conrefs

When processing content references, DITA processors compare the restrictions of each context to ensure that the
conrefed content is valid in its new context.

Except where allowed by weak constraints, a conref processor MUST NOT permit resolution of a reuse
relationship that could be rendered invalid under the rules of either the reused or reusing content.

Note: The DITA @conref attribute is a transclusion mechanism similar to XInclude and to HyTime value
references. DITA differs from these mechanisms, however, in that conref validity does not apply simply to
the current content at the time of replacement, but to the possible content given the restrictions of both the
referencing document type and the referenced document type.

When pulling content with the conref mechanism, if the referenced element is the same type as the referencing
element, and the set of domains declared on the @domains attribute in the referenced topic or map instance is the
same as or a subset of the domains declared in the referencing document, the element set allowed in the
referenced element is guaranteed to be the same as, or a subset of, the element set allowed in the referencing
element.

When pushing content with the conref mechanism, the domain checking algorithm is reversed. In this case, if the
set of domains declared on the @domains attribute in the referencing topic or map instance is the same as or a
subset of the domains declared in the referenced document, the element set allowed in the pushed content is
guaranteed to be the same as, or a subset of, the element set allowed in the new location.

In both cases, processors resolving conrefs SHOULD tolerate specializations of valid elements and generalize
elements in the pushed or pulled content fragment as needed for the resolving context.

Related information
domains attribute rules and syntax on page 122
The @domains attribute enables processors to determine whether two elements or two documents use compatible
domains. The attribute is declared on the root element for each topic or map type. Each structural, domain, and
constraint module defines its ancestry as a parenthesized sequence of space-separated module names; the
effective value of the @domains attribute is composed of these parenthesized sequences.

Processing attributes when resolving conrefs

When resolving conrefs, processors need to combine the attributes that are specified on the referencing and
referenced element.

The attribute specifications on the resolved element are drawn from both the referencing element and the
referenced element, according to the following priority:

1. All attributes as specified on the referencing element, except for attributes set to "-dita-use-conref-target".
2. All attributes as specified on the referenced element except the @id attribute.
3. The @xml:lang attribute has special treatment as described in The xml:lang attribute on page 110.

The token -dita-use-conref-target is defined by the specification to enable easier use of @conref on elements with
required attributes. The only time the resolved element would include an attribute whose specified value is "-dita-
use-conref-target" is when the referenced element had that attribute specified with the "-dita-use-conref-target"
value and the referencing element either had no specification for that attribute or had it also specified with the "-
dita-use-conref-target" value. If the final resolved element (after the complete resolution of any conref chain, as
explained below) has an attribute with the "-dita-use-conref-target" value, that element MUST be treated as
equivalent to having that attribute unspecified.

A given attribute value on the resolved element comes in its entirety from either the referencing element or the
referenced element; the attribute values of the referencing and referenced elements for a given attribute are never
additive, even if the property (such as @audience) takes a list of values.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 82 of 177 Generated 07/14/2015

If the referenced element has a @conref attribute specified, the above rules should be applied recursively with the
resolved element from one referencing/referenced combination becoming one of the two elements participating in
the next referencing/referenced combination. The result should preserve without generalization all elements that
are valid in the originating context, even if they are not valid in an intermediate context.

For example, if topic A and topic C allow highlighting, and topic B does not, then a content reference chain of
topic A-to-topic B-to-topic C should preserve any highlighting elements in the referenced content. The result,
however it is achieved, must be equivalent to the result of resolving the conref pairs recursively starting from the
original referencing element in topic A.

Related information
Using the -dita-use-conref-target value

Processing xrefs and conrefs within a conref

When referenced content contains a content reference or cross reference, the effective target of the reference
depends on the form of address that is used in the referenced content. It also might depend on the map context,
especially when key scopes are present.

Direct URI reference (but not a same-topic fragment identifier)
When the address is a direct URI reference of any form other than a same-topic fragment identifier,
processors MUST resolve it relative to the source document that contains the original URI reference.

Same-topic fragment identifier
When the address is a same-topic fragment identifier, processors MUST resolve it relative to the location of
the content reference (referencing context).

Key reference
When the address is a key reference, processors MUST resolve it relative to the location of the content
reference (referencing context).

When resolving key references or same-topic fragment identifiers, the phrase location of the content reference means
the final resolved context. For example, in a case where content references are chained (topic A pulls from topic B,
which in turn pulls a reference from topic C), the reference is resolved relative to the topic that is rendered. When
topic B is rendered, the reference is resolved relative to the content reference in topic B; when topic A is rendered,
the reference is resolved relative to topic A. If content is pushed from topic A to topic B to topic C, then the same-
topic fragment identifier is resolved in the context of topic C.

The implication is that a content reference or cross reference can resolve to different targets in different use
contexts. This is because a URI reference that contains a same-topic fragment identifier is resolved in the context
of the topic that contains the content reference, and a key reference is resolved in the context of the key scope that
is in effect for each use of the topic that contains the content reference.

Note: In the case of same-topic fragment identifiers, it is the responsibility of the author of the content
reference to ensure that any element IDs that are specified in same-topic fragment identifiers in the
referenced content will also be available in the referencing topic at resolution time.

Example: Resolving conrefs to elements that contain cross references
Consider the following paragraphs in paras-01.dita that are intended to be used by reference from other
topics:

<topic id="paras-01"><title>Reusable paragraphs</title>
 <body>
 <p id="p1">See <xref href="#paras-01/p5"/>.</p>
 <p id="p2">See <xref href="topic-02.dita#topic02/fig-01"/>.</p>
 <p id="p3">See <xref href="#./p5"/>.</p>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 83 of 177 Generated 07/14/2015

 <p id="p4">See <xref keyref="task-remove-cover"/>.</p>
 <p id="p5">Paragraph 5 in paras-01.</p>
 </body>
</topic>

The paragraphs are used by content reference from other topics, including the using-topic-01.dita topic:

<topic id="using-topic-01"><title>Using topic one</title>
 <body>
 <p id="A" conref="paras-01.dita#paras-01/p1"/>
 <p id="B" conref="paras-01.dita#paras-01/p2"/>
 <p id="C" conref="paras-01.dita#paras-01/p3"/>
 <p id="D" conref="paras-01.dita#paras-01/p4"/>
 <p id="p5">Paragraph 5 in using-topic-01</p>
 </body>
</topic>

Following resolution of the content references and processing of the <xref> elements in the referenced
paragraphs, the rendered cross references in using-topic-01.dita are shown in the following table.

Paragraph Value of @id
attribute on
conrefed
paragraph

<xref> within conrefed
paragraph

Resolution

A p1 <xref
href="#paras-01/p5"/>

The cross reference in paragraph p1 is a direct
URI reference that does not contain a same-
topic fragment identifier. It can be resolved
only to paragraph p5 in paras-01.dita,
which contains the content "Paragraph 5 in
paras-01".

B p2 <xref
href="topic-02.dita#to
pic02/fig-01"/>

The cross reference in paragraph p2 is a direct
URI reference. It can be resolved only to the
element with id="fig-01" in
topic-02.dita.

C p3 <xref href="#./p5"/> The cross reference in paragraph p3 is a direct
URI reference that contains a same-topic
fragment identifier. Because the URI reference
contains a same-topic fragment identifier, the
reference is resolved in the context of the
referencing topic (using-topic-01.dita).

If using-topic-01.dita did not contain
an element with id="p5", then the conref to
paragraph p3 would result in a link resolution
failure.

D p4 <xref keyref="task-
remove-cover"/>

The cross reference in paragraph p4 is a key
reference. It is resolved to whatever resource
is bound to the key name "task-remove-cover"
in the applicable map context.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 84 of 177 Generated 07/14/2015

Example: Resolving conrefs to elements that contain key-based cross
references
Consider the following map, which uses the topics from the previous example:

<map>
 <topicgroup keyscope="product-1">
 <topicref keys="task-remove-cover" href="prod-1-task-remove-cover.dita"/>
 <topicref href="using-topic-01.dita"/>
 </topicgroup>
 <topicgroup keyscope="product-2">
 <topicref keys="task-remove-cover" href="prod-2-task-remove-cover.dita"/>
 <topicref href="using-topic-01.dita"/>
 </topicgroup>
</map>

The map establishes two key scopes: "product-1" and "product-2". Within the map branches, the key name
"task-remove-cover" is bound to a different topic. The topic using-topic-01.dita, which includes a conref
to a paragraph that includes a cross reference to the key name "task-remove-cover", is also referenced in each
branch. When each branch is rendered, the target of the cross reference is different.

In the first branch with the key scope set to "product-1", the cross reference from paragraph p4 is resolved to
prod-1-task-remove-cover.dita. In the second branch with the key scope set to "product-2", the cross
reference from paragraph p4 is resolved to prod-2-task-remove-cover.dita.

Conditional processing (profiling)
Conditional processing, also known as profiling, is the filtering or flagging of information based on processing-
time criteria.

DITA defines attributes that can be used to enable filtering and flagging individual elements. The @audience,
@deliveryTarget, @otherprops, @platform, and @props attributes (along with specializations of @props) allow
conditions to be assigned to elements so that the elements can be included, excluded, or flagged during
processing. The @rev flagging attribute allows values to be assigned to elements so that special formatting can be
applied to those elements during processing. A conditional-processing profile specifies which elements to
include, exclude, or flag. DITA defines a document type called DITAVAL for creating conditional-processing
profiles.

Processors SHOULD be able to perform filtering and flagging using the attributes listed above. The @props
attribute can be specialized to create new attributes, and processors SHOULD be able to perform conditional
processing on specializations of @props.

Although metadata elements exist with similar names, such as the <audience> element, processors are not
required to perform conditional processing using metadata elements.

Conditional processing values and groups

Conditional processing attributes classify elements with metadata. The metadata is specified using space-
delimited string values or grouped values.

For example, the string values within @product in <p product="basic deluxe"> indicate that the paragraph
applies to the “basic” product and to the “deluxe” product.

Groups organize classification metadata into subcategories. Groups can be used within @audience, @product,
@platform, or @otherprops. The following rules apply:

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 85 of 177 Generated 07/14/2015

• Groups consist of a name immediately followed by a parenthetical group of one or more space-delimited
string values. For example, "groupName(valueOne valueTwo)".

• Groups cannot be nested.
• If two groups with the same name are found in a single attribute, they should be treated as if all values are
specified in the same group. The following values for the @otherprops attribute are equivalent:

otherprops="groupA(a b) groupA(c) groupZ(APPNAME)"
otherprops="groupA(a b c) groupZ(APPNAME)"

• If both grouped values and ungrouped values are found in a single attribute, the ungrouped values belong to
an implicit group; the name of that group matches the name of the attribute. Therefore, the following values
for the @product attribute are equivalent:

product="a database(dbA dbB) b appserver(mySERVER) c"
product="product(a b c) database(dbA dbB) appserver(mySERVER)"

Setting a conditional processing attribute to an empty value, such as product="", is equivalent to omitting that
attribute from the element. An empty group within an attribute is equivalent to omitting that group from the
attribute. For example, <ph product="database() A"> is equivalent to <ph product="A">. Combining
both rules into one example, <ph product="operatingSystem()"> is equivalent to <ph>.

If two groups with the same name exist on different attributes, a rule specified for that group will evaluate the
same way on each attribute. For example, if the group "sampleGroup" is specified within both @platform and
@otherprops, a DITAVAL rule for sampleGroup="value" will evaluate the same in each attribute. If there is a
need to distinguish between similarly named groups on different attributes, the best practice is to use more
specific group names such as platformGroupname and productGroupname. Alternatively, DITAVAL rules can be
specified based on the attribute name rather than the group name.

If the same group name is used in different attributes, a complex scenario could be created where different
defaults are specified for different attributes, with no rule set for a group or individual value. In this case a value
might end up evaluating differently in the different attributes. For example, a DITAVAL can set a default of
"exclude" for @platform and a default of "flag" for @product. If no rules are specified for group oddgroup(), or
for the value oddgroup="edgecase", the attribute platform="oddgroup(edgecase)" will evaluate to
"exclude" while product="oddgroup(edgecase)" will resolve to "flag". See DITAVAL elements for information
on how to change default behaviors in DITAVAL provile.

Note: While the grouped values reuse the generalized attribute syntax found in Attribute generalization on
page 130, the @audience, @product, @platform, and @otherprops attributes cannot be specialized or
generalized.

Filtering

At processing time, a conditional processing profile can be used to specify profiling attribute values that
determine whether an element with those values is included or excluded.

By default, values in conditional processing attributes that are not defined in a DITAVAL profile evaluate to
"include". For example, if the value audience="novice" is used on a paragraph, but this value is not defined in a
DITAVAL profile, the attribute evaluates to "include".

However, the DITAVAL profile can change this default to "exclude", so that any value not explicitly defined in the
DITAVAL profile will evaluate to "exclude". The DITAVAL profile also can be used to change the default for a
single attribute; for example, it can declare that values in the @platform attribute default to "exclude", while those
in the @product attribute default to include. See DITAVAL elements for information on how to set up a DITAVAL
profile and how to change default behaviors.

When deciding whether to include or exclude a particular element, a processor should evaluate each attribute
independently:

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 86 of 177 Generated 07/14/2015

1. For each attribute:

• If the attribute value does not contain any groups, then if any token in the attribute value evaluates to
"include", the element evaluates to "include"; otherwise it evaluates to "exclude". In other words, the
attribute evaluates to "exclude" only when all the values in that attribute evaluate to "exclude".

• If the attribute value does include groups, evaluate as follows, treating ungrouped tokens together as a
group:

1. For each group (including the group of ungrouped tokens), if any token inside the group evaluates to
"include", the group evaluates to "include"; otherwise it evaluates to "exclude". In other words, a
group evaluates to "exclude" only when every token in that group evaluates to "exclude".

2. If any group within an attribute evaluates to "exclude", that attribute evaluates to "exclude"; otherwise
it evaluates to "include".

2. If any single attribute evaluates to exclude, the element is excluded.

For example, if a paragraph applies to three products and the publisher has chosen to exclude all of them, the
processor should exclude the paragraph. This is true even if the paragraph applies to an audience or platform that
is not excluded. But if the paragraph applies to an additional product that has not been excluded, then its content
is still relevant for the intended output and should be preserved.

Similarly, with groups, a step might apply to one application server and two database applications:

<steps>
 <step><cmd>Common step</cmd></step>
 <step product="appserver(mySERVER) database(ABC dbOtherName)">
 <cmd>Do something special for databases ABC or OtherName when installing on mySERVER</
cmd>
 </step>
 <!-- additional steps -->
</steps>

If a publisher decides to exclude the application server mySERVER, then the appserver() group evaluates to
exclude. This can be done by setting product="mySERVER" to exclude or by setting appserver="mySERVER"
to exclude. This means the step should be excluded, regardless of how the values "ABC" or "dbOtherName"
evaluate. If a rule is specified for both product="mySERVER" and appserver="mySERVER", the rule for the
more specific group name "appserver" takes precedence.

Similarly, if both "ABC" and "dbOtherName" evaluate to exclude, then the database() group evaluates to exclude
and the element should be excluded regardless of how the "mySERVER" value is set.

In more advanced usage, a DITAVAL can be used to specify a rule for a group name. For example, an author
could create a DITAVAL rule that sets product="database" to "exclude". This is equivalent to setting a default
of "exclude" for any individual value in a database() group; it also excludes the more common usage of "database"
as a single value within the @product attribute. Thus when "myDB" appears in a database() group within the
@product attribute, the full precedence for determining whether to include or exclude the value is as follows:

1. Check for a DITAVAL rule for database="myDB"
2. Check for a DITAVAL rule for product="myDB"
3. Check for a DITAVAL rule for product="database" (default for the database group)
4. Check for a DITAVAL rule for "product" (default for the @product attribute)
5. Check for a default rule for all conditions (default of include or exclude for all attributes)
6. Otherwise, evaluate to "include"

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 87 of 177 Generated 07/14/2015

Flagging

Flagging is the application of text, images, or styling during rendering. This can highlight the fact that content
applies to a specific audience or operating system, for example; it also can draw a reader's attention to content
that has been marked as being revised.

At processing time, a conditional processing profile can be used to specify profiling attribute values that
determine whether an element with those values is flagged.

When deciding whether to flag a particular element, a processor should evaluate each value. Wherever an
attribute value that has been set as flagged appears (for example, audience="administrator"), the processor
should add the flag. When multiple flags apply to a single element, multiple flags should be rendered, typically in
the order that they are encountered.

When the same element evaluates as both flagged and included, the element should be flagged and included.
When the same element evaluates as both flagged and filtered (for example, flagged because of a value for the
@audience attribute and filtered because of a value for the @product attribute value), the element should be
filtered.

Conditional processing to generate multiple deliverable types

By default, the content of most elements is included in all output media. Within maps and topics, elements can
specify the delivery targets to which they apply.

Within maps, topic references can use the @deliveryTarget attribute to indicate the delivery targets to which
they apply. The map or topic references can still use the deprecated @print attribute to indicate whether they are
applicable to print deliverables.

Within topics, most elements can use the @deliveryTarget attribute to indicate the delivery targets to which they
apply.

If a referenced topic should be excluded from all output formats, set the @processing-role attribute to
"resource-only" instead of using the @deliveryTarget or @print attribute. Content within that topic can still be
referenced for display in other locations.

@deliveryTarget attribute
@deliveryTarget

The intended delivery target of the content, for example "html", "pdf", or "epub". This attribute is a
replacement for the now deprecated @print attribute.

The @deliveryTarget attribute is specialized from the @props attribute. It is defined in the
deliveryTargetAttDomain, which is integrated into all OASIS-provided document-type shells. If this
domain is not integrated into a given document-type shell, the @deliveryTarget attribute will not be
available.

The @deliveryTarget attribute is processed the same way as any other conditional processing attribute. For
example, the element <topicref deliveryTarget="html5 epub" href="example.dita"/> uses two
values for @deliveryTarget. A conditional processing profile can then set rules for @deliveryTarget that
determine whether the topic example.dita is included or excluded when the map is rendered as HTML5 or
EPUB.

@print attribute
Note: Beginning with DITA 1.3, the @print attribute is deprecated. Its functionality is superseded by that
of the @deliveryTarget conditional processing attribute described above.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 88 of 177 Generated 07/14/2015

The @print attribute supports the following enumerated values, each of which control the way that print-
oriented processors handle the inclusion or exclusion of topics or groups of topics.

Value Example Print-oriented
processing

Non-print-oriented
processing

Unspecified (default) <topicref href="foo.dita"> Topics are included
in output.

Topics are included
in output.

yes <topicref href="foo.dita"
print="yes">

Topics are included
in output.

Topics are included
in output.

printonly <topicref href="foo.dita"
print="printonly">

Topics are included
in output.

Topics are excluded
from the output.

no <topicref href="foo.dita"
print="no">

Topics are excluded
from the output.

Topics are included
in output.

-dita-use-conref-
target

<topicref conref="#foo-topic"
print="-dita-use-conref-target">

Topics derive a value
for the @print
attribute from the
@print attribute of
the referenced
element.

See Using the -dita-
use-conref-target value
for more
information.

Topics derive a value
for the @print
attribute from the
@print attribute of
the referenced
element.

See Using the -dita-
use-conref-target value
for more
information.

If a value for the @print is not specified explicitly in a map element, but is specified in a map that references the
map element, the @print value cascades to the referenced map.

Examples of conditional processing

This section provides examples that illustrate the ways that conditional processing attributes can be set and used.

Example: Setting conditional processing values and groups
Elements may classify elements with conditional processing attributes using individual values or using groups.

Example: Simple product values
In the following example, the first configuration option applies only to the "extendedprod" product, while the
second option applies to both "extendedprod" and to "baseprod". The entire <p> element containing the list
applies to an audience of "administrator".

<p audience="administrator">Set the configuration options:

 <li product="extendedprod">Set foo to bar
 <li product="basicprod extendedprod">Set your blink rate
 Do some other stuff
 Do a special thing for Linux

</p>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 89 of 177 Generated 07/14/2015

Example: Grouped values on an attribute
The following example indicates that a step applies to one application server and two databases. Specifically,
this step only applies when it is taken on the server "mySERVER"; likewise, it only applies when used with the
databases "ABC" or "dbOtherName".

<steps>
 <step><cmd>Common step</cmd></step>
 <step product="appserver(mySERVER) database(ABC dbOtherName)">
 <cmd>Do something special for databases ABC or OtherName when installing on
mySERVER</cmd>
 </step>
 <!-- additional steps -->
</steps>

Example: Filtering and flagging topic content
A publisher might want to flag information that applies to administrators, and to exclude information that applies
to the extended product.

Consider the following DITA source fragment and conditional processing profile:

<p audience="administrator">Set the configuration options:

 <li product="extendedprod">Set foo to bar
 <li product="basicprod extendedprod">Set your blink rate
 Do some other stuff
 Do a special thing for Linux

</p>

Figure 18: DITA source fragment

<val>
 <prop att="audience" val="administrator" action="flag">
 <startflag><alt-text>ADMIN</alt-text></startflag>
 </prop>
 <prop att="product" val="extendedprod" action="exclude"/>
</val>

Figure 19: DITAVAL profile

When the content is rendered, the paragraph is flagged, and the first list item is excluded (since it applies to
extendedprod). The second list item is still included; even though it does apply to extendedprod, it also applies to
basicprod, which was not excluded.

The result should look something like the following:

ADMIN Set the configuration options:

• Set your blink rate
• Do some other stuff
• Do a special thing for Linux

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 90 of 177 Generated 07/14/2015

Branch filtering
The branch filtering mechanism enables map authors to set filtering conditions for specific branches of a map.
This makes it possible for multiple conditional-processing profiles to be applied within a single publication.

Without the branch filtering mechanism, the conditions specified in a DITAVAL document are applied globally.
With branch filtering, the <ditavalref> element specifies a DITAVAL document that can be applied to a subset
of content; the location of the <ditavalref> element determines the content to which filtering conditions are
applied. The filtering conditions then are used to filter the map branch itself (map elements used to create the
branch), as well as the local maps or topics that are referenced by that branch.

The <ditavalref> element also provides the ability to process a single branch of content multiple times,
applying unique conditions to each instance of the branch.

Overview of branch filtering

Maps or map branches can be filtered by adding a <ditavalref> element that specifies the DITAVAL document
to use for that map or map branch.

The <ditavalref> element is designed to manage conditional processing for the following use cases.

1. A map branch needs to be filtered using conditions that do not apply to the rest of the publication. For
example, a root map might contain content that is written for both novice and expert users. However, the
authors want to add a section that targets only novice users. Using branch filtering, a map branch can be
filtered so that it only includes content germane to a novice audience, while the content of the rest of the map
remains appropriate for multiple audiences.

2. A map branch needs to be presented differently for different audiences. For example, a set of software
documentation might contain installation instructions that differ between operating systems. In that case, the
map branch with the installation instructions needs to be filtered multiple times with distinct sets of
conditions, while the rest of the map remains common to all operating systems.

Filtering rules often are specified globally, outside of the content. When global conditions set a property value to
"exclude", that setting overrides any other settings for the same property that are specified at a branch level.
Global conditions that set a conditional property to "include" or "flag" do not override branch-level conditions
that set the same property to "exclude".

Using <ditavalref> elements, it is possible to specify one set of conditions for a branch and another set of
conditions for a subset of the branch. As with global conditions, properties set to "exclude" for a map branch
override any other settings for the same property specified for a subset of the branch. Branch conditions that set a
conditional property to "include" or "flag" do not override conditions on a subset of the branch that explicitly set
the same property to "exclude".

In addition to filtering, applications MAY support flagging at the branch level based on conditions that are
specified in referenced DITAVAL documents.

Branch filtering: Single condition set for a branch

Using a single <ditavalref> element as a child of a map or map branch indicates that the map or map branch
must be conditionally processed using the rules specified in the referenced DITAVAL document.

The following rules outline how the filtering conditions that are specified in DITAVAL document are applied:

<ditavalref> element as a direct child of a map
The filtering conditions are applied to the entire map.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 91 of 177 Generated 07/14/2015

<ditavalref> element within a map branch
The filtering conditions are used to process the entire branch, including the parent element that contains
the <ditavalref> element.

<ditavalref> element within a <topicref> reference to a local map
The filtering conditions are applied to the submap.

<ditavalref> element within a <topicref> reference to peer map
The reference conditions are not applied to the peer map.

Branch filtering: Multiple condition sets for a branch

Using multiple <ditavalref> elements as the children of a map or map branch indicates that the map or map
branch must be conditionally processed using the rules that are specified in the referenced DITAVAL documents.

When multiple <ditavalref> elements occur as children of the same element, the rules in the referenced
DITAVAL documents are processed independently. This effectively requires a processor to maintain one copy of
the branch for each <ditavalref>, so that each copy can be filtered using different conditions.

Note: In most cases, it is possible to create a valid, fully-resolved view of a map with branches copied to
reflect the different <ditavalref> conditions. However, this might not be the case when multiple
<ditavalref> elements occur as direct children of a root map. In this case, it is possible that the map
could be filtered in a manner that results in two or more distinct versions of the <title> or metadata.
How this is handled is processor dependent. For example, when a root map has three <ditavalref>
elements as children of <map>, a conversion to EPUB could produce an EPUB with three versions of the
content, or it could produce three distinct EPUB documents.

When a processor maintains multiple copies of a branch for different condition sets, it has to manage situations
where a single resource with a single key name results in two distinct resources. Key names must be modified in
order to allow references to a specific filtered copy of the resource; without renaming, key references could only
be used to refer to a single filtered copy of the resource, chosen by the processor. See Branch filtering: Impact on
resource and key names on page 92 for details on how to manage resource names and key names.

Branch filtering: Impact on resource and key names

When map branches are cloned by a processor in order to support multiple condition sets, processors must
manage conflicting resource and key names. The ditavalref domain includes metadata elements that authors can
use to specify how resource and key names are renamed.

Note: While the processing controls that are described here are intended primarily for use with map
branches that specify multiple condition sets, they also can be used with map branches that include only a
single <ditavalref> element.

When a map branch uses multiple condition sets, processors must create multiple effective copies of the branch to
support the different conditions. This results in potential conflicts for resource names, key names, and key scopes.
Metadata elements inside of the <ditavalref> element are available to provide control over these values, so that
keys, key scopes, and URIs can be individually referenced within a branch.

