
Review P: Configuration

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 1 of 72

Table of contents
1 Configuration, specialization, generalization, constraints, and expansion ..3

1.1 Overview of DITA extension facilities...4
1.2 Document-type configuration...6

1.2.1 Overview of document-type shells...6
1.2.2 Rules for document-type shells... 9
1.2.3 Equivalence of document-type shells..10
1.2.4 Conformance of document-type shells.. 11

1.3 Specialization...12
1.3.1 Overview of specialization...12
1.3.2 Modularization... 15
1.3.3 Vocabulary modules.. 17
1.3.4 Specialization rules for element types...19
1.3.5 Specialization rules for attributes...21
1.3.6 @ class attribute rules and syntax...22
1.3.7 @specializations attribute rules and syntax.. 26
1.3.8 Specializing to include non-DITA content.. 28
1.3.9 Sharing elements across specializations...30

1.4 Constraints...32
1.4.1 Overview of constraints... 32
1.4.2 Constraint rules... 33
1.4.3 Constraints, processing, and interoperability...35
1.4.4 Examples: Constraints implemented using DTDs... 35
1.4.5 Examples: Constraints implemented using RNG.. 43

1.5 Expansion modules... 50
1.5.1 Overview of expansion modules..50
1.5.2 Expansion module rules.. 51
1.5.3 Examples: Expansion implemented using DTDs...54
1.5.4 Examples: Expansion implemented using RNG..60

A Aggregated RFC-2119 statements..69

Index...71

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 2 of 72

1 Configuration, specialization, generalization,
constraints, and expansion
The extension facilities of DITA allow document-type shells, vocabulary modules, and element-
configuration modules (constraint and expansion) to be combined to create specific DITA document
types.

Comment by Kristen James Eberlein on 16 August 2022

Note that the title contains the term "generalization," although we are not including the generalization
content in this review – It needs too much work. That content is slated for a future review.

On a different note, the title of this topic is too long. What would folks think about changing it to just
"Configuration and specialization"?

Eliot Kimber, 29 August 2022

If we removed "generalization" from the title that make it sufficiently short. "Configuration and
specialization" is accurate and I would support that option as well.

Robert Anderson, 29 August 2022

I also think removing "generalization" from the title is a good overall result here.

Disposition: Referred

Comment by dstevens73

I am uncomfortable leaving "constraints" out of the title. Many of my clients don't understand the
distinction between constraints and specializations and leaving constraints out of the title seems like it
might further the confusion

Kris Eberlein, 23 August 2022

Do remember that your clients are NOT the target audience for the spec.

We do carefully define both constraints and expansion as "element-type configuration".

Disposition: Referred

Comment by Scott Hudson

The shortdesc also refers to constraints and expansion. Should it be modified as well? I am OK with
simplifying the title, but I think the shortdesc be updated to be consistent with the title.

Kris Eberlein, 24 August 2022

Both constraints and expansion are types of configuration: "element-type configuration". But yes, if we
change the title, we also will need to consider whether the shortdesc will need editing. Personally, I
think it's fine as-is.

Disposition: Closed

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 3 of 72

Comment by Zoë Lawson on 28 August 202

I agree that the title should be shortened. I'm having a lot of issues with "Configuration". I do see that
there are "Document-type configuration" and "Element-type configuration", and they were described,
but "document-type configurations" are implemented as document-type shells, and "element-type
configurations" are implemented as modules? I'm not super familiar with how you actually implement a
specialization, or with XML/DTD/RNG specific terms, so I could just be too ignorant to follow all the
nuances.

I think I'd be happy with "Specialization and Generalization". In my brain (that's never really
implemented a specialization), if you do anything so that you're not using DITA out of the box, you've
specialized it. All the other terms (configuration, shell, constraint, expansion) are "types" of
specialization.

Kris Eberlein, 28 August 2022

Zoe, since you are a voting member of the DITA TC, it's critical that you understand the differen ce
between "configuration" and "specialization". I'll offer a 4-hour block of time in which we do a tutorial.
Configuration, shell, constraint, expansion are NOT TYPES OF SPECIALIZATION.

Disposition: Referred

1.1 Overview of DITA extension facilities
DITA provides three extension facilities: Document-type configuration, specialization, and element-type
configuration.
Document-type configuration

Document-type configuration enables the definition of DITA document types that include only the
vocabulary modules that are required for a given set of documents. There is no need to modify the
vocabulary modules. Document-type configurations are implemented as document-type shells.

Specialization
Specialization enables the creation of new element types in a way that preserves the ability to
interchange those new element types with conforming DITA applications. Specializations are
implemented as vocabulary modules, which are integrated into document-type shells.

Specializations declare the elements and entities that are unique to a specialization. The separation
of the vocabulary and its declarations into modules makes it easy to extend existing modules,
because new modules can be added without affecting existing document types. It also makes it easy
to assemble elements from different sources into a single document-type shell and to reuse specific
parts of the specialization hierarchy in more than one document-type shell.

Comment by Bill Burns

The first sentence here seems tautological. How about "A specialization module declares the
elements and entities that are unique to that specialization"?

Kris Eberlein, 23 August 2022

Done

Disposition: Completed

DITA content that uses specializations can be treated as or converted to unspecialized markup
through the process of generalization. The information about the original specialized form can be
retained.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 4 of 72

Comment by Gershon Joseph on 2022-08-24
can be treated as, or converted to, unspecialized

Added commas around "or converted to".

Kris Eberlein, 23 August 2022

Done

Disposition: Completed

Comment by Eliot Kimber
Do we need a link to the now-separate discussoin of generalization?

Kris Eberlein, 30 August 2022

Quite possibly, and I'll leave this comment here, and set the disposition to "Accepted".

Disposition: Accepted

Element-type configuration

Element-type configuration enables DITA architects to modify the content models and attribute lists
for individual elements, without modifying the vocabulary modules in which the elements are defined.

There are two types of element configuration: Constraint

Comment by Gershon Joseph on 2022-08-24
s/Constraint/constraint/

Kris Eberlein, 25 August 2022

We need to keep these terms in the singular tense.

Disposition: Rejected

and expansion. Both constraint and expansion are implemented as modules that are integrated into
document-type shells:

Constraint
Constraint modules enable the restriction of content models and attribute lists for individual
elements.

Expansion
Expansion modules enable the expansion of content models and attribute lists for individual
elements.

Comment by Eliot Kimber
lowercase Constraint and Expansion in the definition list terms.

Kris Eberlein, 30 August 2022

No, that does not follow our style guidelines. We standardize on the "IBM Style Guide."

Disposition: Rejected

Comment by Bill Burns

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 5 of 72

How is expansion different from specialization? Is this new to 2.0 (appears to be so)?

Kris Eberlein, 23 August 2022

Yes, expansion modules are new for DITA 2.0. They are essentially the opposite of constraints;
instead of restricting the content model or attribute lists, they expand them. They work in
conjunction with specializations.

Hopefully the content later in this chapter will answer your questions.

Disposition: Closed

1.2 Document-type configuration
Document-type configuration enables the definition of DITA document types that include only the
vocabulary modules that are required for a given set of documents. There is no need to modify the
vocabulary modules. Document-type configurations are implemented using document-type shells.

1.2.1 Overview of document-type shells
A document-type shell is an XML grammar file that specifies the elements and attributes that are allowed
in a DITA document. The document-type shell integrates structural modules, domain modules, and
element-configuration modules. In addition, a document-type shell specifies whether and how topics can
nest.

A DITA document either must have an associated document-type definition or all required attributes must
be made explicit in the document instances.

Comment by Stan Doherty
Should be qualified – a document-type shell, whether provided by OASIS or developed by you. As is,
the sentence implies that most tooics use specilized doc shells.

Kris Eberlein, 25 August 2022

I don't think the qualification would add value, nor do I think that the current text implies that "most
topics use specialized doc shells".

Disposition: Closed

Most DITA documents have an associated document-type shell. DITA documents that reference a
document-type shell can be validated using most standard XML processors. Such validation enables
processors to read the XML grammar files and determine default values for the @specializations and
@class attributes.

Comment by Eliot Kimber
Technically it's not validation but simple grammar awareness that enables determining attribute
defaults. Not sure it's worth splitting that hair here but I am compelled to make the comment. An XML
processor can be grammar aware without being a validating processor.

The more precise wording would be something like "that reference a document shelll can be processed
in a grammar-aware fashion using most standard XML processors. Such processing enables..."

But I think using "validation" as a shorthand for "grammar-aware processing" is fine.

Kris Eberlein, 30 August 2022

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 6 of 72

I have tried reworking this content previously to be more precise, and it inevitably ends up being almost
unreadable. One of the issues is that we are talking about two different things here:

• Grammar-aware processing that determines default values for the @class and
@specialization attributes

• Validation, which enables folks authoring DITA content to check that their objects validate
against the referenced grammar files

Disposition: Referred

The following figure illustrates the relationship between a DTD-based DITA document, its document-type
shell, the vocabulary modules that it uses, and the element-configuration modules (constraint and
expansion) that it integrates. Similar structure applies to DITA documents that use other XML grammars.

Figure 1: Document type shell

Comment by Kristen J Eberlein on 28 March 2021

The illustration needs to be updated to include expansion modules.

Response by Gershon Joseph, 2022-08-24

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 7 of 72

I think we should redo examples like these using RelaxNG, since the RNG is the normative grammar of
DITA 2.0. It seems odd to me that the spec has so many DTD-only example when the normative
grammar is RelaxNG. Maybe we can move DTD equivalents out into a Committee Note or appendix?

Kris Eberlein, 24 August 2022

No, the spec supports both DTD and RNG. The fact that RNG is normative simply means that if there
is a difference between a DTD grammar file and a matching RNG grammar file, the RNG version is the
correct one. So, absolutely "no" to moving DTD content to a committee note or an appendix.

Regarding reworking the graphic to use RNG: That would be an unnecessary change, and we are
experiencing such a resource strain right now concerning spec writing and editing.

Disposition: Rejected

Comment by Eliot Kimber
I'm pretty sure I drew this picture. I'll try to find the original source and update it or I will recreated it.
Please give me the action item.

Kris Eberlein, 30 August 2022

You did, and the source for the graphic is in GitHub.

Disposition: Accepted

The DITA specification contains a starter set of document-type shells. These document-type shells are
commented and can be used as templates for creating custom document-type shells.

While the OASIS-provided document-type shells can be used without any modification, creating custom
document-type shells is a best practice. If the document-type shells need to be modified in the future, for
example, to include a specialization or integrate an element-configuration module (constraint or
expansion), the existing DITA documents will not need to be modified to reference a new document-type
shell.

Comment by Gershon Joseph on 2022-08-24
I don't think this paragraph belongs in the spec. It should be moved out into a CN or appendix that
discusses best practices for implementing DITA.

Kris Eberlein, 24 August 2022

Maybe, maybe not. In general, I agree that "best practices" content does not belong in the spec. But:

• This is such a critical point.
• The "overview" topics in this spec chapter are explicitly intended to be high-level overviews that

should be accessible to as many people as possible (while still being technically accurate). If
we ever manage to create the part 0 "Primer" document that we've had on our wish list, we'd
use this content there.

Robert D Andewrson 29 August 2022 – agree with Kris (and Eliot below) that this is a really critical
point and should not be removed. This is too easily missed, and really reflects how DITA grammar files
are meant to be used (even more than a simple "best practice").

Eliot Kimber, 29 August 2022

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 8 of 72

I agree with Kris that this is a critical bit of guidance that should be retained. It could be put into a note
so that it is explicitly not normative, but I'm not sure that's necessary.

Disposition: Referred

1.2.2 Rules for document-type shells
This topic collects the rules that concern DITA document-type shells.

XML grammars

001
(69)

While the DITA specification only defines coding requirements for DTD and
RELAX NG, conforming DITA documents MAY use other document-type
constraint languages, such as Schematron.

Comment by Eliot Kimber
Is it worth adding " or XSD"?

Kris Eberlein, 31 August 2022

Absolutely. Done!

Disposition: Closed

Defining element or attribute types

002
(69)

With two exceptions, a document-type shell MUST NOT directly define
element or attribute types; it only includes vocabulary and element-
configuration modules (constraint and expansion). The exceptions to this
rule are the following:

• The ditabase document-type shell directly defines the <dita>
element.

• RNG-based document-type shells directly specify values for the
@specializations attribute. These values reflect the details of
the attribute domains that are integrated by the document-type
shell.

Document-type shells not provided by OASIS

003
(69)

Document-type shells that are not provided by OASIS MUST have a unique
public identifier, if public identifiers are used.

004
(69)

Document-type shells that are not provided by OASIS MUST NOT indicate
OASIS as the owner. The public identifier or URN for such document-type
shells SHOULD reflect the owner or creator of the document-type shell.

For example, if example.com creates a copy of the document-type shell for topic, an appropriate
public identifier would be "-//EXAMPLE//DTD DITA Topic//EN", where "EXAMPLE" is the component
of the public identifier that identifies the owner. An appropriate URN would be
"urn:example.com:names:dita:rng:topic.rng".

Comment by Eliot Kimber
The URN should have a "namespace ID" component between the "urn:" and specific part, i.e. "ns"
for "namespace" or "pubid" or something similar that distinguishes the general type of URN this is.
See

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 9 of 72

https://www.rfc-editor.org/rfc/rfc8141

Robert Anderson, 31 August 2022

Not sure I follow. The example given here matches what we have in our OASIS catalogs, replacing
oasis with example.com – although ours also has a tc: that I do not think would be used
outside of our TC. For example, the base topic is:

urn:oasis:names:tc:dita:rng:basetopic.rng:2.0

@Eliot, do o you have a specific example that would be better than the one above?

Kris Eberlein, 31 August 2022

I didn't follow either. We need more info from Eliot here.

Eliot provided more information. We should talk about this at the TC level; do we change our RNG
catalog files to match what Eliot has suggested?

Disposition: Referred

1.2.3 Equivalence of document-type shells
Two distinct DITA document types that are taken from different tools or environments might be
functionally equivalent.

Comment by Gershon Joseph on 2022-08-24
Is this topic really required? To me it's stating the obvious. If it is required, I'd say it belongs in an
implementation guide and not in the spec

Kris Eberlein, 25 August 2022

I don't think this is obvious, and I think we need this in the spec. @Robert? @Eliot?

Robert D Anderson 29 August 2022 – agreed, it is not obvious but is rather unique to how DITA
operates (as Eliot describes below). Other XML grammars are generally defined by The DTD / The
RNG / etc, while DITA grammars are defined by the set of modules + specific configurations in a shell.

Eliot Kimber, 29 August 2022

I think this is an essential aspect of DITA that is not obvious for the simple reason that the vast majority
of SGML and XML practice and tools assume that the document type declaration or grammar file
(resource) defines the document type and if two documents use different document type declaration
files then they are in different document types.

But that is explicitly not true for DITA but most non-DITA-aware XML practitioners would not
necessarily realize it.

So worth stating explicitly. Gershon is correct that this aspect of DITA is implicit in the definition of
"DITA document type" but it's still a pretty subtle implication.

.
Disposition: Referred

A DITA document type is defined by the following:

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 10 of 72

https://www.rfc-editor.org/rfc/rfc8141

• The set of vocabulary and element-configuration modules (constraint and expansion) that are
integrated by the document type shell

• The values of the @class attributes of all the elements in the document
• Rules for topic nesting

Two document-type shells define the same DITA document type if they integrate identical vocabulary
modules, element-configuration modules (constraint and expansion), and rules for topic nesting. For
example, a document type shell that is an unmodified copy of the OASIS-provided document-type shell
for topic defines the same DITA document type as the original document-type shell. However, the new
document-type shell has the following differences:

• It is a distinct file that is stored in a different location.
• It has a distinct system identifier.
• If it has a public identifier, the public identifier is unique.

Note The public or system identifier that is associated with a given document-type shell is not
necessarily distinguishing. Two different people or groups might use the same modules and
constraints to assemble equivalent document type shells, while giving them different names or
public identifiers.

