
Local Signature Computation

Frank Cornelis
frank.cornelis@fedict.be
December 15, 2011
Version 1.0

1 Motivation

The signing protocols of the OASIS DSS specification mainly focus on centralized key management
systems. Such architecture makes sense for situations where the connecting clients don't own tokens
with signing capabilities themselves. However, large-scale signing token deployments (like it is the
case for national eID cards) reduces the need for a centralized key management system. In such
scenarios it is still interesting to keep a centralized system in place for several reasons:

• Despite the fact that each connecting client owns a token with signing capability, he/she might
not have the appropriate software installed on the system for the creation of electronic
signatures. It might be easier to maintain a lightweight applet solution instead of a full blown
token middleware solution that has to be installed on every participating client's system. The
diversity among the client platforms is also easier to maintain from a centralized platform
instead of by distributing token middleware to all participating clients. Furthermore managing
the configuration of the signature policy to be used for creation and validation of a signature
within a certain business context might be easier using a centralized platform.

• When transforming a paper-world business work flow to a digital equivalent that includes the
creation and/or validation of signatures, it might be interesting to offer the sub-process of
creating/validating an electronic signature as an online service. Given the technicality of
signature creation and validation, a clean separation of concerns in the service architecture is
desired.

So the role of the centralized system shifts from key management to providing a platform that manages
the technicalities of singing documents using client tokens.

1/3

mailto:frank.cornelis@fedict.be

2 Sample Application

Illustration 1: eID DSS Signature Pipeline shows the design of a digital signature service that uses the
Belgian eID card as client signing token.

An end-user enters the DSS signature pipeline via some protocol. First of all the appropriate protocol
service parses the request. At this step the mime type of the incoming document is determined. Via the
mime type the appropriate document service can be selected. The document service will first check the
incoming document (syntax, ...). Next the web browser capabilities are being queried in order for the
document service to be able to correctly visualize the received document. After the user's consent the
document service will orchestrate the document signing process using a web browser Java applet
component. Finally the signed document is returned via the protocol service that also handled the
incoming protocol request.

The advantage of such a generic signature pipeline architecture is that one can easily add new
supported document formats by providing a new document service implementation. Because the
protocol handling is also isolated in protocol services, one can also easily add new DSS protocols to the
platform. Another advantage of such a signature pipeline is that every Relying Party that uses the
platform is guaranteed that the user followed a certain signature ceremony and is fully aware of the
content of the signed document. This guarantee can be interesting from a legal point of view.

2/3

Illustration 1: eID DSS Signature Pipeline

Protocol Service:
Parse request

Document Service:
check document

Check supported
Browser plugins

Document Service:
Visualize document

Document Service:
Sign document

Protocol Service:
Response generation

Services
Manager

Protocol
Service

Protocol
Service Document

Service

Document
Service

Document
Context

SignatureService
proxyeID Applet Service

eID Applet

Protocol
Context

3 Sample scenario

A sample protocol flow is shown in Illustration 2: Sequence diagram of a simple protocol flow.

Here the client navigates via a web browser to the web application of the relying party. As part of the
business work flow, the client fills in a web form. The relying party's web application converts the
received form data into a document that needs to be signed by the client. Now the relying party's web
application redirects the client web browser to the DSS web application. The DSS web application
takes care of the signing ceremony using Java applet technology to connect to the client's token. Finally
the DSS web application redirects the client's web browser back to the relying party. The relying party
can now further process the signed document as part of the implemented business work flow.

In such scenarios it is difficult to use the existing OASIS DSS protocol messages as is because the
OASIS DSS protocol does not provide the security mechanisms required to secure the communication
between relying parties and the DSS in the context of web browsers. Various MITM attacks are
possible at different points during the signature ceremony. Similar to the OASIS SAML Browser POST
profile we need to define additional wrapper messages to be able to guarantee secure transportation of
the DSS requests and responses via web browsers.

A disadvantage of the simple protocol shown is that the entire document is being transferred between
relying party and DSS (and back) using the client's web browser. Given the upload limitation of most
client's internet connection, this might result in a bad end-user experience when trying to sign a
document. So additionally we should define some form of artifact binding. Here the relying party sends
the to be signed document via a SOAP DSS web service to the DSS. The DSS stores the document in
some temporary document repository. The relying party receives back a document identifier which it
passes as parameter when redirecting the client's web browser towards the DSS. At the end of the
protocol flow, the relying party can fetch the signed document from the DSS web service using the
document identifier.

3/3

Illustration 2: Sequence diagram of a simple protocol
flow

Token Client Browser RP DSS

fill in form

signing request

sign document

signing response

Create
document

	1 Motivation
	2 Sample Application
	3 Sample scenario

