JOASIS

Digital Signature Service Core Protocols,
Elements, and Bindings Version 2.0

Committee Specification Draft 02 WDO1
07 October 2018

Specification URIs
Thisversion:
® http://docs.oas s-open.org/dss-x/dss-core/v2.0/csprd02/dss-core-v2.0-csprd02.md (Authoritative)

® http://docs.oasi s-open.org/dss-x/dss-core/v2.0/csprd02/dss-core-v2.0-csprd02.html
® http://docs.oasi s-open.org/dss-x/dss-core/v2.0/csprd02/dss-core-v2.0-csprd02. pdf

Previousversion:
® http://docs.oasis-open.org/dss-x/dss-core/v2.0/csprd01/dss-core-v2.0-csprd0l.docx (Authoritative)

® http://docs.oasis-open.org/dss-x/dss-core/v2.0/csprd01/dss-core-v2.0-csprd01.html
® http://docs.oasi s-open.org/dss-x/dss-core/v2.0/csprd01/dss-core-v2.0-csprd0l. pdf

L atest version:
® http://docs.oasis-open.org/dss-x/dss-core/v2.0/dss-core-v2.0.md (Authoritative)

® http://docs.oasis-open.org/dss-x/dss-core/v2.0/dss-core-v2.0.html
® http://docs.oasis-open.org/dss-x/dss-core/v2.0/dss-core-v2.0.pdf

Technical Committee:

® OASIS Digital Signature Services eXtended (DSS-X) TC

Chairs

® Andreas Kuehne (kuehne@trustable.de), Individual
® Stefan Hagen (stefan@hagen.link), Individual

Editors

¢ Andreas Kuehne (kuehne@trustable.de), Individual
® Stefan Hagen (stefan@hagen.link), Individual

Additional artifacts:
This prose specification is one component of a Work Product that also includes:

® JSON and XML schemas: http://docs.oasi s-open.org/dss-x/dss-core/v2.0/csprd02/schema/

https://www.oasis-open.org/committees/dss-x/

Related work:
This specification replaces or super sedes:

® Digital Sgnature Service Core Protocols, Elements, and Bindings Version 1.0. Edited by Stefan
Drees. 11 April 2007. OASIS Standard. http://docs.oasi s-open.org/dss/v1.0/oasi s-dss-core-spec-v1.
0-os.html.

Declared XML namespaces:

® http://docs.oasi s-open.org/dss-x/ns/core
® http://docs.oasi s-open.org/dss-x/ng/base

Abstract

This document defines JSON and XML based request/response protocols for signing and verifying
documents and other data. It also defines atimestamp format, and a signature property for use with these
protocols. Finally, it defines transport and security bindings for the protocols.

Status

This document was last revised or approved by the OASIS Digital Signature Services eXtended (DSS-X)
TC on the above date. The level of approval isalso listed above. Check the "Latest version” location
noted above for possible later revisions of this document. Any other numbered Versions and other
technical work produced by the Technical Committee (TC) are listed at https://www.0asis-open.org
/committees/tc_home.phpwg_abbrev=dss-x#technical.

TC members should send comments on this specification to the TC's email list. Others should send
comments to the TC's public comment list, after subscribing to it by following the instructions at the
"Send A Comment" button on the TC's web page at https.//www.0asi s-open.org/committees/dss-x/.

This specification is provided under the RE on Limited Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectua Property Rights section of the TC' s web page (https.//www.oasis-
open.org/committees/dss-x/ipr.php).

Note that any machine-readable content (Computer L anguage Definitions) declared Normative for this
Work Product is provided in separate plain text files. In the event of a discrepancy between any such

plain text file and display content in the Work Product's prose narrative document(s), the content in the
separate plain text file prevails.

Citation format:

When referencing this specification the following citation format should be used:

[DSS-v2.0] Digital Sgnature Service Core Protocols, Elements, and Bindings Version 2.0. Edited by
Andreas Kuehne and Stefan Hagen. 07 October 2018. OASIS Committee Specification Draft 02 / Public

Review Draft 02. http://docs.oasi s-open.org/dss-x/dss-core/v2.0/csprd02/dss-core-v2.0-csprd02.html.
Latest version: http://docs.oasis-open.org/dss-x/dss-core/v2.0/dss-core-v2.0.html.