For example, the following map branch specifies two DITAVAL documents:

<topicref href="productFeatures.dita" keys="features" keyscope="prodFeatures">
 <ditavalref href="novice.ditaval"/>
 <ditavalref href="admin.ditaval"/>
 <topicref href="newFeature.dita" keys="newThing"/>
</topicref>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 92 of 177 Generated 07/14/2015

In this case, the processor has two effective copies of productFeatures.dita and newFeature.dita. One
copy of each topic is filtered using the conditions specified in novice.ditaval, and the other copy is filtered
using the conditions specified in admin.ditaval. If an author has referenced a topic using
keyref="features" or keyref="prodFeatures.features", there is no way for a processor to distinguish
which filtered copy is the intended target.

Metadata elements in the DITAVAL reference domain
Metadata within the <ditavalref> element makes it possible to control changes to resource names and key
scope names, so that each distinct filtered copy can be referenced in a predictable manner.

<dvrResourcePrefix>
Enables a map author to specify a prefix that is added to the start of resource names for each resource in
the branch.

<dvrResourceSuffix>
Enables a map author to specify a suffix that is added to the end of resource names (before any extension)
for each resource in the branch.

<dvrKeyscopePrefix>
Enables a map author to specify a prefix that is added to the start of key scope names for each key scope in
the branch. If no key scope is specified for the branch, this can be used to establish a new key scope,
optionally combined with a value specified in <dvrKeyscopeSuffix>.

<dvrKeyscopeSuffix>
Enables a map author to specify a suffix that is added to the end of key scope names for each key scope in
the branch.

For example, the previous code sample can be modified as follows to create predictable resource names and key
scopes for the copy of the branch that is filtered using the conditions that are specified in admin.ditaval.

<topicref href="productFeatures.dita" keys="features" keyscope="prodFeatures">
 <ditavalref href="novice.ditaval"/>
 <ditavalref href="admin.ditaval">
 <ditavalmeta>
 <dvrResourcePrefix>admin-</dvrResourcePrefix>
 <dvrKeyscopePrefix>adminscope-</dvrKeyscopePrefix>
 </ditavalmeta>
 </ditavalref>
 <topicref href="newFeature.dita" keys="newThing"/>
</topicref>

The novice branch does not use any renaming, which allows it to be treated as the default copy of the branch. As
a result, when the topics are filtered using the conditions that are specified in novice.ditaval, the resource
names and key names are unmodified, so that references to the original resource name and key name will resolve
to topics in the novice copy of the branch. This has the following effect on topics that are filtered using the
conditions specified in admin.ditaval:

• The prefix admin- is added to the beginning of each resource name in the admin branch.

• The resource productFeatures.dita becomes admin-productFeatures.dita
• The resource newFeature.dita becomes admin-newFeature.dita

• The prefix adminscope- is added to the existing key scope "prodFeatures".

• The attribute value keyref="adminscope-prodFeatures.features" refers explicitly to the admin
copy of productFeatures.dita

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 93 of 177 Generated 07/14/2015

• The attribute keyref="adminscope-prodFeatures.newThing" refers explicitly to the admin copy of
newFeature.dita
Note: In general, the best way to reference a topic that will be modified based on branch filtering is to use
a key rather than a URI. Key scopes and key names (including those modified based on the elements
above) must be calculated by processors before other processing. This means that in the example above, a
key reference to adminscope-prodFeatures.features will always refer explicitly to the instance of
productFeatures.dita filtered against the conditions in admin.ditaval, regardless of whether a
processor has performed the filtering yet. References that use the URI productFeatures.dita or
admin-productFeatures.dita could resolve differently (or fail to resolve), as discussed in Branch
filtering: Implications of processing order on page 95.

Renaming based on multiple <ditavalref> elements
It is possible for a branch with <ditavalref> already in effect to specify an additional <ditavalref>, where each
<ditavalref> includes renaming metadata. When renaming, metadata on the <ditavalref> nested more deeply
within the branch appears closer to the original resource or key name. For example:

<topicref href="branchParent.dita">
 <ditavalref href="parent.ditaval">
 <ditavalmeta>
 <dvrResourcePrefix>parentPrefix-</dvrResourcePrefix>
 </ditavalmeta>
 </ditavalref>
 <!-- additional topics or layers of nesting -->
 <topicref href="branchChild.dita">
 <ditavalref href="child.ditaval">
 <ditavalmeta>
 <dvrResourcePrefix>childPrefix-</dvrResourcePrefix>
 </ditavalmeta>
 </ditavalref>
 </topicref>
</topicref>

In this situation, the resource branchChild.dita is given a prefix based on both the reference to
parent.ditaval and the reference to child.ditaval. The value "childPrefix-" is specified in the
<ditavalref> that is nested more deeply within the branch, so it appears closer to the original resource name.
The resource branchChild.dita would result in parentPrefix-childPrefix-branchChild.dita.
Suffixes (if specified) would be added in a similar manner, resulting in a name like branchChild-
childSuffix-parentSuffix.dita. Note that the hyphens are part of the specified prefix; they are not added
automatically.

Handling resource name conflicts
It is an error if <ditavalref>-driven branch cloning results in multiple copies of a topic that have the same
resolved name. Processors SHOULD report an error in such cases. Processors MAY recover by using an alternate
naming scheme for the conflicting topics.

In rare cases, a single topic might appear in different branches that set different conditions, yet still produce the
same result. For example, a topic might appear in both the admin and novice copies of a branch but not contain
content that is tailored to either audience; in that case, the filtered copies would match. A processor MAY consider
this form of equivalence when determining if two references to the same resource should be reported as an error.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 94 of 177 Generated 07/14/2015

Branch filtering: Implications of processing order

Because the branch filtering process can result in new or renamed keys, key scopes, or URIs, the full effects of the
branch filtering process MUST be calculated by processors before they construct the effective map and key scope
structure.

Note: The @keyref attribute and related attributes are explicitly disallowed on <ditavalref>. This
prevents any confusion resulting from a @keyref that resolves to additional key- or resource-renaming
metadata.

In general, the DITA specification refrains from mandating a processing order; thus publication results can vary
slightly depending on the order in which processes are run. With branch filtering, processors are not required to
apply filter conditions specified outside of the map and filter conditions specified with <ditavalref> at the same
time in a publishing process.

For example, a processor might use the following processing order:

1. Apply externally-specified filter conditions to maps
2. Apply filtering based on <ditavalref> elements

Because externally-specified "exclude" conditions always take precedence over branch-specific conditions, content
excluded based on external conditions will always be removed, regardless of the order in which processors
evaluate conditions.

Processors should consider the following points when determining a processing order:

• If links are generated based on the map hierarchy, those links should be created using the renamed keys and
URIs that result from evaluating the <ditavalref> filter conditions, to ensure that the links are consistent
within the modified branches. For example, sequential links based on a map hierarchy should remain within
the appropriate modified branch.

• If conrefs are resolved in topics before the <ditavalref> filtering conditions are evaluated, content that
applies to multiple audiences can be brought in and (later in the process) selectively filtered by branch. For
example, if a set of installation steps is pulled in with conref (from outside the branch), it might contain
information that is later filtered by platform based on <ditavalref>. This results in copies of the steps that are
specific to each operating system. If conref is processed after the <ditavalref>, content might be pulled in
that has not been appropriately filtered for the new context.

• The same scenario applies to conref values that push content into the branch.

• Pushing content into a branch before resolving the <ditavalref> conditions allows content for multiple
conditions to be pushed and then filtered by branch based on the <ditavalref> conditions.

• If the branch using <ditavalref> pushes content elsewhere, resolving <ditavalref> first could result in
multiple copies of the content to be pushed (one for each branch), resulting in multiple potentially
conflicting copies pushed to the new destination.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 95 of 177 Generated 07/14/2015

Examples of branch filtering

The branch filtering examples illustrate the processing expectations for various scenarios that involve
<ditavalref> elements. Processing examples use either before and after sample markup or expanded syntax that
shows the equivalent markup without the <ditavalref> elements.

Example: Single <ditavalref> on a branch
A single <ditavalref> element can be used to supply filtering conditions for a branch.

Consider the following DITA map and the DITAVAL file that is referenced from the <ditavalref> element:

<map>
 <topicref href="intro.dita"/>
 <topicref href="install.dita">
 <ditavalref href="novice.ditaval"/>
 <topicref href="do-stuff.dita"/>
 <topicref href="advanced-stuff.dita" audience="admin"/>
 <!-- more topics -->
 </topicref>
 <!-- Several chapters worth of other material -->
</map>

Figure 20: input.ditamap:

<val>
 <prop att="audience" val="novice" action="include"/>
 <prop att="audience" val="admin" action="exclude"/>
</val>

Figure 21: Contents of novice.ditaval

When this content is published, the following processing occurs:

• The first topic (intro.dita) does not use any of the conditions that are specified in novice.ditaval. It
is published normally, potentially using other DITAVAL conditions that are specified externally.

• The second topic (install.dita) is filtered using any external conditions as well as the conditions that are
specified in novice.ditaval.

• The third topic (do-stuff.dita) is filtered using any external conditions as well as the conditions that are
specified in novice.ditaval.

• The fourth topic (advanced-stuff.dita) is removed from the map entirely, because it is filtered out with
the conditions that are specified for the branch.

In this example, no resources are renamed based on the <ditavalref> processing.

Note: In cases where the original resource names map directly to names or anchors in a deliverable, the
absence of renaming ensures that external links to those topics are stable regardless of whether a
DITAVAL document is used.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 96 of 177 Generated 07/14/2015

Example: Multiple <ditavalref> elements on a branch
Multiple <ditavalref> elements can be used on a single map branch to create multiple distinct copies of the
branch.

Consider the following DITA map that contains a branch with three peer <ditavalref> elements. Because
topics in the branch are filtered in three different ways, processors are effectively required to handle three
copies of the entire branch. Sub-elements within the <ditavalref> elements are used to control how new
resource names are constructed for two copies of the branch; one copy (based on the conditions in
win.ditaval) is left with the original file names.

<map>
 <topicref href="intro.dita"/>
 <!-- Begining of installing branch -->
 <topicref href="install.dita">
 <ditavalref href="win.ditaval"/>
 <ditavalref href="mac.ditaval">
 <ditavalmeta>
 <dvrResourceSuffix>-apple</dvrResourceSuffix>
 </ditavalmeta>
 </ditavalref>
 <ditavalref href="linux.ditaval">
 <ditavalmeta>
 <dvrResourceSuffix>-linux</dvrResourceSuffix>
 </ditavalmeta>
 </ditavalref>
 <topicref href="do-stuff.dita">
 <topicref href="mac-specific-stuff.dita" platform="mac"/>
 </topicref>
 <!-- End of installing branch -->
 <topicref href="cleanup.dita"/>
 </topicref>
</map>

Figure 22: input.ditamap

<val>
 <prop att="platform" val="win" action="include"/>
 <prop att="platform" action="exclude"/>
</val>

Figure 23: Contents of win.ditaval

<val>
 <prop att="platform" val="mac" action="include"/>
 <prop att="platform" action="exclude"/>
</val>

Figure 24: Contents of mac.ditaval

<val>
 <prop att="platform" val="linux" action="include"/>
 <prop att="platform" action="exclude"/>
</val>

Figure 25: Contents of linux.ditaval

When a processor evaluates this markup, it results in three copies of the installing branch. The following
processing takes place:

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 97 of 177 Generated 07/14/2015

• The first topic (intro.dita) is published normally, potentially using any other DITAVAL conditions that
are specified externally.

• The installing branch appears three times, once for each DITAVAL document. The branches are created as
follows:

• The first branch uses the first DITAVAL document (win.ditaval). Resources use their original names
as specified in the map. The mac-specific-stuff.dita topic is removed. The resulting branch, with
indenting to show the hierarchy, matches the original without the mac topic:

install.dita
 do-stuff.dita
 ...more topics and nested branches...
 cleanup.dita

• The second branch uses the second DITAVAL document (mac.ditaval). Resources are renamed based
on the <dvrResourceSuffix> element. The mac-specific-stuff.dita topic is included. The
resulting branch, with indenting to show the hierarchy, is as follows:

install-apple.dita
 do-stuff-apple.dita
 mac-specific-stuff-apple.dita
 ...more topics and nested branches...
 cleanup-apple.dita

• The third branch uses the last DITAVAL document (linux.ditaval). Resources are renamed based on
the <dvrResourceSuffix> element. The mac-specific-stuff.dita topic is removed. The resulting
branch, with indenting to show the hierarchy, is as follows:

install-linux.dita
 do-stuff-linux.dita
 ...more topics and nested branches...
 cleanup-linux.dita

The example used three DITAVAL documents to avoid triple maintenance of the installing branch in a map; the
following map is functionally equivalent, but it requires parallel maintenance of each branch.

<map>
 <topicref href="intro.dita"/>
 <!-- Windows installing branch -->
 <topicref href="install.dita">
 <ditavalref href="win.ditaval"/>
 <topicref href="do-stuff.dita">
 <!-- more topics and nested branches -->
 </topicref>
 <topicref href="cleanup.dita"/>
 </topicref>
 <!-- Mac installing branch -->
 <topicref href="install.dita">
 <ditavalref href="mac.ditaval">
 <ditavalmeta><dvrResourceSuffix>-apple</dvrResourceSuffix></ditavalmeta>
 </ditavalref>
 <topicref href="do-stuff.dita">
 <topicref href="mac-specific-stuff.dita" platform="mac"/>
 <!-- more topics and nested branches -->
 </topicref>
 <topicref href="cleanup.dita"/>
 </topicref>
 <!-- Linux installing branch -->
 <topicref href="install.dita">
 <ditavalref href="linux.ditaval">
 <ditavalmeta><dvrResourceSuffix>-linux</dvrResourceSuffix></ditavalmeta>
 </ditavalref>
 <topicref href="do-stuff.dita">

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 98 of 177 Generated 07/14/2015

 <!-- more topics and nested branches -->
 </topicref>
 <topicref href="cleanup.dita"/>
 </topicref>
 <!-- Several chapters worth of other material -->
</map>

Figure 26: input.ditamap

Example: Single <ditavalref> as a child of <map>
Using a <ditavalref> element as a direct child of the <map> element is equivalent to setting global filtering
conditions for the map.

The following map is equivalent to processing all the contents of the map with the conditions in the
novice.ditaval document. If additional conditions are provided externally (for example, as a parameter to
the publishing process), those conditions take precedence.

<map>
 <title>Sample map</title>
 <ditavalref href="novice.ditaval"/>
 <!-- lots of content -->
</map>

Example: Single <ditavalref> in a reference to a map
Using a <ditavalref> element in a reference to a map is equivalent to setting filtering conditions for the
referenced map.

In the following example, other.ditamap is referenced by a root map. The <ditavalref> element indicates
that all of the content in other.ditamap should be filtered using the conditions specified in the
some.ditaval document.

<topicref href="parent.dita">
 <topicref href="other.ditamap" format="ditamap">
 <ditavalref href="some.ditaval"/>
 </topicref>
</topicref>

Figure 27: Map fragment

<map>
 <topicref href="nestedTopic1.dita">
 <topicref href="nestedTopic2.dita"/>
 </topicref>
 <topicref href="nestedTopic3.dita"/>
</map>

Figure 28: Contents of other.ditamap

This markup is functionally equivalent to applying the conditions in some.ditaval to the topics that are
referenced in the nested map. For the purposes of filtering, it could be rewritten in the following way. The extra

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 99 of 177 Generated 07/14/2015

<topicgroup> container is used here to ensure filtering is not applied to parent.dita, as it would not be in
the original example:

<topicref href="parent.dita">
 <topicgroup>
 <ditavalref href="some.ditaval"/>
 <topicref href="nestedTopic1.dita">
 <topicref href="nestedTopic2.dita"/>
 </topicref>
 <topicref href="nestedTopic3.dita"/>
 </topicgroup>
</topicref>

For the purposes of filtering, this map also could be rewritten as follows.

<topicref href="parent.dita">
 <topicref href="nestedTopic1.dita">
 <ditavalref href="some.ditaval"/>
 <topicref href="nestedTopic2.dita"/>
 </topicref>
 <topicref href="nestedTopic3.dita">
 <ditavalref href="some.ditaval"/>
 </topicref>
</topicref>

Filtering based on the <ditavalref> element applies to the containing element and its children, so in each case,
the files nestedTopic1.dita, nestedTopic2.dita, and nestedTopic3.dita are filtered against the
conditions specified in some.ditaval. In each version, parent.dita is not a parent for the <ditavalref>,
so it is not filtered.

Example: Multiple <ditavalref> elements as children of <map> in a root
map
Using multiple instances of the <ditavalref> element as direct children of the <map> element in a root map is
equivalent to setting multiple sets of global filtering conditions for the root map.

Note: Unlike most other examples of branch filtering, this example cannot be rewritten using a single
valid map with alternate markup that avoids having multiple <ditavalref> elements as children of
the same grouping element.

Processing the following root map is equivalent to processing all the contents of the map with the conditions in
the mac.ditaval file and again with the linux.ditaval file. If additional conditions are provided
externally (for example, as a parameter to the publishing process), those global conditions take precedence.

<map>
 <title>Setting up my product
on <keyword platform="mac">Mac</keyword><keyword platform="linux">Linux</keyword></title>
 <topicmeta>
 <othermeta platform="mac" name="ProductID" content="1234M"/>
 <othermeta platform="linux" name="ProductID" content="1234L"/>
 </topicmeta>
 <ditavalref href="mac.ditaval"/>
 <ditavalref href="linux.ditaval"/>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 100 of 177 Generated 07/14/2015

 <!-- lots of content, including relationship tables -->
</map>

Figure 29: input.ditamap

<val>
 <prop att="platform" val="mac" action="include"/>
 <prop att="platform" val="linux" action="exclude"/>
</val>

Figure 30: Contents of mac.ditaval

<val>
 <prop att="platform" val="mac" action="exclude"/>
 <prop att="platform" val="linux" action="include"/>
</val>

Figure 31: Contents of linux.ditaval

Because the title and metadata each contain filterable content, processing using the conditions that are
referenced by the <ditavalref> element results in two variants of the title and common metadata. While this
cannot be expressed using valid DITA markup, it is conceptually similar to something like the following.

<!-- The following wrapperElement is not a real DITA element.
 It is used here purely as an example to illustrate one possible
 way of picturing the conditions. -->
<wrapperElement>
 <map>
 <title>Setting up my product on <keyword platform="mac">Mac</keyword></title>
 <topicmeta>
 <othermeta platform="mac" name="ProductID" content="1234M"/>
 </topicmeta>
 <ditavalref href="mac.ditaval"/>
 <!-- lots of content, including relationship tables -->
 </map>
 <map>
 <title>Setting up my product on <keyword platform="linux">Linux</keyword></title>
 <topicmeta>
 <othermeta platform="linux" name="ProductID" content="1234L"/>
 </topicmeta>
 <ditavalref href="linux.ditaval"/>
 <!-- lots of content, including relationship tables -->
 </map>
</wrapperElement>

How this map is rendered is implementation dependent. If this root map is rendered as a PDF, possible
renditions might include the following:

• Two PDFs, with one using the conditions from mac.ditaval and another using the conditions from
linux.ditaval

• One PDF, with a title page that includes each filtered variant of the title and product ID, followed by Mac-
specific and Linux-specific renderings of the content as chapters in the PDF

• One PDF, with the first set of filter conditions used to set book level titles and metadata, followed by content
filtered with those conditions, followed by content filtered with conditions from the remaining
<ditavalref> element.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 101 of 177 Generated 07/14/2015

Example: Multiple <ditavalref> elements in a reference to a map
Using multiple instances of the <ditavalref> element in a reference to a map is equivalent to referencing that
map multiple times, with each reference nesting one of the <ditavalref> elements.

In the following example, other.ditamap is referenced by a root map. The <ditavalref> elements provide
conflicting sets of filter conditions.

<topicref href="parent.dita">
 <topicref href="other.ditamap" format="ditamap">
 <ditavalref href="audienceA.ditaval"/>
 <ditavalref href="audienceB.ditaval"/>
 <ditavalref href="audienceC.ditaval"/>
 </topicref>
</topicref>

Figure 32: Map fragment

This markup is functionally equivalent to referencing other.ditamap three times, with each reference
including a single <ditavalref> elements. The fragment could be rewritten as:

<topicref href="parent.dita">
 <topicref href="other.ditamap" format="ditamap">
 <ditavalref href="audienceA.ditaval"/>
 </topicref>
 <topicref href="other.ditamap" format="ditamap">
 <ditavalref href="audienceB.ditaval"/>
 </topicref>
 <topicref href="other.ditamap" format="ditamap">
 <ditavalref href="audienceC.ditaval"/>
 </topicref>
</topicref>

Figure 33: Map fragment

Example: <ditavalref> within a branch that already uses <ditavalref>
When a branch is filtered because a <ditavalref> element is present, another <ditavalref> deeper within that
branch can supply additional conditions for a subset of the branch.

In the following map fragment, a set of operating system conditions applies to installation instructions. Within
that common branch, a subset of content applies to different audiences.

<topicref href="install.dita">
 <ditavalref href="linux.ditaval"/>
 <ditavalref href="mac.ditaval">
 <ditavalmeta>
 <dvrResourceSuffix>-mac</dvrResourceSuffix>
 </ditavalmeta>
 </ditavalref>
 <ditavalref href="win.ditaval">
 <ditavalmeta>
 <dvrResourceSuffix>-win</dvrResourceSuffix>
 </ditavalmeta>
 </ditavalref>
 <topicref href="perform-install.dita">
 <!-- other topics-->
 </topicref>
 <!-- Begin configuration sub-branch -->
 <topicref href="configure.dita">

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 102 of 177 Generated 07/14/2015

 <ditavalref href="novice.ditaval">
 <ditavalmeta>
 <dvrResourceSuffix>-novice</dvrResourceSuffix>
 </ditavalmeta>
 </ditavalref>
 <ditavalref href="advanced.ditaval">
 <ditavalmeta>
 <dvrResourceSuffix>-admin</dvrResourceSuffix>
 </ditavalmeta>
 </ditavalref>
 <!-- Other config topics -->
 </topicref>
 <!-- End configuration sub-branch -->
</topicref>

In this case, the effective map contains three copies of the complete branch. The branches are filtered by
operating system. Because topics in the branch are filtered in different ways, processors are effectively required
to handle three copies of the entire branch. The map author uses the <dvrResourceSuffix> elements to control
naming for each copy. The Linux branch does not specify a <dvrResourceSuffix> element, because it is the
default copy of the branch; this allows documents such as install.dita to retain their original names.

Within each operating system instance, the configuration sub-branch is repeated; it is filtered once for novice
users and then again for advanced users. As a result, there are actually six instances of the configuration sub-
branch. Additional <dvrResourceSuffix> elements are used to control naming for each instance.

1. The first instance is filtered using the conditions in linux.ditaval and novice.ditaval. For this
instance, the resource configure.dita is treated as the resource configure-novice.dita. There is
no renaming based on linux.ditaval, and the <ditavalref> the references novice.ditaval adds
the suffix -novice.

2. The second instance is filtered using the conditions in linux.ditaval and advanced.ditaval. For this
instance, the resource configure.dita is treated as the resource configure-admin.dita. There is no
renaming based on linux.ditaval, and the <ditavalref> that references advanced.ditaval adds
the suffix -admin.

3. The third instance is filtered using the conditions in mac.ditaval and novice.ditaval. For this
instance, the resource configure.dita is treated as the resource configure-novice-mac.dita. The
<ditavalref> that references novice.ditaval adds the suffix -novice, resulting in configure-
novice.dita, and then the <ditavalref> that references mac.ditaval adds the additional suffix -mac.

4. The fourth instance is filtered using the conditions in mac.ditaval and advanced.ditaval. For this
instance, the resource configure.dita is treated as the resource configure-admin-mac.dita. The
<ditavalref> that references admin.ditaval adds the suffix -admin, resulting in configure-
admin.dita, and then the <ditavalref> that references mac.ditaval adds the additional suffix -mac.

5. The fifth instance is filtered using the conditions in win.ditaval and novice.ditaval. For this
instance, the resource configure.dita is treated as the resource configure-novice-win.dita. The
<ditavalref> that references novice.ditaval adds the suffix -novice, resulting in configure-
novice.dita, and then the <ditavalref> that references win.ditaval adds the additional suffix -win.

6. The sixth instance is filtered using the conditions in win.ditaval and advanced.ditaval. For this
instance, the resource configure.dita is treated as the resource configure-admin-win.dita. The
<ditavalref> that references admin.ditaval adds the suffix -admin, resulting in configure-
admin.dita, and then the <ditavalref> that references win.ditaval adds the additional suffix -win.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 103 of 177 Generated 07/14/2015

Example: <ditavalref> error conditions
It is an error condition when multiple, non-equivalent copies of the same file are created with the same resource
name.

The following map fragment contains several error conditions that result in name clashes:

<topicref href="a.dita" keys="a">
 <ditavalref href="one.ditaval"/>
 <ditavalref href="two.ditaval"/>
 <topicref href="b.dita" keys="b"/>
</topicref>
<topicref href="a.dita"/>
<topicref href="c.dita" keys="c">
 <ditavalref href="one.ditaval">
 <ditavalmeta>
 <dvrResourceSuffix>-token</dvrResourceSuffix>
 </ditavalmeta>
 </ditavalref>
 <ditavalref href="two.ditaval">
 <ditavalmeta>
 <dvrResourceSuffix>-token</dvrResourceSuffix>
 </ditavalmeta>
 </ditavalref>
</topicref>

In this sample, the effective map that results from evaluating the filter conditions has several clashes. In some
cases the same document must be processed with conflicting conditions, using the same URI. In addition,
because no key scope is added or modified, keys in the branch are duplicated in such a way that only one
version is available for use. When the branches are evaluated to create distinct copies, the filtered branches
result in the following equivalent map:

<topicref href="a.dita" keys="a"> <!-- a.dita to be filtered by one.ditaval -->
 <topicref href="b.dita" keys="b"/> <!-- b.dita to be filtered by one.ditaval -->
</topicref>
<topicref href="a.dita" keys="a"> <!-- a.dita to be filtered by two.ditaval; key "a"
ignored -->
 <topicref href="b.dita" keys="b"/> <!-- b.dita to be filtered by two.ditaval; key "b"
ignored -->
</topicref>
<topicref href="a.dita"/>
<topicref href="c-token.dita" keys="c">
 <!-- c-token.ditaval to be filtered by one.ditaval -->
</topicref>
<topicref href="c-token.dita" keys="c">
 <!-- c-token.ditaval to be filtered by two.ditaval, key "c" ignored -->
</topicref>

The equivalent map highlights several problems with the original source:

• The key names "a" and "b" are present in a branch that will be duplicated. No key scope is introduced for
either version of the branch, meaning that the keys will be duplicated. Because there can only be one
effective key definition for "a" or "b", it only is possible to reference one version of the topic using keys.

