
 | Stage two: #33 Remove @copy-to | 1

Stage two: #33 Remove @copy-to

Remove the @copy-to attribute.

Date and version information

Date that this feature proposal was completed 25 Jan 2021

Champion of the proposal Eliot Kimber, Individual member

Links to any previous versions of the proposal 05 October 2019
26 October 2020

Links to minutes where this proposal was discussed at
stage 1 and moved to stage 2

30 May 2017

Reviewers for Stage 2 proposal Chris Nitchie, Oberon Technologies
Robert Anderson IBM
Kris Eberlein, Eberlein Consulting
Nancy Harrison, Infobridge Solutions

Links to e-mail discussion that resulted in new
versions of the proposal

N/A

Link to the GitHub issue https://github.com/oasis-tcs/dita/issues/33https://
github.com/oasis-tcs/dita/issues/33

Original requirement or use case

From the minutes linked to above, Chris Nitchie is recorded as saying:

The copy-to @ assumes certain things about the way processing is done, specifically the dita-ot way, and
with key-scopes that's the wrong way. We should find some other way to address those needs and remove
copy-to.

Use cases

All of the following requirements, except for the last one, replacement of short descriptions, fall into the realm of
delivery processing. While valid, they are outside the scope of what the DITA specification can mandate. In particular,
the relationship between DITA source files and anything in any kind of deliverable is entirely up to the processor to
determine.

The imposition of short descriptions was never implemented in DITA Open Toolkit and therefore was almost certainly
never used. In any case, it is an edge case that can be satisfied through the use of scoped keys for text variables or
content references (for example, authors could use conref push to replace a topic's short description).

The requirements to which @copy-to was a response include:

create links to specific uses of topics Without keys (DITA 1.1 and earlier), the only way to link
to a topic was via direct URI reference and the only way
to link to a specific use of a topic was to give that use of
the topic an different effective source URI, which is what
@copy-to does, although weakly (because it cannot,
for example, distinguish between two different uses of
the same topic that happen to define the same effective
source URI, something you can do with scoped keys).

https://lists.oasis-open.org/archives/dita/201910/msg00033.html
https://www.oasis-open.org/apps/org/workgroup/dita/download.php/67886/Issue33-DeprecateOrRemoveCopyTo.pdf
https://lists.oasis-open.org/archives/dita/201706/msg00013.html
https://github.com/oasis-tcs/dita/issues/33
https://github.com/oasis-tcs/dita/issues/33

 | Stage two: #33 Remove @copy-to | 2

With DITA 1.3 keys and key scopes this requirement can
be met completely by the use of keys and references to
keys in place of direct URI references to source topics.
(While keys in DITA 1.2 satisfied this requirement for
linking to uses of topics from within the same effective
root map, it did not satisfy it for references to topics as
used in other effective root maps. Keyscopes satisfy the
requirement for linking to uses of topics in the context of
other root maps.)

control how result artifacts are produced For multi-part deliverables (i.e., HTML), a topic that
is used multiple times can result in either multiple
deliverable artifacts (multiple HTML files) or a single
artifact. This choice could be made on a per-topic basis,
on a per-use basis, or as a matter of deliverable style.

Before the addition of DITA Open Toolkit's "ensure
unique" option for HTML-based results, @copy-to
provided a way to determine whether a given topic
resulted in a single HTML result or in multiple results: if
@copy-to was not specified then DITA Open Toolkit
produced a single result HTML file to which all uses
of the topic pointed. While keys enable unambiguous
references to specific uses of topics they do not, by
themselves, provide a way to indicate the deliverable
intent for re-used topics.

determine the anchors used in a deliverable Most deliverables includes anchors that can serve as
the targets of links to those deliverables. For many
deliverables the anchors should be consistent across
different versions in time of the same deliverable. This
requires a way to determine what the anchors will
be in a given deliverable produced from a given root
map. For example, having published a set of HTML
files for a publication and knowing that readers have
created links (e.g., bookmarks) to specific HTML files
in that publication, when the publication is updated and
republished the filenames of the HTML files must be
preserved as much as possible, even if the source file
URIs have changed, for example because the source
was moved into a CCMS that imposes its own file
naming scheme or because the source files were renamed
and reorganized to reflect some new general source
organization practice.

The @copy-to attribute provided one way to control
the values of some anchors when the deliverable
processor used the effective names of topics (as specified
by @copy-to) to construct result anchors (i.e., the
names of HTML files generated from the topics).

treat topicheads as title-only topics For some deliverable types, such as HTML as produced
by DITA Open Toolkit, the HTML result for topicheads
can be different than for a reference to the equivalent
title-only topic. For example, a topichead might produce
only a table of contents entry but not a separate HTML
result file that then has links to the child topics of the
topoichead, as would be produced for a title-only topic.

 | Stage two: #33 Remove @copy-to | 3

DITA 1.2 added a specific meaning to the use of
@copy-to with @chunk on topicheads in an attempt to
satisfy this requirement.

impose a short description onto the referenced topic If a topicref that includes a short description also
specifies @copy-to the rendered topic should reflect
the imposed short description.