Notices

Copyright © OASIS Open 2018. All Rights Reserved.

https://www.oasis-open.org/policies-guidelines/ipr#RF-on-Limited-Mode
https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsCompLang

All capitalized termsin the following text have the meanings assigned to them in the OASIS Intellectua
Property Rights Policy (the "OASIS IPR Policy"). The full Palicy may be found at the OASIS website.

This document and trandlations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this section are included on all such copies and derivative works. However, this document
itself may not be modified in any way, including by removing the copyright notice or references to
OASIS, except as needed for the purpose of developing any document or deliverable produced by an
OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS
IPR Policy, must be followed) or as required to trandlate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTSOR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believesit has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it isaware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide alicense to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASI S takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license or
permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claimsin such list are, in fact, Essential Claims.

The name"OASIS" isatrademark of OASIS, the owner and developer of this specification, and should
be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https.//www.oasi s-open.org/policies-guidelines/trademark for above
guidance.

Table of Contents

[[TOC]

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/

1 Introduction

1.1 1PR Poalicy

This specification is provided under the RF on Limited Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC' s web page (https.//www.oasis-
open.org/committees/dss-x/ipr.php).

1.2 Terminology

The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be
interpreted as described in IETF RFC 2119 [RFC2119] and RFC 8174 [RFC8174].

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,

“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in [REC2119] and [REC8174].

1.2.1 Terms and Definitions

For the purposes of this document no specific terms or definitions have been identified as deviating from
the usual meaning in the context of XML / JSON schema, digital signatures or transport.

1.2.2 Abbreviated Terms

ASN.1 — Abstract Syntax Notation One

URI — (IETF) Uniform Resource Identifier
XML — (W3C) Extensible Markup Language

XSD — (W3C) XML Schema

1.3 Normative References
[DSBXSD] A. Kuehne, S. Hagen. DSS2.0 Base XML Schema. OASIS.
[DSIGRWXSD] A.Kuehne, S. Hagen. DSS2.0 adapted XMLDSg XML Schema. OASIS.

[DSS1Async] A. Kuehne. Asynchronous Processing Abstract Profile. OASIS, oasis-dss-profiles-
asynchronous _processing-spec-v1.0-os.html

[DSS1Core] S. Hagen. DSS 1.0 Core Protocols. OASIS, oasis-dss-core-spec-v1.0-o0s.html.
[DSS2JSON] A. Kuehne, S. Hagen. DSS2.0 Core JSON Schema. OASIS.

[DSS2X SD] A. Kuehne, S. Hagen. DSS52.0 Core XML Schema. OASIS.

[ESIFrame]** ****TR 119 102 V1.2.1******E|ectronic Signatures and Infrastructures (ESI);

The framework for standardization of signatures; Definitions and abbreviations

https://www.oasis-open.org/policies-guidelines/ipr#RF-on-Limited-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/dss-x/ipr.php
https://www.oasis-open.org/committees/dss-x/ipr.php
http://docs.oasis-open.org/dss/v1.0/oasis-dss-profiles-asynchronous_processing-spec-v1.0-os.html
http://docs.oasis-open.org/dss/v1.0/oasis-dss-profiles-asynchronous_processing-spec-v1.0-os.html
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html
http://www.etsi.org/deliver/etsi_tr/119000_119099/119001/01.02.01_60/tr_119001v010201p.pdf

http://www.etsi.org/deliver/ets_tr/119000 119099/119001/01.02.01_60/tr _119001v010201p.pdf
RFC2119

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels', BCP 14, RFC 2119, DOI
10.17487/RFC2119, March 1997, https.//www.rfc-editor.org/info/rfc2119.

RFC2396

Berners-Lee, T., "Uniform Resource Identifiers (URI): Generic Syntax.”, RFC 2396, DOI 10.17487
/IRFC2396, August 1998, http://www.rfc-editor.org/info/rfc2396. replace with: [RFC3986] Berners-L ee,
T., Fidding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax”, STD 66, RFC
3986, DOI 10.17487/RFC3986, January 2005, https://www.rfc-editor.org/info/rfc3986.

RFC2440

Cdllas J., Donnerhacke L., Finney H., Thayer R., "OpenPGP Message Format", RFC 2440, DOI 10.17487
/RFC2440, November 1998, http://www.rfc-editor.org/info/rfc2440. replace with: [RFC4880] Callas, J.,
Donnerhacke, L., Finney, H., Shaw, D., and R. Thayer, "OpenPGP Message Format”, RFC 4880, DOI
10.17487/RFC4880, November 2007, https://www.rfc-editor.org/info/rfc4880.