• The key name "c" is present on another branch that will be duplicated, resulting in the same problem.
• The file c.dita is filtered with two sets of conditions, each of which explicitly maps the filtered resource to

c-token.dita. This is an error condition that should be reported by processors.
• In situations where resource names map directly to output file names, such as an HTML5 rendering that

creates files based on the original resource name, the following name conflicts also occur. In this case a
processor would need to report an error, use an alternate naming scheme, or both:

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 104 of 177 Generated 07/14/2015

1. a.dita generates a.html using three alternate set of conditions. One version uses one.ditaval, one
version uses two.ditaval, and the third version uses no filtering.

2. b.dita generates b.html using two alternate set of conditions. One version uses one.ditaval, and
the other version uses two.ditaval.

Chunking
Content can be chunked (divided or merged into new output documents) in different ways for the purposes of
delivering content and navigation. For example, content best authored as a set of separate topics might need to be
delivered as a single Web page. A map author can use the @chunk attribute to split up multi-topic documents into
component topics or to combine multiple topics into a single document as part of output processing.

The @chunk attribute is commonly used for the following use cases.

Reuse of a nested topic
A content provider creates a set of topics as a single document. Another user wants to incorporate only
one of the nested topics from the document. The new user can reference the nested topic from a DITA
map, using the @chunk attribute to specify that the topic should be produced in its own document.

Identification of a set of topics as a unit
A curriculum developer wants to compose a lesson for a SCORM LMS (Learning Management System)
from a set of topics without constraining reuse of those topics. The LMS can save and restore the learner's
progress through the lesson if the lesson is identified as a referenceable unit. The curriculum developer
defines the collection of topics with a DITA map, using the @chunk attribute to identify the learning
module as a unit before generating the SCORM manifest.

Using the @chunk attribute

The specification defines tokens for the @chunk attribute that cover the most common chunking scenarios. These
tokens may be used to override whatever default chunking behavior is set by a processor. Chunking is necessarily
format specific, with chunked output required for some and not supported for other rendered formats. Chunking
is also implementation specific with some implementations supporting some, but not all, chunking methods, or
adding new methods to the standard ones described in this specification.

The value of the @chunk attribute consists of one or more space delimited tokens. Tokens are defined in three
categories: for selecting topics, for setting chunking policies, and for defining how the chunk values impact
rendering. It is an error to use two tokens from the same category on a single <topicref> element.

Selecting topics
When addressing a document that contains multiple topics, these values determine which topics are
selected. These values are ignored when the element on which they are specified does not reference a
topic. The defined values are:

• select-topic: Selects an individual topic without any ancestors, descendents, or peers from within
the same document.

• select-document: Selects all topics in the target document.
• select-branch: Selects the target topic together with its descendent topics.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 105 of 177 Generated 07/14/2015

Policies for splitting or combining documents
The chunking policy tokens determine how source topics are chunked to produce different output chunks,
for output formats where that makes sense. When specified on a <map> element, the policy becomes the
default policy for all topic references. When specified on a topic reference, the policy applies only to that
<topicref> and not to any descendant <topicref> elements.

• by-topic: A separate output chunk is produced for each of the selected topics. In particular, topics
that are part of multi-topic documents are processed as though they are the root topics within a
separate XML document.

• by-document: A single output chunk is produced for the referenced topic or topics, as though the
selected topics were all children of the same document.

Rendering the selection
The following tokens affect how the chunk values impact rendering of the map or topics.

• to-content: The selection should be rendered as a new chunk of content.

• When specified on a <topicref>, this means that the topics selected by this <topicref> and its
children will be rendered as a single chunk of content.

• When specified on the <map> element, this indicates that the contents of all topics referenced by the
map are to be rendered as a single document.

• When specified on a <topicref> that contains a title but no target, this indicates that processors
MUST generate a title-only topic in the rendered result, along with any topics referenced by child
<topicref> elements of this <topicref>. The rendition address of the generated topic is
determined as defined for the @copy-to attribute. If the @copy-to attribute is not specified and the
<topicref> has no @id attribute, the address of the generated topic is not required to be predictable
or consistent across rendition instances.

For cross references to <topicref> elements, if the value of the @chunk attribute is "to-content" or is
unspecified, the cross reference is treated as a reference to the target topic. If the reference is to a
<topicref> with no target, it is treated as a reference to the generated title-only topic.

• to-navigation (DEPRECATED): The "to-navigation" token is deprecated in DITA 1.3. In earlier
releases, the "to-navigation" token indicates that a new chunk of navigation should be used to render
the current selection (such as an individual Table of Contents or related links). When specified on the
<map> element, this token indicates that the map should be presented as a single navigation chunk. If a
cross reference is made to a <topicref> that has a title but no target, and the @chunk value of that
<topicref> is set to "to-navigation", the resulting cross reference is treated as a reference to the
rendered navigation document (such as an entry in the table of contents).

Some tokens or combinations of tokens might not be appropriate for all output types. When unsupported or
conflicting tokens are encountered during output processing, processors SHOULD produce warning or error
messages. Recovery from such conflicts or other errors is implementation dependent.

There is no default value for the @chunk attribute on most elements and the @chunk attribute does not cascade
from container elements, meaning that the @chunk value on one <topicref> is not passed to its children. A
default by-xxx policy for an entire map may be established by setting the @chunk attribute on the <map> element,
which will apply to any <topicref> that does not specify its own by-xxx policy.

When no @chunk attribute values are specified or defaulted, chunking behavior is implementation dependent.
When variations of this sort are not desired, a default for a specific map can be established by including a @chunk
attribute value on the <map> element.

When chunk processing results in new documents, the resource name or identifier for the new document (if
relevant) is determined as follows:

1. If an entire map is used to generate a single chunk (by placing to-content on the <map> element), the resource
name SHOULD be taken from the resource name of the map.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 106 of 177 Generated 07/14/2015

2. If the @copy-to attribute is specified, the resource name MUST taken from the @copy-to attribute.
3. If the @copy-to attribute is not specified and one or more keys are specified on the <topicref>, the resource

name SHOULD be constructed using one of the keys.
4. If @copy-to and @keys are not specified and the by-topic policy is in effect, the resource name SHOULD be

taken from the @id attribute of the topic.
5. If @copy-to and @keys are not specified and the by-document policy is in effect, the resource name SHOULD

be taken from the resource name of the referenced document.

When following these steps results in resource name clashes, processors MAY recover by generating alternate
resource identifiers. For example, when two chunked topics use the same @id attribute, a processor could recover
by combining the original resource name with the @id value instead of using only the @id value.

Implementation-specific tokens and future considerations
Implementers MAY define their own custom, implementation-specific tokens. To avoid name conflicts between
implementations or with future additions to the standard, implementation-specific tokens SHOULD consist of a
prefix that gives the name or an abbreviation for the implementation followed by a colon followed by the token or
method name.

For example: “acme:level2” could be a token for the Acme DITA Toolkit that requests the “level2” chunking
method.

Chunking examples

The following examples cover many common chunking scenarios, such as splitting one document into many
rendered objects or merging many documents into one rendered object.

In the examples below, an extension of ".xxxx" is used in place of the actual extensions that will vary by output
format. For example, when the output format is HTML, the extension may actually be ".html", but this is not
required.

The examples below assume the existence of the following files:

• parent1.dita, parent2.dita, etc., each containing a single topic with id P1, P2, etc.
• child1.dita, child2.dita, etc., each containing a single topic with id C1, C2, etc.
• grandchild1.dita, grandchild2.dita, etc., each containing a single topic with id GC1, GC2, etc.
• nested1.dita, nested2.dita, etc., each containing two topics: parent topics with id N1, N2, etc., and

child topics with ids N1a, N2a, etc.
• ditabase.dita, with the following contents:

<dita xml:lang="en-us">
 <topic id="X">
 <title>Topic X</title><body><p>content</p></body>
 </topic>
 <topic id="Y">
 <title>Topic Y</title><body><p>content</p></body>
 <topic id="Y1">
 <title>Topic Y1</title><body><p>content</p></body>
 <topic id="Y1a">
 <title>Topic Y1a</title><body><p>content</p></body>
 </topic>
 </topic>
 <topic id="Y2">
 <title>Topic Y2</title><body><p>content</p></body>
 </topic>
 </topic>
 <topic id="Z">
 <title>Topic Z</title><body><p>content</p></body>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 107 of 177 Generated 07/14/2015

 <topic id="Z1">
 <title>Topic Z1</title><body><p>content</p></body>
 </topic>
 </topic>
</dita>

1. The following map causes the entire map to generate a single output chunk.

<map chunk="to-content">
 <topicref href="parent1.dita">
 <topicref href="child1.dita"/>
 <topicref href="child2.dita"/>
 </topicref>
</map>

2. The following map will generate a separate chunk for every topic in every document referenced by the
map. In this case, it will result in the topics P1.xxxx, N1.xxxx, and N1a.xxxx.

<map chunk="by-topic">
 <topicref href="parent1.dita">
 <topicref href="nested1.dita"/>
 </topicref>
</map>

3. The following map will generate two chunks: parent1.xxxx will contain only topic P1, while
child1.xxxx will contain topic C1, with topics GC1 and GC2 nested within C1.

<map>
 <topicref href="parent1.dita">
 <topicref href="child1.dita" chunk="to-content">
 <topicref href="grandchild1.dita"/>
 <topicref href="grandchild2.dita"/>
 </topicref>
 </topicref>
</map>

4. The following map breaks down portions of ditabase.dita into three chunks. The first chunk Y.xxxx
will contain only the single topic Y. The second chunk Y1.xxxx will contain the topic Y1 along with its
child Y1a. The final chunk Y2.xxxx will contain only the topic Y2. For navigation purposes, the chunks for
Y1 and Y2 are still nested within the chunk for Y.

<map>
 <topicref href="ditabase.dita#Y" copy-to="Y.dita"
 chunk="to-content select-topic">
 <topicref href="ditabase.dita#Y1" copy-to="Y1.dita"
 chunk="to-content select-branch"/>
 <topicref href="ditabase.dita#Y2" copy-to="Y2.dita"
 chunk="to-content select-topic"/>
 </topicref>
</map>

5. The following map will produce a single output chunk named parent1.xxxx, containing topic P1, with
topic Y1 nested within P1, but without topic Y1a.

<map chunk="by-document">
 <topicref href="parent1.dita" chunk="to-content">
 <topicref href="ditabase.dita#Y1"
 chunk="select-topic"/>
 </topicref>
</map>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 108 of 177 Generated 07/14/2015

6. The following map will produce a single output chunk, parent1.xxxx, containing topic P1, topic Y1
nested within P1, and topic Y1a nested within Y1.

<map chunk="by-document">
 <topicref href="parent1.dita" chunk="to-content">
 <topicref href="ditabase.dita#Y1"
 chunk="select-branch"/>
 </topicref>
</map>

7. The following map will produce a single output chunk, P1.xxxx. The topic P1 will be the root topic, and
topics X, Y, and Z (together with their descendents) will be nested within topic P1.

<map chunk="by-topic">
 <topicref href="parent1.dita" chunk="to-content">
 <topicref href="ditabase.dita#Y1"
 chunk="select-document"/>
 </topicref>
</map>

8. The following map will produce a single output chunk named parentchunk.xxxx containing topic P1 at
the root. Topic N1 will be nested within P1, and N1a will be nested within N1.

<map chunk="by-document">
 <topicref href="parent1.dita" chunk="to-content" copy-to="parentchunk.dita">
 <topicref href="nested1.dita" chunk="select-branch"/>
 </topicref>
</map>

9. The following map will produce two output chunks. The first chunk named parentchunk.xxxx will
contain the topics P1, C1, C3, and GC3. The "to-content" token on the reference to child2.dita causes
that branch to begin a new chunk named child2chunk.xxxx, which will contain topics C2 and GC2.

<map chunk="by-document">
 <topicref href="parent1.dita"
 chunk="to-content" copy-to="parentchunk.dita">
 <topicref href="child1.dita" chunk="select-branch"/>
 <topicref href="child2.dita"
 chunk="to-content select-branch"
 copy-to="child2chunk.dita">
 <topicref href="grandchild2.dita"/>
 </topicref>
 <topicref href="child3.dita">
 <topicref href="grandchild3.dita"
 chunk="select-branch"/>
 </topicref>
 </topicref>
 </map>

10. The following map produces a single chunk named nestedchunk.xxxx, which contains topic N1 with
no topics nested within.

<map>
 <topicref href="nested1.dita#N1"
 copy-to="nestedchunk.dita"
 chunk="to-content select-topic"/>
</map>

11. In DITA 1.3, the "to-navigation" chunk is deprecated. In earlier releases, the following map produced two
navigation chunks, one for P1, C1, and the other topic references nested under parent1.dita, and a
second for P2, C2, and the other topic references nested under parent2.dita.

<map>
 <topicref href="parent1.dita"

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 109 of 177 Generated 07/14/2015

 navtitle="How to set up a web server"
 chunk="to-navigation">
 <topicref href="child1.dita"
 chunk="select-branch"/>
 <!-- ... -->
 </topicref>
 <topicref href="parent2.dita"
 navtitle="How to ensure database security"
 chunk="to-navigation">
 <topicref href="child2.dita"
 chunk="select-branch"/>
 <!-- ... -->
 </topicref>
 <!-- ... -->
</map>

Translation and localization
DITA has features that facilitate preparing content for translation and working with multilingual content,
including the @xml:lang attribute, the @dir attribute, and the @translate attribute. In addition, the <sort-as>
and <index-sort-as> elements provide support for sorting in languages in which the correct sorting of an
element requires text that is different from the base content of the element.

The @xml:lang attribute

The @xml:lang attribute specifies the language and (optional) locale of the element content. The @xml:lang
attribute applies to all attributes and content of the element where it is specified, unless it is overridden with
@xml:lang on another element within that content.

The @xml:lang attribute SHOULD be explicitly set on the root element of each map and topic.

Setting the @xml:lang attribute in the DITA source ensures that processors handle content in a language- and
locale-appropriate way. If the @xml:lang attribute is not set, processors assume a default value which might not
be appropriate for the DITA content. When the @xml:lang attribute is specified for a document, DITA processors
MUST use the specified value to determine the language of the document.

Setting the @xml:lang attribute in the source language document facilitates the translation process; it enables
translation tools (or translators) to simply change the value of the existing @xml:lang attribute to the value of the
target language. Some translation tools support changing the value of an existing @xml:lang attribute, but they
do not support adding new markup to the document that is being translated. Therefore, if source language
content does not set the @xml:lang attribute, it might be difficult or impossible for the translator to add the
@xml:lang attribute to the translated document.

If the root element of a map or a top-level topic has no value for the@xml:lang attribute , a processor SHOULD
assume a default value. The default value of the processor can be either fixed, configurable, or derived from the
content itself, such as the @xml:lang attribute on the root map.

The @xml:lang attribute is described in the XML Recommendation. Note that the recommended style for the
@xml:lang attribute is lowercase language and (optional) uppercase, separated by a hyphen, for example, "en-US"
or "sp-SP" or "fr". According to RFC 5646, Tags for Identifying Languages, language codes are case insensitive.

Recommended use in topics
For a DITA topic that contains a single language, set the @xml:lang attribute on the highest-level element that
contains content.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 110 of 177 Generated 07/14/2015

http://www.w3.org/TR/REC-xml/#sec-lang-tag

When a DITA topic contains more than one language, set the @xml:lang attribute on the highest-level element to
specify the primary language and locale that applies to the topic. If part of a topic is written in a different language,
authors should ensure that the part is enclosed in an element with the @xml:lang attribute set appropriately. This
method of overriding the default document language applies to both block and inline elements that use the
alternate language. Processors SHOULD style each element in a way that is appropriate for its language as
identified by the @xml:lang attribute.

Recommended use in maps
The @xml:lang attribute can be specified on the <map> element. The @xml:lang attribute cascades within the map
in the same way that it cascades within a topic. However, since the @xml:lang attribute is an inherent property of
the XML document, the value of the @xml:lang attribute does not cascade from one map to another or from a
map to a topic; the value of the @xml:lang attribute that is specified in a map does not override @xml:lang values
that are specified in other maps or in topics.

The primary language for the map SHOULD be set on the <map> element. The specified language remains in
effect for all child <topicref> elements, unless a child specifies a different value for the @xml:lang attribute.

When no @xml:lang value is supplied locally or on an ancestor, a processor-determined default value is assumed.

Recommended use with the @conref or @conkeyref attribute
When a @conref or @conkeyref attribute is used to include content from one element into another, the processor
MUST use the effective value of the @xml:lang attribute from the referenced element, that is, the element that
contains the content. If the referenced element does not have an explicit value for the @xml:lang attribute, the
processor SHOULD default to using the same value that is used for topics that do not set the @xml:lang attribute.

This behavior is shown in the following example, where the value of the @xml:lang attribute of the included note
is obtained from its parent <section> element that sets the @xml:lang attribute to "fr". When the
installingAcme.dita topic is processed, the <note> element with the @id attribute set to "mynote" has an
effective value for the @xml:lang attribute of "fr".

<?xml version="1.0"?>
<!DOCTYPE task PUBLIC "-//OASIS//DTD DITA Task//EN" "task.dtd">
<task xml:lang="en" id="install_acme">
 <title>Installing Acme</title>
 <shortdesc>Step-by-step details about how to install Acme.</shortdesc>
 <taskbody>
 <prereq>
 <p>Special notes when installing Acme in France:</p>
 <note id="mynote" conref="warningsAcme.dita#topic_warnings/frenchwarnings"/>
 </prereq>
 </taskbody>
</task>

Figure 34: installingAcme.dita

<?xml version="1.0"?>
<!DOCTYPE topic PUBLIC "-//OASIS//DTD DITA Topic//EN" "topic.dtd">
<topic id="topic_warnings">
 <title>Warnings</title>
 <body>
 <section id="qqwwee" xml:lang="fr">
 <title>French warnings</title>
 <p>These are our French warnings.</p>
 <note id="frenchwarnings">Note in French!</note>
 </section>
 <section xml:lang="en">
 <title>English warnings</title>
 <p>These are our English warnings.</p>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 111 of 177 Generated 07/14/2015

 <note id="englishwarnings">Note in English!</note>
 </section>
 </body>
</topic>

Figure 35: warningsAcme.dita

The @dir attribute

The @dir attribute provides instructions to processors about how bi-directional text should be rendered.

Bi-directional text is text that contains text in both text directionalities, right-to-left (RTL) and left-to-right (LTR).
For example, languages such as Arabic, Hebrew, Farsi, Urdu, and Yiddish have text written from right-to-left;
however, numerics and embedded sections of Western language text are written from left to right. Some
multilingual documents also contain a mixture of text segments in two directions.

DITA contains the following attributes that have an effect on bi-directional text processing:

@xml:lang
Identifies the language and locale, and so can be used to identify text that requires bi-directional
rendering.

@dir
Identifies or overrides the text directionality. It can be set to "ltr", "rtl", "lro", or "rlo"

In general, properly-written mixed text does not need any special markers; the Unicode bidirectional algorithm
positions the punctuation correctly for a given language. The processor is responsible for displaying the text
properly. However, some rendering systems might need directions for displaying bidirectional text, such as
Arabic, properly. For example, Apache FOP might not render Arabic properly unless the left-to-right and right-to-
left indicators are used.

The use of the @dir attribute and the Unicode algorithm is explained in the article Specifying the direction of text
and tables: the dir attribute (http://www.w3.org/TR/html4/struct/dirlang.html#h-8.2) . This article contains several
examples of how to use the @dir attribute set to either "ltr" or "rtl". There is no example of setting the @dir
attribute to either "lro" or "rlo", although it can be inferred from the example that uses the <bdo> element, a now-
deprecated W3C mechanism for overriding the entire Unicode bidirectional algorithm.

Recommended usage
The @dir attribute, together with the @xml:lang attribute, is essential for rendering table columns and definition
lists in the proper order.

In general text, the Unicode Bidirectional algorithm, as specified by the @xml:lang attribute together with the
@dir attribute, provides for various levels of bidirectionality:

• Directionality is either explicitly specified via the @xml:lang attribute in combination with the @dir attribute
on the highest level element (topic or derived peer for topics, map for ditamaps) or assumed by the processing
application. If used, the @dir attribute SHOULD be specified on the highest level element in the topic or
document element of the map.

• When embedding a right-to-left text run inside a left-to-right text run (or vice-versa), the default direction
might provide incorrect results based on the rendering mechanism, especially if the embedded text run
includes punctuation that is located at one end of the embedded text run. Unicode defines spaces and
punctuation as having neutral directionality and defines directionality for these neutral characters when they
appear between characters having a strong directionality (most characters that are not spaces or punctuation).
While the default direction is often sufficient to determine the correct directionality of the language,
sometimes it renders the characters incorrectly (for example, a question mark at the end of a Hebrew question
might appear at the beginning of the question instead of at the end or a parenthesis might render incorrectly).

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 112 of 177 Generated 07/14/2015

http://www.w3.org/TR/html4/struct/dirlang.html#h-8.2
http://www.w3.org/TR/html4/struct/dirlang.html#h-8.2

To control this behavior, the @dir attribute is set to "ltr" or "rtl" as needed, to ensure that the desired direction
is applied to the characters that have neutral bidirectionality. The "ltr" and "rtl" values override only the
neutral characters (for example, spaces and punctuation), not all Unicode characters.

Note: Problems with Unicode rendering can be caused by the rendering mechanism. The problems are
not due to the XML markup itself.

• Sometimes you might want to override the default directionality for strongly bidirectional characters.
Overrides are done using the "lro" and "rlo" values, which overrides the Unicode Bidirectional algorithm. This
override forces a direction on the contents of the element. These override attributes give the author a brute
force way of setting the directionality independent of the Unicode Bidirectional algorithm. The gentler "ltr"
and "rtl" values have a less radical effect, only affecting punctuation and other so-called neutral characters.

For most authoring needs, the "ltr" and "rtl" values are sufficient. Use the override values only when you cannot
achieve the desired effect using the the "ltr" and "rtl" values.

Processing expectations
Applications that process DITA documents, whether at the authoring, translation, publishing, or any other stage,
SHOULD fully support the Unicode bidirectional algorithm to correctly implement the script and directionality
for each language that is used in the document.

Applications SHOULD ensure that the root element in every topic document and the root element in the root map
has values for the @dir and @xml:lang attributes.

Processing documents with different values of the @domains
attribute
When DITA elements are copied from one document to another, processors need to determine the validity of the
copied elements. This copying might occur as the result of a content reference (conref) or key reference (keyref),
or it might occur in the context of an author editing a DITA document.

A processor can examine the value of the @domains attribute and compare the set of modules listed to the set of
modules for which it provides direct support. It then can take appropriate action if it does not provide support for
a given module, for example, issuing a warning before applying fallback processing.

Documents might have incompatible constraints applied; see Weak and strong constraints on page 133 for more
information about constraint compatibility checking.

When copying content from one DITA document to another, processors SHOULD determine if the data being
copied (the copy source) requires modules that are not required by the document into which the data is to be
copied (the copy target). Such a copy operation is always safe if the copy source requires a subset of the modules
that are required by the copy target. Such a copy is unsafe if the copy source requires modules that are not
required by the copy target.

When a copy operation is unsafe, processors MAY compare the copy source to the copy target to determine if the
copy source satisfies the constraints of the copy target. If the copy source meets the copy target constraints, the
copy operation can proceed. Processors SHOULD issue a warning that the copy was allowed but the constraints
are not compatible. If the copy source does not meet the constraints of the copy target, processors MAY apply
generalization until the generalized result either satisfies the copy target constraints or no further generalization
can be performed. If the copy operation can be performed following generalization, the processor SHOULD issue
a warning that the constraints are not compatible and generalization had to be performed in order to complete the
copy operation.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 113 of 177 Generated 07/14/2015

Sorting
Processors can be configured to sort elements. Typical processing includes sorting glossary entries, lists of
parameters or reference entries in custom navigation structures, and tables based on the contents of cells in
specific columns or rows.

Each element to be sorted must have some inherent text on which it will be sorted. This text is the base sort phrase
for the element. For elements that have titles, the base sort phrase usually is the content of the <title> element.
For elements that do not have titles, the base sort phrase might be literal content in the DITA source, or it might be
generated or constructed based on the semantics of the element involved; for example, it could be constructed
from various attribute or metadata values. Processors that perform sorting SHOULD explicitly document how the
base sort phrase is determined for a given element.

The <sort-as> element can be used to specify an effective sort phrase when the base sort phrase is not
appropriate for sorting. For index terms, the <index-sort-as> element can be used to specify the effective sort
phrase for an index entry.

The details of sorting and grouping are implementation specific. Processors might provide different mechanisms
for defining or configuring collation and grouping details. Even where the <sort-as> element is specified, two
processors might produce different sorted and grouped results because they might use different collation and
grouping rules. For example, one processor might be configured to sort English terms before non-English terms,
while another might be configured to sort them after. The grouping and sorting of content is subject to local
editorial rules.

When a <sort-as> element is specified, processors that sort the containing element MUST construct the effective
sort phrase by prepending the content of the <sort-as> element to the base sort phrase. This ensures that two
items with the same <sort-as> element but different base sort phrases will sort in the appropriate order.

For example, if a processor uses the content of the <title> element as the base sort phrase, and the title of a topic
is "24 Hour Support Hotline" and the value of the <sort-as> element is "twenty-four hour", then the effective sort
phrase would be "twenty-four hour24 Hour Support Hotline".

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 114 of 177 Generated 07/14/2015

Configuration, specialization, generalization, and
constraints
The extension facilities of DITA allow existing vocabulary and constraint modules to be combined to create
specific DITA document types. Vocabulary modules also can be specialized to meet requirements that are not
satisfied by existing markup.

Overview of DITA extension facilities
DITA provides three extension facilities: configuration, constraint, and specialization. In addition, generalization
augments specialization.

Configuration
Configuration enables the definition of DITA document types that include only the vocabulary modules
that are required for a given set of documents. There is no need to modify the vocabulary modules.
Configurations are implemented as document type shells.

Specialization
Specialization enables the creation of new element types in a way that preserves the ability to interchange
those new element types with conforming DITA applications. Specializations are implemented as
vocabulary modules, which are integrated into document-type shells.