As something that is clearly processor-specific and is a weak solution at best to the requirements it was trying to
satisfy, @copy-to is not an appropriate feature of the DITA standard and should be removed.

Proposed solution

• Remove the @copy-to attribute.
• The processing requirements for @chunk related to the presence of @copy-to must be removed or redefined

to reflect the appropriate mechanism, if any. This should be addressed in the separate chunking rework proposal.
It is likely that the language added in DITA 1.2 around the implications of @copy-to on topic heads and the
implication for the generation of title-only topics was a Bad Idea and should simply be removed from DITA 2.0.

• Highlight the use of the <resourceid> element as a general facility for associating deliverable-specific anchors
with topics and uses of topics.

Add new attribute @appid-role that indicates the role the resource ID is playing for the associated deliverable
application. The value of @appid-role is a single name token. The set of values is not constrained.

The TC-defined values are:

deliverable-anchor The resource ID is intended to contribute to the
effective anchor URI of the resource as delivered in
the deliverables to which the resource ID applies,
i.e., base part of HTML filename, URI fragment
identifier, PDF anchor name, etc. When @appid-
role is "deliverable-anchor" processors that accept
the <resourceid> element as applying to them
MUST use the @appid value when constructing the
delivery URI of the resource. The details of how a
processor uses @appid values in the construction of
URIs is processor dependent. However the resulting
URI SHOULD reflect as much as possible the original
@appid in such a way that one can reasonably go
from the URI to the <resourceid> element that
may have contributed to it.

The values used for @appid when @appid-role
is "deliverable-anchor" SHOULD be
limited to values that can contribute to any of the
following URI components:

• the last path component of any URI path
• fragment identifier
• query parameters.

In particular, @appid values SHOULD NOT contain
multiple URI path components.

@appid values should avoid specifying deliverable-
specific aspects of URIs such as filename extensions.
For example, for a targeted deliverable that produces
HTML files as its primary deliverable component,
@appid values should specify only the base filename

 | Stage two: #33 Remove @copy-to | 4

for the delivered files, i.e., "installation-guide" not
"installation-guide.html".

Note: In the general case, map authors cannot
know or predict the full URIs of deliverables
produced by a given deliverable producer.
Therefore, deliverable-specific values such
as relative paths ("../foo/bar") and filenames
with extensions are very likely to be incorrect
in the final deliverable. It is ultimately up to
processors to manage the URI structure of the
deliverable. There is no necessary relationship
between either the source organization of
topics and maps or the map-defined hierarchy
of topics and the organizational structure
of a given deliverable. Thus, making any
assumption, as a map author, about where a
given deliverable component will be relative
to other components, especially in the face of
reuse of submaps, is risky. Even if the targeted
processor produces a certain result today it
may not do so tomorrow. Thus it is prudent to
keep @appid values as general-purpose as
possible.

Processors determine which <resourceid>
elements apply to them, normally by examining the
@appname value, if present. Processors are free
to assume that a <resourceid> element with
no @appname attribute applies to them. Normal
filtering can also be used to control which resource
IDs are used for a given deliverable, i.e., filtering on
@deliveryTarget.

[For the Processing Expectations section of the
<resourceid> reference entry:]

The details of the construction of deliverable URIs
from @appid values is necessarily processor specific
but the process SHOULD result in URIs that are clearly
derived from the @appid value and that are reliably
predictable to the degree they can be. Processors MAY
add generated values, for example, numbers or other
distinguishing values, to make URIs unique where
the same @appid value is specified for two different
resources.

Processors can use key scopes, along with @appid,
to determine deliverable URI values where the same
topicref is used in two or more key scopes.

To the greatest degree possible, processors SHOULD
ensure that a resource ID used for the same resource
and produced as the same deliverable type from the
same DITA source, filtering conditions, and processor
settings, will result in the same deliverable URI. This
should always be true for the same version in time of
the DITA source and should be true for closely-related
different versions in time of the same source. For

 | Stage two: #33 Remove @copy-to | 5

example, producing a deliverable from a new version
of the DITA source where the source was revised but
large structural changes were not made should result in
the same deliverable URIs as for the previous version if
at all possible.

The intent of these rules is to encourage the stability
of deliverable URIs over time as well as to make it
possible, if not easy, to correlate URIs in deliverables
back to the resource IDs from which they were derived.

content-sensitive-help The resource ID represents a contextual help resource
as it is known by the system to which the help applies.
This is the implicit meaning of @appid-role.

The value "deliverable-anchor" makes the intended use of the resource ID clear and is intended to distinguish
resource IDs that are replacing @copy-to from resource IDs that are intended for use with contextual help, in
particular, existing <resourceid> elements that do not have a distinguishing @appname value.

