Q. What is the interaction between key resolution or key binding and conditional processing?

A. For a given root map and a given set of filtering conditions the set of effective keys is invariant, meaning that all conforming DITA processors should produce the same set of effective key bindings.

Processors may choose to do filtering before or after key space construction. The order of operation cannot effect the effective bindings for a given set of filtering conditions. However, the order of operation does effect the details of how a processor implements key space representation or key resolution.

If filtering is applied before key space construction then key space construction cannot be affected by any key definitions that are filtered out. This is how the DITA Open Toolkit is implemented, for example.

If filtering is applied after key space construction then the constructed key space must reflect all potential bindings, meaning bindings that have unique sets of select attribute values for a given key name. Once this "potential" key space is constructed, filtering can be applied to remove any unselected bindings, leaving the set of applicable bindings from which the first binding for each key name can be determined per the rules for key definition precedence. This final result, reflecting a specific set of filtering conditions, is then the effective key space for that set of conditions. A separate set of conditions may result in a different set of effective bindings, depending on the details of the key definitions. However, for a given set of filtering conditions, the final key space must be identical to the key space created by filtering first, as the set of applicable key definitions must be the same in both cases.

Note that this consideration applies not just to key definitions but to map-to-map topicrefs as well, as a conditional map reference effectively makes all the key definitions within that map conditional on the set of conditions that apply to the conditional map reference. If the same map is included twice, with different conditions the effective map tree could be different for different conditions. When map references are unconditional or all references have the same conditions, then map tree construction only needs to consider the first reference to map in the map tree (in breadth-first order) as subsequent occurrences of the map in the map tree cannot have any effect because the precedence rules for key bindings mean the definitions from the first reference to the map will always take precedence over definitions from subsequent references to the map. But if different references to the same map have different conditions, then all references with distinct conditions must be considered when calculating the map tree and constructing the key space. [This is one reason that it's essential that documents declare, through the @domains attribute, which attributes are specializations of @props, otherwise general-purpose DITA processors have no way of knowing which attributes are select attributes and therefore no way to determine if two map references to the same map or two key definitions for the same key have distinct values for their select attributes.]

For sequential processors there's no reason not to filter first as that simplifies key space construction and key resolution (effectively making it the same as if there were no selection attributes on any key definitions or map references). However, sequential processors might choose to filter after key space construction so that they can, for example, report on all the potentially applicable key bindings within a key space.

For interactive processors such as DITA-aware editors and component management systems, where there may be a requirement to dynamically and quickly reflect the result of choosing different sets of filtering conditions, processors most likely must do filtering second, holding in persistent memory all of the potentially-applicable bindings for each unique key name. This also implies that a set of filtering conditions ala DITAVAL needs to be allowed or required as a parameter to key resolution requests.

If you think of a key space as a table key names and bindings, in precedence order, then a filter-second key space would simply list all the potentially-applicable bindings for a given key in precedence order. Except for error reporting or other traceability requirements, there's no need to remember which reference to a given map resulted in contributions to the key space table, since all that matters is the key-to-resource binding and the select properties associated with each potential bindings.

Example

Consider this root map:

<map>

 <title>Root Map 1</title>

 <topicgroup>

 <mapref href="submap-01.ditamap"/>

 </topicgroup>

 <topicgroup>

 <keydef

 platform="platform-A"

 keys="key-01"

 href="topic-1A.dita"/>

 <keydef

 platform="platform-B"

 keys="key-01"

 href="topic-1B.dita"/>

 <keydef

 platform="platform-C"

 keys="key-01"

 href="topic-1C.dita"/>

 </topicgroup>

</map>

Here the key "key-01" is defined three times, with three different values for the @platform select attribute.

The effective binding for the key "key-01" is entirely dependent on the @platform value specified or in effect when either the key space is constructed (filtering first) or when the key reference is resolved (filtering second). Any one of these three definitions could be the effective one depending on the @platform setting at processing time.

For example, if the setting for @platform is "exclude 'platform-A'" then the effective binding is the one for "platform-B" (topic-1B.dita) because that is the first one in the document once the binding for "platform-A" has been filtered out. Likewise, the binding for "platform-C" (topic-1C.dita) will be effective only if both "platform-A" and "platform-B" are excluded.

To make the example a little more interesting, lets add an unconditional definition for the key as well as a duplicate conditional definition:

<map>

 <title>Root Map 1</title>

 <topicgroup>

 <mapref href="submap-01.ditamap"/>

 </topicgroup>

 <topicgroup>

 <keydef

 platform="platform-A"

 keys="key-01"

 href="topic-1A.dita"/>

 <keydef

 platform="platform-A"

 keys="key-01"

 href="topic-1H.dita"/>

 <keydef

 platform="platform-B"

 keys="key-01"

 href="topic-1B.dita"/>

 <keydef

 platform="platform-C"

 keys="key-01"

 href="topic-1C.dita"/>

 <keydef

 keys="key-01"

 href="topic-1G.dita"/>

 </topicgroup>

</map>

Now there are four possible effective bindings, any one of which could be the effective one depending on the active value for the platform property. The binding to topic "topic-1H.dita" cannot ever be effective because it comes after a definition for the same key name with the same set of conditions (platform = "platform-A"). But the remaining four definitions could each be active under different sets of conditions.

This key space could be represented by this key space table:

	key name
	bound resource
	conditions

	key-01
	topic-1A.dita
	platform='platform-A'

	key-01
	topic-1B.dita
	platform='platform-B'

	key-01
	topic-1C.dita
	platform='platform-C'

	key-01
	topic-1B.dita
	-unconditional-

The key binding topic-1H.dita is not included because it is the second definition for the same key name and conditions, so it can never be effective because if platform-A is excluded and if platform-A is included the preceding definition will take precedence.

To resolve a reference to key 'key-01' within this key space you specify the filtering spec for @platform, e.g. "include 'platform-C', exclude 'platform-A' and 'platform-B' and then examine each row for key "key-01" until you find the first one that is not excluded, which for this set of conditions is the third row, resulting in a resolution to resource "topic-1C.dita".