1.2.4 Conformance of document-type shells
DITA documents typically are governed by a conforming DITA document-type shell. However, the
conformance of a DITA document is a function of the document instance, not its governing grammar.
Conforming DITA documents are not required to use a conforming document-type shell.

Comment by Gershon Joseph on 2022-08-24
I don't know why the spec has to say this. It's obvious. I suggest we delete this topic.

Kris Eberlein, 25 August 2022

I don't think this is obvious, and I think we need this in the spec. @Robert? @Eliot?

Eliot Kimber, 29 August 2022

I agree that it's not obvious.

However, I thought we removed conformance of document types entirely--since we removed the
conformance requirement of specific file organization for document types and modules, there's no
other way in which a grammar can conform that I can see.

Because conformance devolves entirely to document instances if the coding rules are not conformance
requirements then I'm not sure we can or should say anything about shell conformance.

Robert Anderson, 29 August 2022

I thought this was the topic that essentially backed us away from the 1.x approach of Grammar File
Conformance, and read it generally as "We have all these patterns, but even if you don't follow them,
what's important is the actual document conformance rather than the grammar file itself." I think that's
an important message in the context of how we wrote 1.x rules, but I guess if we come at it from the
"everything is new in 2.0" frame it seems less necessary. I think my position might come down to where
we define all the rules.

Disposition: Referred

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 11 of 72

Conforming DITA documents are not required to have any governing document type declaration or
schema. There might be compelling or practical reasons to use non-conforming document-type shells.
For example, a document might use a document-type shell that does not conform to the DITA
requirements for shells in order to meet the needs of a specific application or tool. Such a non-conforming
document-type shell still might enable the creation of conforming DITA content.

1.3 Specialization
The specialization feature of DITA allows for the creation of new element types and attributes that are
explicitly and formally derived from existing types. This facilitates interchange of conforming DITA content
and ensures a minimum level of common processing for all DITA content. It also allows specialization-
aware processors to add specialization-specific processing to existing base processing.

1.3.1 Overview of specialization
Specialization allows information architects to define new kinds of information (new structural types or
new domains of information), while reusing as much of existing design and code as possible, and
minimizing or eliminating the costs of interchange, migration, and maintenance.

Specialization modules enable information architects to create new element types and attributes. These
new element types and attributes are derived from existing element types and attributes.

In traditional XML applications, all semantics for a given element instance are bound to the element type,
such as <para> for a paragraph or <title> for a title. The XML specification provides no built-in
mechanism for relating two element types to say "element type B is a subtype of element type A".

In contrast, the DITA specialization mechanism provides a standard mechanism for declaring that an
element type or attribute is derived from an ancestor type. This means that a specialized type inherits the
semantics and default processing behavior from its ancestor type. Additional processing behavior
optionally can be associated with the specialized descendant type.

For example, the <section> element type is part of the DITA base. It represents an organizational
division in a topic. Within the task information type (itself a specialization of <topic>), the <section>
element type is further specialized to other element types (such as <prereq> and <context>) that
provide more precise semantics about the type of organizational division that they represent. The
specialized element types inherit both semantic meaning and default processing from the ancestor
elements.

There are two types of DITA specializations:

Structural specialization

Structural specializations are developed from either topic or map types. Structural specializations
enable information architect

Comment by Gershon Joseph on 2022-08-24
s/architect/architects/

Kris Eberlein, 24 August 2022

Done

Disposition: Completed

Comment by Eliot Kimber
I think singular "architect" requires "an " before it: "enable an information architect …"

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 12 of 72

Kris Eberlein, 31 August 2022

This is already handled; see Gershon's comment above.

Disposition: Closed

to add new document types to DITA. The structures defined in the new document types either directly
use or inherit from

Comment by Gershon Joseph on 2022-08-24
...directly use, or inherit from, elements... (missing commas, which are needed to help non-native
English speakers correctly parse and understand the content)

Kris Eberlein, 24 August 2022

Done

Disposition: Completed

elements found in other document types. For example;

Comment by Gershon Joseph on 2022-08-24
s/;/,

Kris Eberlein, 24 August 2022

Replaced semi-colon with a comma

Disposition: Completed

concept, task, and reference are specialized from topic, whereas bookmap is specialized from map.

Domain specialization
Domain specializations are developed from elements defined with topic or map, or from the @props
or @base attributes. They define markup for a specific information domain or subject area. Domain
specializations can be added to document-type shells.

Comment by Eliot Kimber
"defined within topic or map" (c/with/within/)

Kris Eberlein, 31 August 2022

Done

Disposition: Completed

Each type of specialization module represents an “is a” hierarchy, in object-oriented terms, with each
structural type or domain being a subclass of its parent. For example, a specialization of task is still a
task, and a specialization of the user interface domain is still part of the user interface domain. A given
domain can be used with any map or topic type. In addition, specific structural types might require the use
of specific domains.

Use specialization when you need a new structural type or domain. Specialization is appropriate in the
following circumstances:

• You need to create markup to represent new semantics (meaningful categories of information).
This might enable you to have increased consistency or descriptiveness in your content model.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 13 of 72

• You have specific needs for output processing and formatting that cannot be addressed using the
current content model.

Do not use specialization to simply eliminate element types from specific content models. Use constraint
modules to restrict content models and attribute lists without changing semantics.

Comment by dstevens73
With the new expansion capability, do we need to change the sentence for "eliminate or add element
types" and then "Use constraint modules to restrict and expansion modules to expand"

Kris Eberlein, 25 August 2022

No, because you would need a specialization in order to expand the content model or attribute list.

Disposition: Closed

Comment by Eliot Kimber
I think I agree with Dawn: I think expansion is an option that you might otherwise think required
specialization, in particular specializing in order to allow two new element types specialized from a
repeatable base type. That can now be formally done using an expansion module and a domain
specialization (so I guess it still requires specialization, but not specialization simply to expand the
structural content model).

Kris Eberlein, 31 August 2022

Yes, that's the fine point here. But I don't think that information belongs in this topic. If it's not
adequately covered in the expansion topics, then we need to address that there. (We certainly cover
this particular use case in "Example: Adding an existing domain attribute to certain elements."

Robert Anderson 31 August 2022

I think I agree that it does not exactly belong here. With or without expansion, domain modules can be
used to expand the content of an element X without the need for specialization of that element X. In
both cases, the specialization is done elsewhere, but I think this has always been the case - domains
are there so you can expand the content model without speclizing the base, it's just that "expansion
modules" give you a bit more control over that now.

Kris Eberlein, 01 September

From my point of view, expansion requires a specialization. It can be a brand new element
specialization, a new attribute specialization, or an existing specialization not currently used in a
company's grammar files (such as a domain specialization). I don't think we do our spec readers/users
any benefit by obscuring this point!

It might well be that we need to state that clearly in the expansion topics, as several reviewers have
tripped over this. Marking this as "accepted" to check on just that.

Disposition: Accepted

Comment by Zoë Lawson on 27 August 2022
I'm not quite sure this fits here, but do we want to be explicit somewhere that specializing part of a
'base' element can have unintended consequences? If you change what attribute values are allowed,
that may be inherited strangely? I can't remember a specific example, but some of the weird "allowed
ph here and now all elements based on it now have all the relatives of ph as well"

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 14 of 72

This is probably just a standard XML idiosyncrasy that I was flummoxed by and doesn't belong in the
spec

Kris Eberlein, 31 August 2022

It's not a standard XML idiosyncrasy, but a function of how element-specialization domains work in
DITA. Do we cover that clearly in this chapter of the spec?

Robert Anderson 31 August 2022

I think that should be made clear (if it's not already) in the sections that talk about element domain
modules. The "I specialized a keyword and now it shows up in weird places" issue is explicitly tied to
element domain modules, and trying to explain it here in the overview topic would be too much detail
over one specific aspect of specialization.

Disposition: Accepted

1.3.2 Modularization
Modularization is at the core of DITA design and implementation. It enables reuse and extension of the
DITA specialization hierarchy.

The DITA XML grammar files are a set of module files that declare the markup and entities that are
required for each specialization. The document-type shell then integrates the modules that are needed for
a particular authoring and publishing context.

Comment by Eliot Kimber
c/The document-type shell/A document type shell" (I don't think we normally hyphenate document type
in "document type shell").

Robert D Anderson, 29 August 2022: we do hyphenate it pretty consistently (just checked my local
clone of the spec and found 200+ hyphenations vs 19 not hyphenated. We've tried to consistently
hyphenate when there are 2-word modifiers for the noun.

Kris Eberlein, 31 August 2022

Our style guide (and best practices for writing content for localization) call for avoiding noun strings.
Most of the time we have the phrase "document-type" in a long noun string. DITA 1.3 reviewers found it
difficult to make that fine distinction, so we decide to hyphenate "document-type" whenever it is a
modifier.

We do not hyphenate "document type" or "document types" when the term is NOT used as a modifier.

Disposition: Rejected

Comment by Stan Doherty
Ouch. "easy"???

Response by Kris Eberlein, 23 August 2020:

How about changing "easy" to "simplified"?

Response by Gershon Joseph, 2022-08-24:

I agree with Kris's suggested change.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 15 of 72

Kris Eberlein, 24 August 2022

Done

Disposition: Completed

Because all the pieces are modular, the task of developing a new information type or domain is easy. An
information architect can start with existing base types (topic or map)—or with an existing specialization if
it comes close to matching their business requirements—and only develop an extension that adds the
extra semantics or functionality that is required. A specialization reuses elements from ancestor modules,
but it only needs to declare the elements and attributes that are unique to the specialization. This saves
considerable time and effort; it also reduces error, enforces consistency, and makes interoperability
possible.

Comment by Gershon Joseph on 2022-08-24
Change the last sentence to: This saves considerable time and effort, reduces error, enforces
consistency, and makes interoperability possible.

I deleted "; it also".

Kris Eberlein, 24 August 2022

Done

Disposition: Completed

Because all the pieces are modular, it is easy to reuse different modules in different contexts.

Comment by dstevens73
Here's another instance of "easy" – are we trying to remove that opinion and use a different word as
above?

Kris Eberlein, 25 August 2022

Changed "easy" to "simple". (Does this really make a difference?)

Disposition: Completed

For example, a company that produces machines can use the hazard statement domain, while a
company that produces software can use the software, user interface, and programming domains. A
company that produces health information for consumers can avoid using the standard domains; instead,

Comment by Gershon Joseph on 2022-08-24
replace "standard domains; instead, it develops " with "standard domains. Instead, it develops ".

Kris Eberlein, 24 August 2022

Done

Disposition: Completed

it develops a new domain that contains the elements necessary for capturing and tracking the comments
made by medical professionals who review information for accuracy and completeness.

Because all the pieces are modular, new modules can be created and put into use without affecting
existing document-type shells.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 16 of 72

For example, a marketing division of a company can develop a new specialization for message
campaigns and have their content authors begin using that specialization, without affecting any of the
other information types that they have in place.

Comment by Gershon Joseph on 2022-08-24
I don't see the value in this second example. It does not add anything we have not already said. I think
we should delete it.

Kris Eberlein, 24 August 2022

It's intended to illustrate the preceding sentence.

Disposition: Rejected

1.3.3 Vocabulary modules
A DITA element type or attribute is declared in exactly one vocabulary module.

Comment by Zoë Lawson on 27 August 2022
why is this "element type"? Why isn't it just "element"? If it's supposed to be element type, why isn't it
attribute type? If element type is correct, why isn't it element-type (like document-type)?

Again, if this is my XML ignorance, please ignore.

Eliot, Kimber 29 August 2022

Every XML element instance has an "element type", which may be declared in a grammar (RNG, DTD,
etc.). The element type is indicated by the element's element type name (i.e, "p" for a <p> element).

The term "element" formally means "element instance" while "element type" means "The defined type
of an element".

Informally we usually use "element" to mean either element type or element instance when it's clear
from context which we mean.

Here we must be precise.

https://www.w3.org/TR/xml/#elemdecls, https://www.w3.org/TR/xml/#dt-element

Disposition: Closed

The following terminology is used to refer to DITA vocabulary modules:

structural module
A vocabulary module that defines a top-level map or topic type.

element domain module
A vocabulary module that defines one or more specialized element types that can be integrated into
maps or topics.

attribute domain module
A vocabulary module that defines exactly one specialization of either the @base or @props attribute.

For structural types, the module name is typically the same as the root element. For example, "task" is the
name of the structural vocabulary module whose root element is <task>.

For element domain modules, the module name is typically a name that reflects the subject domain to
which the domain applies, such as "highlight" or "software". Domain modules often have an associated
short name, such as "hi-d" for the highlighting domain or "sw-d" for the software domain.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 17 of 72

https://www.w3.org/TR/xml/#elemdecls
https://www.w3.org/TR/xml/#dt-element

The name (or short name) of an element domain module is used to identify the module in @class
attribute values. While module names need not be globally unique, module names must be unique within
the scope of a given specialization hierarchy. The short name must be a valid XML name token.

Comment by Zoë Lawson on 27 August 2022
Are the above paragraphs "best practices"? The information definitely should be here, but I wonder if it
should be highlighted as a best practice.

Kris Eberlein, 31 August 2022

The information about module names and associated short names are best practices. Other content is
normative rules or just the way things have to be in order to work.

If we take all the best practices information out (and place it elsewhere) we run into difficulties, I think.
The content becomes less useful, and some one trying to understand will have to flip back-and-forth
between the body of the spec and the non-normative info.

That said, we do have a file-namings convention topic in the (current) appendix C. @Robert, @Eliot –
Do we want remove file-naming conventions there? By using the phrase "is typically" here, I think we
clearly indicate that they are conventions.

Robert Anderson, 31 August 2022

I think it's best to keep this info here. The "module names must be unique within the scope" part
definitely needs to stay here, the rest is informative, but would be less useful if it appeared on its own
somewhere else. You'd have to recreate a lot of the info here to even establish what you're talking
about with the typical practice.

Disposition: Referred

005 (69) Structural modules based on topic MAY define additional topic types that are then
allowed to occur as subordinate topics within the top-level topic. However, such
subordinate topic types MAY NOT be used as the root elements of conforming DITA
documents.

For example, a top-level topic type might require the use of subordinate topic types that would only ever
be meaningful in the context of their containing type and thus would never be candidates for standalone
authoring or aggregation using maps. In that case, the subordinate topic type can be declared in the
module for the top-level topic type that uses it. However, in most cases, potential subordinate topics are
best defined in their own vocabulary modules.

006 (69) Domain elements intended for use in topics MUST ultimately be specialized from
elements that are defined in the topic module. Domain elements intended for use in
maps MUST ultimately be specialized from elements defined by or used in the map
module. Maps share some element types with topics but no map-specific elements
can be used within topics.

Structural modules also can define specializations of, or reuse elements from, domain or other structural
modules. When this happens, the structural module becomes dependent.

Comment by Gershon Joseph on 2022-08-24
The last sentence "When this happens..." is obvious. I think it should be deleted.

Zoe Lawson, 27 August 2022

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 18 of 72

The structural module becomes dependent on what? In my ignorance, what it becomes dependent on
is lost to me, even though it might be obvious to others.

Eliot Kimber, 29 August 2022

Becomes dependent on the domain module, meaning that you cannot integrate the structural module
without also integrating the domain module (if the structural domain uses element types defined in the
domain module).

As this dependency is only formally reflected in the now-eliminated @domains attribute I'm sure the
last sentence is necessary or useful.

If a structural module specializes from domain elements but does not use them directly there is no
requirement to also integrate the domain module and if the structural module use element types
defined in the domain module then the domain module must be integrated for instances would be valid,
so I think it's not necessary to say anything.

Kris Eberlein, 31 August 2022

@Eliot, I think you are correct about element-specializiation domain modules, but not structural
modules. Bookmap is dependent on map, and troubelshooting is dependent on task.

@Robert, do we want to make any changes to the language here?

Robert Anderson, 31 August 2022

I think it's an awkward end to the sentence (I think like Zoe, I expect to see another clause, "dependent
on X"). I do think it's a little bit redundant overall, basically "When you use elements from X then you
depend on X", but it's important to have the first sentence and I kind of feel like that first sentence, on
its own, doesn't make a whole paragraph.