Observe that normal filtering can be used with the @deliveryTarget attribute to author deliverable-specific
<resourceid> elements without depending on @appname, which might be a more convenient or more
interchangeable way to associate resource IDs with specific deliverable types. If, after applying any filtering and
conref resolution, there are two or more effective <resourceid> elements with the same @appname value
processors SHOULD use the first in document order and MAY use the others when it is appropriate to do so for
a given deliverable type. Processors that only use the first of multiple applicable <resourceid> elements
SHOULD report the presence of unused <resourceid> elements.

For example, in an HTML deliverable, it may or may not make sense to generate multiple HTML files
from a single referenced topic when there are multiple <resourceid> elements that apply to the HTML
deliverable application, depending on the design of the HTML deliverable, the intent of the authors, etc. Multiple
<resourceids> might be used to provide aliases for previously-published versions of topics or it might be an
error on the part of the map author. Rather than producing multiple literal HTML result files, a deliverable might
generate a data set that the web server uses to map URLs for different @appid values to the single HTML file
actually delivered.

Add discussion to the <resourceid> element reference entry for this use of <resourceid> as distinct from
the use of <resourceid> specifically for help delivery, emphasizing the general utility of <resourceid> for
defining anchors associated with uses of topics or with topics without regard to use context.

Benefits

Who will benefit from this feature? • Tool vendors who no longer need to account for the
effect of @copy-to.

• Authors who no longer need to use @copy-to
simply to achieve a processor-specific, deliverable-
specific result.

What is the expected benefit? • Simplification of the DITA specification by removing
a problematic and redundant feature.

• Providing, through guidance to implementors, richer
and more consistent facilities for managing the
anchors in deliverables generated from DITA source.

How many people probably will make use of this
feature?

The copy-to feature is widely used and the need
to control deliverable-specific anchors is a general
requirement, so likely a significant fraction of the DITA
user community.

 | Stage two: #33 Remove @copy-to | 6

How much of a positive impact is expected for the
users who will make use of the feature?

This should be a significant positive impact for DITA
users who currently depend on the use of @copy-to
or otherwise struggle to manage the anchors in their
generated deliverables.

This change does require processors to provide new
features that address the requirements previously
addressed by @copy-to.

Technical requirements

This proposal involves the following changes:

Remove the declaration of the @copy-to attribute from the following groups:

• topichead.attributes (mapGroupDomain.rng)
• anchorref.attributes (mapGroupDomain.rng)
• mapref.attributes (mapGroupDomain.rng)
• keydef.attributes (mapGroupDomain.rng)
• topicref.attributes (mapMod.rng)

Processing impact The removal of @copy-to should not require a change
to any processor

Processors that currently handle @copy-to can remove
or disable that code if desired.

Processors will need to add new features to enable
appropriate anchor generation based on the use of
<resourceid>. They may also provide additional
features for using keys or other author-provided hints for
determining deliverable URIs.

Overall usability Documents that currently use @copy-to will need to
be migrated to replace @copy-to with the appropriate
replacement, i.e., the use of <resourceid> values for
each use of a topic where @copy-to was previously
used to distinguish different uses of the topic and the use
of keys and key references to topics for which there are
direct URI references to the effective source file defined
by @copy-to.

Backwards compatibility

DITA 2.0 is the first DITA release that is open to changes affecting backwards compatibility. To help highlight any
impact, does this proposal involve any of the following?

Was this change previously announced in an earlier
version of DITA?

No. The @copy-to attribute was not marked as
"deprecated" in DITA 1.x.

Removing a document type that was shipped in DITA
1.3?

No.

Removing a domain that was shipped in DITA 1.3? No.

Removing a domain from a document type shell was
shipped in DITA 1.3?

No.

 | Stage two: #33 Remove @copy-to | 7

Removing or renaming an element that was shipped
in DITA 1.3?

No.

Removing or renaming an attribute that was shipped
in DITA 1.3?

Yes: @copy-to.

Changing the meaning of an element or attribute in a
way that would disallow existing usage?

No.

Changing a content model by removing something
that was previously allowed, or by requiring
something that was not?

No.

Changing specialization ancestry? No.

Removing or replacing a processing feature that was
defined in DITA 1.3?

This change removes the ability to directly define the
effective filename of a referenced topic, replacing it with
the use of <resourceid> values where appropriate
or necessary (for example, to determine the filename of
HTML files resulting from referenced topics).

Removing the current (likely unused) ability to impose
short descriptions onto effective copies of topics.

Are element or attribute groups being renamed or
shuffled?

No.

Migration plan

If the answer to any question in the previous section is "yes":

Might any existing documents need to be migrated? Maps that use @copy-to will need to be migrated.
Migration actions may include:

• The @copy-to attributes must be removed.
• Topicrefs that use @copy-to will likely need to

add one or more <resourceid> elements with an
@appid-role of "deliverable-anchor".

Alternatively, the topic to which the @copy-
to applied could be literally copied in the source
repository and the topicref updated to refer to the new
copy. This would allow existing direct URI references
to the @copy-to value to continue to work as they
have.