RFC2616

Fielding R., "Hypertext Transfer Protocol - HTTP/1.1", RFC 2616, DOI 10.17487/RFC2616, June 1999,
http://www.rfc-editor.org/info/rfc2616. replace with (maybe the right individual RFC): [RFC7230]
Fielding, R., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and
Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014, https://www.rfc-editor.org/info/rfc7230.
[RFC7231] Fielding, R., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Semantics
and Content”, RFC 7231, DOI 10.17487/RFC7231, June 2014, https.//www.rfc-editor.org/info/rfc7231.
[RFC7232] Fielding, R., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTF/1.1): Conditional
Requests’, RFC 7232, DOI 10.17487/RFC7232, June 2014, https://www.rfc-editor.org/info/rfc7232.
[RFC7233] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.
1): Range Requests’, RFC 7233, DOI 10.17487/RFC7233, June 2014, https.//www.rfc-editor.org/info
[rfc7233. [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Caching", RFC 7234, DOI 10.17487/RFC7234, June 2014, https://www.rfc-editor.
org/info/rfc7234. [RFC7235] Fielding, R., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP
/1.1): Authentication”, RFC 7235, DOI 10.17487/RFC7235, June 2014, https.//www.rfc-editor.org/info
[rfc7235.

RFC2648

Moats, R., "A URN Namespace for IETF Documents’, RFC 2648, DOI 10.17487/RFC2648, August
1999, https.//www.rfc-editor.org/info/rfc2648.

RFC2822

Resnick, P., "Internet Message Format”, BCP_ETC, RFC 2822, DOI 10.17487/RFC2822, April 2001,
http://www.rfc-editor.org/info/rfc2822. replace with: [RFC5322] Resnick, P., Ed., "Internet Message
Format", RFC 5322, DOI 10.17487/RFC5322, October 2008, https.//www.rfc-editor.org/info/rfc5322.

RFC3161

Adams, C., Cain, P., Pinkas, D., and R. Zuccherato, "Internet X.509 Public Key Infrastructure Time-
Stamp Protocol (TSP)", RFC 3161, DOI 10.17487/RFC3161, August 2001, https.//www.rfc-editor.org
[info/rfc3161.

http://www.etsi.org/deliver/etsi_tr/119000_119099/119001/01.02.01_60/tr_119001v010201p.pdf
https://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc2396
https://www.rfc-editor.org/info/rfc3986
http://www.rfc-editor.org/info/rfc2440
https://www.rfc-editor.org/info/rfc4880
http://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7232
https://www.rfc-editor.org/info/rfc7233
https://www.rfc-editor.org/info/rfc7233
https://www.rfc-editor.org/info/rfc7234
https://www.rfc-editor.org/info/rfc7234
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc2648
http://www.rfc-editor.org/info/rfc2822
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc3161
https://www.rfc-editor.org/info/rfc3161

RFC5652

[RFC5652] Housley, R., " Cryptographic Message Syntax (CMS)", STD 70, RFC 5652, DOI 10.17487
/IRFC5652, September 2009, https.//www.rfc-editor.org/info/rfc5652. Remark: Asused in DSS, all
implementations based upon RFC 5652 and previous releases of CM S will suffice. For the sake of
simplicity the "urn:ietf:rfc:3369" is used throughout the document to indicate a CM S message as
specified in RFC 5652 or RFC 3369 or any version (including PKCS #7.

RFC8174

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words', BCP 14, RFC 8174, DOI
10.17487/RFC8174, May 2017, http://www.rfc-editor.org/info/rfc8174.

RFC8259

Bray, T., "The JavaScript Object Notation (JSON) Data I nterchange Format", RFC 8259, DOI 10.17487
/IRFC8259, December 2017, http://www.rfc-editor.org/info/rfc8259.

[SAML2RWXSD] A. Kuehne, S. Hagen. DSS2.0 adapted SAML 2.0 XML Schema. OASIS.