So I think my vague preference here would be to extend the sentence a bit and clarify that when the
structural module reuses elements from another module, it depends on that module.

Eliot is right that if you are defining specializations of domain elements, but not using those domain
elements, that dependency doesn't actually mean that you have to use the domain in your shell. But
that idea makes me a bit uncomfortable, it's not something I've ever considered or run in to. If you have
processing extensions for elements in the intermediate module, you would likely still be dependent on
those, even if you could drop the grammar module from your shell.

Disposition: Referred

1.3.4 Specialization rules for element types
There are certain rules that apply to element type specializations.

A specialized element type has the following characteristics:

Comment by Kristen J Eberlein on 07 August 2022

Robert Anderson and I both think that the 2nd bullet point needs expansion, to cover the effects of
expansion modules.

Comment by Gershon Joseph, 2022-08-24

Agreed.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 19 of 72

Eliot Kimber, 29 August 2022

Maybe.

Note that because this section is about specialization, and not configuration, the statement is still true
as stated even in the face of expansion.

I can't think of a better way to say this crisply without devolving into specific cases. The rule ultimately
is "the specialized content module cannot allow anything that is not allowed by the base but may allow
or require anything that is allowed by the base".

If the base allows "a*" and the specialization allows "(b|c)*" where b and c are specializations of a, it is
still as constrained as the base, because the base allows "a*" and (b|c)* generalizes to "a*".

Likewise, the specialization could be a+, which is more constrained than the base.

Likewise, an expansion module could then allow d|e in place of or in addition to b and c. That
extension does not change the degree of constraint of the specialization.

That is, "inclusive" in this context means "inclusive of base types or any specializations as allowed by
repetition operators". Allowing additional specializations of an allowed base type is not more inclusive,
it is exactly as inclusive for the purpose of determining correctness of specialized content models.

Disposition: Referred

• A properly-formed @class attribute that specifies the specialization hierarchy of the element
• A content model that is the same or less inclusive than that of the element from which it was

specialized
• A set of attributes that are the same or a subset of those of the element from which it was

specialized, except for specializations of @base or @props

Comment by dstevens73
Does expansion apply here? Next topic says I can expand attributes to a single element, why
can't I do it here?

Kris Eberlein, 25 August 2022

You can expand the attribute list, but only with specializations of @base or @props, as stated
here.

Disposition: Closed

Comment by Eliot Kimber

Because this section is just about specialization I don't think we need to mention expansion,
but at the same time it might be worth a note about how expansion differs from specialization in
this case.

In a specialization you can choose to entirely disallow attributes from the base type while with
expansion and constraint you can choose add or remove attributes from a type as a matter of
configuration.

Configuration is optional while specialization is irrevocable. If the specialization disallows
attribute @foo it would be incorrect for an expansion module to subsequently allow it. If the
specialization disallows @base for some reason it would again be incorrect for an expansion to
then allow a specialization of @base.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 20 of 72

Kris Eberlein, 31 August 2022

It's hard to figure out if where we would put this information (or whether it is better suited for a
tutorial – or whether it is adequately covered in the expansion topics.

Setting the disposition to "Referred" because it is clear that many TC reviewers are struggling
with the difference between specialization and expansion and configuration.

Disposition: Referred

• Values or value ranges of attributes that are the same or a subset of those of the element from
which it was specialized

DITA elements are never in a namespace. Only the @DITAArchVersion attribute is in a DITA-defined
namespace. All other attributes, except for those defined by the XML standard, are in no namespace.

This limitation is imposed by the details of the @class attribute syntax, which makes it impractical to have
namespace-qualified names for either vocabulary modules or individual element types or attributes.
Elements included as descendants of the DITA <foreign> element type can be in any namespace.

Note Domain modules that are intended for wide use should define element type names that are
unlikely to conflict with names used in other domains, for example, by using a domain-specific
prefix on all names.

Comment by Zoë Lawson on 27 August 2022
I find this namespace information very important. However, because its in paragraphs after a list, my
brain semi-dismissed it as not as important as the bullets. Should the first sentenct (DITA elements are
never in a namespace.) be a bullet so it stands out? Or is it worth making a specific "DITA
Specializations and Namespaces" section?

Kris Eberlein, 31 August 2022

I'm not sure how we want to handle this. We don't use sections in topics (except element-reference
topics), so that's not an option. The name space information could be moved into a separate topic, but
it does really belong here.

I've used a definition list, with entries for "Characteristics" and "Namespaces".

Disposition: Completed

1.3.5 Specialization rules for attributes
There are certain rules that apply to attribute specializations.

A specialized attribute has the following characteristics:

• It is specialized from @props or @base.
• It can be integrated into a document-type shell either globally, which makes it available on all

elements, or it can be assigned to specific elements by using an expansion module.
• It does not have values or value ranges that are more extensive than those of the attribute from

which it was specialized.

Comment by Zoë Lawson on 27 August 2022
My ignorance is showing again. I read this bullet and it says to me if I want to say, add a new
value to @type for note elements because I'm tired of using other and @othertype, I can't.

If that is correct, but I can use an expansion to solve that problem, can we state that?

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 21 of 72

I realize this is probably a request for user guide info, but I wonder if an example of to solve
problem x, use a constraint (and why), to solve problem y, use a specialization (and why).
would be useful. (or maybe that information can be added to existing examples?)

Eliot Kimber, 29 August 2022

You cannot add values to enumerations defined on a base type, so expansion does not provide
a way around that limitation

Disposition: Closed

• Its values must be alphanumeric

Comment by Stan Doherty
Add comma between alphanumeric and space-delimited.

Response by Kris Eberlein, 23 August 2020:

Done

Disposition: Completed

space-delimited values.

Comment by Gershon Joseph on 2022-08-28
Move the sentence "In generalized form..." into a new list item. It's got nothing to do with the
characters that make up the attribute value.

Response by Kris Eberlein, 3 August 2020:

Done

Disposition: Completed

In generalized form, the values must conform to the rules for attribute generalization.

1.3.6 @ class attribute rules and syntax
The specialization hierarchy of each DITA element is declared as the value of the @class attribute. The
@class attribute provides a mapping from the current name of the element to its more general
equivalents, but it also can provide a mapping from the current name to more specialized equivalents.

Comment by Gershon Joseph on 2022-08-28
Break the previous sentence into two sentences, as follows:

The@class attribute provides a mapping from the current name of the element to its more general
equivalents. The @class attribute can also provide a mapping from the current name to more
specialized equivalents.

Rationale: the word "but" in the old version does not really fit. I think it's clearer as two separate
sentences.

Kris Eberlein, 31 August

Done, as I agree with you here. I suspect, however, that some of this content will need to be removed
from the short description.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 22 of 72

Disposition: Completed

All specialization-aware processing can be defined in terms of @class attribute values.

The @class attribute tells a processor what general classes of elements the current element belongs to.
DITA scopes elements by module type (for example topic type, domain type, or map type) instead of
document type, which lets document type developers combine multiple module types in a single
document without complicating transformation logic.

Comment by Gershon Joseph on 2022-08-28
Remove the parenthetical content from the previous sentence. Then add it back in this location as a
separate sentence, as follows: Examples of module types include topic type, domain type, and map
type.

Rationale: the parenthetical content makes it very difficualt for non-native English speaker to parse the
sentence and understand it.

Kris Eberlein, 31 August 2021

Changed to read as follows:

The @class attribute tells a processor what general classes of elements the current element belongs
to. DITA scopes elements by module type instead of document type. Examples of module types are
topic type, domain type, or map type. This enables document-type developers to combine multiple
module types in a single document without complicating transformation logic.

Disposition: Completed

The sequence of values in the @class attribute is important because it tells processors which value is the
most general and which is most specific. This sequence is what enables both specialization aware
processing and generalization.

Syntax
Values for the @class attribute have the following syntax requirements:

• An initial "-" or "+" character followed by one or more spaces. Use "-" for element types that are
defined in structural vocabulary modules, and use "+" for element types that are defined in domain
modules.

• A sequence of one or more tokens of the form "modulename/typename", with each token
separated by one or more spaces, where modulename is the short name of the vocabulary
module and typename is the element type name. Tokens are ordered left to right from most
general to most specialized.

These tokens provide a mapping for every structural type or domain in the ancestry of the
specialized element. The specialization hierarchy for a given element type must reflect any
intermediate modules between the base type and the specialization type, even those in which no
element renaming occurs.

• At least one trailing space character (" "). The trailing space ensures that string matches on the
tokens can always include a leading and trailing space in order to reliably match full tokens.

Rules

007 (69) Every DITA element (except the <dita> element that is used as the root of a
ditabase document) MUST declare a @class attribute.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 23 of 72

Comment by Eliot Kimber
I think "exhibit" is more correct than "declare" here in that "declare" implies
"declared in a grammar", which is not required. But I'm not sure any reader
would understand what "exhibit" means so I'm OK with keeping "declare".

Kris Eberlein, 31 August 2022

I agree with both your points. Marking this comment as "Closed."

Disposition: Closed

008 (69) When the @class attribute is declared in an XML grammar, it MUST be declared
with a default value. In order to support generalization round-tripping (generalizing
specialized content into a generic form and then returning it to the specialized form)
the default value MUST NOT be fixed. This allows a generalization process to
overwrite the default values that are defined by a general document type with
specialized values taken from the document being generalized.

009 (69) A vocabulary module MUST NOT change the @class attribute for elements that it
does not specialize, but simply reuses by reference from more generic levels.

010 (70) Authors SHOULD NOT modify the @class attribute.

Example: DTD declaration for @class attribute for the <step> element
The following code sample lists the DTD declaration for the @class attribute for the <step> element:

<!ATTLIST step class CDATA "- topic/li task/step ">

This indicates that the <step> element is specialized from the element in a generic topic. It also
indicates explicitly that the <step> element is available in a task topic;

Comment by Eliot Kimber
I would say " element from the topic module" rather than "in a generic topic".

Kris Eberlein, 31 August 2022

Done.

Disposition: Completed

Comment by Gershon Joseph on 2022-08-28
Break into two sentences at this point.

Kris Eberlein, 31 August 2022

Done.

Disposition: Completed
this enables round-trip migration between upper level and lower level types without the loss of
information.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 24 of 72

Example: Element with @class attribute made explicit
The following code sample shows the value of the @class attribute for the <wintitle> element:

<wintitle class="+ topic/keyword ui-d/wintitle ">A specialized keyword</wintitle>

The @class attribute and its value is generally not surfaced in authored DITA topics, although it might be
made explicit as part of a processing operation.

Comment by Gershon Joseph on 2022-08-28
I don't think this sentence belongs here in an example. It should be in the syntax section above or
some other location that makes sense. Examples should provide examples of what's said above. They
should not add new information not mentioned in the main sections that precede the examples.

Kris Eberlein, 31 August 2022

I agree with you. I've moved this content into the paragraph that states "Authors SHOULD NOT modify
the @class attribute."

Disposition: Completed

Example: @class attribute with intermediate value
The following code sample shows the value of a @class attribute for an element in the guiTask module,
which is specialized from <task>. The element is specialized from <keyword> in the base topic
vocabulary, rather than from an element in the task module:

<windowName class="- topic/keyword task/keyword guiTask/

windowname ">...</windowName>

The intermediate values are necessary so that generalizing and specializing transformations can map the
values simply and accurately. For example, if task/keyword

Comment by Stan Doherty
Change "was" to "were".

Kris Eberlein, 31 October 2022

I'm leaving this as "was". I think this is an ambiguous area, but I'm going to interpret this as the phrase
task/keyword, rather than as the phrases task/keyword.

Disposition: Rejected
was missing as a value, and a user decided to generalize this guiTask up to a task topic, then the
transformation would have to guess whether to map to keyword (appropriate if task is more general than
guiTask, which it is) or leave it as windowName (appropriate if task were more specialized, which it isn't).
By always providing mappings for more general values, processors can then apply the simple rule that
missing mappings must by default be to more specialized values than the one we are generalizing to,
which means the last value in the list is appropriate. For example, when generalizing <guitask> to
<task>, if a <p> element has no target value for <task>, we can safely assume that <p> does not
specialize from <task> and does not need to be generalized.

Comment by dstevens73
I would want to revisit this when generalization is out for review, because right now, I'm not
understanding it.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 25 of 72

Kris Eberlein, 01 September 2022

@Dawn. I agree that this example should be reviewed as part of the generalization content. In addition,
the example is not well written, nor is it immediately clear to me exactly what we are trying to say in this
part of the topic.

I'm adding a draft comment that we need to review this example as part of the generalization content.

Disposition: Accepted

Comment by Zoë Lawson on 27 August 2022
I am confused by a lot of things in this entire review, but one specific question is how a processor
determines if a thing is more general or more specialized.

Eliot Kimber, 29 August 2022

Degree of specialization is determined by where an element's name occurs in the @class value--
further to the right means more specialized.

Disposition: Closed

1.3.7 @specializations attribute rules and syntax
The @specializations attribute enables processors to determine what attribute specializations are
available in a document. The attribute is declared on the root element for each topic or map type. Each
attribute domain defines a token to declare the extension

Comment by Gershon Joseph on 2022-08-28
Break the sentence up into two sentences.

Kris Eberlein, 31 August 2022

Done.

Disposition: Completed

; the effective value of the @specializations attribute is composed of these tokens.

Syntax and rules
The @props and @base attributes are the only two core attributes available for specialization.

011 (70) Each specialization of the @props and @base attributes MUST provide a token for
use by the @specializations attribute.

The @specializations token for an attribute specialization begins with either @props or @base
followed by a slash, followed by the name of the new attribute:

'@', props-or-base, ('/', attname)+

For example:

• If @props is specialized to create @myNewProp, this results in the following token: @props/
myNewProp

• If @base is specialized to create @myFirstBase, this results in the following token: @base/
myFirstBase

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 26 of 72

• If that specialized attribute @myFirstBase is further specialized to create @mySecondBase, this
results in the following token: @base/myFirstBase/mySecondBase

Example: @specializations attribute for a task with multiple domains
In this example, a document-type shell integrates the task structural module and the following domain
modules:

Domain Domain short name

User interface ui-d

Software sw-d

@deliveryTarget attribute deliveryTarget

@platform attribute platform

@product attribute product

The value of the @specializations attribute includes one value from each attribute module

Comment by Gershon Joseph on 2022-08-28
Break into two sentences at the semicolon.

Kris Eberlein, 31 August 2022

Done.

Disposition: Completed
; the effective value is the following:

specializations="@props/deliveryTarget @props/platform @props/product"

If the document-type shell also used a specialization of the @platform attribute that describes the
hardware platform, the new @hardwarePlatform attribute domain would add an additional value to the
@specializations attribute:

specializations="@props/deliveryTarget @props/platform @props/platform/hardwarePlatform
@props/product"

Note that the value for the @specializations attribute is not authored. Instead, the value is defaulted
based on the modules that are included in the document type shell.

Comment by Bill Burns
Change "the value is defaulted based on the modules" to "the value is added by default to the
modules...."

Kris Eberlein, 24 August 2022

I think that's missing a critical nuance. The value of the specializations attribute is not added to the
modules. Grammar-aware processors will construct a value for the attribute based on the modules that
are included in the document-type shell.

Disposition: Rejected

Comment by Zoë Lawson on 27 August 2022

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 27 of 72

I think this last paragraph is super important and maybe should be part of the short description.
Knowing that @specializations shouldn't be authored up front would have helped me undestand the
topic better. Maybe also that this is more important to processors that someone making a
specialization? (Again, I'm probably too ignorant.)

Gershon Joseph, 28 August 2022

I was going to suggest we move this paragraph up into the spec text before the example. It definitely is
not part of the example.

Kris Eberlein, 31 August 2022

Agree that this should not be in the example, but not sure if the short description is the correct place.

I've moved this paragraph to the end of the "Suntax and rules" section.

Disposition: Completed

Comment by Zoë Lawson on 27 August 2022
May want to do a search and replace at some point to make sure document-type is always hyphenated
(or not).