• For uses of topics that are targets of direct URI cross
references or content references add one or more
keys to the topic reference and replace the direct URI
references with references to the new keys.

• Add <resourceid> elements to topic references
or to topics in order to assign deliverable anchors
to the uses of a topic (when used within topic
references) or to a topic without regard to use context
(when used within a topic's prolog).

Might any existing processors or implementations
need to change their expectations?

Processors that depend on or expect the use of @copy-
to, for example to signal the generation of distinct
artifacts from that use of a topic, will need to implement
the new @appid-role attribute..

 | Stage two: #33 Remove @copy-to | 8

Might any existing specialization or constraint
modules need to be migrated?

Existing specialization or constrain modules that declare
the @copy-to attribute will need to remove the
attribute declaration.

Specialization and constraint modules that extend or
constrain <resourceid> may need to be updated to
reflect the new @appid-role attribute.

Costs

Outline the impact (time and effort) of the feature on the following groups.

Maintainers of the grammar files Add declaration for @appid-role attribute on
<resourceid>.

Editors of the DITA specification • How many new topics will be required? At least one
topic to document the new processing expectations.
Possibly more for an explanatory appendix.

• Which existing topics will need to be edited?

Eight topics in the architecture spec:

• chunkingdetails.dita has rules involving
@copy-to in the discussion of rules for
chunking. To the degree that these rules survive
the separate chunking rework, this topic will need
to be updated to remove references to @copy-
to.

• chunkingexamples.dita examples include
those with @copy-to. They will need to be
reworked as appropriate.

• ditamap-attributes.dita has a definition
of the @copy-to attribute. It will need to be
removed.

• dtd-coding-element-types.dita
and reconciling-topic-and-map-
metadata.dita show example attribute list
declarations that includes @copy-to.

• metadata-in-maps-and-topics.dita
has a statement about maps being allowed to
(MAY) override topic short descriptions if
@copy-to is specified. Remove this language.

• processing-key-references-
general.dita mentions @copy-to under
the section title "Reusing a topic in multiple
key scopes". This statement needs to be revised
to remove mention of @copy-to. May be
appropriate or necessary to add discussion of
<resourceid>.

• reconciling-topic-and-map-
metadata.dita has an entry for
<shortdesc> that refers to the same
implication for shortdesc replacement when
@copy-to is specified similar to the statement in

 | Stage two: #33 Remove @copy-to | 9

metadata-in-maps-and-topics.dita.
Remove this language.

Six topics in the language reference (not counting
topics that reflect generated attribute lists):

• dvrResourcePrefix.dita and
dvrResourceSuffix.dita use the reusable
phrase "ditavalref-copyto" from conref-
file.dita. The statement is not relevant to
these elements with the removal of @copy-
to. However, it is probably appropriate to say
something about how prefix and suffix can
affect anchor generation (namely, that the prefix
and suffix should be used as appropriate when
constructing deliverable anchors). These topics
also refer to the renaming rules for @copy-to.

• topicrefElementAttributes.dita
defines the @copy-to attribute.

• abstract.dita refers to the potential for
@copy-to to impose a short description.

• shortdesc.dita refers to the implication
for @copy-to on the imposition of short
descriptions.

• resourceid.dita to add additional
discussion on the use of <resourceid> as a
general anchor-defining facility and to add new
@appid-role attribute, including processing
expectations.

The non-normative appendix
interoperability-considerations.dita
has a section on the implications for @copy-to.
That section can be removed.

• Will the feature require substantial changes to the
information architecture of the DITA specification? If
so, what?

No substantial change.
• If there is new terminology, is it likely to conflict with

any usage of those terms in the existing specification?

No new terminology.

Vendors of tools Tool vendors will need to adjust their processors to
not depend on the use of @copy-to andprovide
additional features that give users the appropriate control
over deliverable anchors, including support for the
"deliverable-anchor" value of @appid-role.

In particular, processors will almost certainly need
to provide new features by which their deliverable
processes can be configured and controlled to do the
following:

• Produce deliverable anchors that are consistent for
deliverables generated from different versions in
time of the same root map (i.e., consistent HTML

 | Stage two: #33 Remove @copy-to | 10

filenames in HTML-based deliverables, consistent
anchors in PDF documents, etc.)

• Produce multiple or single deliverable artifacts
for multiple uses of a given topic. This could be a
global setting (such as DITA Open Toolkit's "ensure
unique" runtime option), could be based on some
convention applied to the use of key scopes, could
use private metadata set on topicrefs or topics,
or some processor-specific configuration facility
separate from the DITA source.

• Control how multi-part deliverables handle
topicheads: as navigation-only or as though they were
title-only topics. Note that in monolithic deliverables
such as PDF there is normally no useful presentation
distinction between topicheads and title-only topics
because both should contribute to the titled hierarchy
reflected in the main content flow of the deliverable.

• Implement the use of <resourceid> with an
@appid-role of "delivable-uri" to determine
deliverable URIs.