Specializations are implemented as sets of vocabulary modules, each of which declares the markup and
entities that are unique to a specialization. The separation of the vocabulary and its declarations into
modules makes it easy to extend existing modules, because new modules can be added without affecting
existing document types. It also makes it easy to assemble elements from different sources into a single
document-type shell and to reuse specific parts of the specialization hierarchy in more than one document-
type shell.

Generalization
Generalization is the process of reversing a specialization. It converts specialized elements or attributes
into the original types from which they were derived.

Constraint
Constraint enables the restriction of content models and attribute lists for individual elements. There is no
need to modify the vocabulary modules. Constraints are implemented as constraint modules, which are
integrated into document-type shells.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 115 of 177 Generated 07/14/2015

Configuration
Configuration enables the definition of DITA document types that include only the vocabulary modules that are
required for a given set of documents. There is no need to modify the vocabulary modules. Configurations are
implemented as document-type shells.

Overview of document-type shells

A document type shell is an XML grammar file that specifies the elements and attributes that are allowed in a
DITA document. The document type shell integrates structural modules, domain modules, and constraint
modules. In addition, a document type shell specifies whether and how topics can nest.

A DITA document must either have an associated document-type definition or all required attributes must be
made explicit in the document instances. Most DITA documents have an associated document-type shell. DITA
documents that reference a document-type shell can be validated using standard XML processors. Such
validation enables processors to read the XML grammar files and determine default values for the @domains and
@class attributes.

The following figure illustrates the relationship between a DTD-based DITA document, its document-type shell,
and the various vocabulary modules that it uses. A similar structure applies to DITA documents that use other
XML grammars.

Figure 36: Document type shell

The DITA specification contains a starter set of document-type shells. These document type shells are commented
and can be used as templates for creating custom document-type shells. While the OASIS-provided document-
type shells can be used without any modification, creating custom document-type shells is a best practice. If the
document-type shells need to be modified in the future, for example, to include a specialization or integrate a
constraint, the existing DITA documents will not need to be modified to reference a new document-type shell.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 116 of 177 Generated 07/14/2015

Rules for document-type shells

This topic collects the rules that concern DITA document-type shells.

• While the DITA specification only defines coding requirements for DTD, RELAX NG, and XML Schema
documents, conforming DITA documents MAY use other document-type constraint languages, such as
Schematron.

• With two exceptions, a document-type shell MUST NOT directly define element or attribute types; it only
includes and configures vocabulary and constraint modules. The exceptions to this rule are the following:

• The ditabase document-type shell directly defines the <dita> element.
• RNG- and XML Schema-based shells directly specify values for the @domains attribute; these values reflect

the details of the domains and structural types that are integrated by the document-type shell.
• Document type shells that are not provided by OASIS MUST have a unique public identifier, if public
identifiers are used.

• Document type shells that are not provided by OASIS MUST NOT indicate OASIS as the owner; the public
identifier or URN for such document-type shells SHOULD reflect the owner or creator of the document-type
shell.

For example, if example.com creates a copy of the document type shell for topic, an appropriate public
identifier would be "-//example.com//DTD DITA Topic//EN", where "example.com" is the owner identifier
component of the public identifier. An appropriate URN would be
"urn:example.com:names:dita:rng:topic.rng".

Equivalence of document-type shells

Two distinct DITA document types that are taken from different tools or environments might be functionally
equivalent.

A DITA document type is defined by the following:

• The set of modules that are declared in the @domains attribute on the root element of the document
• The values of the @class attributes of all the elements in the document
• Rules for topic nesting

Two document-type shells define the same DITA document type if they integrate identical vocabulary modules,
constraint modules, and rules for topic nesting. For example, a document type shell that is an unmodified copy of
the OASIS-provided document-type shell for topic defines the same DITA document type as the original
document-type shell. However, the new document-type shell has the following differences:

• It is a distinct file that is stored in a different location.
• It has a distinct system identifier.
• If it has a public identifier, the public identifier is unique.

Note: The public or system identifier that is associated with a given document-type shell is not, by itself,
necessarily distinguishing. This is because two different people or groups might use the same modules
and constraints to assemble equivalent document type shells, while giving them different names or public
identifiers.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 117 of 177 Generated 07/14/2015

Conformance of document-type shells

DITA documents typically are governed by a conforming DITA document-type shell. However, the conformance
of a DITA document is a function of the document instance, not its governing grammar. Conforming DITA
documents are not required to use a conforming document-type shell.

Conforming DITA documents are not required to have any governing document type declaration or schema.
There might be compelling or practical reasons to use non-conforming document-type shells. For example, a
document might use a document-type shell that does not conform to the DITA requirements for shells in order to
meet the needs of a specific application or tool. Such a non-conforming document-type shell still might enable the
creation of conforming DITA content.

Specialization
The specialization feature of DITA allows for the creation of new element types and attributes that are explicitly
and formally derived from existing types. This facilitates interchange of conforming DITA content and ensures a
minimum level of common processing for all DITA content. It also allows specialization-aware processors to add
specialization-specific processing to existing base processing.

Overview of specialization

Specialization allows information architects to define new kinds of information (new structural types or new
domains of information), while reusing as much of existing design and code as possible, and minimizing or
eliminating the costs of interchange, migration, and maintenance.

Specialization modules enable information architects to create new element types and attributes. These new
element types and attributes are derived from existing element types and attributes.

In traditional XML applications, all semantics for a given element instance are bound to the element type, such as
<para> for a paragraph or <title> for a title. The XML specification provides no built-in mechanism for relating
two element types to say "element type B is a subtype of element type A".

In contrast, the DITA specialization mechanism provides a standard mechanism for defining that an element type
or attribute is derived from an ancestor type. This means that a specialized type inherits the semantics and default
processing behavior from its ancestor type. Additional processing behavior optionally can be associated with the
specialized descendant type.

For example, the <section> element type is part of the DITA base or core. It represents an organizational division
in a topic. Within the task information type (itself a specialization of <topic>), the <section> element type is
further specialized to other element types (such as <prereq> and <context>) that provide more precise semantics
about the type of organizational division that they represent. The specialized element types inherit both semantic
meaning and default processing from the ancestor elements.

There are two types of DITA specializations:

Structural specialization
Structural specializations are developed from either topic or map types. Structural specializations enable
information architect to add new document types to DITA. The structures defined in the new document
types either directly use or inherit from elements found in other document types. For example; concept,
task, and reference are specialized from topic, whereas bookmap is specialized from map.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 118 of 177 Generated 07/14/2015

Domain specialization
Domain specializations are developed from elements defined with topic or map, or from the @props or
@base attributes. They define markup for a specific information domain or subject area. Domain
specialization can be added to document-type shells.

Each type of specialization module represents an “is a” hierarchy, in object-oriented terms, with each structural
type or domain being a subclass of its parent. For example, a specialization of task is still a task, and a
specialization of the user interface domain is still part of the user interface domain. A given domain can be used
with any map or topic type. In addition, specific structural types might require the use of specific domains.

Use specialization when you need a new structural type or domain. Specialization is appropriate in the following
circumstances:

• You need to create markup to represent new semantics (meaningful categories of information). This might
enable you to have increased consistency or descriptiveness in your content model.

• You have specific needs for output processing and formatting that cannot be addressed using the current
content model.

Do not use specialization to simply eliminate element types from specific content models. Use constraint modules
to restrict content models and attribute lists without changing semantics.

Modularization

Modularization is at the core of DITA design and implementation. It enables reuse and extension of the DITA
specialization hierarchy.

The DITA XML grammar files are a set of module files that declare the markup and entities that are required for
each specialization. The document-type shell then integrates the modules that are needed for a particular
authoring and publishing context.

Because all the pieces are modular, the task of developing a new information type or domain is easy. An
information architect can start with existing base types (topic or map) -- or with an existing specialization if it
comes close to matching their business requirements -- and only develop an extension that adds the extra
semantics or functionality that is required. A specialization reuses elements from ancestor modules, but it only
needs to declare the elements and attributes that are unique to the specialization. This saves considerable time
and effort; it also reduces error, enforces consistency, and makes interoperability possible.

Because all the pieces are modular, it is easy to reuse different modules in different contexts. For example, a
company that produces machines can use the task requirements and hazard statements domains, while a
company that produces software can use the software, user interface, and programming domains. A company
that produces health information for consumers can avoid using any of the standard domains, and instead
develop a new domain that contains the elements necessary for capturing and tracking the comments made by
medical professionals who review their information for accuracy and completeness.

Because all the pieces are modular, new modules can be created and put into use without affecting existing
document-type shells. For example, a marketing division of a company can develop a new specialization for
message campaigns and have their content authors begin using that specialization, without affecting any of the
other information types that they have in place.

Vocabulary modules

A DITA element type or attribute is declared in exactly one vocabulary module.

The following terminology is used to refer to DITA vocabulary modules:

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 119 of 177 Generated 07/14/2015

structural module
A vocabulary module that defines a top-level map or topic type. Structural modules also can define
specializations of, or reuse elements from, domain or other structural modules. When this happens, the
structural module becomes dependent.

element domain module
A vocabulary module that defines one or more specialized element types that can be integrated with maps
or topics.

attribute domain module
A vocabulary module that defines exactly one specialization of either the @base or @props attribute.

For structural types, the module name is typically the same as the root element. For example, "task" is the name of
the structural vocabulary module whose root element is <task>.

For element domain modules, the module name is typically a name that reflects the subject domain to which the
domain applies, such as "highlight" or "software". Domain modules often have an associated short name, such as
"hi-d" for the highlighting domain or "sw-d" for the software domain.

The name (or short name) of an element domain module is used to identify the module in @class and @domains
attribute values. While module names need not be globally unique, module names must be unique within the
scope of a given specialization hierarchy. The short name must be a valid XML name token.

Structural modules based on topic MAY define additional topic types that are then allowed to occur as
subordinate topics within the top-level topic. However, such subordinate topic types MAY NOT be used as the
root elements of conforming DITA documents. For example, a top-level topic type might require the use of
subordinate topic types that would only ever be meaningful in the context of their containing type and thus
would never be candidates for standalone authoring or aggregation using maps. In that case, the subordinate
topic type can be declared in the module for the top-level topic type that uses it. However, in most cases, potential
subordinate topics should be defined in their own vocabulary modules.

Domain elements intended for use in topics MUST ultimately be specialized from elements that are defined in the
topic module. Domain elements intended for use in maps MUST ultimately be specialized from elements defined
by or used in the map module. Maps share some element types with topics but no map-specific elements can be
used within topics.

Specialization rules for element types

There are certain rules that apply to element type specializations.

A specialized element type has the following characteristics:

• A properly-formed @class attribute that specifies the specialization hierarchy of the element
• A content model that is the same or less inclusive than that of the element from which it was specialized
• A set of attributes that are the same or a subset of those of the element from which it was specialized
• Values or value ranges of attributes that are the same or a subset of those of the element from which it was

specialized

DITA elements are never in a namespace. Only the @DITAArchVersion attribute is in a DITA-defined namespace.
All other attributes, except for those defined by the XML standard, are in no namespace.

This limitation is imposed by the details of the @class attribute syntax, which makes it impractical to have
namespace-qualified names for either vocabulary modules or individual element types or attributes. Elements
included as descendants of the DITA <foreign> element type can be in any namespace.

Note: Domain modules that are intended for wide use should define element type names that are unlikely
to conflict with names used in other domains, for example, by using a domain-specific prefix on all names.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 120 of 177 Generated 07/14/2015

Specialization rules for attributes

There are certain rules that apply to attribute specializations.

A specialized attribute has the following characteristics:

• It is specialized from @props or @base.
• It is declared as a global attribute. Attribute specializations cannot be limited to specific element types.
• It does not have values or value ranges that are more extensive than those of the attribute from which it was

specialized.
• Its values must be alphanumeric space-delimited values. In generalized form, the values must conform to the

rules for attribute generalization.

@class attribute rules and syntax

The specialization hierarchy of each DITA element is declared as the value of the @class attribute. The @class
attribute provides a mapping from the current name of the element to its more general equivalents, but it also can
provide a mapping from the current name to more specialized equivalents. All specialization-aware processing
can be defined in terms of @class attribute values.

The @class attribute tells a processor what general classes of elements the current element belongs to. DITA
scopes elements by module type (for example topic type, domain type, or map type) instead of document type,
which lets document type developers combine multiple module types in a single document without complicating
transformation logic.

The sequence of values in the @class attribute is important because it tells processors which value is the most
general and which is most specific. This sequence is what enables both specialization aware processing and
generalization.

Syntax
Values for the @class attribute have the following syntax requirements:

• An initial "-" or "+" character followed by one or more spaces. Use "-" for element types that are defined in
structural vocabulary modules, and use "+" for element types that are defined in domain modules.

• A sequence of one or more tokens of the form "modulename/typename", with each taoken separated by
one or more spaces, where modulename is the short name of the vocabulary module and typename is the
element type name. Tokens are ordered left to right from most general to most specialized.

These tokens provide a mapping for every structural type or domain in the ancestry of the specialized
element. The specialization hierarchy for a given element type must reflect any intermediate modules between
the base type and the specialization type, even those in which no element renaming occurs.

• At least one trailing space character (" "). The trailing space ensures that string matches on the tokens can
always include a leading and trailing space in order to reliably match full tokens.

Rules
When the @class attribute is declared in an XML grammar, it MUST be declared with a default value. In order to
support generalization round-tripping (generalizing specialized content into a generic form and then returning it
to the specialized form) the default value MUST NOT be fixed. This allows a generalization process to overwrite
the default values that are defined by a general document type with specialized values taken from the document
being generalized.

A vocabulary module MUST NOT change the @class attribute for elements that it does not specialize, but simply
reuses by reference from more generic levels. For example, if <task>, <bctask>, and <guitask> use the <p>
element without specializing it, they MUST NOT declare mappings for it.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 121 of 177 Generated 07/14/2015

Authors SHOULD NOT modify the @class attribute.

Example: DTD declaration for @class attribute for the <step> element
The following code sample lists the DTD declaration for the @class attribute for the <step> element:

<!ATTLIST step class CDATA "- topic/li task/step ">

This indicates that the <step> element is specialized from the element in a generic topic. It also indicates
explicitly that the <step> element is available in a task topic; this enables round-trip migration between upper
level and lower level types without the loss of information.

Example: Element with @class attribute made explicit
The following code sample shows the value of the @class attribute for the <wintitle> element:

<wintitle class="+ topic/keyword ui-d/wintitle ">A specialized keyword</wintitle>

The @class attribute and its value is generally not surfaced in authored DITA topics, although it might be made
explicit as part of a processing operation.

Example: @class attribute with intermediate value
The following code sample shows the value of a @class attribute for an element in the guitask module, which
is specialized from <task>. The element is specialized from <keyword> in the base topic vocabulary, rather than
from an element in the task module:

<windowname class="- topic/keyword task/keyword guitask/windowname ">...</windowname>

The intermediate values are necessary so that generalizing and specializing transformations can map the values
simply and accurately. For example, if task/keyword was missing as a value, and a user decided to generalize
this guitask up to a task topic, then the transformation would have to guess whether to map to keyword
(appropriate if task is more general than guitask, which it is) or leave it as windowname (appropriate if task
were more specialized, which it isn't). By always providing mappings for more general values, processors can
then apply the simple rule that missing mappings must by default be to more specialized values than the one
we are generalizing to, which means the last value in the list is appropriate. For example, when generalizing
<guitask> to <task>, if a <p> element has no target value for <task>, we can safely assume that <p> does not
specialize from <task> and should not be generalized.

@domains attribute rules and syntax

The @domains attribute enables processors to determine whether two elements or two documents use compatible
domains. The attribute is declared on the root element for each topic or map type. Each structural, domain, and
constraint module defines its ancestry as a parenthesized sequence of space-separated module names; the
effective value of the @domains attribute is composed of these parenthesized sequences.

Document type shells collect the values that are provided by each module to construct the effective value of the
@domains attribute. Processors can examine the collected values when content from one document is used in
another, in order to determine whether the content is compatible.

For example, when an author pastes content from one topic into another topic within an XML editor, the
application can use the @domains attribute to determine if the two topics use compatible domains. If not, copied
content from the first topic might need to be generalized before it can be placed in the other topic.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 122 of 177 Generated 07/14/2015

The @domains attribute serves the same function when an element uses the @conref attribute to reference a more
specialized version of the element. For example, a <note> element in a concept topic conrefs a
<hazardstatement> element in a reference document. If the hazard statement domain is not available in the
concept topic, the <hazardstatement> element is generalized to a <note> element when the content reference is
resolved.

Syntax and rules
Each domain and constraint module MUST provide a value for use by the @domains attribute. Each structural
vocabulary module SHOULD provide a value for use by the @domains attribute, and it MUST do so when it has a
dependency on elements from any module that is not part of its specialization ancestry.

Values provided for the @domains attribute values are specified from root module (map or topic) to the provided
module.

structural modules
The value of the @domains attribute includes each module in the specialization ancestry:

 '(', topic-or-map, (' ', module)+, ')'

For example, consider the <glossentry> specialization, in which the topic type is specialized to the
concept type, and the concept type is specialized to glossentry. The structural module contribution to the
value of the @domains attribute for the glossentry structural module is (topic concept glossentry).

structural modules with dependencies
Structural modules can directly reference or specialize elements from modules that are outside of their
specialization ancestry. They also can define specialized elements that reference specialized attributes. In
these cases the structural module has a dependency on the non-ancestor module, and the structural
module contribution to the value of the @domains attribute MUST include the names of each dependent,
non-ancestor module.

Dependencies are included in the value of the @domains attribute following the name of the structural
module with the dependency on the non-ancestor module. Domain or attribute modules are appended to
the name of the structural module with the dependency on the non-ancestor module, or to previous
dependencies, separated by "+". Dependencies on structural specialization modules are appended to the
name of the structural module with the dependency on the non-ancestor module, or to previous
dependencies, separated by "++". The syntax is the same as for other structural modules, except that added
modules can include these dependencies:

 '(', topic-or-map, (' ', module-plus-optional-dependency-list)+, ')'

When the structural module is included in a document-type shell, all dependency modules also are
included along with their own @domains values.

For example, the cppAPIRef structural module is specialized from reference, which is specialized from
topic. The cppAPIRef module has a dependency on the cpp-d element domain and on the
compilerTypeAtt-d attribute domain. The dependencies are listed after the name of cppApiref:

(topic reference cppApiRef+cpp-d+compilerTypeAtt-d)

Similarly, a codeChecklist structural module is specialized from reference, which is specialized from topic.
The codeChecklist module has a dependency on the pr-d domain and on the task structural specialization.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 123 of 177 Generated 07/14/2015

Again, the dependencies are listed after the name of codeChecklist. The pr-d domain and the task
module each contribute their own values, so taken together these modules contribute the following values:

(topic reference codeChecklist+pr-d++task) (topic pr-d) (topic task)

element domains
The value includes the structural type ancestry and, if applicable, the domain module ancestry from which
the domain is specialized:

 '(', topic-or-map, (' ', domain-module)+, ')'

For example, the highlighting domain (specialized from topic) supplies the following value: (topic hi-
d). A CPP domain that is specialized from the programming domain, which in turn is specialized from
topic, supplies the following value: (topic pr-d cpp-d).

structural constraint modules
The value includes the structural type ancestry followed by the name of the constraint domain:

 '(', inheritance-hierarchy qualifierTagname-c, ')'

where:

• inheritance-hierarchy is the specialization hierarchy, for example, topic task.
• qualifier is a string that is specific to the constraints module and characterizes it, for example, "strict" or

"requiredTitle" or "myCompany-".
• Tagname is the element type name with an initial capital, for example, "Taskbody" or "Topic".
• The literal "-c" indicates that the name is the name of a constraint.

For example, the strictTaskbody constraint applies to the task module, which is specialized from topic,
resulting in the following value: (topic task strictTaskbody-c).

Optionally, a domains contribution can indicate a strong constraint by preceding the domains contribution
with the letter "s". For example, s(topic task strictTaskbody-c) indicates a strong constraint.

domain constraint modules
The value includes the specialization ancestry followed by the name of the constraint domain:

 '(', inheritance-hierachy qualifierdomainDomain-c ')'

where:

• inheritance-hierarchy is the specialization hierarchy, for example, topic hi-d.
• qualifier is a string that is specific to the constraints module and characterizes it, for example,

"noSyntaxDiagram" or "myCompany-".
• domain is the name of the domain to which the constraints apply, for example, "Highlighting" or

"Programming".
• The literal "-c" indicates that the name is the name of a constraint.

For example, a domain constraint module that restricts the highlighting domain includes a value like the
following: (topic hi-d basic-HighlightingDomain-c)

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 124 of 177 Generated 07/14/2015

attribute domains
The value uses an "a" before the initial parenthesis to indicate an attribute domain. Within the parenthesis,
the value includes the attribute specialization hierarchy, starting with @props or @base:

 'a(', props-or-base, (' ', attname)+, ')'

For example, the @mySelectAttribute specialized from @props results in the following value: a(props
mySelectAttribute)

Example: Task with multiple domains
In this example, a document-type shell integrates the task structural module and the following domain
modules:

Domain Domain short name

User interface ui-d

Software sw-d

Programming pr-d

The value of the @domains attribute includes one value from each module; the effective value is the following:

domains="(topic task) (topic ui-d) (topic sw-d) (topic pr-d)"

If the document-type shell also used a specialization of the programming domain that describes C++
programming (with a short name of "cpp-d"), the new C++ programming domain would add an additional
value to the @domains attribute:

domains="(topic task) (topic ui-d) (topic sw-d) (topic pr-d) (topic pr-d cpp-d)"

Note that the value for the @domains attribute is not authored; Instead, the value is defaulted based on the
modules that are included in the document type shell.

Related information
Processing conrefs on page 82
When processing content references, DITA processors compare the restrictions of each context to ensure that the
conrefed content is valid in its new context.

Specializing to include non-DITA content

You can extend DITA to incorporate standard vocabularies for non-textual content, such as MathML and SVG, as
markup within DITA documents. This is done by specializing the <foreign> or <unknown> elements.

There are three methods of incorporating foreign content into DITA.

• A domain specialization of the <foreign> or <unknown> element. This is the usual implementation.
• A structural specialization using the <foreign> or <unknown> element. This affords more control over the

content.
• Directly embedding the non-DITA content within <foreign> or <unknown> elements. If the non-DITA content

has interoperability or vocabulary naming issues such as those that are addressed by specialization in DITA,
they must be addressed by means that are appropriate to the non-DITA content.

The <foreign> or <unknown> elements should not be used to include textual content or metadata in DITA
documents, except where such content acts as an example or display, rather than as the primary content of a topic.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 125 of 177 Generated 07/14/2015

Note: Beginning with DITA 1.3, both MathML and SVG are domains shipped with the OASIS grammars;
they serve as working examples of <foreign> specializations.

Example: Including SVG markup within a specialization of <foreign>
The following code sample shows how SVG markup can be included within the <svgcontainer> element,
which is part of the SVG domain and a specialization of the <foreign> element.

<p>This is an ellipse:
 <svg-container>
 <svg:svg width="100%" height="100%" version="1.1"
xmlns="http://www.w3.org/2000/svg">

<ellipse cx="300" cy="150" rx="200" ry="80"
style="fill:rgb(200,100,50);
stroke:rgb(0,0,100);stroke-width:2"/>

 </svg:svg>
 </svg-container>.
</p>

Example: Creating an element domain specialization for SVG
The following code sample, which is from the svgDomain.ent file, shows the domain declaration for the SVG
domain.

<!-- === -->
<!-- SVG DOMAIN ENTITIES -->
<!-- === -->

<!-- SVG elements must be prefixed, otherwise they conflict with
 existing DITA elements (e.g., <desc> and <title>.
 -->
<!ENTITY % NS.prefixed "INCLUDE" >
<!ENTITY % SVG.prefix "svg" >

<!ENTITY % svg-d-foreign
 "svg-container
 "
>

<!ENTITY svg-d-att
 "(topic svg-d)"
>

Note that the SVG-specific %SVG.prefix; parameter entity is declared. This establishes the default namespace
prefix to be used for the SVG content embedded with this domain. The namespace can be overridden in a
document-type shell by declaring the parameter entity before the reference to the svgDomain.ent file. Other
foreign domains may need similar entities when required by the new vocabulary.

For more information, see the svgDomain.mod file that is shipped with the OASIS DITA distributions. For an
example of including the SVG domain in a document type shell, see task.dtd.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 126 of 177 Generated 07/14/2015

Sharing elements across specializations

Specialization enables easy reuse of elements from ancestor specializations. However, it is also possible to reuse
elements from non-ancestor specializations, as long as the dependency is properly declared in order to prevent
invalid generalization or conref processing.

A structural specialization can incorporate elements from unrelated domains or other structural specializations
by referencing them in the content model of a specialized element. The elements included in this manner must be
specialized from ancestor content that is valid in the new context. If the reusing and reused specializations share
common ancestry, the reused elements must be valid in the reusing context at every level they share in common.

Although a well-designed structural specialization hierarchy with controlled use of domains is still the primary
means of sharing and reusing elements in DITA, the ability to also share elements declared elsewhere in the
hierarchy allows for situations where relevant markup comes from multiple sources and would otherwise be
developed redundantly.

Example: A specialization of <concept> reuses an element from the task
module
A specialized concept topic could declare a specialized <process> section that contains the <steps> element
that is defined in the task module. This is possible because of the following factors:

• The <steps> element is specialized from .
• The <process> element is specialized from <section>, and the content model of <section> includes .

The <steps> element in <process> always can be generalized back to in <section>.

Example: A specialization of <reference> reuses an element from the
programming domain
A specialized reference topic could declare a specialized list (<apilist>) in which each <apilistitem>
contains an <apiname> element that is borrowed from the programming domain.

Generalization
Generalization is the process of reversing a specialization. It converts specialized elements or attributes into the
original types from which they were derived.

Overview of generalization

Specialized content can be generalized to any ancestor type. The generalization process can preserve information
about the former level of specialization to allow round-tripping between specialized and unspecialized forms of
the same content.

All DITA documents contain a mix of markup from at least one structural type and zero or more domains. When
generalizing the document, any individual structural type or domain can be left as-is, or it can be generalized to
any of its ancestors. If the document will be edited or processed in generalized form, it might be necessary to have
a document-type shell that includes all non-generalized modules from the original document-type shell.

Generalization serves several purposes:

• It can be used to migrate content. For example, if a specialization is unsuccessful or is no longer needed, the
content can be generalized back to a less specialized form.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 127 of 177 Generated 07/14/2015

• It can be used for temporary round-tripping. For example, if content is shared with a process that is not
specialization aware, it can be temporarily generalized for that process and then returned to specialized form.