Kris Eberlein, 31 August 2022

Agree, and I've done this (and it was painful). We hyphenate document-type when it is used as a
modifier; we do not hyphenate the two words when they are a noun.

Disposition: Completed

1.3.8 Specializing to include non-DITA content
You can extend DITA to incorporate standard vocabularies for non-textual content, such as MathML and
SVG, as markup within DITA documents. This is done by specializing the <foreign> or <unknown>
elements.

There are three methods of incorporating foreign content into DITA.

Comment by Zoë Lawson on 27 August 2022
Do we need to define "foreign content"? Especially since "foreign" seems to mean something specific
in RNG?

Robert Anderson, 31 August 2022

I think I'm too close to "foreign" content here, because I read that and just think "non-DITA XML". I'm
not sure if we need to explain further (maybe add that as a parenthetical).

Kris Eberlein, 31 August 2022

OK, let's discuss this at the TC.

Disposition: Referred

• A domain specialization of the <foreign> or <unknown> element. This is the usual
implementation.

• A structural specialization using the <foreign> or <unknown> element. This affords more
control over the content

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 28 of 72

Comment by Gershon Joseph on 2022-08-28
Do we mean "This affords more control over the content model? If yes, then add the word
"model". If not, then I don't understand what's being said here.

Kris Eberlein, 31 August 2022

Yes, this should have been "content model." I've corrected it.

Disposition: Completed

.
• Directly embedding the non-DITA content within <foreign> or <unknown> elements. If the non-

DITA content has interoperability or vocabulary naming issues such as those that are addressed
by specialization in DITA, they must be addressed by means that are appropriate to the non-DITA
content.

Do not use <foreign> or <unknown> elements to include textual content or metadata in DITA
documents, except where such content acts as an example or display, rather than as the primary content
of a topic.

Comment by Zoë Lawson on 27 August 2022
I'm not following the previous paragraph, or why it's important.

Gershon Joseph, 28 August 2022

I too had to read it several times before I understood what's trying to be said. I think the best solution is
to delete ", except where such content... of a topic." In other words, remove the exception. DITA has
better elements to use for example and display anyway. The spec does not need to mention this
exception.

Kris Eberlein, 31 August 2022

Done.

Disposition: Completed

Example: Creating an element domain specialization for SVG
The following code sample, which is from the svgDomain.ent file, shows the domain declaration for the
SVG domain.

<!-- === -->
<!-- SVG DOMAIN ENTITIES -->
<!-- === -->

<!-- SVG elements must be prefixed, otherwise they conflict with
 existing DITA elements (e.g., <desc> and <title>.
 -->
<!ENTITY % NS.prefixed "INCLUDE" >
<!ENTITY % SVG.prefix "svg" >

<!ENTITY % svg-d-foreign
 "svg-container
 "
>

Comment by Gershon Joseph on 2022-08-28

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 29 of 72

I think all examples and instructions like this one should be in relax-ng format, since that's our
normative format. Perhaps DTD-specific instructions and examples should be moved out into a
committee note? I think the spec will be easier to read and understand if it only refers to relax-ng.

Kris Eberlein, 31 August 2022

I've mentioned previously why we cannot do this. We support both DTD and RNG. We've been moving
towards ensuring that we have examples in both DTD and RNG, but we probably won't accomplish
that for DITA 2.0.

Disposition: Rejected

Note that the SVG-specific %SVG.prefix; parameter entity is declared. This establishes the default
namespace prefix to be used for the SVG content embedded with this domain. The namespace can be
overridden in a document-type shell by declaring the parameter entity before the reference to the
svgDomain.ent file. Other foreign domains might need similar entities when required by the new
vocabulary.

Comment by Gershon Joseph on 2022-08-28
I don't see the point of this example. Just refer the reader to the SVG domain's mod file in the DITA
Technical Content. Nothing said here is of any relevance, or help, to the topic at hand. This information
belongs in a CN that that's a tutorial on using foreign or unknown vocabularies with DITA.

Kris Eberlein, 31 August 2022

It's very unlikely that we will ever issue a tutorial about using foreign or unknown volcabularies with
DITA. Given that, do we do the readers of the spec a better experience by retaining or removing this
information?

Robert Anderson, 31 August 2022

Agree - realistically, there is a near-zero chance of a committee note on using foreign/unknown
content, so if we remove it from here it's gone. Just referring to the TC package will not work, as that
package is likely to come out after the base package, so it will not actually be available to reference
(certainly the case for whenever this content goes out for public review). I think it's best to retain this,
as it's been requested in past versions of the spec. (I see we do reference the TC package in the next
paragraph, but I think that works better as a "for more info" reference rather than simply directing the
reader.)

Disposition: Rejected

For more information, see the svgDomain.mod file that is shipped with the DITA Technical Content
edition. For an example of including the SVG domain in a document-type shell, see task.dtd.

Comment by Zoë Lawson on 27 August 2022
Confirming okay to reference this since it's in the technical content bit.

Kris Eberlein, 31 August 2022

Yes, it's OK to reference stuff in the technical content package, if the base package does not include
something relevant that could be referenced instead.

Disposition: Closed

1.3.9 Sharing elements across specializations
Specialization enables

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 30 of 72

Comment by Stan Doherty
Ouch. "easy" is still a stretch.

Response by Kris Eberlein, 23 August 2020:

Removed the word "easy".

Disposition: Completed

easy reuse of elements from ancestor specializations. However, it is also possible to reuse elements from
non-ancestor specializations, as long as the dependency is properly declared in order to prevent invalid
generalization or conref processing.

Comment by Eliot Kimber
I think the "properly declared" is no longer relevant as the declaration was on the @domains attribute,
so there's no place to formally declare the dependencies among specialization modules, which is fine.

So I think we can delete ", as long as ….".

Response by Kris Eberlein, 23 August 2020:

Done.

Disposition: Completed

A structural specialization can incorporate elements from unrelated domains or other structural
specializations by referencing them in the content model of a specialized element. The elements included
in this manner must be specialized from ancestor content that is valid in the new context. If the reusing
and reused specializations share common ancestry, the reused elements must be valid in the reusing
context at every level they share in common.

Although a well-designed structural specialization hierarchy with controlled use of domains is still the
primary means of sharing and reusing elements in DITA, the ability to also share elements declared
elsewhere in the hierarchy allows for situations where relevant markup comes from multiple sources and
would otherwise be developed redundantly.

Example: A specialization of <concept> reuses an element from the task module
A specialized concept topic could declare a specialized <process> section that contains the <steps>
element that is defined in the task module. This is possible because of the following factors:

• The <steps> element is specialized from .
• The <process> element is specialized from <section>, and the content model of <section>

includes .

The <steps> element in <process> always can be generalized back to in <section>.

Example: A specialization of <reference> reuses an element from the programming
domain
A specialized reference topic could declare a specialized list (<apilist>) in which each
<apilistitem> contains an <apiname> element that is borrowed from the programming domain.

Comment by Zoë Lawson
The previous example walked through and explained how things worked. Is it possible to explain more
here? The only difference between the example and the title is the name of the elements. I'm not
following how to do it, if there's anything funky I need to do, etc.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 31 of 72

Eliot Kimber, 29 August 2022

The difference in the two examples is one involves two structural modules.

Disposition: Closed

1.4 Constraints
Constraint modules define additional constraints for vocabulary modules in order to restrict content
models or attribute lists for specific element types, remove certain extension elements from an integrated
domain module, or replace base element types with domain-provided, extension element types.

Comment by Bill Burns
Tautological - perhaps "constraint modules define additional restrictions for vocabulary modules"?

Kris Eberlein, 26 August 2022

Removed "define additional constraints for vocabulary modules in order to"; it now reads "Constraint
modules restrict content modules …".

Disposition: Completed

1.4.1 Overview of constraints
Constraint modules enable information architects to restrict the content models or attributes of DITA
elements. A constraint is a simplification of an XML grammar such that any instance that conforms to the
constrained grammar also will conform to the original grammar.

A constraint module can perform the following functions:

Comment by Gershon Joseph on 2022-08-29
I wonder is an RNG example for each of these functions would help?

Kris Eberlein, 31 August 2022

Our current examples (both DTD and RNG) cover each of these use cases.

Disposition: Closed

Restrict the content model for an element
Constraint modules can modify content models by removing optional elements, making optional
elements required, or requiring unordered elements to occur in a specific sequence. Constraint
modules cannot make required elements optional or change the order of element occurrence for
ordered elements.

For example, a constraint for <topic> can require <shortdesc>, can remove <abstract>, and
can require that the first child of <body> be <p>. A constraint cannot allow <shortdesc> to follow
<prolog>, because the content model for <topic> requires that <shortdesc> precedes
<prolog>.

Restrict the attributes that are available on an element

Constraint modules can restrict the attributes that are available on an element. They also can limit
the set of permissible values for an attribute.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 32 of 72

For example, a constraint for <note> can limit the set of allowed values for the @type attribute to
"note" and "tip". It also can omit the @othertype attribute, since it is needed only when the value of
the @type attribute is "other".

Restrict the elements that are available in a domain

Constraint modules can restrict the set of extension elements that are provided in a domain. They
also can restrict the content models for the extension elements.

For example, a constraint on the programming domain can reduce the list of included extension
elements to <codeph> and <codeblock>.

Note For DITA implementations that use RNG-based grammar file

Comment by Gershon Joseph on 2022-08-29
change "file" to "files"

Kris Eberlein, 31 August 2022

Done.

Disposition: Completed

, restricting the set of extension elements that are provided in a domain can be handled
simply by document-type configuration.

Replace base elements with domain extensions
Constraint modules can replace base element types with the domain-provided extension elements.

For example, a constraint module can replace the <ph> element with the domain-provided elements,
making <ph> unavailable.

1.4.2 Constraint rules
There are certain rules that apply to the design and implementation of constraints.

Content model

Comment by Gershon Joseph on 2022-08-29
I wonder is an RNG example for each of these rules would help? (To reduce confusion, Please
don't put DTD examples here, they can go in an appendix or CN. This comment applies to each
rule in this topic. I'm happy to develop examples for these rules.

Kris Eberlein, 31 August 2022

Every example in this topic is written in plain text, so it does not introduce any grammar-specific
markup. I'm pretty sure that our current examples covers all of the use cases mentioned here.

Disposition: Rejected

The content model for a constrained element must be at least as restrictive as the unconstrained
content model for the element.

Domain constraints

When a domain module is integrated into a document-type shell, the base domain element can be
omitted from the domain extension group or parameter entity. In such a case, there is no separate
constraint declaration, because the content model is configured directly in the document-type shell.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 33 of 72

A domain module can be constrained by only one constraint module. This means that all restrictions
for the extension elements that are defined in the domain must be contained within that one
constraint module.

Structural constraints

Each constraint module can constrain elements from only one vocabulary module. For example, a
single constraint module that constrains <refsyn> from reference.mod and constrains
<context> from task.mod is not allowed. This rule maintains granularity of reuse at the module
level.

Constraint modules that restrict different elements from within the same vocabulary module can be
combined with one another. Such combinations of constraints on a single vocabulary module have
no meaningful order or precedence.

Aggregation of constraint modules

The content model of an element can be modified by either of the following element-configuration
modules:

• Constraint module
• Expansion module

The content model of an element only can be modified by a single element-type configuration
module. If multiple constraints or extensions need to be applied to a single element, the element
configurations must be combined into a single module that reflects all the constraints and expansions
that were defined in the original separate modules.

Comment by Bill Burns
Given that this content is repeated in the 1.5.2 Expansion module rules (51) topic, should it be a
conref or conkeyref?

Kris Eberlein, 31 August 2022

Yes, if the content remains the same in both places. Often when content is in flux during
development, I hesitate to implement a reuse mechanism.

Disposition: Accepted

Comment by Gershon Joseph on 2022-08-29
Or should we simply delete it from here? This topic is about constraints, not expansions. Maybe
we need a new topic after the expansion topic that describes what to do if you need to both
constrain and expand elements in an element-type configuration module. In any case, I had to
read that last paragraph several times to understand what's being said... It's confusing...

Kris Eberlein, 31 August 2022

Part of the difficulty is that, under the covers, constraint and expansion are really the same thing –
element configuration. We cover them separately here in the "Configuration" chapter, but treat
them just as "Element configuration" in the "Coding practices" content.

I don't remember if you were on the TC when we made decisions about this.

Robert Anderson, 31 August 2022

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 34 of 72

I don't think we should delete this, as it can be easily overlooked. It's true if you're using 2
constraints, 2 expansions, or a combination of constraint and expansion.

It is really just sort of an artifact of how XML grammars work, that you can only define the literal
content model once. So in that sense, perhaps it does not need to be stated. But given the detail
we go into about creating these modules, and what is allowed, I think it's a useful thing to highlight.

Kris Eberlein, 01 September 2022

@Gershon, what did you find dificult to understand in the content? I did do a read through, and I
think that it would be clearer if the 2nd paragraph started with "For any document-type shell, the
content model of an element … I've made that change to the source topic.

I do think strongly that this content needs to be in both of the rules topics for constraint and
expansion.

Disposition: Completed

1.4.3 Constraints, processing, and interoperability
Because constraints can make optional elements required, documents that use the same vocabulary
modules might have incompatible constraints. Thus the use of constraints can affect the ability for content
from one topic or map to be used in another topic or map.

A constraint does not change basic or inherited element semantics. The constrained instances remain
valid instances of the unconstrained element type, and the element type retains the same semantics and
@class attribute declaration. Thus, a constraint never creates a new case to which content processing
might need to react.

For example, a document type constrained to require the <shortdesc> element allows a subset of the
possible instances of the unconstrained document type with an optional <shortdesc> element. Thus,
the content processing for topic still works when <topic> is constrained to require a short description.

Comment by Gershon Joseph on 2022-08-29
Should we put examples into <example> elements? We have two consecutive "For example"
paragraphs here, which seems odd.

Also use of "However, " twice does not flow well. Recast to avoid this...

Kris Eberlein, 31 August 2022

I've reworded some to remove the awkwardness. I did not add example sections as it would be difficult
to assign workable titles.

Disposition: Completed

For example, an unconstrained task is compatible with an unconstrained topic, because the <task>
element can be generalized to <topic>. However, if the topic is constrained to require the
<shortdesc> element, a document type with an unconstrained task is not compatible with the
constrained document type, because some instances of the task might not have a <shortdesc>
element. However, if the task document type also has been constrained to require the <shortdesc>
element, it is compatible with the constrained topic document type.

1.4.4 Examples: Constraints implemented using DTDs
This section of the specification contains examples of constraints implemented using DTD.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 35 of 72

Comment by Gershon Joseph on 2022-08-29
I think we should only talk RNG in the spec and move all DTD stuff into a committee note. I'm happy to
drive this effort...

If we do keep the DTD examples in the spec, we should always have the RNG examples first, not the
DTD examples, since RNG is normative.

Kris Eberlein, 31 August 2022

Because the DITA specification supports both DTT and RNG, we must keep DTD content in the spec.
As discussed at a recent TC call, we are considering moving coding practices, constraint examples,
and expansion examples into an appendix. (This would be both DTD and RNG content.

We alphabetize content in the spec, do DTD will always come before RNG.

Disposition: Rejected

1.4.4.1 Example: Redefine the content model for the <topic> element using DTD
In this scenario, the DITA architect for Acme

Comment by Stan Doherty
Remove the comma.

Response by Kris Eberlein, 23 August 2020:

Done

Disposition: Completed

, Incorporated wants to redefine the content model for the topic document type. They want to omit the
<abstract> element and make the <shortdesc> element required; they also want to omit the
<related-links> element and disallow topic nesting.

Comment by Gershon Joseph on 2022-08-29
Why not put all four things to be done in an unordered list? The current two sentences separated by a
semicolon is clumsy. I think the following content is clearer to understand:

In this scenario, the DITA architect for Acme, Incorporated wants to redefine the content model for the
topic document type as follows:

• Remove the <abstract> element
• Require the <shortdesc> element
• Remove the <related-links> element
• Prevent topic nesting

Response by Kris Eberlein, 23 August 2020:

I'm pretty sure that the current markup reflects a desire to keep the content-model information in the
short description. We could change that, of course, but then the shortdesc will simply repeat what is
contained in the title.