DITA community-at-large • Will this feature add to the perception that DITA is
becoming too complex?

Since we are removing a confusing attribute, it should
reduce the perceived complexity for people that do
not use @copy-to today. For users that do use
@copy-to it is probably no net change in perceived
complexity.

• Will it be simple for end users to understand?

Hard to say as the implications of reuse are always
challenging and this change exposes some inherent
challenges around managing references to and
anchors for reused content. The challenges have
always been present (they are inherent in any system
that provides DITA's level of reuse) but have not
always been obvious.

• If the feature breaks backwards compatibility, how
many documents are likely to be affected, and what is
the cost of migration?

There are probably a fairly large number of
documents that use @copy-to. They will all need
to be migrated. In the simple case the migration is
a simple use of the @copy-to value as a @keys
value with a corresponding change to any references
to the topic or to simply copy the topics to which
@copy-to was applied and update the topicrefs to
use those new copies. Some migration scenarios will
be more involved, but in those cases it is likely that a
deeper consideration of the information architecture
was required in any case.

Alternatively, topics to which @copy-to is applied
can simply be literally copied to the effective URIs
defined by the @copy-to values. This results in

 | Stage two: #33 Remove @copy-to | 11

content duplication but avoids any need to modify
direct URI references to the topics at their @copy-
to-defined URIs. The duplication can be resolved by
using content references to factor out either common
content or unique content such that resulting set of
topics reflect the minimal practical duplication of
content.

Likewise, @copy-to values can be moved to
<resourceid> elements where the @copy-to
value is used as the @appid value and the @appid-
role value is "deliverable-anchor".

• Because it will be up to deliverable-producing tools
to add new features that satisfy the requirements
@copy-to addressed, users will need to upgrade
their tools when those tools implement the features
they need. However, simply moving to DITA 2.x will
require upgrading tools so the effect of this need to
upgrade should be part of the larger general cost of
moving to DITA 2.x.

• Users that today depend on the use of @copy-to
to meet specific deliverable requirements will need
to understand how to meet those requirements using
whatever @copy-to replacing features their tools
provide. For many users this will likely involve
the use of <resourceid> elements or a more
sophisticated use of keys or simply a use of keys
where they were not using keys before. For some
users it may require the use of key scopes or a more
sophisticated use of key scopes (for example, adding
key scopes to ensure that appropriately-distinct
deliverable artifacts are produced where key scopes
where not previously required simply to ensure key
uniqueness or to provide use-specific values for
keys).

Producing migration instructions or tools • How extensive will migration instructions be, if it
is integrated into an overall 1.3 → 2.0 migration
publication or white paper?

Migration instructions should be fairly short, as
evidenced above. They can be included in a migration
whitepaper.

• Will this require an independent white paper or other
publication to provide migration details?

Yes. A committee note that discusses the
requirements on processors to provide mechanisms
for managing the mapping from source components

 | Stage two: #33 Remove @copy-to | 12

to deliverable artifacts is needed. Such a note should
do the following:

• Outline the use cases for which people are using
@copy-to.

• Examine samples of DITA markup that uses
@copy-to and suggest alternatives.

• Be clear about the use cases that cannot be met
currently.

• Do migration tools need to be created before this
change can be made? If so, how complex will those
tools be to create and to use?

No.

Examples

A general requirement for DITA processors that produce deliverables (HTML, PDF, online help, etc.) is to provide a
reliable way to map from aspects of the DITA source to "anchors" in a deliverable generated from the source, where
by "anchor" is meant any uniquely-identified thing in the deliverable that can be linked to in some way. Types of
anchors include HTML filenames, IDs on elements in HTML, named anchors in PDF, and help IDs. An obvious
use of this is the generation of HTML for a publication: once published to the web, users may bookmark specific
HTML pages or even specific HTML elements with @id values. If the HTML filenames or ID values change when
the HTML is republished it can be very disruptive to readers who have previously bookmarked those pages. Thus
the processor that produces the HTML should do its best to consistently generate result filenames and ID values. The
@copy-to attribute was an early attempt to satisfy this requirement.

The relationship between any aspect of the DITA source and the anchors in any deliverable generated from that source
is entirely processor dependent. While keys provide a good base for generating anchors (because they have precise
uniqueness rules and are controlled entirely by the map author) they are only one of many possible ways of generating
reliable deliverable anchors and may not be the easiest to understand or use for this purpose. The <resourceid>
element provides a direct and more-obvious way to specify deliverable anchors, including deliverable-specific
anchors. For many authors, <resourceid> will be a clearer replacement for @copy-to.

For DITA content that already uses keys for all navigation topicrefs and where the key values are carefully designed
and maintained, using key names as the basis for anchors is probably the easiest solution because it requires no
additional work for authors.

For DITA content that does not already use keys or does not use them consistently, or where there are other
requirements for anchor control that make the use of keys difficult (or at least inconvenient), <resourceid> is
probably the clearest and easiest solution.