• It can allow reuse of specialized content in an enviroment that does not support the specialization. Similar to
round-tripping, content can be generalized for sharing, without the need to re-specialize.

When generalizing for migration, the @class attribute and @domains attribute should be absent from the
generalized instance document, so that the default values in the document-type shell are used. When generalizing
for round-tripping, the @class attribute and @domains attribute SHOULD retain the original specialized values in
the generalized instance document.

Note that when using constraints, a document instance can always be converted from a constrained document
type to an unconstrained document type merely by switching the binding of the document instance to the less
restricted document type shell (which would also have a different @domains attribute declaration). No renaming
of elements is needed to remove constraints.

Element generalization

Elements are generalized by examining the @class attribute. When a generalization process detects that an
element belongs to one of the modules that is being generalized, the element is renamed to a more general form.

For example, the <step> element has a @class attribute value of "- topic/li task/step ". If the task
module is being generalized, the <step> element is renamed to its more general form from the topic module:
.

For specific concerns when generalizing structural types with dependencies on non-ancestor modules, see
Generalization with cross-specialization dependencies on page 131.

While the tag name of a given element is normally the same as the type name of the last token in the @class
value, this is not required. For example, if a generalization process has already run on the element, the @class
attribute could contain tokens from two or more modules based on the original specialization. In that case, the
element name could already match the first token or an intermediate token in the @class attribute. A second
generalization process could end up renaming the element again or could leave it alone, depending on the target
module or document type.

Generalization and conref
To determine compatibility between a document instance and a target document type when resolving a conref
reference, a generalization processor can use the @domains and @class attributes for the document instance and
the @domains attribute for the target document type to determine how to rename elements in the resolved
instance. For each element type, a generalization processor:

• Iterates over the @class attribute from specific to general, inspecting the vocabulary modules.
• Identifies the first vocabulary module that is both present in each document type, with a compatible set of

constraints for that vocabulary module. If such a module is not found, the instance can only be generalized to
a less constrained document type.

Processor expectations when generalizing elements

Generalization processors convert elements from one or more modules into their less specialized form. The list of
modules can be supplied to a generalization processor, or it can be inferred based on knowledge of a target
document-type shell.

The person or application initiating a generalization process can supply the source and target modules for each
generalization, for example, "generalize from reference to topic". Multiple target modules can be specified, for
example, "generalize from reference to topic and from ui-d to topic". When the source and target modules are not

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 128 of 177 Generated 07/14/2015

supplied, the generalization process is assumed to be from all structural types to the base (topic or map), and no
generalization is performed for domains.

The person or application initiating a generalization process also can supply the target document-type shell.
When the target document-type shell is not supplied, the generalized document will not contain a reference to a
document-type shell.

A generalization processor SHOULD be able to handle cases where it is given:

• Only source modules for generalization (in which case the designated source types are generalized to topic or
map)

• Only target modules for generalization (in which case all descendants of each target are generalized to that
target)

• Both (in which case only the specified descendants of each target are generalized to that target)

For each structural type instance, the generalization processor checks whether the structural type instance is a
candidate for generalization, or whether it has domains that are candidates for generalization. It is important to
be selective about which structural type instances to process; if the process simply generalizes every element
based on its @class attribute values, an instruction to generalize "reference" to "topic" could leave a specialization
of reference with an invalid content model, since any elements it reuses from "reference" would have been
renamed to topic-level equivalents.

The @class attribute for the root element of the structural type is checked before generalizing structural types:

Source module unspecified Source module specified

Target module
unspecified

Generalize this structural type to
its base ancestor

Check whether the root element of the topic type matches
a specified source module; generalize to its base ancestor if
it does, otherwise ignore the structural type instance
unless it has domains to generalize.

Target module
specified

Check whether the @class
attribute contains the target
module. If it does contain the
target, rename the element to the
value associated with the target
module. Otherwise, ignore the
element.

It is an error if the root element matches a specified source
but its @class attribute does not contain the target. If the
root element matches a specified source module and its
@class attribute does contain the target module,
generalize to the target module. Otherwise, ignore the
structural type instance unless it has domains to
generalize.

The @domains attribute for the root element of the structural type is checked before generalizing domains:

Source module unspecified Source module specified

Target module
unspecified

Do not generalize domain
specializations in this structural
type.

Check whether the @domains attribute lists the specified
domain; proceed with generalization if it does, otherwise
ignore the structural type instance unless it is itself a
candidate for generalization.

Target module
specified

Check whether the @domains
attribute contains the target
module. If it does, generalize to the
target module. Otherwise, skip the
structural type instance unless it is
itself a candidate for
generalization.

It is an error if the @domains attribute matches a specified
source but the domain value string does not contain the
target. If the @domains attribute matches a specified
source module and the domain value string does contain
the target module, generalize to the target module.
Otherwise, ignore the structural type instance unless it is
itself a candidate for generalization.

For each element in a candidate structural type instance:

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 129 of 177 Generated 07/14/2015

Source module unspecified Source module specified

Target module
unspecified

If the @class attribute starts with "-"
(part of a structural type), rename the
element to its base ancestor equivalent.
Otherwise ignore it.

Check whether the last value of the @class attribute
matches a specified source; generalize to its base
ancestor if it does, otherwise ignore the element.

Target module
specified

Check whether the @class attribute
contains the target module; rename the
element to the value associated with
the target module if it does contain the
target, otherwise ignore the element.

It is an error if the last value in the @class attribute
matches a specified source but the previous values do
not include the target. If the last value in the @class
attribute matches a specified source module and the
previous values do include the target module, rename
the element to the value associated with the target
module. Otherwise, ignore the element.

When renaming elements during round-trip generalization, the generalization processor SHOULD preserve the
values of all attributes. When renaming elements during one-way or migration generalization, the process
SHOULD preserve the values of all attributes except the @class and @domains attribute, both of which should be
supplied by the target document type.

Attribute generalization

DITA provides a syntax to generalize attributes that have been specialized from the @props or @base attribute.
Specialization-aware processors SHOULD process both the specialized and generalized forms of an attribute as
equivalent in their values.

When a specialized attribute is generalized to an ancestor attribute, the value of the ancestor attribute consists of
the name of the specialized attribute followed by its specialized value in parentheses. For example, if @jobrole is
an attribute specialized from @person, which in turn is specialized from @props:

• jobrole="programmer" can be generalized to person="jobrole(programmer)" or to
props="jobrole(programmer)"

• props="jobrole(programmer)" can be respecialized to person="jobrole(programmer)" or to
jobrole="programmer"

In this example, processors performing generalization and respecialization can use the @domains attribute to
determine the ancestry of the specialized @jobrole attribute, and therefore the validity of the specialized @person
attribute as an intermediate target for generalization.

If more than one attribute is generalized, the value of each is separately represented in this way in the value of the
ancestor attribute.

Generalized attributes are typically not expected to be authored or edited directly. They are used by processors to
preserve the values of the specialized attributes during the time or in the circumstances in which the document is
in a generalized form.

Note: The @audience, @platform, @product, and @otherprops attributes allow grouped values that reuse
the generalized syntax described here; however, these attributes are not specialized or specializeable. For
these attributes, it may be typical to author or edit the grouped values directly.

A single element MUST NOT contain both generalized and specialized values for the same attribute. For example,
the following <p> element provides two values for the @jobrole attribute, one in a generalized syntax and the
other in a specialized syntax:

<p person="jobrole(programmer)" jobrole="admin">
 <!-- ... -->
</p>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 130 of 177 Generated 07/14/2015

This is an error condition, since it means the document has been only partially generalized, or that the document
has been generalized and then edited using a specialized document type.

Generalization with cross-specialization dependencies

Dependencies across specializations limit generalization targets to those that either preserve the dependency or
eliminate them. Some generalization targets will not be valid and should be detected before generalization occurs.

When a structural specialization has a dependency on a domain specialization, then the domain cannot be
generalized without also generalizing the reusing structural specialization.

For example, a structural specialization codeConcept might incorporate and require the <codeblock> element
from the programming domain. A generalization process that turns programming domain elements back into
topic elements would convert <codeblock> to <pre>, making a document that uses codeConcept invalid.
However, codeConcept could be generalized to concept or topic, without generalizing programming domain
elements, as long as the target document type includes the programming domain.

When a structural specialization has a dependency on another structural specialization, then both must be
generalized together to a common ancestor.

For example, if the task elements in checklist were generalized without also generalizing checklist elements, then
the checklist content models that referenced task elements would be broken. And if the checklist elements were
generalized to topic without also generalizing the task elements, then the task elements would be out of place,
since they cannot be validly present in topic. However, checklist and task can be generalized together to any
ancestor they have in common: in this case topic.

When possible, generalizing processes SHOULD detect invalid generalization target combinations and report
them as errors.

Constraints
Constraint modules define additional constraints for vocabulary modules in order to restrict content models or
attribute lists for specific element types, remove certain extension elements from an integrated domain module, or
replace base element types with domain-provided, extension element types.

Overview of constraints

Constraint modules enable information architects to restrict the content models or attributes of OASIS-defined
DITA grammars. A constraint is a simplification of an XML grammar such that any instance that conforms to the
constrained grammar also will conform to the original grammar.

A constraint module can perform the following functions:

Restrict the content model for an element
Constraint modules can modify content models by removing optional elements, making optional elements
required, or requiring unordered elements to occur in a specific sequence. Constraint modules cannot
make required elements optional or change the order of element occurrence for ordered elements.

For example, a constraint for <topic> can require <shortdesc>, can remove <abstract>, and can require
that the first child of <body> be <p>. A constraint cannot allow <shortdesc> to follow <prolog>, because
the content model for <topic> requires that <shortdesc> precedes <prolog>.

Restrict the attributes that are available on an element
Constraint modules can restrict the attributes that are available on an element. They also can limit the set
of permissible values for an attribute.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 131 of 177 Generated 07/14/2015

For example, a constraint for <note> can limit the set of allowed values for the @type attribute to "note"
and "tip". It also can omit the @othertype attribute, since it is needed only when the value of the @type
attribute is "other".

Restrict the elements that are available in a domain
Constraint modules can restrict the set of extension elements that are provided in a domain. They also can
restrict the content models for the extension elements.

For example, a constraint on the programming domain can reduce the list of included extension elements
to <codeph> and <codeblock>.

Replace base elements with domain extensions
Constraint modules can replace base element types with the domain-provided extension elements.

For example, a constraint module can replace the <ph> element with the domain-provided elements,
making <ph> unavailable.

Constraint rules

There are certain rules that apply to the design and implementation of constraints.

Contribution to the @domains attribute

Each constraint that is integrated into a DITA document type MUST be declared in the @domains attribute
for each structural type that is integrated into the document type. For DTDs, the contribution for the
@domains attribute is specified in the constraint module file; for XSD and RELAX NG, the contribution to
the @domains attribute is specified directly in the document type shell.

Content model
The content model for a constrained element must be at least as restrictive as the unconstrained content
model for the element.

The content model and attributes of an element can be constrained by only one constraint module. If two
constraint modules exist that constrain the content model or attributes for a specific element, those two
modules must be replaced with a new constraint module that reflects the aggregation of the two original
constraint modules.

Domain constraints
When a domain module is integrated into a document-type shell, the base domain element can be omitted
from the domain extension group or parameter entity. In such a case, there is no separate constraint
declaration, because the content model is configured directly in the document-type shell.

A domain module can be constrained by only one constraint module. This means that all restrictions for
the extension elements that are defined in the domain must be contained within that one constraint
module.

Structural constraints
Each constraint module may constrain elements from only one vocabulary module. For example, a single
constraint module that constrains <refsyn> from reference.mod and constrains <context> from
task.mod is not allowed. This rule maintains granularity of reuse at the module level.

Constraint modules that restrict different elements from within the same vocabulary module can be
combined with one another. Such combinations of constraints on a single vocabulary module have no
meaningful order or precedence.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 132 of 177 Generated 07/14/2015

Constraints, processing, and interoperability

Because constraints can make optional elements required, documents that use the same vocabulary modules
might have incompatible constraints. Thus the use of constraints can affect the ability for content from one topic
or map to be used in another topic or map.

A constraint does not change basic or inherited element semantics. The constrained instances remain valid
instances of the unconstrained element type, and the element type retains the same semantics and @class
attribute declaration. Thus, a constraint never creates a new case to which content processing might need to react.

For example, a document type constrained to require the <shortdesc> element allows a subset of the possible
instances of the unconstrained document type with an optional <shortdesc> element. Thus, the content
processing for topic still works when <topic> is constrained to require a short description.

A constrained document type allows only a subset of the possible instances of the unconstrained document type.
Thus, for a processor to determine whether a document instance is compatible with another document type, the
document instance MUST declare any constraints on the document type.

For example, an unconstrained task is compatible with an unconstrained topic, because the <task> element can
be generalized to <topic>. However, if the topic is constrained to require the <shortdesc> element, a document
type with an unconstrained task is not compatible with the constrained document type, because some instances of
the task might not have a <shortdesc> element. However, if the task document type also has been constrained to
require the <shortdesc> element, it is compatible with the constrained topic document type.

Weak and strong constraints

Constraints can be classified into two categories: Weak and strong. This classification determines whether
processors enforce strict compatibility during @conref or @conkeyref resolution.

Strong constraints
Constraints for which processors enforce strict compatibility during @conref or @conkeyref resolution.

Weak constraints
Constraints for which a processor does not enforce strict compatibility during @conref or @conkeyref
resolution.

By default, constraints are weak unless they are explicitly designated as strong.

Any constraint declaration can designate a constraint as strong. A constraint can be designated as strong by
prefixing the letter "s" to the domains attribute contribution, for example, "s(topic task strictTaskbody-
c)". Processors also can be configured to treat all constraints as strong.

The following behavior is expected of processors:

• Processors MAY perform constraint compatibility checking.
• If processors perform constraint compatibility checking, they SHOULD enforce strict compatibility for strong

constraints.
• Processors MAY have an option for configuring whether all constraints are treated as strong constraints.

Conref compatibility with constraints

To determine compatibility between two document instances, a conref processor checks the @domains attribute to
confirm whether the referencing document has a superset of the vocabulary modules in the referenced document.
If one or both of the document instances are constrained, the conref processor checks to confirm the compatibility
of the constraints.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 133 of 177 Generated 07/14/2015

Conref processors take into account whether constraints are specified as strong. For strong constraints, the
following rules apply:

Conref pull
For each vocabulary module used by both document types, the module in the document type that contains
the referencing element must be less (or equally) constrained than the same module in the document type
that contains the referenced element. For example, if each document type uses the highlighting domain
module, that module must be less (or equally) constrained in the document type that contains the
referencing element.

Conref push
For each vocabulary module used by both document types, the module in the document type that contains
the referencing element must be more (or equally) constrained than the same module in the document
type that contains the referenced element. For example, if each document type uses the highlighting
domain module, that module must be more (or equally) constrained in the document type that contains
the referencing element.

Example: Conref pull and constraint compatibility
The following table contains scenarios where conref pull occurs between constrained and unconstrained
document instances. It assumes that the processor is not configured to treat all constraints as strong constraints.

Values of @domains attribute in
document type that contains the
referencing element

Values of @domains attribute in
document type that contains the
referenced element

Resolutio
n

Comments

(topic) (topic shortdescReq-c) Allowed The content model of
the referenced topic is
more constrained than
the referencing topic.

s(topic shortdescReq-c) (topic) Prevented The constraint is
specified as a strong
constraint, and the
content model of the
referenced topic is less
constrained than the
referencing topic.

(topic shortdescReq-c) (topic) Allowed Although the content
model of referenced
topic is less
constrained than the
referencing topic, this
is a weak constraint
and so permitted.

(topic task) (topic hi-d)
(topic hi-d
basicHighlightingDomain-c)

(topic simpleSection-c)
(topic task) (topic task
simpleStep-c)

Allowed The referenced topic
has a subset of the
vocabulary modules
that are integrated into
the document-type
shell for the
referencing topic. Both
document types

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 134 of 177 Generated 07/14/2015

Values of @domains attribute in
document type that contains the
referencing element

Values of @domains attribute in
document type that contains the
referenced element

Resolutio
n

Comments

integrate constraints,
but for modules used
in both document
types, the referencing
topic is less
constrained than the
referenced topic.

(topic hi-d) (topic
simpleSection-c) s(topic
simpleP-c)

(topic simpleSection-c)
(topic task) (topic hi-d)
(topic hi-d
basicHighlightingDomain-c)

Prevented The referencing
document has
constraints that are not
present in the
referenced document,
including a strong
constraint applied to
the <p> element.

Example: Conref push and constraint compatibility
The following table contains scenarios where conref push occurs between constrained and unconstrained
document instances. It assumes that the processor has not been configured to treat all constraints as strong
constraints.

Values of @domains attribute in
document type that contains the
referencing element

Values of @domains attribute in
document type that contains the
referenced element

Resolutio
n

Comments

(topic) (topic shortdescReq-c) Allowed Although the content
model of the
referenced topic is
more constrained than
the referencing topic,
this is a weak
constraint and so
permitted.

(topic) s(topic shortdescReq-c) Prevented The constraint is
specified as a strong
constraint, and the
content model of the
referenced topic is
more constrained than
the referencing topic.

(topic shortdescReq-c) (topic) Allowed The content model of
the referencing topic is
more constrained than
the referenced topic.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 135 of 177 Generated 07/14/2015

Values of @domains attribute in
document type that contains the
referencing element

Values of @domains attribute in
document type that contains the
referenced element

Resolutio
n

Comments

(topic task) (topic hi-d)
(topic hi-d
basicHighlightingDomain-c)

(topic simpleSection-c)
(topic task) (topic task
simpleStep-c)

Allowed The referenced topic
has a subset of the
vocabulary modules
that are integrated into
the document-type
shell for the
referencing topic. For
modules used in both
document types, the
referenced topic is
more constrained than
the referencing topic,
but this is a weak
constraint and so
permitted.

(topic simpleSection-c)
(topic task) (topic hi-d)
(topic hi-d
basicHighlightingDomain-c)

(topic hi-d) (topic
simpleSection-c) s(topic
simpleP-c)

Prevented For the common topic
module, the referenced
document has more
constraints than the
referencing document,
including a strong
constraint applied to
the <p> element.

Examples: Constraints

This section of the specification contains examples and scenarios. They illustrate a variety of ways that constraints
can be used; they also provide examples of the DTD coding requirements for constraints and how constraints are
integrated into document-type shells.

Example: Redefine the content model for the <topic> element
In this scenario, an information architect for Acme, Incorporated wants to redefine the content model for the topic
document type. She wants to omit the <abstract> element and make the <shortdesc> element required; she
also wants to omit the <related-links> element and disallow topic nesting.

1. She creates a .mod file using the following naming conventions: qualiferTagnameConstraint.mod,
where qualifer is a string the describes the constraint, and Tagname is the element type name with an initial
capital. Her contraint module is named acme-TopicConstraint.mod.

2. She adds the following content to acme-TopicConstraint.mod:

<!-- === -->
<!-- CONSTRAINED TOPIC ENTITIES -->
<!-- === -->

<!-- Declares the entity for the constraint module and defines -->
<!-- its contribution to the @domains attribute. -->

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 136 of 177 Generated 07/14/2015

<!ENTITY topic-constraints
 "(topic basic-Topic-c)"
>

<!-- Declares the entities referenced in the constrained content -->
<!-- model. -->

<!ENTITY % title "title">
<!ENTITY % titlealts "titlealts">
<!ENTITY % shortdesc "shortdesc">
<!ENTITY % prolog "prolog">
<!ENTITY % body "body">

<!-- Defines the constrained content model for <topic>. -->

<!ENTITY % topic.content
 "((%title;),
 (%titlealts;)?,
 (%shortdesc;),
 (%prolog;)?,
 (%body;)?)"
>

3. She then integrates the constraint module into her document-type shell for topic by adding the following
section above the "TOPIC ELEMENT INTEGRATION" comment:

<!-- === -->
<!-- CONTENT CONSTRAINT INTEGRATION -->
<!-- === -->

<!ENTITY % topic-constraints-c-def
 PUBLIC "-//ACME//ELEMENTS DITA Topic Constraint//EN"
 "acme-TopicConstraint.mod">
%topic-constraints-c-def;

4. She then adds the constraint to the list of domains and constraints that need to be included in the value of
the @domains attribute for <topic>:

<!-- === -->
<!-- DOMAINS ATTRIBUTE OVERRIDE -->
<!-- === -->

<!ENTITY included-domains
 "&hi-d-att;
 &ut-d-att;
 &indexing-d-att;
 &topic-constraints;
 "
>

5. After updating the catalog.xml file to include the new constraints file, her work is done.

Example: Constrain attributes for the <section> element
In this scenario, an information architect wants to redefine the attributes for the <section> element. He wants to
make the @id attribute required and omit the @spectitle attribute.

1. He creates a .mod file named idRequiredSectionContraint.mod, where "idRequired" is a string that
characterizes the constraint.

2. He adds the following content to idRequiredSectionContraint.mod:

<!-- === -->
<!-- CONSTRAINED TOPIC ENTITIES -->

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 137 of 177 Generated 07/14/2015

<!-- === -->

<!ENTITY section-constraints
 "(topic idRequired-section-c)"
>

<!-- Declares the entities referenced in the constrained content -->
<!-- model. -->
<!ENTITY % conref-atts
 'conref CDATA #IMPLIED
 conrefend CDATA #IMPLIED
 conaction (mark|pushafter|pushbefore|pushreplace|-dita-use-conref-
target) #IMPLIED
 conkeyref CDATA #IMPLIED' >
<!ENTITY % filter-atts
 'props CDATA #IMPLIED
 platform CDATA #IMPLIED
 product CDATA #IMPLIED
 audience CDATA #IMPLIED
 otherprops CDATA #IMPLIED
 %props-attribute-extensions;' >
<!ENTITY % select-atts
 '%filter-atts;
 base CDATA #IMPLIED
 %base-attribute-extensions;
 importance (default|deprecated|high|low|normal|obsolete|optional|
 recommended|required|urgent|-dita-use-conref-target)
#IMPLIED
 rev CDATA #IMPLIED
 status (changed|deleted|unchanged|-dita-use-conref-target)
#IMPLIED' >
<!ENTITY % localization-atts
 'translate (no|yes|-dita-use-conref-target) #IMPLIED
 xml:lang CDATA #IMPLIED
 dir (lro|ltr|rlo|rtl|-dita-use-conref-target) #IMPLIED' >

<!-- Declares the constrained content model. Original definition -->
<!-- included %univ-atts;, spectitle, and outputclass; now includes-->
<!-- individual pieces of univ-atts, to make ID required. -->

<!ENTITY % section.attributes
 "id CDATA #REQUIRED
 %conref-atts;
 %select-atts;
 %localization-atts;
 outputclass CDATA #IMPLIED">

Note: The information architect had to declare all the parameter entities that are referenced in the
redefined attributes for <section>. If he did not do so, none of the attributes that are declared in
the %conref-atts;, %select-atts;, or %localization-atts; parameter entities would be
available on the <section> element. Furthermore, since the %select-atts; parameter entity
references the %filter-atts; parameter entity, the %filter-atts; must be declared and it must
precede the declaration for the %select-atts; parameter entity. The %props-attribute-
extensions; and %base-attribute-extensions; parameter entities do not need to be declared
in the constraint module, because they are declared in the document-type shells before the
inclusion of the constraint module.

3. He then integrates the constraint module into the applicable document-type shells and adds it to his
catalog.xml file.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 138 of 177 Generated 07/14/2015

Example: Constrain a domain module
In this scenario, an information architect wants to use only a subset of the elements defined in the highlighting
domain. She wants to use and <i,> but not <line-through>, <overline>, <sup>, <sup>, <tt>, or <u>. She
wants to integrate this constraint into the document-type shell for task.

1. She creates reducedHighlightingDomainConstraint.mod, where "reduced" is a string that
characterizes the constraint.

2. She adds the following content to reducedHighlightingDomainConstraint.mod:

<!-- === -->
<!-- CONSTRAINED HIGHLIGHTING DOMAIN ENTITIES -->
<!-- === -->

<!ENTITY HighlightingDomain-constraints
 "(topic hi-d basic-HighlightingDomain-c)"
>

<!ENTITY % HighlightingDomain-c-ph "b | i" >
3. She then integrates the constraint module into her company-specific, document-type shell for the task topic

by adding the following section directly before the "DOMAIN ENTITY DECLARATIONS" comment:

<!-- === -->
<!-- DOMAIN CONSTRAINT INTEGRATION -->
<!-- === -->

<!ENTITY % HighlightingDomain-c-dec
 PUBLIC "-//ACME//ENTITIES DITA Highlighting Domain Constraint//EN"
 "acme-HighlightingDomainConstraint.mod"
>%basic-HighlightingDomain-c-dec;

4. In the "DOMAIN EXTENSIONS" section, she replaces the parameter entity for the highlighting domain
with the parameter entity for the constrained highlighting domain:

<!ENTITY % ph "ph |
 %HighlightingDomain-c-ph; |
 %sw-d-ph; |
 %ui-d-ph;
 ">

5. She then adds the constraint to the list of domains and constraints that need to be included in the value of
the @domains attribute for <task>:

<!-- === -->
<!-- DOMAINS ATTRIBUTE OVERRIDE -->
<!-- === -->

<!ENTITY included-domains
 "&task-att;
 &hi-d-att;
 &indexing-d-att;
 &pr-d-att;
 &sw-d-att;
 &ui-d-att;
 &taskbody-constraints;
 &HighlightingDomain-constraints;
 "
>

6. After updating the catalog.xml file to include the new constraints file, her work is done.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 139 of 177 Generated 07/14/2015

Example: Replace a base element with the domain extensions
In this scenario, an information architect wants to remove the <ph> element but allow the extensions of <ph> that
exist in the highlighting, programming, software, and user interface domains.

1. The information architect creates an entities file named noPhConstraint.ent, where "no" is a qualifier
string that characterizes the constraint.

2. The information architect adds the following content to noPhConstraint.ent:

<!-- === -->
<!-- CONSTRAINED HIGHLIGHTING DOMAIN ENTITIES -->
<!-- === -->

<!ENTITY ph-constraints
 "(topic noPh-ph-c)"
>

Note: Because the highlighting and programming domains cannot be generalized without the
<ph> element, this entity must be defined so that there is a separate parenthetical expression that
can be included in the @domains attribute for the topic.