Robert Anderson, 31 August 2022

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 36 of 72

My understanding/expectation around the short descriptions for example topics is that we want to
present the full scenario. That way, the link preview in a parent topic for the examples will tell you
exactly what it is about, so you know whether it's the one you are looking for.

Response by Kris Eberlein, 31 August 2020:

I think we can accomplish both things here: have a clear shortdesc and have details of the constraint
presented in a list. I've done this for the following topics:

• This topic (both DTD and RNG examples)
• "Constrain a domain module" (both DTD and RNG version)

Disposition: Completed

1. The DITA architect creates a constraint module: acme-TopicConstraint.mod.
2. They add the following content to acme-TopicConstraint.mod:

<!-- === -->
<!-- CONSTRAINED TOPIC ENTITIES -->
<!-- === -->

<!-- Declares the entities referenced in the constrained content -->
<!-- model. -->

<!ENTITY % title "title">
<!ENTITY % shortdesc "shortdesc">
<!ENTITY % prolog "prolog">
<!ENTITY % body "body">

<!-- Defines the constrained content model for <topic>. -->

<!ENTITY % topic.content
 "((%title;),
 (%shortdesc;),
 (%prolog;)?,
 (%body;)?)"
>

3. They add the constraint module to the catalog.xml file.
4. They then integrate the constraint module into the document-type shell for topic by adding the

following section above the "TOPIC ELEMENT INTEGRATION"

Comment by Gershon Joseph on 2022-08-29
Rather than tell to to add content "above" a section, tell them to add it to the appropriate
section: In the ELEMENT-TYPE CONFIGURATION INTEGRATION section of the DTD.

Kris Eberlein, 31 August 2020:

This was originally written as it was because existing 1.x DTD shells did not have an
"ELEMENT-TYPE CONFIGURATION INTEGRATION" section.

I've changed the list item.

Disposition: Completed
comment:

<!-- === -->
<!-- ELEMENT-TYPE CONFIGURATION INTEGRATION -->
<!-- === -->

<!ENTITY % topic-constraints-c-def

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 37 of 72

 PUBLIC "-//ACME//ELEMENTS DITA Topic Constraint//EN"
 "acme-TopicConstraint.mod">
%topic-constraints-c-def;

5. After checking the test topic to ensure that the content model is modified as expected, the work is
done.

Comment by Bill Burns
Seems this last step should be a step followed by a result. The first clause is a dangling modifier as
well. Suggest rewriting as, "They test topics to ensure that the content model is modified as expected."
Next clause is a result or stepresult.

Kris Eberlein, 31 August 2020:

This is a concept (not task), so the markup that you suggest is not available. If we move these topics to
an appendix, we could change them to task topics, but that would be a low priority.

I did change the list item to read as follows:

"They check their test topic to ensure that the content model is modified as expected."

Disposition: Completed

1.4.4.2 Example: Constrain attributes for the <section> element using DTD
In this scenario, a DITA architect wants to redefine the attributes for the <section> element. They want
to make the @id attribute required.

Comment by Gershon Joseph on 2022-08-29
I think these examples should be written using task topics and the steps worded in second person as
task steps should be. It also would read better than the "they" statements.

Kris Eberlein, 31 August 2020:

If we move these examples (both DTD and RNG) to an appendix, we could do that. But I think it is a
very low priority.

Setting the disposition to "Deferred."

Disposition: Deferred

1. The DITA architect creates a constraint module: idRequiredSectionContraint.mod.
2. They add the following content to idRequiredSectionContraint.mod:

<!-- Declares the entities referenced in the constrained content -->
<!-- model. -->

<!ENTITY % localization-atts
 "translate
 (no |
 yes |
 -dita-use-conref-target)
 #IMPLIED
 xml:lang
 CDATA
 #IMPLIED
 dir
 (lro |
 ltr |
 rlo |
 rtl |
 -dita-use-conref-target)
 #IMPLIED"

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 38 of 72

>
<!ENTITY % filter-atts
 "props
 CDATA
 #IMPLIED
 %props-attribute-extensions;"
>
<!ENTITY % select-atts
 "%filter-atts;
 base
 CDATA
 #IMPLIED
 %base-attribute-extensions;
 importance
 (default |
 deprecated |
 high |
 low |
 normal |
 obsolete |
 optional |
 recommended |
 required |
 urgent |
 -dita-use-conref-target)
 #IMPLIED
 rev
 CDATA
 #IMPLIED
 status
 (changed |
 deleted |
 new |
 unchanged |
 -dita-use-conref-target)
 #IMPLIED"
>
<!ENTITY % conref-atts
 "conref
 CDATA
 #IMPLIED
 conrefend
 CDATA
 #IMPLIED
 conaction
 (mark |
 pushafter |
 pushbefore |
 pushreplace |
 -dita-use-conref-target)
 #IMPLIED
 conkeyref
 CDATA
 #IMPLIED"
>
<!-- Redefines the attributes available on section -->

<!ENTITY % section.attributes
 "id
 ID
 #REQUIRED
 %conref-atts;
 %select-atts;
 %localization-atts;
 outputclass
 CDATA
 #IMPLIED"
>

Note

Comment by Gershon Joseph on 2022-08-29

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 39 of 72

I don't think this needs to be in a note. It's information about the example,
explaining the code in the file.

Kris Eberlein, 31 August 2020:

Changed the markup to a <p>.

Disposition: Completed
The DITA architect had to declare all the parameter entities that are referenced in the
redefined attributes for <section>. If they did not do so, none of the attributes that
are declared in the parameter entities would be available on the <section> element.
Furthermore, since the %select-atts; parameter entity references the %filter-
atts; parameter entity, the %filter-atts; must be declared and it must precede
the declaration for the %select-atts; parameter entity. The %props-attribute-
extensions; and %base-attribute-extensions; parameter entities do not
need to be declared in the constraint module, because they are declared in the
document-type shells before the inclusion of the constraint module.

3. They add the constraint module to the catalog.xml file.
4. They then integrate the constraint module into the applicable document-type shells.

Comment by Zoë Lawson on 27 August 2022
Previous example showed the code. Should this one?

Kris Eberlein, 01 September 2020:

Done.

Disposition: Completed

5. After checking the test topics to ensure that the content model is modified as expected, the work
is done.

Comment by Bill Burns
Same issue as previous topic.

Kris Eberlein, 31 August 2020:

Done.

Disposition: Completed

1.4.4.3 Example: Constrain a domain module using DTD
In this scenario, a DITA architect wants to use only a subset of the elements defined in the highlighting
domain. They want to use and <i,> but not <line-through>, <overline>, <sup>, <sup>,
<tt>, or <u>. They want to integrate this constraint into the document-type shell for task.

Comment by Stan Doherty
In the first step of the following procedure, insert a space between "The" and "DITA".

Response by Kris Eberlein, 23 August 2020:

Done

Disposition: Completed

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 40 of 72

1. TheDITA architect creates a constraint module:
reducedHighlightingDomainConstraint.mod.

2. They add the following content to reducedHighlightingDomainConstraint.mod:

<!-- === -->
<!-- CONSTRAINED HIGHLIGHT DOMAIN ENTITIES -->
<!-- === -->

<!ENTITY % HighlightingDomain-c-ph "b | i" >

3. They add the constraint module to the catalog.xml file.
4. They then integrate the constraint module into the company-specific, document-type shell for the

task topic by adding the following section directly before the "DOMAIN ENTITY DECLARATIONS"
comment:

Comment by Gershon Joseph on 2022-08-29
Delete "before the "DOMAIN ENTITY DECLARATIONS" comment" and replace with " in the
DOMAIN CONSTRAINT INTEGRATION section"

Kris Eberlein, 31 August 2022

Again, this content was developed for DITA 1.3, and we knew that most people were working
with DITA 1.1 or 1.2 document-type shell, which did not have a "Domain Constraint Integration"
section. And the constraint would NOT work if the domain constraint after integrated AFTER
the "DOMAIN ENTITY DECLARATIONS" section.

I've modified the list item.

Disposition: Completed

<!-- === -->
<!-- DOMAIN CONSTRAINT INTEGRATION -->
<!-- === -->

<!ENTITY % HighlightDomain-c-dec
 PUBLIC "-//ACME//ENTITIES DITA Highlighting Domain Constraint//EN"
 "acme-HighlightDomainConstraint.mod"
>%HighlightDomain-c-dec;

5. In the "DOMAIN EXTENSIONS" section, they replace the parameter entity for the highlighting
domain with the parameter entity for the constrained highlighting domain:

<!ENTITY % ph "ph |
 %HighlightDomain-c-ph; |
 %sw-d-ph; |
 %ui-d-ph;
 ">

6. After checking the test topic to ensure that the content model is modified as expected, the work is
done.

Comment by Gershon Joseph on 2022-08-29
Does it make sense for all these examples to be in a spec? Maybe even the RNG ones should
be in a separate committee note or appendix?

Kris Eberlein, 31 August 2022

We've discussed this at a recent TC meeting. I generated a PDF with this content in an
appendix, and sent it out for the TC to review.

Disposition: Closed

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 41 of 72

1.4.4.4 Example: Replace a base element with the domain extensions using DTD
In this scenario, a DITA architect wants to remove the <ph> element but allow the extensions of <ph>
that exist in the highlighting, programming, software, and user interface domains.

1. In the "DOMAIN EXTENSIONS" section, the DITA architect removes the reference to the <ph>
element:

<!-- Removed "ph | " so as to make <ph> not available, only the domain extensions. -->
<!ENTITY % ph "%pr-d-ph; |
 %sw-d-ph; |
 %ui-d-ph;
 ">

Note Because no other entities are modified or declared outside of the usual "DOMAIN
EXTENSIONS" section, this completes the architect's task. Because no new grammar file or
entity is created that would highlight this change, adding a comment to highlight the constraint
becomes particularly important (as shown in the example above).

Comment by Gershon Joseph on 2022-08-29
Change

particularly important (as shown in the example above).

to

particularly important, as shown in the example above.

Rationale: remove the parentheses.

Response by Kris Eberlein, 23 August 2020:

Done

1.4.4.5 Example: Apply multiple constraints to a single document-type shell using
DTD
You can apply multiple constraints to a single document-type shell. However, there can be only one
constraint for a given element or domain.

Here is a list of constraint modules and what they do:

File name What it constrains Details

example-TopicConstraint.mod <topic> • Removes <abstract>
• Makes <shortdesc>

required
• Removes <related-

links>
• Disallows topic nesting

example-
SectionConstraint.mod

<section> Makes @id required

example-
HighlightingDomainConstrain
t.mod

Highlighting domain Reduces the highlighting domain
elements to and <i>

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 42 of 72

File name What it constrains Details

N/A <ph> Remove the <ph> element, allowing
only domain extensions (does not
require a .mod file)

All of these constraints can be integrated into a single document-type shell for <topic>, since they
constrain distinct element types and domains. The constraint for the highlighting domain must be
integrated before the "DOMAIN ENTITIES" section, but the order in which the other constraints are listed
does not matter.

Comment by Gershon Joseph on 2022-08-29
State the section in which to add this. Also state the reason to do this.

Robert Anderson, 31 August 2022

Not sure I follow entirely:

• "State the section in which to add this" – it says it must be integrated before the "domain
entities", so is the request to phrase that differently – "it must go in this section" rather than "it
must go before that section"? Strictly from a DTD perspective, for the XML to work, it has to go
before that section, but could go anywhere before it, regardless of whether section headers
exist.

• "State the reason" – based on the short description, isn't the reason just, you want to apply
constraints on more than one element? Not sure that it needs to be repeated here.

Kris Eberlein, 01 September 2022

I changed the second sentence of the paragraph to read as follows:

"The constraint for the highlighting domain typically is located in the "DOMAIN CONSTRAINT
INTEGRATION" section, and it must be integrated before the "DOMAIN ENTITIES" section. The other
constraints typically are located in the "ELEMENT-TYPE CONFIGURATION INTEGRATION" section,
and the order in which they are listed does not matter."

Disposition: Completed

1.4.5 Examples: Constraints implemented using RNG
This section of the specification contains examples of constraints implemented using RNG

1.4.5.1 Example: Redefine the content model for the <topic> element using RNG
In this scenario, a DITA architect for Acme, Incorporated wants to redefine the content model for the topic
document type. They want to omit the <abstract> element and make the <shortdesc> element
required; they also want to omit the <related-links> element and disallow topic nesting.

1. The DITA architect creates a constraint module: acme-TopicConstraintMod.rng.
2. They update the catalog.xml file to include the new constraint module.
3. They add the following content to acme-TopicConstraint.mod:

<div>
 <a:documentation>CONTENT MODEL OVERRIDES</a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <define name="topic.content" combine="interleave">
 <ref name="title"/>
 <ref name="shortdesc"/>
 <optional>
 <ref name="prolog"/>
 </optional>

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 43 of 72

 <optional>
 <ref name="body"/>
 </optional>
 </define>
 </include>
</div>

Comment by Kristen J Eberlein on 21 April 2021
I know that the override won't happen without combine="interleave", but I don't know if we
cover that in the coding requirements topic. If people start with copying-and-pasting from the
module that they are overriding, they won't have that and will get errors.

Gershon Joseph, 29 August 2022

We must give examples that can be copied as-is into an RNG file and work as-is.

Kris Eberlein, 23 August 2022

That's not always going to work, since our code blocks include bold and line-through
highlighting.

Robert Anderson, 31 August 2022

I don't think we can hold to a "it must work when you paste it into your RNG file" rule. It would
mean that we cannot have any partial examples (which I think is the issue here) – we're trying
to give an example of the actual redefinition, which is not going to work without the usual
updates in other areas.

The extra markup we use for highlighting is also an issue; we have a test script that runs on our
spec to make sure the examples are valid (in the case of RNG, just valid XML), and it had to be
updated specifically to ignore our highlighting markup within these.

Kris Eberlein, 01 September 2022

I'm marking this comment as "Accepted," since we need to make sure that we cover
combine="interleave" in the "Coding practices" topics.

However, we need to reject the idea that our code samples can be copy-and-pasted – and then
actually used. There are a number of reasons:

• The code samples use extra markup for highlighting, using bold and line-through.
• Most code samples are incomplete snippets, and often they include commented-out

ellipses to indicate where code is smipped.
• The validation process that is run when after a pull request is opened only checks that

the code is valid XML; it does not ensure that something is a valid DTD or RNG.

4. They then integrate t

Comment by Stan Doherty
The transitions "then" and "finally" are unnecessary in an ordered list.

Response by Kris Eberlein, 23 August 2020:

I agree. Thanks for catching this.

Disposition: Completed

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 44 of 72

he constraint module into the document-type shell for topic by adding an <include> element in
the "ELEMENT-TYPE CONFIGURATION INTEGRATION" section:

<div>
 <a:documentation>ELEMENT-TYPE CONFIGURATION INTEGRATION</a:documentation>
 <include href="acme-TopicConstraintMod.rng"/>
</div>

5. They then remove the <include> statement that references topicMod.rng from the "MODULE
INCLUSIONS" section:

<div>
 <a:documentation>MODULE INCLUSIONS </a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:audienceAttDomain.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:deliveryTargetAttDomain.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:platformAttDomain.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:productAttDomain.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:otherpropsAttDomain.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:highlightDomain.rng:2.0"/>
 </div>

6. After checking the test topic to ensure that the content model is modified as expected, the work is
done.

1.4.5.2 Example: Constrain attributes for the <section> element using RNG
In this scenario, a DITA architect wants to redefine the attributes for the <section> element. They want
to make the @id attribute required.