Whether using <resourceid>, keys, or some other mechanism, processors should provide ways to manage the
source-to-anchor mapping. Other ways to capture the original @copy-to distinction include using processor-
specific <data> or a specialization of <data> within the topicrefs' metadata. Processors could also use values of
@outputclass or @base to allow authors to indicate details of how the deliverable should be delivered, such
as whether or not the use of a topic should always or never result in a new deliverable artifact or whether or not a
topichead should be treated as though it were a title-only topicref.

For the following examples the original documents use @copy-to. There are two solutions. In the first example,
documents that use @copy-to are updated to use <resourceid> with @appid-role instead. In the second
solution, documents that use @copy-to are updated to use @keys instead, using the name part of the @copy-to
filenames as the keys.

In the first solution, the addition of @keys to the topicrefs is required to enable cross references to correct uses of the
topic. Because the cross references are authored in terms of the source as authored, not as delivered, and because there
is no @copy-to to define effective source URIs for the different uses of the topics, there is no choice but to add keys
to the topicrefs. This requirement to add keys comes from the use of cross references and has nothing to do with how
the deliverable anchors are constructed in the first solution.

 | Stage two: #33 Remove @copy-to | 13

The use of keys in the second solution retains the topicref-specific distinctions that @copy-to was providing.
However, it is up to processors to use the @keys values in some way when generating deliverables. Thus the second
solution presumes a delivery processor that uses @keys values as the basis for deliverable anchors.

Using keys as the basis for deliverable anchors is a reasonable strategy when there are already keys on all topicrefs
that will result in deliverable components that need anchors. Because keys must be unique within a given root map,
they are inherently reliable as the basis for deliverable anchors. Because a given topicref may have more than one key
associated with it, keys can also serve to associate multiple anchors with a single use of a topic. However, there is no
DITA-defined way to associate a given key on a given topicref with a specific deliverable application, so keys are less
flexible than <resourceid> as a general solution to deliverable anchor specification. But when you are already
using keys widely and you don't have more sophisticated anchor-specification requirements, using keys as the basis
for deliverable anchors avoids the need to also specify <resourceid>.

Root map:

<map>
 <title>Reused Topics Test 01</title>
 <topicref href="reuse_with_copy_to_01.dita">
 <topicref href="topic_a.dita"/>
 <topicref href="topic_b.dita"/>
 <topicref href="topic_c.dita"/>
 <topicref href="topic_a.dita" copy-to="topic_a-use-02.dita" >
 <topicmeta>
 <navtitle>Topic A Second Use</navtitle>
 </topicmeta>
 </topicref>
 <topicref href="topic_a.dita" copy-to="topic_a-use-03.dita" >
 <topicmeta>
 <navtitle>Topic A Third Use</navtitle>
 </topicmeta>
 </topicref>
 <topicref href="topic_a.dita" copy-to="topic_a-use-04.dita" >
 <topicmeta>
 <navtitle>Topic A Fourth Use</navtitle>
 </topicmeta>
 </topicref>
 </topicref>
 <topichead collection-type="sequence">
 <topicmeta>
 <navtitle>Installation instructions for Windows, Linux, and macOS</
navtitle>
 </topicmeta>
 <topicref href="installing-windows.dita>
 <topicref href="install-info.dita/>
 <topicref href="installing-dbase-windows.dita/>
 ...
 </topicref>
 <topicref href="installing-linux.dita>
 <topicref href="install-info.dita copy-to="install-info-linux.dita"/>
 <topicref href="installing-dbase-linux.dita/>
 ...
 </topicref>
 <topicref href="installing-macos.dita>
 <topicref href="install-info.dita copy-to="install-info-macos.dita"/>
 <topicref href="installing-dbase-macos.dita"/>
 ...
 </topicref>
 </topichead>
</map>

Topic that links to copy-to versions of topics:

 | Stage two: #33 Remove @copy-to | 14

<topic id="topic_b">
 <title>Topic B</title>
 <body>
 <p>Link to URI "topic_a.dita":
 <xref href="topic_a.dita"/>
 </p>
 <p>Link to URI "topic_a-use-02.dita":
 <xref href="topic_a-use-02.dita"/>
 </p>
 <p>Link to URI "topic_a-use-03.dita":
 <xref href="topic_a-use-03.dita#topic_a"/>
 </p>
 <p>Link to URI "topic_a-use-04.dita":
 <xref href="topic_a-use-04.dita#topic_a"/>
 </p> </body>
</topic>

Figure 1: Before: DITA 1.x source using direct URI references to topics with @copy-to

The following solution uses <resourceid> to explicitly define anchors for the re-used topics, distinct from any
keys they may be given. In this solution, in addition to defining the keys, which are needed to simply enable cross
references to the topics as used, the map includes <resourceid> elements that specify @appid values, which
serve to define the intended anchors for the topics in each place they are referenced (each use context of each topic).