3. The information architect then integrates the constraint module into a document-type shell for concept by
adding the following section above the "TOPIC ELEMENT INTEGRATION" comment:

<!-- === -->
<!-- CONTENT CONSTRAINT INTEGRATION -->
<!-- === -->

<!ENTITY % noPh-ph-c-def
 PUBLIC "-//ACME//ELEMENTS DITA Ph Constraint//EN"
 "acme-PhConstraint-constraints" "noPhConstraint.ent">
%noPh-ph-c-def;

4. In the "DOMAIN EXTENSIONS" section, the information architect removes the reference to the <ph>
element:

<!-- Removed "ph | " so as to make <ph> not available, only the domain extensions. --
>
<!ENTITY % ph "%pr-d-ph; |
 %sw-d-ph; |
 %ui-d-ph;
 ">

5. She then adds the constraint to the list of domains and constraints that need to be included in the value of
the @domains attribute:

<!-- === -->
<!-- DOMAINS ATTRIBUTE OVERRIDE -->
<!-- === -->

<!ENTITY included-domains
 "&concept-att;
 &hi-d-att;
 &indexing-d-att;
 &pr-d-att;
 &sw-d-att;
 &ui-d-att;
 &ph-constraint;
 "
>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 140 of 177 Generated 07/14/2015

6. After updating the catalog.xml file to include the new constraints file, the information architect's work
is done.

Example: Apply multiple constraints to a single document-type shell
You can apply multiple constraints to a single document-type shell. However, there can be only one constraint for
a given element or domain.

Here is a list of constraint modules and what they do:

File name What it constrains Details Contribution to the
@domains attribute

example-
TopicConstraint.mod

<topic> • Removes <abstract>
• Makes <shortdesc>

required
• Removes <related-

links>
• Disallows topic

nesting

(topic basic-Topic-
c)

example-
SectionConstraint.m
od

<section> • Makes @id required
• Removes @spectitle
attribute

(topic idRequired-
section-c)

example-
HighlightingDomainC
onstraint.mod

Highlighting domain Reduces the highlighting
domain elements to
and <i>

(topic hi-d basic-
HighlightingDomain-
c)

example-
PhConstraint.ent

<ph> Removes the <ph>
element

(topic noPh-ph-c)

All of these constraints can be integrated into a single document-type shell for <topic>, since they constrain
distinct element types and domains. The constraint for the highlighting domain must be integrated before the
"DOMAIN ENTITIES" section, but the order in which the other three constraints are listed does not matter.

Each constraint module provides a unique contribution to the @domains attribute. When integrated into the
document-type shell for <topic>, the effective value of the domains attribute will include the following values,
as well as values for any other modules that are integrated into the document-type shell:

(topic basic-Topic-c) (topic idRequired-section-c) (topic hi-d basic-HighlightingDomain-
c) (topic noPh-ph-c)

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 141 of 177 Generated 07/14/2015

Coding practices for DITA grammar files
This section collects all of the rules for creating modular DTD, RELAX NG, or XML Schema grammar files to
represent DITA document types, specializations, and constraints.

Recognized XML-document grammar mechanisms
The DITA standard recognizes three XML-document grammar mechanisms by which conforming DITA
vocabulary modules and document types can be constructed: document type declarations (DTDs), XML Schema
declarations (XSDs), and RELAX NG grammars.

This specification defines implementation requirements for all of these document grammar mechanisms. The
OASIS DITA Technical Committee recognizes that other XML grammar languages might provide similar
modularity and extensibility mechanisms. However, because the Technical Committee has not yet defined
implementation requirements for those languages, their conformance cannot be determined.

Of these three document grammar mechanisms, RELAX NG grammars offer the easiest-to-use syntax and the
most precise constraints. For this reason, the RELAX NG definitions of the standard DITA vocabularies are the
normative versions. The DTD and XSD versions shipped by OASIS are generated from the RELAX NG version
using open source tools.

Normative versions of DITA grammar files
The OASIS DITA Technical Committee uses the RELAX NG XML syntax for the normative versions of the XML
grammar files that comprise the DITA release.

The DITA Technical Committee chose the RELAX NG XML syntax for the following reasons:

Easy use of foreign markup
The DITA grammar files maintained by OASIS depend on this feature of RELAX NG in order to capture
metadata about document-type shells and modules; such metadata is used to generate the DTD- and XSD-
based versions of the grammar files.

The foreign vocabulary feature also can be used to include Schematron rules directly in RELAX NG
grammars. Schematron rules can check for patterns that either are not expressible with RELAX NG
directly or that would be difficult to express.

RELAX NG <div> element
This general grouping element allows for arbitrary organization and grouping of patterns within grammar
documents. Such grouping tends to make the grammar documents easier to work with, especially in XML-
aware editors. The use or non-use of the RELAX NG <div> element does not affect the meaning of the
patterns that are defined in a RELAX NG schema.

Capability of expressing precise restrictions
RELAX NG is capable of expressing constraints that are more precise than is possible with either DTDs or
XSDs. For example, RELAX NG patterns can be context specific such that the same element type can allow
different content or attributes in different contexts.

If you plan to generate DTD- or XSD-based modules from RELAX NG modules, avoid RELAX NG
features that cannot be translated into DTD or XSD constructs. When RELAX NG is used directly for DITA
document validation, the document-type shells for those documents can integrate constraint modules that
use the full power of RELAX NG to enforce constraints that cannot be enforced by DTDs or XSDs. The

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 142 of 177 Generated 07/14/2015

grammar files provided by the OASIS DITA Technical Committee do not use any features of RELAX NG
that cannot be translated into equivalent DTD or XSD constructs.

The DITA use of RELAX NG depends on the RELAX NG DTD Compatibility specification, which provides a
mechanism for defining default attribute values and embedded documentation. Processors that use RELAX NG
for DITA documents in which required attributes (for example, the @domains and @class attributes) are not
explicitly present must implement the DTD compatibility specification in order to get default attribute values.

DTD coding requirements
This section explains how to implement DTD based document-type shells, specializations, and constraints.

DTD: Overview of coding requirements

DITA coding practices for DTDs rely heavily on entities to implement specialization and constrraints. As such, an
understanding of entities is critical when working with DTD document-type shells, vocabulary modules, or
constraint modules.

Entities can be defined multiple times within a single document type, but only the first definition is effective.
How entities work shapes DTD coding practices. The following list describes a few of the more important entities
that are used in DITA DTDs:

Elements defined as entities
In DITA DTDs, every element is defined as an entity. When elements are added to a content model, they
are added using the entity. This enables extension with domain specializations. For example, the entity
%ph; usually just means "the ph element", but can be (pre)defined in a document-type shell to mean "ph
plus several elements from the highlighting domain". Because the document-type shell places that entity
definition before the usual definition, every element that included %ph; in its content model now includes
<ph> plus every phrase specialization in the highlighting domain.

Content models defined as entities
Every element in a DITA DTD defines its content model using an entity. For example, rather than directly
setting what is allowed in <ph>, that element sets its content model to %ph.content;; that entity defines
the actual content model. This is done to enable constraints; a constraint module can (pre)define the
%ph.content; model to remove selected elements.

Attribute sets defined as entities
Every element in a DITA DTD defines its attribute using an entity. For example, rather than directly
defining attributes for <ph>, that element sets its attributes using the %ph.attributes; entity; that entity
defines the actual attributes. As above, this is done to enable constraints; a constraint module can
(pre)define the %ph.attributes; model to remove selected attributes.

Note: When constructing a constraint module or document-type shell, new entities are usually viewed as
"redefinitions" because they redefine entities that already exist. However, these new definitions only work
because they are added to a document-type shell before the existing definitions, which is why they are
described here as (pre)definitions. Most topics about DITA DTDs, including others in this specification,
will describe these overrides as redefinitions to ease understanding.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 143 of 177 Generated 07/14/2015

DTD: Coding requirements for document-type shells

A DTD-based document-type shell is organized into sections; each section contains entity declarations that follow
specific coding rules.

The DTD-based approach to configuration, specialization, and constraints relies heavily upon parameter entities.
Several of the parameter entities that are declared in document type shells contain references to other parameter
entities. Because parameter entities must be declared before they are used, the order of the sections in a DTD-
based document-type shell is significant.

DTD-based document-type shell contains the following sections:

1. Topic [or map] entity declarations
2. Domain constraint integration
3. Domain entity declarations
4. Domain attributes declarations
5. Domain extensions
6. Domain attribute extensions
7. Topic nesting override
8. Domains attribute override
9. Content constraint integration
10. Topic [or map] element integration
11. Domain element integration

Each of the sections in a DTD-based document-type shell follows a pattern. These patterns help ensure that the
shell follows XML parsing rules for DTDs; they also establish a modular design that simplifies creation of new
document-type shells. By convention, an .ent file extension is used to indicate files that define only parameter
entities, while a .mod file extension is used to indicate files that define elements or constraints.

Topic [or map] entity declarations
This section declares and references an external parameter entity for each of the following:

• The top-level topic or map type that the document-type shell configures
• Any additional structural modules that are used by the document type shell

Each parameter entity (.ent) file contributes a domain token for structural topics or maps. The parameter
entity is named type-name-dec.

For example, a document-type shell that integrates the <concept> specialization would include:

<!ENTITY % concept-dec
 PUBLIC "-//OASIS//ENTITIES DITA 1.3 Concept//EN"
 "concept.ent"
>%concept-dec;

Domain constraint integration
For each domain constraint module that is integrated into the document type shell, this section declares a
parameter entity and references the constraint module file where the constraint is defined. The parameter
entity is named descriptorDomainName-c-dec.

In the following example, the entity file for a constraint module that reduces the highlighting domain to a
subset is included in a document type shell:

<!-- === -->
<!-- DOMAIN CONSTRAINT INTEGRATION -->

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 144 of 177 Generated 07/14/2015

<!-- === -->

<!ENTITY % HighlightingDomain-c-dec
 PUBLIC "-//ACME//ENTITIES DITA Highlighting Domain Constraint//EN"
 "acme-HighlightingDomainConstraint.mod"
>%basic-HighlightingDomain-c-dec;

Domain entity declarations
For each element domain that is integrated into the document-type shell, this section declares a parameter
entity and references the external entities file where the element domain is defined. The parameter entity is
named shortDomainName-dec.

In the following example, the entity file for the highlighting domain is included in a document-type shell:

<!ENTITY % hi-d-dec PUBLIC
 "-//OASIS//ENTITIES DITA Highlight Domain//EN"
 "highlightDomain.ent"
>%hi-d-dec;

Domain attributes declarations
For each attribute domain that is integrated into the document-type shell, this section declares a parameter
entity and references the external entities file where the attribute domain is defined. The parameter entity
is named domainName-dec.

In the following example, the entity file for the @deliveryTarget attribute domain is included in a
document-type shell:

<!ENTITY % deliveryTargetAtt-d-dec
 PUBLIC "-//OASIS//ENTITIES DITA 1.3 Delivery Target Attribute Domain//EN"
 "deliveryTargetAttDomain.ent"
>%deliveryTargetAtt-d-dec;

Domain extensions
For each element that is extended by one or more domains, this section redefines the parameter entity for
the element. These entities are used by later modules to define content models; redefining the entity adds
domain specializations wherever the base element is allowed.

In the following example, the entity for the <pre> element is redefined to add specializations from the
programming, software, and user interface domains:

<!ENTITY % pre
 "pre |
 %pr-d-pre; |
 %sw-d-pre; |
 %ui-d-pre;">

Domain attribute extensions
For each attribute domain that is integrated into the document-type shell, this section redefines the
parameter entities for the attribute. It adds an extension to the parameter entity for the relevant attribute.

In the following example, the @props attribute is specialized to create the @new and @othernew attributes,
while the @base attribute is specialized to create @newfrombase and @othernewfrombase attributes:

<!ENTITY % props-attribute-extensions
 "%newAtt-d-attribute;

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 145 of 177 Generated 07/14/2015

 %othernewAtt-d-attribute;">
<!ENTITY % base-attribute-extensions
 "%newfrombaseAtt-d-attribute;
 %othernewfrombaseAtt-d-attribute;">

Topic nesting override
For each topic type that is integrated into the document-type shell, this section specifies whether and how
subtopics nest by redefining the topictype-info-types entity. The definition is usually an OR list of
the topic types that can be nested in the parent topic type. Use the literal root-element name, not the
corresponding parameter entity. Topic nesting can be disallowed completely by specifying the <no-topic-
nesting> element.

In the following example, the parameter entity specifies that <concept> can nest any number of
<concept> or <myTopicType> topics, in any order:

<!ENTITY % concept-info-types "concept | myTopicType">

Domains attribute override
This section sets the effective value of the @domains attribute for the top-level document type that is
configured by the document type shell. It redefines the included-domains entity to include the text
entity for each domain, constraint, and structural specialization that is either included or reused in the
document type shell.

In the following example, entities are included for both the troubleshooting specialization and the task
specialization on which the troubleshooting specialization depends; for the highlighting and utilities
element domains; for the newAtt-d attribute domain, and for the noBasePre-c constraint module:

<!ENTITY included-domains
 "&troubleshooting-att;
 &task-att;
 &hi-d-att;
 &ut-d-att;
 &newAtt-d-att;
 &noBasePre-c-ph;
 "
>

Note: Although parameter entities (entities that begin with "%") must be defined before they are
referenced, text entities (entities that begin with "&") can be referenced before they are defined.
This allows the included-domains entity to include the constraint entity, which is not defined
until the constraint module is referenced later in the document type shell.

Content constraint integration
For each constraint module that is integrated into the document-type shell, this section declares and
references the external module file where the constraint is defined. The parameter entity is named
constraintName-c-def.

In the following example, the constraint module that constrains the content model for the <taskbody>
element is integrated into the document-type shell for strict task:

<!ENTITY % strictTaskbody-c-def
 PUBLIC "-//OASIS//ELEMENTS DITA 1.3 Strict Taskbody Constraint//EN"
 "strictTaskbodyConstraint.mod"
>%strictTaskbody-c-def;

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 146 of 177 Generated 07/14/2015

Topic [or map] element integration
For each structural module that is integrated into the document-type shell, this section declares a
parameter entity and references the external module file where the structural module is defined. The
parameter entity is named structuralType-type. The modules must be included in ancestry order, so
that the parameter entities that are used in an ancestor module are available for use in specializations.
When a structural module depends on elements from a vocabulary module that is not part of its ancestry,
the module upon which the structural module has a dependency (and any ancestor modules not already
included) should be included before the module with a dependency.

The following example declares and references the structural modules that are integrated into the
document-type shell for troubleshooting:

<!ENTITY % topic-type
 PUBLIC "-//OASIS//ELEMENTS DITA 1.3 Topic//EN"
 "../../base/dtd/topic.mod"
>%topic-type;

<!ENTITY % task-type
 PUBLIC "-//OASIS//ELEMENTS DITA 1.3 Task//EN"
 "task.mod"
>%task-type;

<!ENTITY % troubleshooting-type
 PUBLIC "-//OASIS//ELEMENTS DITA 1.3 Troubleshooting//EN"
 "troubleshooting.mod"
>%troubleshooting-type;

Domain element integration
For each element domain that is integrated into the document-type shell, this section declares a parameter
entity and references the external module file where the element domain is defined. The parameter entity
is named domainName-def.

For example, the following code declares and references the parameter entity used for the highlighting
domain:

<!ENTITY % hi-d-def PUBLIC
 "-//OASIS//ELEMENTS DITA Highlight Domain//EN"
 "highlightDomain.mod"
>%hi-d-def;

Note: If a structural module depends on a domain, the domain module should be included before
the structural module. This erases the boundary between the final two sections, but it is necessary
to ensure that modules are embedded after their dependencies. Technically, the only solid
requirement is that both domain and structural modules be declared after all other modules that
they specialize from or depend on.

DTD: Coding requirements for element type declarations

This topic covers general coding requirements for defining element types in both structural and element-domain
vocabulary modules. In addition, it covers how to create the @domains attribute contribution for these modules.

A vocabulary module that defines a structural or element domain specialization is composed of two files:

• An entity declaration (.ent) file, which declares the text entities that are used to integrate the vocabulary
module into a document-type shell

• A definition module (.mod) file, which declares the element names, content models, and attribute lists for the
element types that are defined in the vocabulary module

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 147 of 177 Generated 07/14/2015

@domains attribute contribution
A domain declaration entity is used to construct the effective value of the @domains attribute for a map or topic
type.

Text entity name
The name of the text entity is the structural type name or the domain abbreviation, followed by a hyphen
("-") and the literal att.

Text entity values
The value of the text entity is the @domains attribute contribution for the current module. See domains
attribute rules and syntax on page 122 for details on how to construct this value.

For example, the @domains attribute contributions for the concept structural module and the highlighting domain
module are are constructed as follows.

• <!ENTITY concept-att "(topic concept)">
• <!ENTITY hi-d-att "(topic hi-d)">.

Element definitions
A structural or domain vocabulary module must contain a declaration for each element type that is named by the
module. While the XML standard allows content models to refer to undeclared element types, the DITA standard
does not permit this. All element types or attribute lists that are named within a vocabulary module must be
declared in one of the following objects:

• The vocabulary module
• A base module of which the vocabulary module is a direct or indirect specialization
• (If the vocabulary module is a structural module) A required domain module

The following components make up a single element definition in a DITA DTD-based vocabulary module.

Element name entities
For each element type, there must be a parameter entity with a name that matches the element type name.
The default value is the element type name. This parameter entity provides a layer of abstraction when
setting up content models; it can be redefined in a document-type shell in order to create domain
extensions or constraints. Element name entities for a single vocabulary module are typically grouped
together at the top of the vocabulary module.

For example: <!ENTITY % topichead "topichead">

Content-model parameter entity
For each element type, there must be a parameter entity that defines the content model. The name of the
parameter entity is tagname.content, and the value is the content model definition. Consistent use and
naming of the tagname.content parameter entity enables the use of constraint modules to restrict the
content model.

For example:

<!ENTITY % topichead.content
 "((%topicmeta;)?,
 (%anchor; |
 %data.elements.incl; |
 %navref; |
 %topicref;)*)
">

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 148 of 177 Generated 07/14/2015

Attribute-list parameter entity
For each element type, there must be a parameter entity that declares the attributes that are available on
the element. The name of the parameter entity is tagname.attributes, and the value is a list of the
attributes that are used by the element type (except for @class and the attributes provided by the
global-atts parameter entity). Consistent use and naming of the tagname.attributes parameter
entity enables the use of constraint modules to restrict attributes.

For example:

<!ENTITY % topichead.attributes
 "navtitle CDATA #IMPLIED
 outputclass CDATA #IMPLIED
 keys CDATA #IMPLIED
 copy-to CDATA #IMPLIED
 %topicref-atts;
 %univ-atts;"
>

Element declaration
For each element type, there must be an element declaration that consists of a reference to the content-
model parameter entity.

For example:

<!ELEMENT topichead %topichead.content;>

Attribute list declaration
For each element type, there must be an attribute list declaration that consists of a reference to the
attribute-list parameter entity.

For example:

<!ATTLIST topichead %topichead.attributes;>

Specialization attribute declarations
A vocabulary module must define a @class attribute for every element that is declared in the module. The
value of the attribute is constructed according to the rules in class attribute rules and syntax on page 121. The
ATTLIST declaration for the @class attribute should also include a reference to the global-atts
parameter entity.

For example, the ATTLIST definition for the <topichead> element (a specialization of the <topicref>
element in the base map type) includes global attributes with an entity, then the definition of the @class
attribute, as follows:

<!ATTLIST topichead %global-atts; class CDATA "+ map/topicref mapgroup-d/
topichead ">

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 149 of 177 Generated 07/14/2015

DTD: Coding requirements for structural modules

A structural vocabulary module defines a new topic or map type as a specialization of a topic or map type.

Required topic and map element attributes
The topic or map element type must set the @DITAArchVersion attribute to the version of DITA in use, typically
by referencing the arch-atts parameter entity. It must also set the @domains attribute to the included-
domains entity. These attributes give processors a reliable way to check the architecture version and look up the
list of domains available in the document type.

The following example shows how these attributes are defined for the <concept> element in DITA 1.3:

<!ATTLIST concept
 %concept.attributes;
 %arch-atts;
 domains CDATA "&included-domains;">

Controlling nesting in topic types
Specialized topics typically use a parameter entity to define what topic types are permitted to nest. While there
are known exceptions described below, the following rules apply when using parameter entities to control
nesting.

Parameter entity name
The name of the parameter entity is the topic element name plus the -info-types suffix.

For example, the name of the parameter entity for the concept topic is concept-info-types.

Parameter entity value
To set up default topic nesting rules, set the entity to the desired topic elements. The default topic nesting
will be used when a document-type shell does not set up different rules.

For example, the following parameter entity sets up default nesting so that <concept> will nest only other
<concept> topics:

<!ENTITY % concept-info-types "%concept;">

As an additional example, the following parameter entity sets up a default that will not allow any nesting:

<!ENTITY % glossentry-info-types "no-topic-nesting">

Default topic nesting in a structural module often set up to use the %info-types; parameter entity
rather than using a specific element. When this is done consistently, a shell that includes multiple
structural modules can set common nesting rules for all topic types by setting %info-types; entity. The
following example shows a structural module that uses %info-types; for default topic nesting:

<!ENTITY % concept-info-types "%info-types;">

Content model of the root element
The last position in the content model defined for the root element of a topic type SHOULD be the
topictype-info-types parameter entity. A document-type shell then can control how topics are
allowed to nest for this specific topic type by redefining the topictype-info-types entity for each

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 150 of 177 Generated 07/14/2015

topic type. If default nesting rules reference the info-types parameter entity, a shell can efficiently create
common nesting rules by redefining the info-types entity.

For example, with the following content model defined for <concept>, a document-type shell that uses the
concept specialization can control which topics are nested in <concept> by redefining the concept-
info-types parameter entity:

<!ENTITY % concept.content
 "((%title;),
 (%titlealts;)?,
 (%abstract; | %shortdesc;)?,
 (%prolog;)?,
 (%conbody;)?,
 (%related-links;)?,
 (%concept-info-types;)*)"
>

In rare cases, it may not be desirable to control topic nesting with a parameter entity. For example:

• If a specialized topic type should never allow any nested topics, regardless of context, it can be defined
without any entity or any nested topics.

• If a specialized topic type should only ever allow specific nesting patterns, such as allowing only other topic
types that are defined in the same module, it can nest those topics directly in the same way that other nested
elements are defined.

DTD: Coding requirements for element domain modules

The vocabulary modules that define element domains have an additional coding requirement. The entity
declaration file must include a parameter entity for each element that the domain extends.

Parameter entity name
The name of the parameter entity is the abbreviation for the domain, followed by a hyphen ("-"), and the
name of the element that is extended.

Parameter entity value
The value of the parameter entity is a list of the specialized elements that can occur in the same locations as
the extended element. Each element must be separated by the vertical line (|) symbol.

Example
Because the highlighting domain extends the <ph> element, the entity declaration file for that domain must
include a parameter entity corresponding to the <ph> element. The name of the entity uses the short name of
the domain (hi-d) followed by the name of the base element. The value includes each specialization of <ph> in
the domain.

<!ENTITY % hi-d-ph "b | u | i | line-through | overline | tt | sup | sub">

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 151 of 177 Generated 07/14/2015

DTD: Coding requirements for attribute domain modules

The vocabulary modules that define attribute domains have additional coding requirements. The module must
include a parameter entity for the new attribute, which can be referenced in document-type shells, as well as a
text entity that specifies the contribution to the @domains attribute for the attribute domain.

An attribute domain's name is the name of the attribute plus "Att". For example, for the attribute named
"deliveryTarget" the attribute domain name is "deliveryTargetAtt". The attribute domain name is used to
construct entity names for the domain.

Parameter entity name and value
The name of the parameter entity is the attribute domain name, followed by the literal "-d-attribute". The
value of the parameter entity is a DTD declaration for the attribute.

Text entity name and value
The text entity name is the attribute domain name, followed by the literal -d-Att. The value of the text
entity is the @domains attribute contribution for the module; see domains attribute rules and syntax on page
122 for details on how to construct this value.

Example
The @deliveryTarget attribute can be defined in a vocabulary module using the following two entities.

<!ENTITY % deliveryTargetAtt-d-attribute
 "deliveryTarget CDATA #IMPLIED"
>

<!ENTITY deliveryTargetAtt-d-att "a(props deliveryTarget)" >

DTD: Coding requirements for constraint modules

A structural constraint module defines the constraints for a map or topic element type. A domain constraint
module defines the constraints for an element or attribute domain.

Structural constraint modules
Structural constraint modules have the following requirements:

@domains contribution entity name and value
The constraint module should contain a declaration for a text entity with the name tagname-
constraints, where tagname is the name of the element type to which the constraints apply. The value of
the text entity is the @domains attribute contribution for the module; see domains attribute rules and syntax
on page 122 for details on how to construct this value.

For example, the following text entity provides the declaration for the strict task constraint that is shipped
with the DITA standard.

<!ENTITY taskbody-constraints
 "(topic task strictTaskbody-c)"
>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 152 of 177 Generated 07/14/2015

The tagname.attributes parameter entity

When the attribute set for an element is constrained, there must be a declaration of the
tagname.attributes parameter entity that defines the constrained attributes.

For example, the following parameter entity defines a constrained set of attributes for the <note> element
that removes most of the values defined for @type, and also removes @spectitle and @othertype:

<!ENTITY % note.attributes
 "type (attention | caution | note) #IMPLIED
 %univ-atts;
 outputclass CDATA #IMPLIED">

The tagname.content parameter entity

When the content model for an element is constrained, there must be a declaration of the
tagname.content parameter entity that defines the constrained content model.

For example, the following parameter entity defines a more restricted content model for <topic>, in which
the <shortdesc> element is required.

<!ENTITY % topic.content

 "((%title;),
 (%titlealts;)?,
 (%shortdesc;),
 (%prolog;)?,
 (%body;)?,
 (%topic-info-types;)*)"
>

Domain constraint modules
Domain constraint modules have the following requirements:

@domains contribution entity name and value

The constraint module should contain a declaration for a text entity with the name domainDomain-
constraints, where domain is the name of the domain to which the constraints apply, for example,
"Highlighting" or "Programming". The value of the text entity is the @domains attribute contribution for the
module; see domains attribute rules and syntax on page 122 for details on how to construct this value.

For example, the following text entity provides the declaration for a constraint module that restricts the
highlighting domain:

<!ENTITY HighlightingDomain-constraints
 "(topic hi-d basic-HighlightingDomain-c)"
>

Parameter entity
When the set of extension elements are restricted, there must be a parameter entity that defines the
constrained content model.