1. The DITA architect creates a constraint module: id-requiredSectionContraintMod.rng.
2. They update the catalog.xml file to include the new constraint module.
3. They add the following content to the constraint module:

<?xml version="1.0" encoding="UTF-8"?>
<grammar
 xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

 <div>
 <a:documentation>ATTRIBUTE LIST OVERRIDES</a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <define name="section.attributes">
 <attribute name="id">
 <data type="NMTOKEN"/>
 </attribute>
 <ref name="conref-atts"/>
 <ref name="select-atts"/>
 <ref name="localization-atts"/>
 <optional>
 <attribute name="outputclass"/>
 </optional>
 </define>
 </include>
 </div>

</grammar>

Note that unlike a constraint module that is implemented using DTD, this constraint module did
not need to re-declare the patterns that are referenced in the redefinition of the content model for
<section>

Comment by Gershon Joseph on 2022-08-29
Why is this reference to DTDs here? We're talking RNG here. This could go into an RNG
tutorial, but I don't think we need it in the spec here.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 45 of 72

Robert Anderson, 31 August 2022

I agree that it's not strictly necessary, but coming from a long history of DTD configuration I
certainly found this useful in learning how to adapt to RNG. The patterns match in so many
areas that I think it's useful to note the differences. Curious what others think here.

Kris Eberlein, 31 August 2022

I agree with Robert. And I suspect that many people reading these RNG examples will already
have experience with DTDs, so knowing where things differ is very, very useful.

Disposition: Rejected

4. They then integrate the constraint module into the document-type shell for topic by adding an
<include> element in the "CONTENT CONSTRAINT INTEGRATION" section:

<div>
 <a:documentation>CONTENT CONSTRAINT INTEGRATION</a:documentation>
 <include href="id-requiredSectionConstraintMod.rng"/>
</div>

5. They then remove the <include> statement that references topicMod.rng from the "MODULE
INCLUSIONS" section:

<div>
 <a:documentation>MODULE INCLUSIONS </a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:audienceAttDomain.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:deliveryTargetAttDomain.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:platformAttDomain.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:productAttDomain.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:otherpropsAttDomain.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:highlightDomain.rng:2.0"/>
 </div>

Comment by Bill Burns
Not all that familiar with RNG, but is this step correct for an attribute constraint?

Kris Eberlein, 31 August 2022

Yes. All examples have been thoroughly tested.

Disposition: Closed

6. After checking the test topic to ensure that the attribute list is modified as expected, the work is
done.

1.4.5.3 Example: Constrain a domain module using RNG
In this scenario, a DITA architect wants to use only a subset of the elements defined in the highlighting
domain. They want to use and <i> but not <line-through>, <overline>, <sup>, <sup>, <tt>,
or <u>. Their implementation uses RNG for its grammar files.

Comment by Zoë Lawson
None of the other short descriptions in the RNG section state "Their implementation uses RNG for its
grammar files." Ditto the DTD examples. I think we can remove it (or add similar approprate statements
to all short descriptions.

Kris Eberlein, 23 August 2020:

I agree. Done.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 46 of 72

Disposition: Completed

When using RNG, domains can be constrained directly in the document-type shells.

1. They open the document-type shell for topic in an XML editor, and then they modify the "MODULE
INCLUSIONS" division to exclude the elements that they do not want the implementation to use:

<div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 ...
 <include href="highlightDomain.rng">
 <define name="line-through.element">
 <notAllowed/>
 </define>
 <define name="overline.element">
 <notAllowed/>
 </define>
 <define name="sub.element">
 <notAllowed/>
 </define>
 <define name="sup.element">
 <notAllowed/>
 </define>
 <define name="tt.element">
 <notAllowed/>
 </define>
 <define name="u.element">
 <notAllowed/>
 </define>
 </include>
 ..
</div>

Note The DITA architect made a choice as to where in the document-type shell they would
implement the constraint. It can be placed either in the "Element-type configuration
integration" or the "Module inclusions" section.

Comment by Zoë Lawson on 27 August 2022
Is this an RNG thing? A best practice?

Gershon Joseph, 28 August 2022

Agreed. Are there any implications as to where this is placed? If yes, let's state them. If not,
why not just specify one place to put it? Don't add any ambiguity to the spec if we don't need
to. Let's make the process as straightforward and possible. The less choices the IA has to
make, the better.

Kris Eberlein, 31 August 2022

We try not to be overly prescriptive if something is not required. People can build their grammar
files in multiple different ways.

Personally, I think it is useful to know that the constraint module could be placed in multiple
places.

Robert Anderson, 31 August 2022

I have rather strong feelings on this one - in the past, these sections were presented as
"something must go in section X", when putting it in section Y would work just as well (in fact, I
am under no obligation to create these section headers at all in my own shell). We should not

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 47 of 72

say something must go in section X if it works just as well in section Y - that's not avoiding
ambiguity, it's giving incorrect information.

I'm willing to accept that we give names to these sections (and happy to do that consistenly /
with headers in the grammar files we deliver). I think it's helpful guidance for everyone to
describe placement in relation to those sections. But we can't arbitrarily decide you must use
one over the other, when there is no actual difference.

To answer Zoe's original question – I think the answer is that this is not a best practice, it is just
"it will work in either of those two locations".

Disposition: Rejected

2. They make similar changes to all the other document-type shells in which they want to constrain
the highlighting domain.

1.4.5.4 Example: Replace a base element with the domain extensions using RNG
In this scenario, the DITA architect wants to remove the <ph> element but allow the extensions of <ph>
that exist in the highlight, programming, software, and user interface domains.

1. They open the document-type shell for topic in an XML editor, and then they modify the "MODULE
INCLUSIONS" division to exclude <ph>:

<div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <define name="ph.element">
 <notAllowed/>
 </define>
 </include>
 ...
</div>

2. They make similar changes to all the other document-type shells in which they want <ph> to not
be available

1.4.5.5 Example: Apply multiple constraints to a single document-type shell using
RNG
In this scenario, the DITA architect wants to apply multiple constraints to a document-type shell.

Here is a list of the constraint modules and what they do:

File name What it constrains Details

example-TopicConstraint.mod <topic> • Removes <abstract>
• Makes <shortdesc>

required
• Removes <related-

links>
• Disallows topic nesting

example-
SectionConstraint.mod

<section> Makes @id required

Not applicable Highlighting domain Reduces the highlighting domain
elements to and <i>

Not applicable <ph> Remove the <ph> element, allowing
only domain extensions

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 48 of 72

The constraint modules that target the <topic> and <section > elements must be combined, since
both elements are defined in topicMod.rng. The other constraints can be implemented directly in the
document-type shell.

1. The DITA architect creates a constraint module that combines the constraints from example-
TopicConstraint.mod and example-SectionConstraint.mod:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="urn:oasis:names:tc:dita:rng:vocabularyModuleDesc.rng"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <div>
 <a:documentation>CONTENT MODEL AND ATTRIBUTE LIST OVERRIDES</a:documentation>
 <include href="topicMod.rng">
 <define name="section.attributes">
 <attribute name="id">
 <data type="NMTOKEN"/>
 </attribute>
 <ref name="conref-atts"/>
 <ref name="select-atts"/>
 <ref name="localization-atts"/>
 <optional>
 <attribute name="outputclass"/>
 </optional>
 </define>
 <define name="topic.content">
 <ref name="title"/>
 <ref name="shortdesc"/>
 <optional>
 <ref name="prolog"/>
 </optional>
 <optional>
 <ref name="body"/>
 </optional>
 </define>
 </include>
 </div>
</grammar>

2. In the document-type shell, they integrate the constraint module (and remove the inclusion
statement for topicMod.rng):

<div>
 <a:documentation>ELEMENT-TYPE CONFIGURATION INTEGRATION</a:documentation>
 <include href="acme-SectionTopicContraintMod.rng"/>
</div>

3. To constrain the highlight domain, they modify the include statement for the domain module:

<div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 ...
 <include href="highlightDomain.rng">
 <define name="line-through.element">
 <notAllowed/>
 </define>
 <define name="overline.element">
 <notAllowed/>
 </define>
 <define name="sub.element">
 <notAllowed/>
 </define>
 <define name="sup.element">
 <notAllowed/>
 </define>
 <define name="tt.element">
 <notAllowed/>
 </define>

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 49 of 72

 <define name="u.element">
 <notAllowed/>
 </define>
 </include>
 ..
</div>

4. Finally, to disallow <ph>, they add the following statement to the constraint module:

 <define name="ph.element">
 <notAllowed/>
 </define>

1.5 Expansion modules
Expansion modules enable the extension of content models and attribute lists for individual elements.
Expansion modules are the opposite of constraints. They add elements and attributes to specific content
models and attribute lists, rather than removing them.

1.5.1 Overview of expansion modules
Expansion modules enable information architects to include specialized attributes or elements in specific
element types, without making them globally available.

Comment by Eliot Kimber
"them" antecedant is ambiguous here although obvously the intented antecedant is the specialized
element or attribute. Might be clear to repeat that: without making the specialized element or attribute
globally available.

Response by Kris Eberlein, 31 August 2020:

I agree. Thanks for catching this.

Disposition: Completed

An expansion module can perform the following functions:

Expand content models

Expansion modules extend the content models of specific elements, without making the specialized
elements available wherever the specialization base is permitted.

Comment by Eliot Kimber
I think we need to indicate that this is specifically for domain elements, I.e, "extend the content
models of specific elements to allow elements from domain specializations without making the
specialized elements available wherever their specialization bases are are permitted, as would be
the case for normal domain integration."

Kris Eberlein, 31August 2020:

I agree that this wording should be recast, but I don't want to simply use your suggested wording.

Disposition: Accepted

For example, an expansion for <section> can make a new element (<sectionDesc>) available
as an optional, child element. The <sectionDesc> element is specialized from <p>, but it is
available only within <section>.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 50 of 72

Comment by Zoë Lawson on 27 August 2022
Should we explicitly state "for example, <sectionDesc> doesn't appear in <context> ?

Kris Eberlein, 31 August 2020

We don't want to bring the task topic into the discussion here. This example covers expanding the
content of the section element for (generic) topics. You'd have to do something entirely different if
you want to add sectionDesc to a general task topic. (You could not do this in a strict task, which
does not permit the section element.

Disposition: Closed

Comment by Zoë Lawson on 27 August 2022
So I have to use Specializations AND Expansion modules together? That didn't seem obvious to
me, and I was surprised when I got to the examples.

Kris Eberlein, 31 August 2020:

Yes, you need to use expansion modules in conjunction with specialization modules. The
specialization modules are necessary; they contain the information about the new element or
attribute. You could use an existing specialization module, for example, one of the domain
specializations shipped with DITA 2.0, if you want to make an element or attribute available ONLY
in certain places.

Disposition: Closed

The elements are defined in a separate element domain that declares the content models and
attribute lists for the new elements.

Expand attribute lists

Expansion modules extend the attribute lists of specific elements by adding attributes specialized
from either @base or @props.

For example, an expansion for <entry>, <row>, and <colspec> can make @cell-purpose
available only on those elements. The @cell-purpose attribute is specialized from @base.

The additional attribute can be either defined directly within the expansion module, or it can be
defined in a separate attribute-specialization module. In either case, the token used as value for the
@specializations attribute must be defined.

Comment by Eliot Kimber
insert "the" between "as" and "value": the token used as the value

Kris Eberlein, 31 August 2020:

Done.

1.5.2 Expansion module rules
There are certain rules that apply to the design and implementation of expansion modules. These rules all
stem from the requirement that the content model of a specialized element must be consistent with the
content model of the specialization base. After generalization, the content model of an element affected
by an expansion module must match the original content model for that element.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 51 of 72

Comment by Eliot Kimber
I think this is the first place where use generalization as the test for correctness. It's a good test but we
haven't defined generalization at this point.

While it's more verbose, I think we need to use the same definitional language we use for constraints
and for configuration generally--the result must be consistent with and no less constrained than the
base.

Kris Eberlein, 31 August 2020:

I'm assuming that we'll be reintroducing some topics about generalization into this chapter of the spec,
so I'll wait to make any changes here until we have done that.

Disposition: Accepted

Specialization base of expanded elements

Elements that are added to content models by expansion

Comment by Gershon Joseph on 2022-08-29
models should be "modules"

Kris Eberlein, 31 August 2020:

No, we really mean "content models" here.

Disposition: Rejected

must be specializations of existing elements that are permitted in the original content model.

Content model of expanded elements

Elements that are added to content models by expansion

Comment by Gershon Joseph on 2022-08-29
models should be "modules"

Kris Eberlein, 31 August 2020:

Duplicate comment.

Disposition: Rejected

must be allowed only where their specialization base is allowed.

For example, when creating an expansion

Comment by Gershon Joseph on 2022-08-29
models should be "modules"

Kris Eberlein, 31 August 2020:

Duplicate comment.

Disposition: Rejected

that adds a specialization of <data> to , the specialization of <data> must only be allowed
before any elements, as that is the only place that the <data> element is allowed in the
content model for an ordered list.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 52 of 72

Ordinality of expanded elements

Elements that are added to content models by expansion modules must not violate the ordinality of
the original content model. If the original content model requires a child element to occur at least
once, then the expanded content model cannot break this requirement. If the original content model
only permits a child element to occur once, then the expanded content model cannot break this
requirement.

For example, in the expansion module that adds a specialization of <data> to , the redefined
content model for cannot make the element optional.

However, a

Comment by Gershon Joseph on 2022-08-29
an

Kris Eberlein, 31 August 2020:

Done

Disposition: Completed

expansion module that adds a specialization of (<listIntro>) to can redefine the
content model of in the following ways:

• Make <listIntro> the first child element and be required
• Make the second child element and optional

When a DITA topic affected by this expansion module is generalized, the resulting markup would be
valid; the content model of would be respected.

Comment by Eliot Kimber
Another mention of generalization.

Kris Eberlein, 31 August 2020:

I'm assuming that we'll be reintroducing some topics about generalization into this chapter of the
spec, so I'll wait to make any changes here until we have done that.

Disposition: Accepted

Aggregation of expansion modules

The content model of an element can be modified by either of the following element-configuration
modules:

• Constraint module
• Expansion module

The content model of an element can be modified only by a single element-type configuration
module. If multiple constraints or extensions need to be applied to a single element, the element
configurations must be combined into a single module that reflects all the constraints and expansions
that were defined in the original separate modules.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 53 of 72

1.5.3 Examples: Expansion implemented using DTDs
This section of the specification contains examples of extension modules that are implemented using
DTDs.

1.5.3.1 Example: Adding an element to the <section> element using DTDs
In this scenario, a DITA architect wants to modify the content model for the <section> element. The
DITA architect wants to add an optional <sectionDesc> element that is specialized from <p>.

To accomplish this, the DITA architect needs to create the following modules and integrate them into the
document-type shell:

• An element specialization module that defines the <sectionDesc> element

Comment by Eliot Kimber
An element domain specialization module.

Kris Eberlein, 31 August 2020:

Done. Hyphenated "element-domain".

Disposition: Completed

• An expansion module that adds the <sectionDesc> element to the content model for
<section>

1. First, the DITA architect creates the element specialization module: sectionDescDomain.mod.
This single .mod file defines the parameter entity, content model, attributes, and value for the
@class attribute for <sectionDesc>.

<?xml version="1.0" encoding="UTF-8"?>

<!ENTITY % sectionDesc "sectionDesc">

<!ENTITY % sectionDesc.content "(%para.cnt;)*">
<!ENTITY % sectionDesc.attributes "%univ-atts;">

<!ELEMENT sectionDesc %sectionDesc.content;>
<!ATTLIST sectionDesc %sectionDesc.attributes;>

<!ATTLIST sectionDesc class CDATA "+ topic/p sectionShortdesc-d/sectionDesc ">

Comment by Bill Burns
Is the inconsistency in the domain name for a reason? If not, I think sectionDesc-d would make
more sense.

Eliot Kimber, 29 August 2022

I agree that sectionDesc-d is the better short name.

Kris Eberlein, 31 August 2022

Good catch. Done.

Disposition: Completed

2. The DITA architect adds the element specialization module to the catalog.xml file.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 54 of 72

3. Next, the DITA architect modifies the applicable document-type shell to integrate the applicable
element specialization module:

<!-- === -->
<!-- DOMAIN ELEMENT INTEGRATION -->
<!-- === -->

<!-- ... other domains ... -->

<!ENTITY % sectionDesc-d-def
 PUBLIC "-//ACME//ELEMENTS DITA 2.0 Section Description Domain//EN"
 "sectionDescDomain.mod"
>%sectionDesc-d-def;

At this point, the new domain is integrated into the topic document-type shell. However, the new
element is not added to the content model for <section>.