Root map:

<map>
 <title>Reused Topics Test 01</title>
 <topicref href="reuse_with_copy_to_01.dita">
 <topicref href="topic_a.dita" keys="topic_a">
 <topicmeta>
 <resourceid appid="topic_A" appid-role="deliverable-anchor"/>
 </topicmeta>
 </topicref>
 <topicref href="topic_b.dita" keys="topic_b">
 <topicmeta>
 <resourceid appid="topic_B" appid-role="deliverable-anchor"/>
 </topicmeta>
 </topicref>
 <topicref href="topic_c.dita" keys="topic_c">
 <topicmeta>
 <resourceid appid="topic_C" appid-role="deliverable-anchor"/>
 </topicmeta>
 </topicref>
 <topicref href="topic_a.dita" keys="topic_a-use-02" >
 <topicmeta>
 <navtitle>Topic A Second Use</navtitle>
 <resourceid appid="topic_A2" appid-role="deliverable-anchor"/>
 </topicmeta>
 </topicref>
 <topicref href="topic_a.dita" keys="topic_a-use-03" >
 <topicmeta>
 <navtitle>Topic A Third Use</navtitle>
 <resourceid appid="topic_A3" appid-role="deliverable-anchor"/>
 </topicmeta>
 </topicref>
 <topicref href="topic_a.dita" keys="topic_a-use-04" >
 <topicmeta>
 <navtitle>Topic A Fourth Use</navtitle>
 <resourceid appid="topic_A4" appid-role="deliverable-anchor"/>
 </topicmeta>
 </topicref>

 | Stage two: #33 Remove @copy-to | 15

 </topicref>
 <topichead keys="install-win-linux-macos" collection-type="sequence">
 <topicmeta>
 <navtitle>Installation instructions for Windows, Linux, and macOS</
navtitle>
 <resourceid appid="installing-all-os" appid-role="deliverable-anchor"/
>
 </topicmeta>
 <topicref keyscope="install-win" keys="installing" href="installing-
windows.dita>
 <topicmeta>
 <resourceid appid="installing-windows" appid-role="deliverable-
anchor"/>
 </topicmeta>
 <topicref keys="install-info" href="install-info.dita>
 <topicmeta>
 <resourceid appid="install-info-windows" appid-role="deliverable-
anchor"/>
 </topicmeta>
 </topicref>
 <topicref keys="installing-dbase" href="installing-dbase-windows.dita>
 <topicmeta>
 <resourceid appid="installing-dbase-windows" appid-
role="deliverable-anchor"/>
 </topicmeta>
 </topicref>
 </topicref>
 ...
 </topicref>
 <topicref keyscope="install-linux" keys="installing" href="installing-
linux.dita>
 <topicmeta>
 <resourceid appid="installing-linux" appid-role="deliverable-
anchor"/>
 </topicmeta>
 <topicref keys="install-info" href="install-info.dita">
 <topicmeta>
 <resourceid appid="install-info-linux" appid-role="deliverable-
anchor"/>
 </topicmeta>
 </topicref>
 <topicref keys="installing-dbase" href="installing-dbase-linux.dita>
 <topicmeta>
 <resourceid appid="installing-dbase-linux" appid-
role="deliverable-anchor"/>
 </topicmeta>
 </topicref>
 ...
 </topicref>
 <topicref keyscope="install-macos" keys="installing" href="installing-
macos.dita>
 <topicmeta>
 <resourceid appid="installing-macos"/>
 </topicmeta>
 <topicref keys="install-info" href="install-info.dita copy-
to="install-info-macos.dita">
 <topicmeta>
 <resourceid appid="install-info-macos" appid-role="deliverable-
anchor"/>
 </topicmeta>
 </topicref>
 <topicref keys="installing-dbase" href="installing-macos-linux.dita>
 <topicmeta>

 | Stage two: #33 Remove @copy-to | 16

 <resourceid appid="installing-dbase-macos" appid-
role="deliverable-anchor"/>
 </topicmeta>
 </topicref>
 </topicref>
 ...
 </topicref>
 </topichead>
</map>

Topic that links to specific uses of topic_a:

<topic id="topic_b">
 <title>Topic B</title>
 <body>
 <p>Link to key "topic_a":
 <xref keyref="topic_a"/>
 </p>
 <p>Link to key "topic_a-use-02":
 <xref keyref="topic_a-use-02"/>
 </p>
 <p>Link to key "topic_a-use-03":
 <xref keyref="topic_a-use-03"/>
 </p>
 <p>Link to key "topic_a-use-04":
 <xref keyref="topic_a-use-04"/>
 </p>
 </body>
</topic>

Figure 2: After: Solution 1: Use of <resourceid> to replace @copy-to

A processor generating HTML could use the <resourceid> values as the base parts of the filenames for the
HTML files generated from each use of the topic, i.e. "Topic_A2.html". A processor generating PDF could use the
<resourceid> values as the PDF named anchor names. Note that the <resourceid> @appid values do not
necessarily match the key names used for the topicrefs: <resourceid> lets you completely separate the key names
from anchor IDs, making the source more flexible at the cost of additional markup within the map.