For example, the following parameter entity restricts the highlighting domain to and <i>:

<!ENTITY % HighlightingDomain-c-ph "b | i" >

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 153 of 177 Generated 07/14/2015

Constraining to replace a base element with domain extensions
When element domains are used to extend a base element, those extensions can be used to replace the base
element. This form of constraint is done inside the document-type shell.

Within a document-type shell, domain extensions are implemented by declaring an entity for a base element. The
value of the entity can omit any base element types from which the other element types that are listed are
specialized. Omitting a base type constitutes a form of constraint; as with any other constraint, this form of
constraint must contribute a token to the @domains attribute. That token can be defined in a module file (which
does not define any other entities or values), or the token can be placed directly into the document-type shell
definition for the included-domains entity.

In the following example, the <pre> base type is removed from the entity declaration, effectively allowing only
specializations of <pre> but not <pre> itself. This omission would require the use of a @domains contribution
token within the included-domains entity.

<!ENTITY % pre
 "%pr-d-pre; |
 %sw-d-pre; |
 %ui-d-pre;">

RELAX NG coding requirements
This section explains how to implement RELAX NG based document-type shells, specializations, and constraints.

RELAX NG: Overview of coding requirements

RELAX NG modules are self-integrating, which means that they automatically add to the content models and
attribute sets they extend. This means that information architects do not have much work to do when assembling
vocabulary modules and constraints into document type shells.

In addition to simplifying document-type shells, the self-integrating aspect of RELAX NG results in the following
coding practices:

• Each specialized vocabulary module consists of a single file, unlike the two required for DTDs.
• Domain modules directly extend elements, unlike DTDs, which rely on an extra file and extensions within the

document-type shell.
• Constraint modules directly include the modules that they extend, which means that just by referencing a

constraint module, the document-type shell gets everything it needs to both define and constrain a vocabulary
module.

RELAX NG grammars for DITA document-type shells, vocabulary modules, and constraint modules MAY do the
following:

• Use the <a:documentation> element anywhere that foreign elements are allowed by RELAX NG. The
<a:documentation> element refers to the <documentation> element type from the http://relaxng.org/ns/
compatibility/annotations/1.0 as defined by the DTD compatibility specification. The prefix "a" is used
by convention.

• Use <div> to group pattern declarations.
• Include embedded Schematron rules or any other foreign vocabulary. Processors MAY ignore any foreign

vocabularies within DITA grammars that are not in the http://relaxng.org/ns/compatibility/
annotations/1.0 or http://dita.oasis-open.org/architecture/2005/ namespaces.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 154 of 177 Generated 07/14/2015

Syntax for RELAX NG grammars
The RELAX NG specification defines two syntaxes for RELAX NG grammars: the XML syntax and the compact
syntax. The two syntaxes are functionally equivalent, and either syntax can be reliably converted into the other by
using, for example, the open-source Trang tool.

DITA practitioners can author DITA modules using one RELAX NG syntax, and then use tools to generate
modules in the other syntax. The resulting RELAX NG modules are conforming if there is a one-to-one file
correspondence. Conforming RELAX NG-based DITA modules MAY omit the annotations and foreign elements
that are used in the OASIS grammar files to enable generation of other XML grammars, such as DTDs and XML
Schema. When such annotations are used, conversion from one RELAX NG syntax to the other might lose the
information, as processors are not required to process the annotations and information from foreign vocabularies.

The DITA coding requirements are defined for the RELAX NG XML syntax. Document type shells, vocabulary
modules, and constraint modules that use the RELAX NG compact syntax can use the same organization
requirements as those defined for the RELAX NG XML syntax.

RELAX NG: Coding requirements for document-type shells

A document-type shell integrates one or more topic type or map type modules, zero or more domain modules,
and zero or more constraint modules.

Because RELAX NG modules are self-integrating, document-type shells only need to include vocabulary
modules. Unlike DTDs, there is no separate specification required in order to integrate domain and nested topic
elements into the base content models.

Root element declaration
Document type shells use the RELAX NG start declaration to specify the root element of the document
type. The <start> element defines one root element, using a reference to a tagname.element pattern.

For example:

<div>
 <a:documentation>ROOT ELEMENT DECLARATION</a:documentation>
 <start combine="choice">
 <ref name="topic.element"/>
 </start>
</div>

DITA domains attribute
The document-type shell must list the domain or structural modules that are named as dependencies in
the @domains attribute value. Unlike DTDs, a default value for @domains cannot automatically be
constructed using RELAX NG facilities. Instead, the values used to construct @domains are taken from
each vocabulary and constraint module, in addition to any domains contributions based on constraints
implemented within the shell.

For example:

<div>
 <a:documentation>DOMAINS ATTRIBUTE</a:documentation>
 <define name="domains-att">
 <optional>
 <attribute name="domains"
 a:defaultValue="(topic hazard-d)
 (topic hi-d)
 (topic indexing-d)
 (topic ut-d)

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 155 of 177 Generated 07/14/2015

 a(props deliveryTarget)"
 />
 </optional>
 </define>
</div>

Content constraint integration
The document-type shell must include any constraint modules. Constraint modules include the module
they override and override the patterns that they constrain directly in the constraint module itself. Any
module that is constrained in this section (including the base topic or map modules) will be left out of the
following section.

For example, when the following constraint is included for the task module, the task module itself will not
be included in the shell; the task module itself is included within
strictTaskbodyConstraintMod.rng:

<div>
<a:documentation>CONTENT CONSTRAINT INTEGRATION</a:documentation>
 <include href="strictTaskbodyConstraintMod.rng">
 <define name="task-info-types">
 <ref name="task.element"/>
 </define>
 </include>
</div>

Module inclusions
The document-type shell must include any unconstrained domain or structural module. If the top-level
map or topic type is unconstrained, it is also included in this section.

For example:

<div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 <include href="topicMod.rng"/>
 <include href="highlightDomainMod.rng"/>
 <include href="utilitiesDomainMod.rng"/>
 <include href="indexingDomainMod.rng"/>
 <include href="hazardstatementDomainMod.rng"/>
</div>

Constraining domains in the shell
Domains can be constrained to disallow some extension elements without the use of a separate module
file. This is done by overriding the base type pattern within the reference to the domain module. In this
case, the constraint represented by the pattern redefinition still must be declared in the @domains attribute;
the @domains contribution should be documented in the document-type shell with the constraint. There is
not a designated section of the document-type shell for this type of constraint; it can be placed either in
Content constraint integration on page 0 or Module inclusions on page 0 .

The following example demonstrates the portion of a document type shell that includes the highlight
domain module while directly constraining that module to remove the <u> element. The
<ditaarch:domainsContribution> element is used to document the @domains contribution for this
constraint.

 <div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 <include href="topicMod.rng"/>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 156 of 177 Generated 07/14/2015

 <include href="hazardstatementDomainMod.rng"/>
 <include href="highlightDomainMod.rng">
 <ditaarch:domainsContribution
 >(topic hi-d-noUnderline-c)</ditaarch:domainsContribution>
 <define name="u">
 <notAllowed></notAllowed>
 </define>
 </include>
 <include href="indexingDomainMod.rng"/>
 <include href="utilitiesDomainMod.rng"/>
 </div>

ID-defining element overrides
This section must declare any element in the document type that uses an @id attribute with an XML data
type of "ID". This declaration is required in order to avoid errors from RELAX NG parsers that would
otherwise complain about different uses of the @id attribute.

Typically, this section lists only a few elements, such as topic types or the <anchor> element, but it could
include specializations that constrain @id. In addition, foreign vocabularies require you to include
exclusions for the namespaces used by those domains.

For example, this section declares that <topic> and <task> use an @id attribute with an XML data type of
ID, along with any elements in the SVG or MathML namespaces. Each of these is excluded from the "any"
pattern by placing them within the <except> rule as shown below:

 <div>
 <a:documentation> ID-DEFINING-ELEMENT OVERRIDES </a:documentation>
 <define name="any">
 <zeroOrMore>
 <choice>
 <ref name="idElements"/>
 <element>
 <anyName>
 <except>
 <name>topic</name>
 <name>task</name>
 <nsName ns="http://www.w3.org/2000/svg"/>
 <nsName ns="http://www.w3.org/1998/Math/MathML"/>
 </except>
 </anyName>
 <zeroOrMore>
 <attribute>
 <anyName/>
 </attribute>
 </zeroOrMore>
 <ref name="any"/>
 </element>
 <text/>
 </choice>
 </zeroOrMore>
 </define>
 </div>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 157 of 177 Generated 07/14/2015

RELAX NG: Coding requirements for element type declarations

Structural and domain vocabulary modules have the same coding requirements for element type declarations.
Each RELAX NG vocabulary module consists of a single module file.

Element definitions
A structural or element-domain vocabulary module must contain a declaration for each specialized element type
that is named in the module. While the XML standard allows content models to refer to undeclared element
types, all element types that are named in content models or attribute list declarations within a vocabulary
module must have a RELAX NG element declaration. The RELAX NG element declaration can occur in one of the
following:

• The vocabulary module
• A base module of which the vocabulary module is a direct or indirect specialization
• (If the vocabulary module is a structural module) A required domain or structural module

The element type patterns are organized into the following sections:

Element type name patterns
For each element type that is declared in the vocabulary module, there must be a pattern whose name is
the element type name and whose content is a reference to the element type tagname.element pattern.
For example:

<div>
 <a:documentation>ELEMENT TYPE NAME PATTERNS</a:documentation>
 <define name="b">
 <ref name="b.element"/>
 </define>
 <!-- ... -->
</div>

The element-type name pattern provides a layer of abstraction that facilitates redefinition. The element-
type name patterns are referenced from content model and domain extension patterns. Specialization
modules can re-declare the patterns to include specializations of the type, allowing the specialized types in
all contexts where the base type is allowed.

The declarations can occur in any order.

Common content-model patterns
Structural and element-domain modules can include a section that defines the patterns that contribute to
the content models of the element types that are defined in the module.

Common attribute sets
Structural and element-domain modules can include a section that defines patterns for attribute sets that
are common to one or more of the element types that are defined in the module.

Element type declarations
For each element type that is declared in the vocabulary module, the following set of patterns must be
used to define the content model and attributes for the element type. Each set of patterns is typically
grouped within a <div> element for clarity.

• tagname.content defines the complete content model for the element tagname. The content model
pattern can be overridden in constraint modules to further constrain the content model for the element
type.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 158 of 177 Generated 07/14/2015

• tagname.attributes defines the complete attribute list for the element tagname, except for @class
and the attributes provided by the global-atts pattern. The attribute list declaration can be
overridden in constraint modules to further constrain the attribute list for the element type.

• tagname.attlist is an additional attribute list pattern with a @combine attribute set to the value
"interleave". This pattern contains only a reference to the tagname.attributes pattern.

• tagname.element is the actual element type definition. It contains an <element> element whose
@name value is the element type name and whose content is a reference to the tagname.content and
tagname.attlist patterns. In OASIS grammar files, the @longName attribute in the DITA
architecture namespace is also used to help enable generation of DTD and XSD grammar files.

The following example shows the declaration for the <topichead> element, including the definition for
each pattern described above.

<div>
 <a:documentation>LONG NAME: Topic Head</a:documentation>
 <define name="topichead.content">
 <optional>
 <ref name="topicmeta"/>
 </optional>
 <zeroOrMore>
 <choice>
 <ref name="anchor"/>
 <ref name="data.elements.incl"/>
 <ref name="navref"/>
 <ref name="topicref"/>
 </choice>
 </zeroOrMore>
 </define>
 <define name="topichead.attributes">
 <optional>
 <attribute name="navtitle"/>
 </optional>
 <optional>
 <attribute name="outputclass"/>
 </optional>
 <optional>
 <attribute name="keys"/>
 </optional>
 <optional>
 <attribute name="copy-to"/>
 </optional>
 <ref name="topicref-atts"/>
 <ref name="univ-atts"/>
 </define>
 <define name="topichead.element">
 <element name="topichead" ditaarch:longName="Topic head">
 <a:documentation>The <topichead> element provides a title-only entry in a
navigation map,
 as an alternative to the fully-linked title provided by the <topicref>
element.
 Category: Mapgroup elements</a:documentation>
 <ref name="topichead.attlist"/>
 <ref name="topichead.content"/>
 </element>
 </define>
 <define name="topichead.attlist" combine="interleave">
 <ref name="topichead.attributes"/>
 </define>
</div>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 159 of 177 Generated 07/14/2015

idElements pattern contribution
Element types that declare the @id attribute as type "ID", including all topic and map element types, must
provide a declaration for the idElements pattern. This is needed to correctly configure the "any" pattern
override in document-type shells and avoid errors from RELAX NG parsers. The declaration is specified
with a @combine attribute set to the value "choice". For example:

<div>
 <a:documentation>LONG NAME: Map</a:documentation>
 <!-- ... -->
 <define name="idElements" combine="choice">
 <ref name="map.element"/>
 </define>
</div>

Specialization attribute declarations
A vocabulary module must define a @class attribute for every specialized element. This is done in a
section at the end of each module that includes a tagname.attlist pattern for each element type that is
defined in the module. The declarations can occur in any order.

The tagname.attlist pattern for each element defines that element's @class attribute, and also
includes a reference to the global-atts attribute list pattern. @class is declared as an optional attribute;
the default value is declared using the @a:defaultValue attribute, and the value of the attribute is
constructed according to the rules in class attribute rules and syntax on page 121.

For example:

<define name="anchorref.attlist" combine="interleave">
 <ref name="global-atts"/>
 <optional>
 <attribute name="class"
 a:defaultValue="+ map/topicref mapgroup-d/anchorref "
 />
 </optional>
</define>

RELAX NG: Coding requirements for structural modules

A structural vocabulary module defines a new topic or map type as a specialization of a topic or map type.

All vocabulary and constraint modules must document their @domains attribute contribution. The value of the
contribution is constructed according to the rules found in domains attribute rules and syntax on page 122. The
OASIS grammar files use a <domainsContribution> element to document the contribution; this element is used
to help enable generation of DTD and XSD grammar files. An XML comment or <a:documentation> element can
also be used.

Required topic and map element attributes
The topic or map element type must reference the arch-atts pattern, which defines the @DITAArchVersion
attribute in the DITA architecture namespace and sets the attribute to the version of DITA in use. In addition, the
topic or map element type must reference the domains-att pattern, which will pull in a definition for the
@domains attribute. These attributes give processors a reliable way to check the architecture version and list of
available domains.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 160 of 177 Generated 07/14/2015

For example, the following definition references the arch-atts and domains-att patterns as part of the
definition for the <concept> element.

<div>
 <a:documentation> LONG NAME: Concept </a:documentation>
 <!-- ... -->
 <define name="concept.attlist" combine="interleave">
 <ref name="concept.attributes"/>
 <ref name="arch-atts"/>
 <ref name="domains-att"/>
 </define>
 <!-- ... -->
</div>

Controlling nesting in topic types
Specialized topics typically define an info-types style pattern to specify default topic nesting. Document type
shells can then control how topics are allowed to nest by redefining the pattern. While there are known exceptions
described below, the following rules apply when using a pattern to control topic nesting.

Pattern name
The pattern name is the topic element name plus the suffix -info-types. For example, the info-types
pattern for the concept topic type is concept-info-types.

Pattern value
To set up default topic nesting rules, set the pattern to the desired topic elements. The default topic nesting
will be used when a document-type shell does not set up different rules. For example:

<div>
 <a:documentation>INFO TYPES PATTERNS</a:documentation>
 <define name="mytopic-info-types">
 <ref name="subtopictype-01.element"/>
 <ref name="subtopictype-02.element"/>
 </define>
 <!-- ... -->
</div>

If the topic does not permit nested topics by default, this pattern uses the <empty> element. For example:

<define name="learningAssessment-info-types">
 <empty/>
</define>

The info-types pattern can also be used to refer to common nesting rules across the document-type
shell. For example:

<div>
 <a:documentation>INFO TYPES PATTERNS</a:documentation>
 <define name="mytopic-info-types">
 <ref name="info-types"/>
 </define>
 <!-- ... -->
</div>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 161 of 177 Generated 07/14/2015

Content model of the root element
In the declaration of the root element of a topic type, the last position in the content model SHOULD be the
topictype-info-types pattern. For example, the <concept> element places the pattern after
<related-links>:

<div>
 <a:documentation>LONG NAME: Concept</a:documentation>
 <define name="concept.content">
 <!-- ... -->
 <optional>
 <ref name="related-links"/>
 </optional>
 <zeroOrMore>
 <ref name="concept-info-types"/>
 </zeroOrMore>
 </define>
</div>

In rare cases, it may not be desirable to control topic nesting with the info-types pattern. For example:

• If a specialized topic type should never allow any nested topics, regardless of context, it can be defined
without any pattern or any nested topics.

• If a specialized topic type should only ever allow specific nesting patterns, such as allowing only other topic
types that are defined in the same module, it can nest those topics directly in the same way that other nested
elements are defined.

RELAX NG: Coding requirements for element domain modules

Vocabulary modules that define element domains must define an extension pattern for each element that is
extended by the domain. These patterns are used when including the domain module in a document-type shell.

All vocabulary and constraint modules must document their @domains attribute contribution. The value of the
contribution is constructed according to the rules found in domains attribute rules and syntax on page 122. The
OASIS grammar files use a <domainsContribution> element to document the contribution; this element is used
to help enable generation of DTD and XSD grammar files. An XML comment or <a:documentation> element can
also be used.

For each element type that is extended by the element domain module, the module must define a domain
extension pattern. The pattern consists of a choice group of references to element-type name patterns, with one
reference to each extension of the base element type.

The name of the pattern uses the following format, where shortName is the short name for the domain, and
elementName is the name of the element that is extended:

shortName-d-elementName

For example, the following pattern extends the <ph> element type by adding the specializations of <ph> that are
defined in the highlighting domain:

 <define name="hi-d-ph">
 <choice>
 <ref name="b.element"/>
 <ref name="i.element"/>
 <ref name="sup.element"/>
 <ref name="sub.element"/>
 <ref name="tt.element"/>
 <ref name="u.element"/>
 </choice>
 </define>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 162 of 177 Generated 07/14/2015

For each element type that is extended by the element domain module, the module extends the element type
pattern with a @combine value of "choice" that contains a reference to the domain extension pattern. Because the
pattern uses a @combine value of "choice", the effect is that the domain-provided elements are automatically
added to the effective content model of the extended element in any grammar that includes the domain module.

For example, the following pattern adds the highlighting domain specializations of the <ph> element to the
content model of the <ph> element:

 <define name="ph" combine="choice">
 <ref name="hi-d-ph"/>
 </define>

RELAX NG: Coding requirements for attribute domain modules

An attribute domain vocabulary module declares a new attribute specialized from either the @props or @base
attribute. An attribute domain module defines exactly one new attribute type.

All vocabulary and constraint modules must document their @domains attribute contribution. The value of the
contribution is constructed according to the rules found in domains attribute rules and syntax on page 122. The
OASIS grammar files use a <domainsContribution> element to document the contribution; this element is used
to help enable generation of DTD and XSD grammar files. An XML comment or <a:documentation> element can
also be used.

An attribute domain's name is the name of the attribute plus "Att". For example, for the attribute named
"deliveryTarget" the attribute domain name is "deliveryTargetAtt". The attribute domain name is used to
construct pattern names for the domain.

An attribute domain consists of one file, which has three sections:

Domains attribute contribution
The @domains contribution must be documented in the module. The value is constructed according to the
rules found in domains attribute rules and syntax on page 122.

Attribute extension pattern
The attribute extension pattern extends either the @props or @base attribute set pattern to include the
attribute specialization.

For specializations of @props the pattern is named props-attribute-extensions. The pattern
specifies a @combine value of "interleave", and the content of the pattern is a reference to the specialized
attribute declaration pattern. For example:

<define name="props-attribute-extensions" combine="interleave">
 <ref name="deliveryTargetAtt-d-attribute"/>
</define>

For specializations of @base the pattern is named base-attribute-extensions. The pattern specifies a
@combine value of "interleave", and the content of the pattern is a reference to the specialized attribute
declaration pattern. For example:

<define name="base-attribute-extensions" combine="interleave">
 <ref name="myBaseSpecializationAtt-d-attribute"/>
</define>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 163 of 177 Generated 07/14/2015

Attribute declaration pattern
The specialized attribute is declared in a pattern named domainShortName-d-attribute. The attribute
must be defined as optional. For example, the @deliveryTarget specialization of @props is defined as
follows:

<define name="deliveryTargetAtt-d-attribute">
 <optional>
 <attribute name="deliveryTarget"/>
 </optional>
</define>

RELAX NG: Coding requirements for constraint modules

A structural constraint module defines the constraints for a map or topic element type. A domain constraint
module defines the constraints for an element or attribute domain.

All vocabulary and constraint modules must document their @domains attribute contribution. The value of the
contribution is constructed according to the rules found in domains attribute rules and syntax on page 122. The
OASIS grammar files use a <domainsContribution> element to document the contribution; this element is used
to help enable generation of DTD and XSD grammar files. An XML comment or <a:documentation> element can
also be used.

Constraint modules are implemented by importing the constraint module into a document type shell in place of
the module that the constraint modifies. The constraint module itself imports the base module to be constrained;
within the import, the module redefines patterns as needed to implement the constraint.

For example, a constraint module that modifies the <section> element needs to import the base module
topicMod.rng. Within that import, it will constrain the section.content pattern:

<include href="topicMod.rng">
 <define name="section.content">
 <!-- Define constrained model here -->
 </define>
</include>

For a more complete example, see strictTaskbodyConstraintMod.rng, delivered with the DITA 1.3
grammar files.

Because the constraint module imports the module that it modifies, only one constraint module can be used per
vocabulary module (otherwise the module being constrained would be imported multiple times). If multiple
constraints are combined for a single vocabulary module, they must be implemented in one of the following
ways:

• The constraints may be combined into a single module. For example, when combining separate constraints for
<section> and <shortdesc>, a single module may be defined as follows:

<include href="topicMod.rng">
 <define name="section.content">
 <!-- Constrained model for section -->
 </define>
 <define name="shortdesc.content">
 <!-- Constrained model for shortdesc -->
 </define>
</include>

• Constraints may be chained so that each constraint imports another, until the final constraint imports the base
vocabulary module. For example, when combining separate constraints for <section>, <shortdesc>, and
 from the base vocabulary, the <section> constraint can import the <shortdesc> constraint, which in
turn imports the constraint, which finally imports topicMod.rng.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 164 of 177 Generated 07/14/2015

Example: contribution to the @domains attribute for structural constraint module
The following code fragment specifies the contribution to the @domains attribute as (topic task
strictTaskbody-c):

<moduleDesc>
 <!-- ... -->
 <moduleMetadata>
 <!-- ... -->
 <domainsContribution>(topic task strictTaskbody-c)</domainsContribution>
 </moduleMetadata>
</moduleDesc>

Example: contribution to the @domains attribute for domain constraint module
The following code fragment illustrates the domains contribution for a constraint module that restricts the task
requirements domain:

<moduleDesc>
 <!-- ... -->
 <moduleMetadata>
 <!-- ... -->
 <domainsContribution>(topic task taskreq-d requiredReqcondsTaskreq-c)</
domainsContribution>
 </moduleMetadata>
</moduleDesc>

XML Schema coding requirements
This section explains how to implement XML Schema (XSD) based document-type shells, specializations, and
constraints.

XML Schema: Overview and limitations of coding requirements

DITA coding practices for XML Schema rely on the XSD redefine facility in order to implement specializations or
constraints. However, limitations in the redefine facility can present problems for some DITA modules
implemented in XML Schema.

Specializations and constraints in XML Schema are implemented using the XSD <xs:redefine> facility.
However, this facility does not allow sequence groups to be directly constrained. Thus, to support both
specialization and constraints, it might be necessary to refactor content models into named groups that can be
redefined. In order to keep the XSD, RELAX NG, and DTD implementations as consistent as possible, the DITA
Technical Committee only refactored those content models that were required for OASIS-provided grammars, the
strict task body and machinery-industry task. The other DITA content models distributed by OASIS have not
been refactored.

You MAY modify OASIS-provided XSD modules to refactor content models if required by your constraint. You
SHOULD notify the DITA Technical Committee (TC) of your constraint requirements, so the TC can consider
adding the required refactoring to the OASIS-provided XSDs.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 165 of 177 Generated 07/14/2015

XML Schema: Coding requirements for document-type shells

XSD-based document-type shells are organized into sections; each section contains a specific type of declaration.

XSD-based document-type shells use the XML Schema redefine feature (<xs:redefine>) to override base group
definitions for content models and attribute lists. This facility is analogous to the parameter entities that are used
for DTD-based document-type shells. Unlike DTD parameter entities, an <xs:redefine> both includes the XSD
file that it redefines and holds the redefinition that is applied to the groups in the included XSD file. Thus, for
XSD files that define groups, the file can be included using <xs:include> if it is used without modification or
using <xs:redefine> if any of its groups are redefined.

XSD-based document-type shells contain the following sections.

Topic or map domains
For each element or attribute domain that is integrated into the document-type shell, this section uses an
<xs:include> element to include the XSD module for that domain.

For example:

<xs:include schemaLocation="urn:oasis:names:tc:dita:xsd:deliveryTargetAttDomain.xsd:
1.3"/>
<xs:include schemaLocation="urn:oasis:names:tc:dita:xsd:highlightDomain.xsd:1.3"/>
<xs:include schemaLocation="urn:oasis:names:tc:dita:xsd:indexingDomain.xsd:1.3"/>

Group definitions
The group inclusion section contains <xs:include> or <xs:redefine> references for element groups. The
group files define named groups that are used to integrate domain-provided element and attribute types
into base content models. There is one group file for each structural type; domain files can also have group
files.

For both map and topic shells, this section also must include or redefine the following groups; it must also
include the module file for each group:

• Common element group (commonElementGrp.xsd and commonElementMod.xsd)
• Metadata declaration group (metaDeclGrp.xsd and metaDeclMod.xsd)
• Table model group (tblDeclGrp.xsd and tblDeclMod.xsd)

The group files and the module files for base groups can be specified in any order.

For each element extended by one or more domains, the document-type shell must redefine the model
group for the element to a list of alternatives including the literal name of the element and the element
extension model group from each domain that is providing specializations. To integrate a new domain in
the document-type shell, use the schema <xs:redefine> mechanism to import a group definition file
while redefining and extending an element from that group. The model group requires a reference to itself
to extend the base model group.