4. Next, the DITA architect creates an expansion module: acme-SectionExpansion.mod. This
module adds the <sectionDesc> element to the content model of <section>.

<?xml version="1.0" encoding="UTF-8"?>

<!-- Declares the entities referenced in the modified content -->
<!-- model. -->

<!ENTITY % dl "dl">
<!ENTITY % div "div">
<!ENTITY % fig "fig">
<!ENTITY % image "image">
<!ENTITY % lines "lines">
<!ENTITY % lq "lq">
<!ENTITY % note "note">
<!ENTITY % object "object">
<!ENTITY % ol "ol">
<!ENTITY % p "p">
<!ENTITY % pre "pre">
<!ENTITY % simpletable "simpletable">
<!ENTITY % sl "sl">
<!ENTITY % table "table">
<!ENTITY % ul "ul">
<!ENTITY % cite "cite">
<!ENTITY % include "include">
<!ENTITY % keyword "keyword">
<!ENTITY % ph "ph">
<!ENTITY % q "q">
<!ENTITY % term "term">
<!ENTITY % text "text">
<!ENTITY % tm "tm">
<!ENTITY % xref "xref">
<!ENTITY % state "state">
<!ENTITY % data "data">
<!ENTITY % foreign "foreign">
<!ENTITY % unknown "unknown">
<!ENTITY % title "title">
<!ENTITY % draft-comment "draft-comment">
<!ENTITY % fn "fn">
<!ENTITY % indexterm "indexterm">
<!ENTITY % required-cleanup "required-cleanup">
<!ENTITY % sectionDesc "sectionDesc">

<!-- Defines the modified content model for <section>. -->

<!ENTITY % section.content
 "(#PCDATA |
 %dl; |
 %div; |
 %fig; |
 %image; |
 %lines; |
 %lq; |
 %note; |
 %object; |

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 55 of 72

 %ol; |
 %p; |
 %pre; |
 %simpletable; |
 %sl; |
 %table; |
 %ul; |
 %cite; |
 %include; |
 %keyword; |
 %ph; |
 %q; |
 %term; |
 %text; |
 %tm; |
 %xref; |
 %state; |
 %data; |
 %foreign; |
 %unknown; |
 %title; |
 %draft-comment; |
 %fn; |
 %indexterm; |
 %required-cleanup; |
 %sectionDesc;)*"
>

Comment by Eliot Kimber
Bold the addition of %sectionDesc;

Kris Eberlein, 31 August 2020:

Done.

Disposition: Completed

Note that the DITA architect needed to explicitly declare all the elements, rather than using the
%section.cnt; parameter entity that is used in the definition of <section>. Because the
element-configuration modules are integrated into the document-type shell before the base
grammar modules, none of the parameter entities that are used in the base DITA vocabulary
modules are available.

5. Finally, the DITA architect integrates the expansion module into the document-type shell:

<!-- === -->
<!-- ELEMENT-TYPE CONFIGURATION INTEGRATION -->
<!-- === -->

<!-- Other constraint and expansion modules -->

<!ENTITY % acmeSection-def
 PUBLIC "-//ACME//ELEMENTS DITA 2.0 Section Expansion//EN"
 "acme-SectionExpansion.mod"
>%acmeSection-def;

6. After updating the catalog.xml file

Comment by Stan Doherty
Recommend - "to include the expansion module and to test it,"

Response by Kris Eberlein, 23 August 2020:

Done

Disposition: Completed

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 56 of 72

to include the expansion module and testing, the work is done.

1.5.3.2 Example: Adding an attribute to certain table elements using DTDs
In this scenario, a company makes extensive use of complex tables to present product listings. They
occasionally highlight individual cells, rows, or columns for various purposes. The DITA architect wants to
implement a semantically meaningful way to identify the purpose of various table elements.

The DITA architect decides to create a new attribute (@cell-purpose) and add it to the attribute lists of
the following elements:

• <colspec>
• <entry>
• <row>
• <stentry>
• <strow>

The new attribute will be specialized from @base, and it will take a small set of tokens as values.

The DITA architect decides to integrate the attribute declaration and its assignment to elements into a
single expansion module. An alternate approach would be to put each <!ATTLIST declaration in its own
separate expansion module, thus allowing DITA architects who construct document-type shells to decide
the elements to which to apply the attribute.

1. First, the DITA architect creates the expansion module for the @cell-purpose attribute: acme-
cellPurposeAttExpansion.ent.

<!-- Define the attribute -->
<!ENTITY % cellPurposeAtt-d-attribute-expansion
 "cell-purpose (sale | out-of-stock | new | last-chance | inherit | none) #IMPLIED"
>

<!-- Declare the entity to be used in the @specializations attribute -->
<!ENTITY cellPurposeAtt-d-att "@base/cell-purpose" >

<!-- Add the attribute to the elements. -->
<!ATTLIST entry %cellPurposeAtt-d-attribute-expansion;>
<!ATTLIST row %cellPurposeAtt-d-attribute-expansion;>
<!ATTLIST colspec %cellPurposeAtt-d-attribute-expansion;>
<!ATTLIST strow %cellPurposeAtt-d-attribute-expansion;>
<!ATTLIST stentry %cellPurposeAtt-d-attribute-expansion;>

Note The attribute definition entity is optional. It is used here to enable the DITA architect to
add the same attribute with the same tokens to several elements.

2. They then update the catalog.xml file to include the expansion module.
3. They integrate this module into the applicable document-type shell.

<!-- === -->
<!-- DOMAIN ATTRIBUTES DECLARATIONS -->
<!-- === -->

<!-- ... other domains ... -->

<!ENTITY % cellPurposeAttExpansion-d-dec
 PUBLIC "-//ACME//ENTITIES DITA Cell Purpose Attribute Expansion//EN"
 "cellPurposeAttExpansion.ent"
>%cellPurposeAttExpansion-d-dec;

4. They add the entity for the contribution to the @specializations attribute.

<!-- === -->
<!-- SPECIALIZATIONS ATTRIBUTE OVERRIDE -->
<!-- === -->

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 57 of 72

<!ENTITY included-domains
 "&audienceAtt-d-att;
 &cellPurposeAtt-d-att;
 &deliveryTargetAtt-d-att;
 &otherpropsAtt-d-att;
 &platformAtt-d-att;
 &productAtt-d-att;"
>

5. After checking the test topic to ensure that the attribute lists are modified as expected, the work is
done.

1.5.3.3 Example: Adding an existing domain attribute to certain elements using
DTDs
In this scenario, a company wants to use the @otherprops attribute specialization. However, they want
to make the attribute available only on certain elements: <p>, <div>, and <section>.

The DITA architect will need to create an extension module and integrate it into the appropriate
document-type shells.

1. The DITA architect creates an expansion module that adds the @otherprops attribute to the
selected elements: acme-otherpropsAttExpansion.mod. The expansion module contains
the following code:

<?xml version="1.0" encoding="UTF-8"?>

<!-- Add the otherprops attribute to certain elements -->
<!ATTLIST p %otherpropsAtt-d-attribute;>
<!ATTLIST div %otherpropsAtt-d-attribute;>
<!ATTLIST section %otherpropsAtt-d-attribute;>

Note that the %otherpropsAtt-d-attribute; is defined in the separate attribute-
specialization module that defines the @otherprops attribute.

2. They then update the catalog.xml file to include the expansion module.
3. They integrate the extension module into the applicable document-type shell, after the declaration

for the @otherprops attribute-specialization module:

<!-- === -->
<!-- DOMAIN ATTRIBUTES DECLARATIONS -->
<!-- === -->
...

<!ENTITY % otherpropsAtt-d-dec
 PUBLIC "-//OASIS//ENTITIES DITA 2.0 Otherprops Attribute Domain//EN"
 "otherpropsAttDomain.ent"
>%otherpropsAtt-d-dec;

<!ENTITY % otherprops-expansion-e-def
 PUBLIC "-//ACME//DITA 2.0 Otherprops Expansion//EN"
 "acme-otherpropsAttExpansion.mod"
 >%otherprops-expansion-e-def;

...

4. They remove the reference to the @otherprops attribute from the props-attribute-
extension entity:

<!-- === -->
<!-- DOMAIN ATTRIBUTE EXTENSIONS -->
<!-- === -->

<!ENTITY % base-attribute-extensions
 ""

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 58 of 72

>

<!ENTITY % props-attribute-extensions
 "%audienceAtt-d-attribute;
 %deliveryTargetAtt-d-attribute;
 %otherpropsAtt-d-attribute;
 %platformAtt-d-attribute;
 %productAtt-d-attribute;"
>

5. They ensure that the included-domains entity contains the @otherprops contribution to the
@specializations attribute:

<!-- === -->
<!-- SPECIALIZATIONS ATTRIBUTE OVERRIDE -->
<!-- === -->

<!ENTITY included-domains
 "&audienceAtt-d-att;
 &deliveryTargetAtt-d-att;
 &otherpropsAtt-d-att;
 &platformAtt-d-att;
 &productAtt-d-att;"
>

6. After checking the test topic to ensure that the attribute lists are modified as expected, the work is
done.

1.5.3.4 Example: Aggregating constraint and expansion modules using DTDs
The DITA architect wants to add some extension modules to the document-type shell for topic. The
document-type shell already integrates a number of constraint modules.

The following table lists the constraints that are currently integrated into the document-type shell:

File name What it constrains Details

example-TopicConstraint.mod <topic> • Removes <abstract>
• Makes <shortdesc>

required
• Removes <related-

links>
• Disallows topic nesting

example-
SectionConstraint.mod

<section> • Makes <title> required
• Reduces the content model

of <section> to a smaller
subset

example-
HighlightingDomainConstrain
t.mod

Highlighting domain Reduces the highlighting domain
elements to and <i>

The following table lists the expansion modules that the DITA architect wants to add to the document-type
shell:

File name What it modifies Details

example-
sectionSectionShortdescExpa
nsion.mod

<section> Adds an optional <sectionDesc>
element to <section>. The
<sectionDesc> element can only
appear directly after <title>.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 59 of 72

File name What it modifies Details

Comment by Bill Burns
Is different than the module added
in 1.5.3.1 Example: Adding an
element to the section element
using DTDs (54)?

Kris Eberlein, 31 August 2022

I've changed the file name to
match the topic you reference.

Disposition: Completed

example-
dlentryModeAttExpansion.ent

<dlentry> Adds @dlentryMode to the
attributes of <dlentry>.

The constraint and expansion modules that target the <section> element must be combined into a
single element-configuration module. An element can only be targeted by a single element-configuration
module.

Comment by dstevens73
Shouldn't we include an example of what the combined section modules look like? There is an
example in the RNG file.

Kris Eberlein, 01 September 2022

I'm not sure. Other examples show clear examples of redefining content models (both constraint and
expansion).

Yes, it would be ideal to have the DTD and RNG examples always parallel, but I don't think we can
manage that for DITA 2.0.

Also, I'd have to dig into the test files I used when constructing these examples, and build that
aggregated element-configuration module … I'm not sure the time would be worth it. Marking this
comment deferred.

Disposition: Deferred

1.5.4 Examples: Expansion implemented using RNG
This section of the specification contains examples of extension modules implemented using RNG.

1.5.4.1 Example: Adding an element to the <section> element using RNG
In this scenario, a DITA architect wants to modify the content model for the <section> element. He
wants to add an optional <sectionDesc> element that is specialized from <p>; the <sectionDesc>
can occur once and must be directly after the section title.

To accomplish this, the DITA architect needs to create the following modules and integrate them into the
document-type shells:

• An element domain module that defines the <sectionDesc> element
• An expansion module that adds the <sectionDesc> element to the content model for

<section>

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 60 of 72

1. First, the DITA architect creates the element domain module: sectionDescDomain.rng. It
contains the following code:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="urn:oasis:names:tc:dita:rng:vocabularyModuleDesc.rng"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<grammar xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 xmlns="http://relaxng.org/ns/structure/1.0">
 <div>
 <a:documentation>DOMAIN EXTENSION PATTERNS</a:documentation>
 </div>
 <div>
 <a:documentation>ELEMENT TYPE NAME PATTERNS</a:documentation>
 <define name="sectionDesc">
 <ref name="sectionDesc.element"/>
 </define>
 </div>
 <div>
 <a:documentation>ELEMENT TYPE DECLARATIONS</a:documentation>
 <div>
 <a:documentation>LONG NAME: Section Description</a:documentation>
 <define name="sectionDesc.content">
 <zeroOrMore>
 <ref name="para.cnt"/>
 </zeroOrMore>
 </define>
 <define name="sectionDesc.attributes">
 <ref name="univ-atts"/>
 </define>
 <define name="sectionDesc.element">
 <element name="sectionDesc" dita:longName="Section Description">
 <a:documentation/>
 <ref name="sectionDesc.attlist"/>
 <ref name="sectionDesc.content"/>
 </element>
 </define>
 <define name="sectionDesc.attlist" combine="interleave">
 <ref name="sectionDesc.attributes"/>
 </define>
 </div>
 </div>
 <div>
 <a:documentation>SPECIALIZATION ATTRIBUTE DECLARATIONS</a:documentation>
 <define name="sectionDesc.attlist" combine="interleave">
 <optional>
 <attribute name="class" a:defaultValue="+ topic/p sectionDesc-d-p/sectionDesc
"/>
 </optional>
 </define>
 </div>
</grammar>

Comment by Bill Burns
Should @class be optional here?

Eliot Kimber, 29 August 2022

@classis optional because it has a default value.

Disposition: Closed

2. The DITA architect adds the element domain module to the catalog.xml file.
3. Next, the DITA architect modifies the document-type shell (in this example, the one for topic) to

integrate the element domain module:

 <div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 ...

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 61 of 72

 <include href="urn:example:names:tc:dita:rng:sectionDescDomain.rng:2.0"/>
 </div>

At this point, the new domain is integrated into the document-type shell. However, the new
element is not added to the content model for <section>.

4. Next, the DITA architect created an expansion module (sectionExpansionMod.rng) that adds
the <sectionDesc> element to the content model of <section>:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="urn:oasis:names:tc:dita:rng:vocabularyModuleDesc.rng"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <div>
 <a:documentation>CONTENT MODEL AND ATTRIBUTE LIST OVERRIDES</a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <define name="topic-info-types">
 <ref name="topic.element"/>
 </define>
 <define name="section.content" combine="interleave">

 Comment by
 Eliot Kimber
I'm not sure combine="interleave" is correct here because the intent is to redeclare
the content model entirely.

Kris Eberlein, 31 August 2022
I've always been a little shaky about understanding combine="interleave". When
is it needed and when it is not?
@Eliot, thanks for the additional information. I've removed combine="interleave from
the <define> element.

 Disposition: Completed
 <optional>
 <ref name="title"/>
 </optional>
 <optional>
 <ref name="sectionDesc"/>
 </optional>
 <zeroOrMore>
 <ref name="section.cnt"/>
 </zeroOrMore>
 </define>
 </include>
 </div>
</grammar>

Note that the expansion module directly integrates topicMod.rng.
5. Finally, the DITA architect integrates the expansion module into the document-type shell and

removes the inclusion statement for topicMod.rng:

 <div>
 <a:documentation>ELEMENT-TYPE CONFIGURATION INTEGRATION</a:documentation>
 <include href="sectionExpansionMod.rng"/>
 </div>
 <div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <define name="topic-info-types">
 <ref name="topic.element"/>
 </define>
 </include>
 ...

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 62 of 72

 <include href="urn:example:names:tc:dita:rng:sectionDescDomain.rng:2.0"/>
 </div>

6. After updating the catalog.xml file to include the expansion module and testing, the work is
done.

1.5.4.2 Example: Adding an attribute to certain table elements using RNG
In this scenario, a company makes extensive use of complex tables to present product listings. They
occasionally highlight individual cells, rows, or columns for various purposes. The DITA architect wants to
implement a semantically meaningful way to identify the purpose of various table elements.