In this example the <resourceid> elements only specify @appid and @appid-role, as that is the minimum
needed to associate an anchor with a given topic or use of a topic. If there was a need to have different anchors for
different deliverables, for example, to maintain consistency with previously published versions or to accommodate the
anchor details of a given deliverable type, you could include @appname or use @deliveryTarget and filtering to
have different anchors for different deliverables, i.e.:

<topicref keys="installing-dbase" href="installing-macos-linux.dita>
 <topicmeta>
 <resourceid appid="installing-dbase-macos" appname="html" appid-
role="deliverable-anchor"/>
 <resourceid appid="install:dbase:macos" appname="pdf" appid-
role="deliverable-anchor"/>
 </topicmeta>
</topicref>

or

<topicref keys="installing-dbase" href="installing-macos-linux.dita>
 <topicmeta>
 <resourceid appid="installing-dbase-macos" deliveryTarget="html" appid-
role="deliverable-anchor"/>
 <resourceid appid="install:dbase:macos" deliveryTarget="pdf" appid-
role="deliverable-anchor"/>
 </topicmeta>

 | Stage two: #33 Remove @copy-to | 17

</topicref>

In addition to ensuring distinct result HTML files, the information architect's intent is also to ensure that correct
"Parent topic", "Previous topic", and "Next topic" links are created in the HTML result for the "Installation
Instructions" portion of the test map shown below.

Root map:

<map>
 <title>Reused Topics Test 01</title>
 <topicref href="reuse_with_copy_to_01.dita">
 <topicref href="topic_a.dita" keys="topic_a"/>
 <topicref href="topic_b.dita" keys="topic_b"/>
 <topicref href="topic_c.dita" keys="topic_c"/>
 <topicref href="topic_a.dita" keys="topic_a-use-02" >
 <topicmeta>
 <navtitle>Topic A Second Use</navtitle>
 </topicmeta>
 </topicref>
 <topicref href="topic_a.dita" keys="topic_a-use-03" >
 <topicmeta>
 <navtitle>Topic A Third Use</navtitle>
 </topicmeta>
 </topicref>
 <topicref href="topic_a.dita" keys="topic_a-use-04" >
 <topicmeta>
 <navtitle>Topic A Fourth Use</navtitle>
 </topicmeta>
 </topicref>
 </topicref>
 <topichead keys="install-win-linux-macos" collection-type="sequence">
 <topicmeta>
 <navtitle>Installation instructions for Windows, Linux, and macOS</
navtitle>
 </topicmeta>
 <topicref keyscope="install-win" keys="installing" href="installing-
windows.dita>
 <topicref keys="install-info" href="install-info.dita/>
 <topicref keys="installing-dbase" href="installing-dbase-windows.dita/
>
 ...
 </topicref>
 <topicref keyscope="install-linux" keys="installing" href="installing-
linux.dita>
 <topicref keys="install-info" href="install-info.dita"/>
 <topicref keys="installing-dbase" href="installing-dbase-linux.dita/>
 ...
 </topicref>
 <topicref keyscope="install-macos" keys="installing" href="installing-
macos.dita>
 <topicref keys="install-info" href="install-info.dita copy-
to="install-info-macos.dita"/>
 <topicref keys="installing-dbase" href="installing-macos-linux.dita/>
 ...
 </topicref>
 </topichead>
</map>

Topic that links to specific uses of topic_a:

<topic id="topic_b">
 <title>Topic B</title>

 | Stage two: #33 Remove @copy-to | 18

 <body>
 <p>Link to key "topic_a":
 <xref keyref="topic_a"/>
 </p>
 <p>Link to key "topic_a-use-02":
 <xref keyref="topic_a-use-02"/>
 </p>
 <p>Link to key "topic_a-use-03":
 <xref keyref="topic_a-use-03"/>
 </p>
 <p>Link to key "topic_a-use-04":
 <xref keyref="topic_a-use-04"/>
 </p>
 </body>
</topic>

Figure 3: After: Solution 2: DITA 2.0 source with @copy-to replaced with keys, @href on <xref>
replaced by @keyref, and keys and key scopes added to the installation information topicrefs

Note that for the installation instructions, the new version uses distinct key scopes for each platform's installation
instructions, allowing the keys for the subordinate topics to be the same in each scope. The presence of the key scopes
provides a unique name to each group of topicrefs and would enable a processor to generate unique deliverable
anchors for each use of the same topic install-info.dita, i.e., "install-windows_install-info.html", "install-
linux_install-info.html", etc. These deliverable anchors (the HTML filenames) are determined from the key names,
not the filenames, which could be changed without affecting the keys. For example, even if the content was migrated
to a CCMS that replaced all the original filenames with some kind of opaque object identifier, the key names would
be unchanged and a processor that used the key names to determine deliverable anchors would produce a consistent
result.