For each attribute extended by one or more domains, the document-type shell must redefine the attribute
extension model group for the attribute to a list of alternatives including the literal name of the attribute
and the attribute extension model group from each domain that is providing specializations. To integrate a
new attribute domain in the document-type shell, use the schema <xs:redefine> mechanism to import
the commonElementGrp.xsd group file while redefining and extending the base attribute.

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 166 of 177 Generated 07/14/2015

For example, the following portion of a document-type shell includes the common metadata module and
then adds a domain extension of the <metadata> element from the metadata group. It also extends the
@props attribute from the common element module to add the specialized attribute @deliveryTarget.

<xs:include schemaLocation="urn:oasis:names:tc:dita:xsd:metaDeclMod.xsd:1.3"/>
<!-- ... -->
<xs:redefine schemaLocation="urn:oasis:names:tc:dita:xsd:commonElementGrp.xsd:1.3">
 <!-- ...Redefinition of any elements in common module -->
 <xs:attributeGroup name="props-attribute-extensions">
 <xs:attributeGroup ref="props-attribute-extensions"/>
 <xs:attributeGroup ref="deliveryTargetAtt-d-attribute"/>
 </xs:attributeGroup>
</xs:redefine>
<xs:redefine schemaLocation="urn:oasis:names:tc:dita:xsd:metaDeclGrp.xsd:1.3">
 <xs:group name="metadata">
 <xs:choice>
 <xs:group ref="metadata"/>
 <xs:group ref="relmgmt-d-metadata"/>
 </xs:choice>
 </xs:group>
</xs:redefine>>

Module inclusions
The module inclusion section includes the module XSD files for structural types used in the shell. These
must be placed after the group and files and redefinitions.

This section must also include any other module XSD files required by the topic or map types. For
example, if a troubleshooting specialization is specialized from topic but includes elements from task, then
the task structural module must be included in the document shell.

If a structural type is constrained, that constraint will be included rather than the module itself; for
example, in a document-type shell that constrains the task specialization, the task constraint module will
be included rather than the task module.

For example, the following portion of a document-type shell includes the structural modules for topic and
concept:.

<xs:include schemaLocation="urn:oasis:names:tc:dita:xsd:topicMod.xsd:1.3"/>
<xs:include schemaLocation="urn:oasis:names:tc:dita:xsd:conceptMod.xsd:1.3"/>

Domains attribute declaration
The @domains attribute declaration section declares the @domains attribute for the shell. It does this by
redefining the domains-att group, adding one token for each vocabulary and constraint module
integrated by the shell. See domains attribute rules and syntax on page 122 for details on the syntax for
domains tokens.

For example, the following sample defines the domains-att to include the OASIS domains for map
group, indexing, and @deliveryTarget:

<xs:attributeGroup name="domains-att">
 <xs:attribute name="domains" type="xs:string"
 default="(map mapgroup-d) (topic indexing-d) a(props deliveryTarget)"/>
</xs:attributeGroup>

Info-types definition
This section defines whether and how topics can nest by redefining the info-types group. That group is
referenced but undefined in the module files, so it must be defined in the shell. Topic testing can be

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 167 of 177 Generated 07/14/2015

disallowed by setting the info-types group to reference the <no-topic-nesting> element, with the
@maxOccurs and @minOccurs attributes each set to "0".

Optionally, topictype-info-types groups can be redefined to provide more fine grained control of
nesting with specialized topic types. As with domain extensions, this is done by redefining the group
while importing the module that defines the group.

For example, in the concept vocabulary module delivered by OASIS, the concept-info-types group
controls which topics can nest inside the <concept> element. That group is defined as including
<concept> plus the info-types group. The following examples demonstrate how to control topic
nesting within <concept> using a document-type shell.

• To have <concept> only nest itself, the info-types group must be defined so that it does not add any
additional topics:

<xs:group name="info-types">
 <xs:choice>
 <xs:element ref="no-topic-nesting" maxOccurs="0" minOccurs="0"/>
 </xs:choice>
</xs:group>

• In order to turn off topic nesting entirely within <concept>, the concept-info-types group must be
redefined to remove <concept>, and the info-types group must be defined as above:

<xs:group name="info-types">
 <xs:choice>
 <xs:element ref="no-topic-nesting" maxOccurs="0" minOccurs="0"/>
 </xs:choice>
</xs:group>

<xs:redefine schemaLocation="urn:oasis:names:tc:dita:xsd:conceptMod.xsd:1.3" >
 <xs:group name="concept-info-types">
 <xs:choice>
 <xs:group ref="info-types"/>
 </xs:choice>
 </xs:group>
</xs:redefine>

• In order to add <topic> as a nesting topic within <concept>, define info-types to allow any number
of <topic> elements:

<xs:group name="info-types">
 <xs:choice>
 <xs:element ref="topic" maxOccurs="unbounded" minOccurs="0"/>
 </xs:choice>
</xs:group>

• With the preceding example, <concept> is allowed to nest either <concept> or <topic>. In order to
make <topic> the only valid child topic, the concept-info-types must be redefined as follows:

<xs:redefine schemaLocation="urn:oasis:names:tc:dita:xsd:conceptMod.xsd:1.3" >
 <xs:group name="concept-info-types">
 <xs:choice>
 <xs:group ref="info-types"/>
 </xs:choice>
 </xs:group>
</xs:redefine>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 168 of 177 Generated 07/14/2015

XML Schema: Coding requirements for element type declarations

Structural and domain vocabulary modules have the same XSD coding requirements for element type
declarations.

Element definitions
A structural or domain vocabulary module must contain a declaration for each specialized element type named
by the module. While the XSD standard allows content models to refer to undeclared element types, all element
types named in content models within a vocabulary module must have an <xs:element> declaration, either in
the vocabulary module, in a base module from which the vocabulary module is specialized, or in a required
domain module.

Domain modules consist of a single XSD document. Structural modules consist of two modules; one module
contains all element name groups, and the other contains all other declarations for the module.

For each element type that is declared in the vocabulary module, the following set of groups and declarations
must be used to define the content model and attributes for the element type. These groups are typically placed
together within the module for clarity.

• For each element type declared in the vocabulary module there must be an <xs:group> element whose name
is the element type name, and whose one member is a reference to the element type. This element name group
provides a layer of abstraction that facilitates redefinition. A document-type shell can redefine an element
group to add domain-specialized elements or to replace a base element type with one or more specializations
of that type.

• Each element type must have a corresponding content model group named tagname.content. The value of
the group is the complete content model definition; the content model group can be overridden in constraint
modules to further constrain the content model.

• Each element type must have a corresponding attribute group named tagname.attributes. The value of
the group is the complete attribute set for the element type, except for the @class attribute. Like the content
model, this group can be overridden in a constraint module to constrain the attribute set.

• Each element type must have a complex type definition named tagname.class, which references the
tagname.content and tagname.attributes groups.

• Each element type must have an <xs:element> declaration named tagname, that uses as its type the
tagname.class complex type and extends that complex type to add the @class attribute for the element.

For example, the following set of declarations shows each of the required groups and definitions for the
specialized <codeph> element.

<xs:group name="codeph">
 <xs:sequence>
 <xs:choice>
 <xs:element ref="codeph"/>
 </xs:choice>
 </xs:sequence>
</xs:group>

<xs:group name="codeph.content">
 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:group ref="basic.ph.notm"/>
 <xs:group ref="data.elements.incl"/>
 <xs:group ref="draft-comment"/>
 <xs:group ref="foreign.unknown.incl"/>
 <xs:group ref="required-cleanup"/>
 </xs:choice>
 </xs:sequence>
</xs:group>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 169 of 177 Generated 07/14/2015

<xs:attributeGroup name="codeph.attributes">
 <xs:attributeGroup ref="univ-atts"/>
 <xs:attribute name="outputclass" type="xs:string"/>
 <xs:attributeGroup ref="global-atts"/>
</xs:attributeGroup>

<xs:complexType name="codeph.class" mixed="true">
 <xs:sequence>
 <xs:group ref="codeph.content"/>
 </xs:sequence>
 <xs:attributeGroup ref="codeph.attributes"/>
</xs:complexType>

<xs:element name="codeph">
 <xs:annotation>
 <xs:documentation> <!-- documentation for codeph --> </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="codeph.class">
 <xs:attribute ref="class" default="+ topic/ph pr-d/codeph "/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

XML Schema: Coding requirements for structural modules

An XSD structural module declares a top-level map or topic type. It is implemented as a pair of XSD documents,
one that defines groups used to integrate and override the type and one that defines the element types specific to
the type.

All vocabulary and constraint modules must document their @domains attribute contribution. The OASIS
grammar files use a <dita:domainsModule> element to document the contribution; this element is used
consistently to make it easy to find values when creating a document type shell. An XML comment or
<xs:appinfo> element can also be used.

Module files
A structural vocabulary module has two files:

• A module schema document.
• A module group definition schema document.

Required topic and map element attributes
The root element for a structural type must reference the @DITAArchVersion attribute and the @domains attribute.
These attributes give processors a reliable way to check the architecture version and look up the list of domains
available in the document type. The attributes are referenced as in the following example:

<xs:attributeGroup name="concept.attributes">
 <!-- Various other attributes -->
 <xs:attribute ref="ditaarch:DITAArchVersion"/>
 <xs:attributeGroup ref="domains-att"/>
 <xs:attributeGroup ref="global-atts"/>
</xs:attributeGroup>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 170 of 177 Generated 07/14/2015

Controlling nesting in topic types
For topic modules, the last position in the content model is typically a reference to the topictype-info-types
group. Document types shells can control how topics are allowed to nest by redefining the group. If topic nesting
is hard coded in the structural module, and cannot be modified from the document-type shell, the topictype-
info-types group is not needed.

For example, the vocabulary module for the <concept> structural type uses the group concept-info-types;
this group is given a default value, and then referenced from the content model for the <concept> element type:

<xs:group name="concept-info-types">
 <xs:choice>
 <xs:group ref="concept"/>
 <xs:group ref="info-types"/>
 </xs:choice>
</xs:group>

<xs:group name="concept.content">
 <xs:sequence>
 <xs:group ref="title"/>
 <!-- ...other elements, such as shortdesc and body, and then... -->
 <xs:group ref="related-links" minOccurs="0"/>
 <xs:group ref="concept-info-types" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:group>

XML Schema: Coding requirements for attribute domain modules

An attribute domain vocabulary module declares one new attribute specialized from either the @props or @base
attribute.

All vocabulary and constraint modules must document their @domains attribute contribution. The OASIS
grammar files use a <dita:domainsModule> element to document the contribution; this element is used
consistently to make it easy to find values when creating a document type shell. An XML comment or
<xs:appinfo> element can also be used.

An attribute domain consists of one file. The file must have a single attribute group definition that contains the
definition of the attribute itself, where the attribute group is named attnameAtt-d-attribute.

For example, the @deliveryTarget attribute is defined with the following attribute group:

<xs:attributeGroup name="deliveryTargetAtt-d-attribute">
 <xs:attribute name="deliveryTarget" type="xs:string">
 <!-- Documentation for attribute -->
 </xs:attribute>
</xs:attributeGroup>

XML Schema: Coding requirements for constraint modules

A structural constraint module defines the constraints for a map or topic element type. A domain constraint
module defines the constraints for an element or attribute domain.

All vocabulary and constraint modules must document their @domains attribute contribution. The OASIS
grammar files use a <dita:domainsModule> element to document the contribution; this element is used
consistently to make it easy to find values when creating a document type shell. An XML comment or
<xs:appinfo> element can also be used.

For each vocabulary module with a content model or attributes to be constrained, there must be an
<xs:redefine> element that references the vocabulary module. Within the <xs:redefine> element, for each

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 171 of 177 Generated 07/14/2015

element type content model to be constrained, an <xs:group> element is needed with the name
element.content. Also within the <xs:redefine> element, for each attribute set to be constrained, an
<xs:attributeGroup> element is needed with the name element.attributes. The constrained model is
defined inside of the <xs:group> or <xs:attributeGroup>.

Note: This means that when adding a constraint module to an existing document-type shell, you must
remove any <xs:include> elements that refer to the XSD module to which the redefine is applied. For
example, to redefine groups defined in commonElementsMod.xsd, you must remove any <xs:include>
reference to commonElementsMod.xsd.

Because the constraint module includes the module that it modifies, only one constraint module can be used per
vocabulary module (otherwise the module being constrained would be included multiple times). If multiple
constraint modules are needed for a single vocabulary module, they must be combined into a single XSD module.
For example, when combining existing constraint modules for <p> and <div>, a single module must be created
that combines the <xs:group> and <xs:attributeGroup> constraints from existing modules inside a single
<xs:redefine> reference to commonElementsMod.xsd.

When constraining a list of elements provided by a domain, there must be a group that lists the subset of domain
elements in a constraints module. The group name SHOULD be named "qualifierdomain-c-tagname" where qualifier
is a description for the constraint module, domain is the name of the domain, map, or topic being constrained, and
tagname is the name of the extension element being restricted.

Example: Structural constraint module
The following code fragment shows how the <topic> element can be constrained to disallow the <body>
element. This <xs:redefine> element is located in a constraint module that references the file topicMod.xsd,
which means that a document-type shell using this constraint would reference this module instead of
referencing topicMod.xsd (it would not reference both).

<xs:redefine schemaLocation="urn:oasis:names:tc:dita:xsd:topicMod.xsd:1.2">
 <xs:group name="topic.content">
 <xs:sequence>
 <xs:sequence>
 <xs:group ref="title"/>
 <xs:group ref="titlealts" minOccurs="0"/>
 <xs:choice minOccurs="1" >
 <xs:group ref="shortdesc" />
 <xs:group ref="abstract" />
 </xs:choice>
 <xs:group ref="prolog" minOccurs="0"/>
 <!--<xs:group ref="body" minOccurs="0"/>-->
 <xs:group ref="related-links" minOccurs="0"/>
 <xs:group ref="topic-info-types" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:sequence>
 </xs:group>
</xs:redefine>

For a more complete example, see strictTaskbodyConstraintMod.xsd, delivered with the DITA 1.3
grammar files.

Example: Domain constraint module
The following code fragment shows how the highlighting domain can be constrained to limit the elements that
are available in the domain to only and <i>.

<xs:group name="basicHighlight-c-ph">
 <xs:choice>
 <xs:element ref="b"/>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 172 of 177 Generated 07/14/2015

 <xs:element ref="i"/>
 </xs:choice>
</xs:group>

Achitectural specification: Base

Eberlein Consulting LLC
Confidential Page 173 of 177 Generated 07/14/2015

Index

A
addressing mechanisms

effect on conref resolution 83
same-topic fragment identifier

authoring responsibility 83
effect on conref resolution 83

attributes
conditional processing 38

B
base sort phrase 114
bi-directional text 112
binding controlled values 28
branch filtering 91, 92

C
@cascade attribute

example 20
cascading

map-to-map
attributes 46
exceptions 48
metadata elements 47

cascading, definition 41
classifying content 27
coding requirements

DTD
constraints 152

RELAX NG
constraints 164

XSD
constraints 171

collation 114
conditional processing

attributes 38
conref

combining attributes 82
constraint modules and compatibility 133
determining validity 113
overview 81
processing expectations 82
pull 81
push 81
range 81
validity of 82
xrefs and conref within a conref 83

constraints
compatibility checking 133
compatibility enforcement 133
conref compatibility 133
design and implementation rules 132
DTD

XSD (continued)
DTD (continued)

coding requirements 152
integrating into document type shells 152

examples
applying multiple constraints 141
redefining the content model 136
replacing base element with domain extensions 140
restricting attributes for an element 137
restricting content model for a domain 139

overview 131
processing and interoperability 133
RELAX NG

coding requirements 164
integrating into document type shells 164

weak and strong 133
XSD

coding requirements 171
examples 171
integrating into document-type shells 171

content references, See conref
controlled values

binding to attributes 28
classifying content for flagging and filtering 27
defining a taxonomy 31
definition of 27
overview 27
precedence rules 28
validation of 28, 29

conventions
file extensions 10

copied elements
determining validity 113

core concepts
addressing 9
conditional processing 9
configuration 9
constraints 9
content reuse 9
information typing 9
maps 9
specialization 9
topics 9

cross references
resolving within conrefs 83

D
definitions

base sort phrase 114
cascading 41
controlled values 27

@deliveryTarget
defining values for 28

@dir attribute 112

 | Index | 174

DITA maps, See maps
-dita-use-conref-target 82
DITAVAL

processing expectations 29
domain constraint modules

DTD
coding requirements 152

RELAX NG
coding requirements 164

XSD
coding requirements 171
examples 171

@domains attribute
constraint compatibility 133

E
effective sort phrase 114
examples

constraint modules and conref compatibility 133
constraints

applying multiple constraints 141
redefining the content model 136
replacing base element with domain extensions 140
restricting attributes for an element 137
restricting content model for a domain 139

@domains attribute
constraint contribution to 141

effective sort phrase 114
maps

@collection-type and @linking in relationship
tables 20
relationship tables 20
use of @cascade attribute 20

processing
filtering or flagging a hierarchy 29, 32
xrefs and conref within a conref 83

subjectScheme
binding controlled values 28
defining a taxonomy 31
defining values for @deliveryTarget 36
extending a subject scheme 34, 35
filtering or flagging a hierarchy 29, 32
providing a subject-definition resource 27

@xml:lang 110

F
file extensions

conditional processing profiles 10
DITAVAL 10
maps 10
topics 10

file names
DTD

domain constraint modules 152
structural constraint modules 152

RELAX NG
domain constraint modules 164

XSD (continued)
RELAX NG (continued)

structural constraint modules 164
XSD

domain constraint modules 171
structural contraint modules 171

filtering
attributes 38

filtering and flagging
classifying content for 27
processing expectations 29

flagging
attributes 38

formatting
processing expectations 11

formatting expectations
@xml:lang 110

G
generalization

conref resolution 82
grouping 114

I
<index-sort-as> 114
information typing

benefits 14
history 14
overview 14

interoperability
constraints 133

K
key reference

conref resolution, effect on 83
key scopes

conref resolution, effect on 83

M
map-to-map cascading

attributes 46
exceptons 48
metadata elements 47

maps
attributes

shared with topics 20
unique to maps 20

elements 18
examples

relationship tables 20
overview 17
purposes 17
subject scheme, See subjectScheme
use of @xml:lang 110

 | Index | 175

metadata
cascading 37
conditional processing attributes 38
elements 37

N
nested topics 12, 15
notation

attribute types 5
element types 5

O
outputclass attribute

example 38
overview 38

P
precedence rules

combining attributes on conrefs 82
controlled values 28

processing
conrefs 82
controlled values 29
examples

filtering or flagging a hierarchy 29, 32
xrefs and conref within a conref 83

sorting 114
xrefs and conref within a conref 83

processing expectations
attribute values, hierarchies of 29
base sort phrase, documentation of 114
bi-directional text 112
checking of constraint compatibility 133
combining attributes on conrefs 82
conrefs, validity of 82
controlled values 27
DITAVAL 29
enforcing constraint compatibility 133
filtering and flagging 29
formatting 11
generalization during conref resolution 82
parameters for referencing subjectScheme 27
subject-definition resources 27
validating controlled values 28
validity of copied elements 113
@xml:lang 110
xrefs and conref within a conref 83

R
relationship tables

examples 20

S
same-topic fragment identifier

authoring responsibility 83
effect on conref resolution 83

single sourcing 11
<sort-as> 114
sorting 114
specialization

best practices 14
overview 118

strong constraints 133
structural constraint modules

DTD
coding requirements 152

RELAX NG
coding requirements 164

XSD
coding requirements 171
examples 171

subject-definition resources 27
subjectScheme

binding controlled values 28
defining a taxonomy 31
defining controlled values 27
examples

binding controlled values 28
defining a taxonomy 31
defining values for @deliveryTarget 36
extending a subject scheme 34, 35
filtering or flagging a hierarchy 29, 32
providing a subject-definition resource 27

extending 27
overview 27

T
taxonomy

defining 31
terminology

addressing and linking 5
basic concepts 5
modules 5
non-normative information 5
normative information 5
specialization 5

topics
benefits 12
content 16
generic topic type 14
information typing 14
overview 12
reuse 12
structure 15
use of @xml:lang 110

translation
@xml:lang 110

 | Index | 176

U
use by reference, See conref

V
validating controlled values 28, 29

W
weak constraints 133

X
@xml:lang attribute

best practices 110
default values 110
example 110
overview 110
use with @conref or @conkeyref 110

xrefs, See cross references

 | Index | 177

	Contents
	Introduction to DITA
	DITA terminology and notation
	Basic concepts
	File extensions
	Producing different deliverables from a single source

	DITA markup
	DITA topics
	The topic as the basic unit of information
	The benefits of a topic-based architecture
	Disciplined, topic-oriented writing
	Information typing
	Generic topics
	Topic structure
	Topic content

	DITA maps
	Definition of DITA maps
	Purpose of DITA maps
	DITA map elements
	DITA map attributes
	Examples of DITA maps
	Example: DITA map that references a subordinate map
	Example: DITA map with a simple relationship table
	Example: How the @collection-type and @linking attributes determine links
	Example: How the @cascade attribute functions

	Subject scheme maps and their usage
	Subject scheme maps
	Defining controlled values for attributes
	Binding controlled values to an attribute
	Processing controlled attribute values
	Extending subject schemes
	Scaling a list of controlled values to define a taxonomy
	Classification maps
	Examples of subject scheme maps
	Example: How hierarchies defined in a subject scheme map affect filtering
	Example: Extending a subject scheme
	Example: Extending a subject scheme upwards
	Example: Defining values for @deliveryTarget

	DITA metadata
	Metadata elements
	Metadata attributes
	Conditional processing attributes
	Translation and localization attributes
	Architectural attributes

	Metadata in maps and topics
	Cascading of metadata attributes in a DITA map
	Reconciling topic and map metadata elements
	Map-to-map cascading behaviors
	Cascading of attributes from map to map
	Cascading of metadata elements from map to map
	Cascading of roles from map to map

	Context hooks and window metadata for user assistance

	DITA addressing
	ID attribute
	DITA linking
	URI-based (direct) addressing
	Indirect key-based addressing
	Core concepts for working with keys
	Key scopes
	Using keys for addressing
	Addressing keys across scopes
	Cross-deliverable addressing and linking
	Processing key references
	Processing key references for navigation links and images
	Processing key references on <topicref> elements
	Processing key references to generate text or link text
	Examples of keys
	Examples: Key definition
	Examples: Key definitions for variable text
	Example: Scoped key definitions for variable text
	Example: Duplicate key definitions within a single map
	Example: Duplicate key definitions across multiple maps
	Example: Key definition with key reference
	Example: References to scoped keys
	Example: Key definitions in nested key scopes
	Example: Link redirection
	Example: Link modification or removal
	Example: Links from <term> or <keyword> elements
	Example: conref redirection
	Example: Key scopes and omnibus publications
	Example: How key scopes affect key precedence
	Example: Keys and collaboration

	DITA processing
	Navigation
	Table of contents
	Indexes

	Content reference (conref)
	Conref overview
	Processing conrefs
	Processing attributes when resolving conrefs
	Processing xrefs and conrefs within a conref

	Conditional processing (profiling)
	Conditional processing values and groups
	Filtering
	Flagging
	Conditional processing to generate multiple deliverable types
	Examples of conditional processing
	Example: Setting conditional processing values and groups
	Example: Filtering and flagging topic content

	Branch filtering
	Overview of branch filtering
	Branch filtering: Single condition set for a branch
	Branch filtering: Multiple condition sets for a branch
	Branch filtering: Impact on resource and key names
	Branch filtering: Implications of processing order
	Examples of branch filtering
	Example: Single <ditavalref> on a branch
	Example: Multiple <ditavalref> elements on a branch
	Example: Single <ditavalref> as a child of <map>
	Example: Single <ditavalref> in a reference to a map
	Example: Multiple <ditavalref> elements as children of <map> in a root map
	Example: Multiple <ditavalref> elements in a reference to a map
	Example: <ditavalref> within a branch that already uses <ditavalref>
	Example: <ditavalref> error conditions

	Chunking
	Using the @chunk attribute
	Chunking examples

	Translation and localization
	The @xml:lang attribute
	The @dir attribute

	Processing documents with different values of the @domains attribute
	Sorting

	Configuration, specialization, generalization, and constraints
	Overview of DITA extension facilities
	Configuration
	Overview of document-type shells
	Rules for document-type shells
	Equivalence of document-type shells
	Conformance of document-type shells

	Specialization
	Overview of specialization
	Modularization
	Vocabulary modules
	Specialization rules for element types
	Specialization rules for attributes
	@class attribute rules and syntax
	@domains attribute rules and syntax
	Specializing to include non-DITA content
	Sharing elements across specializations

	Generalization
	Overview of generalization
	Element generalization
	Processor expectations when generalizing elements
	Attribute generalization
	Generalization with cross-specialization dependencies

	Constraints
	Overview of constraints
	Constraint rules
	Constraints, processing, and interoperability
	Weak and strong constraints
	Conref compatibility with constraints
	Examples: Constraints
	Example: Redefine the content model for the <topic> element
	Example: Constrain attributes for the <section> element
	Example: Constrain a domain module
	Example: Replace a base element with the domain extensions
	Example: Apply multiple constraints to a single document-type shell

	Coding practices for DITA grammar files
	Recognized XML-document grammar mechanisms
	Normative versions of DITA grammar files
	DTD coding requirements
	DTD: Overview of coding requirements
	DTD: Coding requirements for document-type shells
	DTD: Coding requirements for element type declarations
	DTD: Coding requirements for structural modules
	DTD: Coding requirements for element domain modules
	DTD: Coding requirements for attribute domain modules
	DTD: Coding requirements for constraint modules

	RELAX NG coding requirements
	RELAX NG: Overview of coding requirements
	RELAX NG: Coding requirements for document-type shells
	RELAX NG: Coding requirements for element type declarations
	RELAX NG: Coding requirements for structural modules
	RELAX NG: Coding requirements for element domain modules
	RELAX NG: Coding requirements for attribute domain modules
	RELAX NG: Coding requirements for constraint modules

	XML Schema coding requirements
	XML Schema: Overview and limitations of coding requirements
	XML Schema: Coding requirements for document-type shells
	XML Schema: Coding requirements for element type declarations
	XML Schema: Coding requirements for structural modules
	XML Schema: Coding requirements for attribute domain modules
	XML Schema: Coding requirements for constraint modules

	Index