The DITA architect decides to create a new attribute (@cell-purpose) and add it to the content model
of the following elements:

• <entry>
• <row>
• <colspec>
• <stentry>
• <strow>

The new attribute will be specialized from @base, and it will take a small set of tokens as values.

The DITA architect decides to integrate the attribute declaration and its assignment to elements into a
single expansion module. An alternate approach would be to put each <!ATTLIST declaration in its own
separate expansion module, thus allowing DITA architects who construct document-type shells to decide
the elements to which to apply the attribute.

Comment by Eliot Kimber
Replace "<!ATTLIST declaration" with "attribute list pattern"

Kris Eberlein, 31 August 2022

Done.

Disposition: Completed

1. The DITA architect creates an expansion module: cellPurposeAtt.rng. It contains the
following code:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="urn:oasis:names:tc:dita:rng:vocabularyModuleDesc.rng"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<grammar
 xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

 <!-- DEFINE THE ATTRIBUTE SPECIALIZATION -->
 <define name="cellPurposeAtt">
 <optional>
 <attribute name="cellPurpose">
 <a:documentation>Specifies the purpose of the table cell. This is a specialized
 attribute for Acme Corporation.
 </a:documentation>
 <choice>
 <value>sale</value>
 <value>out-of-stock</value>
 <value>new</value>
 <value>last-chance</value>
 <value>inherit</value>

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 63 of 72

 <value>none</value>
 </choice>
 </attribute>
 </optional>
 </define>

 <!-- ASSIGN THE ATTRIBUTE TO CERTAIN ELEMENTS -->
 <define name="entry.attributes" combine="interleave">
 <ref name="cellPurposeAtt"/>
 </define>
 <define name="stentry.attributes" combine="interleave">
 <ref name="cellPurposeAtt"/>
 </define>
 <define name="row.attributes" combine="interleave">
 <ref name="cellPurposeAtt"/>
 </define>
 <define name="strow.attributes" combine="interleave">
 <ref name="cellPurposeAtt"/>
 </define>
 <define name="colspec.attributes" combine="interleave">
 <ref name="cellPurposeAtt"/>
 </define>
</grammar>

2. They then update the catalog.xml file to include the expansion module.
3. They integrate the expansion module into the document-type shell:

<div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 ...
 <include href="urn:example:names:tc:dita:rng:cellPurposeAtt.rng:2.0"/>
 </div>

4. They specify the value that the @cellPurpose attribute contributes to the @specializations
attribute:

 <div>
 <a:documentation>SPECIALIZATIONS ATTRIBUTE</a:documentation>
 <define name="specializations-att">
 <optional>
 <attribute name="specializations" a:defaultValue="
 @props/audience
 @props/deliveryTarget
 @props/otherprops
 @props/platform
 @props/product
 @base/cellPurpose"/>
 </optional>
 </define>
 </div>

5. After checking the test file to ensure that the attribute lists are modified as expected, the work is
done.

1.5.4.3 Example: Adding an existing domain attribute to certain elements using
RNG
In this scenario, a company wants to use the @otherprops attribute specialization. However, they want
to make the attribute available only on certain elements: <p>, <div>, and <section>.

The DITA architect will need to create an extension module and integrate it into the appropriate
document-type shells.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 64 of 72

1. The DITA architect creates an expansion module that adds the @otherprops attribute to the
selected elements: acme-otherpropsAttExpansion.mod. The expansion module contains
the following content:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="urn:oasis:names:tc:dita:rng:vocabularyModuleDesc.rng"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <div>
 <a:documentation>CONTENT MODEL AND ATTRIBUTE LIST OVERRIDES</a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <define name="topic-info-types">
 <ref name="topic.element"/>
 </define>
 <define name="p.attributes" combine="interleave">
 <optional>
 <attribute name="otherprops"/>
 </optional>
 </define>
 <define name="div.attributes" combine="interleave">
 <optional>
 <attribute name="otherprops"/>
 </optional>
 </define>
 <define name="section.attributes" combine="interleave">
 <optional>
 <attribute name="otherprops"/>
 </optional>
 </define>
 </include>
 </div>
</grammar>

2. They then update the catalog.xml file to include the expansion module.
3. They integrate the extension module into the applicable document-type shell, and remove the

<include> element for topicMod.rng:

 <div>
 <a:documentation>ELEMENT-TYPE CONFIGURATION INTEGRATION</a:documentation>
 <include href="acme-otherpropsAttExpansion.rng"/>
 </div>
 <div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng:2.x"/>
 ...
 <include href="urn:oasis:names:tc:dita:rng:otherpropsAttDomain.rng:2.0">
 </include>
 </div>

4. They remove the reference to the @otherprops attribute from the props-attribute-
extension pattern:

 <div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 ...
 <include href="urn:oasis:names:tc:dita:rng:otherpropsAttDomain.rng:2.0">
 <define name="props-attribute-extensions" combine="interleave">
 <empty/>
 </define>
 </include>

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 65 of 72

5. They ensure that the included-domains entity contains the @otherprops contribution to the
@specializations attribute:

 <div>
 <a:documentation>SPECIALIZATIONS ATTRIBUTE</a:documentation>
 <define name="specializations-att">
 <optional>
 <attribute name="specializations" a:defaultValue="
 @props/audience
 @props/deliveryTarget
 @props/otherprops
 @props/platform
 @props/product"/>
 </optional>
 </define>
 </div>

6. After checking the test topic to ensure that the attribute lists are modified as expected, the work is
done.

1.5.4.4 Example: Aggregating constraint and expansion modules using RNG
The DITA architect wants to add some extension modules to the document-type shell for topic. The
document-type shell already integrates a constraint module.

The following table lists the constraint module and the extension modules that the DITA architect wants to
integrate into the document-type shell for topic.

Type of element
configuration

File name What it does

Constraint topicSectionConstraint.rng Constrains <topic>:

• Removes <abstract>
• Makes <shortdesc> required
• Removes <related-links>
• Disallows topic nesting

Constrains <section>:

• Makes @id required

Expansion sectionExpansionMod.rng Adds <sectionDesc> to the content model
of <section>

Expansion tableCellAttExpansion.rng Adds @cellPurpose to the attribute lists for
certain table elements

Because all of these element-configuration modules target elements declared in topicMod.rng, the
DITA architect needs to combine them into a single element-configuration module like the following:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="urn:oasis:names:tc:dita:rng:vocabularyModuleDesc.rng"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <div>
 <a:documentation>CONTENT MODEL AND ATTRIBUTE LIST OVERRIDES</a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <!-- Redefines attribute list for section: Makes @id required -->
 <define name="section.attributes">
 <attribute name="id">
 <data type="ID"/>

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 66 of 72

 </attribute>
 <ref name="conref-atts"/>
 <ref name="select-atts"/>
 <ref name="localization-atts"/>
 <optional>
 <attribute name="outputclass"/>
 </optional>
 </define>
 <!-- Adds sectionDesc to the content model of section -->
 <define name="section.content" combine="interleave">

 Comment by
 Eliot Kimber
combine="interleave" may not be correct here.

Kris Eberlein, 01 September 2022
I've removed combine="interleave".

 Disposition: Completed

 <optional>
 <ref name="title"/>
 </optional>
 <optional>
 <ref name="sectionDesc"/>
 </optional>
 <zeroOrMore>
 <ref name="section.cnt"/>
 </zeroOrMore>
 </define>
 <!-- Adds @cellPurpose to certain table and simple table elements -->
 <define name="colspec.attributes" combine="interleave">
 <optional>
 <attribute name="cellPurpose"/>
 </optional>
 </define>
 <define name="entry.attributes" combine="interleave">
 <optional>
 <attribute name="cellPurpose"/>
 </optional>
 </define>
 <define name="row.attributes" combine="interleave">
 <optional>
 <attribute name="cellPurpose"/>
 </optional>
 </define>
 <define name="stentry.attributes" combine="interleave">
 <optional>
 <attribute name="cellPurpose"/>
 </optional>
 </define>
 <define name="strow.attributes" combine="interleave">
 <optional>
 <attribute name="cellPurpose"/>
 </optional>
 </define>
 <!-- Redefines topic: removes abstract and related-links; makes shortdesc -->
 <!-- required; disallows topic nesting -->
 <define name="topic.content">
 <ref name="title"/>
 <ref name="shortdesc"/>
 <optional>
 <ref name="prolog"/>
 </optional>
 <optional>
 <ref name="body"/>
 </optional>
 </define>
 </include>

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 67 of 72

 </div>
</grammar>

When the DITA architect edits the document-type shell to integrate the element configuration module,
they also need to do the following:

• Remove the include statement for topicMod.rng
• Add <section> to the "ID-DEFINING ELEMENT OVERRIDES" division

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 68 of 72

A Aggregated RFC-2119 statements
This appendix contains all the normative statements from the DITA 2.0 specification. They are aggregated
here for convenience in this non-normative appendix.

Item Conformance statement

001 (9) While the DITA specification only defines coding requirements for DTD and RELAX NG, conforming
DITA documents MAY use other document-type constraint languages, such as Schematron.

002 (9) With two exceptions, a document-type shell MUST NOT directly define element or attribute types; it only
includes vocabulary and element-configuration modules (constraint and expansion). The exceptions to
this rule are the following:

• The ditabase document-type shell directly defines the <dita> element.
• RNG-based document-type shells directly specify values for the @specializations attribute.

These values reflect the details of the attribute domains that are integrated by the document-
type shell.

003 (9) Document-type shells that are not provided by OASIS MUST have a unique public identifier, if public
identifiers are used.

004 (9) Document-type shells that are not provided by OASIS MUST NOT indicate OASIS as the owner. The
public identifier or URN for such document-type shells SHOULD reflect the owner or creator of the
document-type shell.

005 (18) Structural modules based on topic MAY define additional topic types that are then allowed to occur as
subordinate topics within the top-level topic. However, such subordinate topic types MAY NOT be used
as the root elements of conforming DITA documents.

006 (18) Domain elements intended for use in topics MUST ultimately be specialized from elements that are
defined in the topic module. Domain elements intended for use in maps MUST ultimately be specialized
from elements defined by or used in the map module. Maps share some element types with topics but
no map-specific elements can be used within topics.

007 (23) Every DITA element (except the <dita> element that is used as the root of a ditabase document)
MUST declare a @class attribute.

Comment by Eliot Kimber
I think "exhibit" is more correct than "declare" here in that "declare" implies "declared in a grammar",
which is not required. But I'm not sure any reader would understand what "exhibit" means so I'm OK
with keeping "declare".

Kris Eberlein, 31 August 2022

I agree with both your points. Marking this comment as "Closed."

Disposition: Closed

008 (24) When the @class attribute is declared in an XML grammar, it MUST be declared with a default value.
In order to support generalization round-tripping (generalizing specialized content into a generic form
and then returning it to the specialized form) the default value MUST NOT be fixed. This allows a
generalization process to overwrite the default values that are defined by a general document type with
specialized values taken from the document being generalized.

009 (24) A vocabulary module MUST NOT change the @class attribute for elements that it does not specialize,
but simply reuses by reference from more generic levels.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 69 of 72

Item Conformance statement

010 (24) Authors SHOULD NOT modify the @class attribute.

011 (26) Each specialization of the @props and @base attributes MUST provide a token for use by the
@specializations attribute.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 70 of 72

Index

B
best practices

document-type shells 6
specialization 12

C
@class attribute

examples 22
rules and syntax 22

constraints
design and implementation rules 33
examples

applying multiple constraints 42, 48
redefining the content model 36, 43
replacing base element with domain extensions
42, 48
restricting attributes for an element 38, 45
restricting content model for a domain 40, 46

overview 32
processing and interoperability 35

D
definitions

attribute domain modules 17
element domain modules 17
structural modules 17

design and implementation rules
attribute types 21
document-type shells 9
element types 19
expansion modules 51

document-type shells
conformance 11
equivalence 10
overview 6
public identifiers 9
rules 9

E
examples

@class attribute 22
constraints

applying multiple constraints 42, 48
redefining the content model 36, 43
replacing base element with domain extensions
42, 48
restricting attributes for an element 38, 45
restricting content model for a domain 40, 46

document-type shells

examples (continued)
document-type shells (continued)

public identifiers 9
expansion modules

aggregating constraint and expansion modules
59
expanding attributes for an element 57, 58, 63,
64
expanding content model of <section> 54,
60

specialization
<context> and <prereq> 12
including non-DITA content 28
reuse of elements from non-ancestor
specializations 30

@specializations attribute 26
expansion modules

design and implementation rules 51
examples

aggregating constraint and expansion modules
59
expanding attributes for an element 57, 58, 63,
64
expanding content model of <section> 54,
60

overview 50

I
illustrations

document-type shell 6
interoperability

constraints 35

M
modularization

overview 15

N
naming conventions

attribute domain modules 17
element domain modules 17
structural modules 17

S
specialization

benefits 15
best practices 12
examples

<context> and <prereq> 12

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 71 of 72

specialization (continued)
examples (continued)

including non-DITA content 28
reuse of elements from non-ancestor
specializations 30

including non-DITA content 28
modularization 15
overview 12
reuse of elements from non-ancestor specializations
30
rules

attribute types 21
element types 19

@specializations attribute
examples 26
rules and syntax 26

T
terminology

attribute domain modules 17
element domain modules 17
structural module 17

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 72 of 72

	Table of contents
	1 Configuration, specialization, generalization, constraints, and expansion
	1.1 Overview of DITA extension facilities
	1.2 Document-type configuration
	1.2.1 Overview of document-type shells
	1.2.2 Rules for document-type shells
	1.2.3 Equivalence of document-type shells
	1.2.4 Conformance of document-type shells

	1.3 Specialization
	1.3.1 Overview of specialization
	1.3.2 Modularization
	1.3.3 Vocabulary modules
	1.3.4 Specialization rules for element types
	1.3.5 Specialization rules for attributes
	1.3.6 @ class attribute rules and syntax
	1.3.7 @specializations attribute rules and syntax
	1.3.8 Specializing to include non-DITA content
	1.3.9 Sharing elements across specializations

	1.4 Constraints
	1.4.1 Overview of constraints
	1.4.2 Constraint rules
	1.4.3 Constraints, processing, and interoperability
	1.4.4 Examples: Constraints implemented using DTDs
	1.4.4.1 Example: Redefine the content model for the <topic> element using DTD
	1.4.4.2 Example: Constrain attributes for the <section> element using DTD
	1.4.4.3 Example: Constrain a domain module using DTD
	1.4.4.4 Example: Replace a base element with the domain extensions using DTD
	1.4.4.5 Example: Apply multiple constraints to a single document-type shell using DTD

	1.4.5 Examples: Constraints implemented using RNG
	1.4.5.1 Example: Redefine the content model for the <topic> element using RNG
	1.4.5.2 Example: Constrain attributes for the <section> element using RNG
	1.4.5.3 Example: Constrain a domain module using RNG
	1.4.5.4 Example: Replace a base element with the domain extensions using RNG
	1.4.5.5 Example: Apply multiple constraints to a single document-type shell using RNG

	1.5 Expansion modules
	1.5.1 Overview of expansion modules
	1.5.2 Expansion module rules
	1.5.3 Examples: Expansion implemented using DTDs
	1.5.3.1 Example: Adding an element to the <section> element using DTDs
	1.5.3.2 Example: Adding an attribute to certain table elements using DTDs
	1.5.3.3 Example: Adding an existing domain attribute to certain elements using DTDs
	1.5.3.4 Example: Aggregating constraint and expansion modules using DTDs

	1.5.4 Examples: Expansion implemented using RNG
	1.5.4.1 Example: Adding an element to the <section> element using RNG
	1.5.4.2 Example: Adding an attribute to certain table elements using RNG
	1.5.4.3 Example: Adding an existing domain attribute to certain elements using RNG
	1.5.4.4 Example: Aggregating constraint and expansion modules using RNG

	A Aggregated RFC-2119 statements
	Index