**[SOAP] **M. Gudgin et al. SOAP Version 1.2 Part 1. Messaging Framework. W3C
Recommendation, June 2003. http://www.w3.0rg/TR/xmlschema-1/
[SOAPALt] H. F. Nielsen, H. Ruellan SOAP Message Transmission Optimization Mechanism,

W3C Working Group Note, 8 June 2004 http://www.w3.0rg/TR/soap12-af/

[SOAPMtom] Martin Gudgin, Noah Mendelsohn SOAP 1.2 Attachment Feature, W3C
Recommendation 25 January 2005 http://www.w3.org/TR/soap12-mtom/

**WS-I-Att] **Ch. Ferris, A. Karmarkar, C. K. Liu Attachments Profile Version 1.0, The Web
Services-Interoperability Organization (WS-1)*,*20 April 2006 http://www.ws-i.org/Profiles
[AttachmentsProfile-1.0.html

[XML] Extensible Markup Language (XML) 1.0 (Fifth Edition), T. Bray, J. Paoli,
M. Sperberg-McQueen, E. Maler, F. Yergeau, Editors, W3C Recommendation, November 26, 2008,
http://www.w3.0rg/TR/2008/REC-xml-20081126/. L atest version available at http://www.w3.org/TR/xml

[XML-CL14N]****** **J. Boyer. Canonical XML Version 1.0. W3C Recommendation, March
2001. http://www.w3.org/TR/xml-c14n

[XML-xcl-c14n] Exclusive XML Canonicalization Version 1.0. W3C Recommendation 18 July 2002
http://www.w3.0rg/TR/2002/REC-xml -exc-c14n-20020718/

[****XML-ng] T. Bray, D. Hollander, A. Layman. Namespacesin XML. W3C
Recommendation, January 1999. http://www.w3.org/TR/1999/REC-xml-names-19990114

[XML-NT-Document] http://www.w3.org/TR/2004/REC-xml-20040204/#NT-document

[XML-PROLOG] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, et al. Prolog and Document Type
Declaration in Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation, 04

February 2004, http://www.w3.0rg/TR/REC-xml/#sec-prolog-dtd

**[xml:id] **xml:id, Version 1.0, W3C Recommendation, 9 September 2005, http://www.w3.
org/TR/xml-id/

https://www.rfc-editor.org/info/rfc5652
http://www.rfc-editor.org/info/rfc8174
http://www.rfc-editor.org/info/rfc8259
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/soap12-af/
http://www.w3.org/TR/soap12-mtom/
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/xml
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/REC-xml/#sec-prolog-dtd

[XMLDSIG] D. Eastlake et al. XML-Signature Syntax and Processing. W3C Recommendation,
February 2002* . * http://www.w3.0rg/TR/2002/REC-xmldsig-core-20020212/

[XML-Schemal] W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures, S. Gao,
M. Sperberg-McQueen, H. Thompson, N. Mendelsohn, D. Beech, M. Maloney, Editors, W3C
Recommendation, April 5, 2012, http://www.w3.0rg/TR/2012/REC-xmlschemall-1-20120405/. L atest

version available at http://www.w3.org/TR/xmlschemall-1/.

[XML-Schema-2] W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypesw3C XML
Schema Definition Language (XSD) 1.1 Part 2: Datatypes, D. Peterson, S. Gao, A. Malhotra,

M. Sperberg-McQueen, H. Thompson, Paul V. Biron, Editors, W3C Recommendation, April 5, 2012,
http://www.w3.org/TR/2012/REC-xmlschemall-2-20120405/. L atest version available at http://www.w3.

org/TR/xmlschemall-2/.

[****XPATH] XML Path Language (XPath) Version 1.0. W3C Recommendation 16
November 1999 http://www.w3.org/TR/xpath

1.4 Non-Nor mative Refer ences

[ASN.1] Introduction to ASN.1. https.//www.itu.int/en/I TU-T/asn1/Pages/introduction.aspx
[CHPGW)] DSS Extension for Local Signature Computation Version 1.0, Working Draft for

Committee Specification 04. https.//www.oas s-open.org/committees/downl oad.php/62576/localsig-v1.0-
csprd04.pdf

[1SO8601] Data elements and interchange formats — Information interchange — Representation
of dates and times, International Standard, 1SO 8601:2004(E), December 1, 2004, https.//www.iso.org
[standard/40874.html.

[1SO639-1] Codes for the representation of names of languages — Part 1. Alpha-2 code,
International Standard, 1SO 639-1:2002 (en), https.//www.iso.org/obp/ui#iso:std:is0:639:-1.

[JENSEN-2009] Meiko Jensen, Lijun Liao, and Jorg Schwenk. 2009. The curse of namespaces in the
domain of XML signature. In Proceedings of the 2009 ACM workshop on Secure web services (SWS
'09). ACM, New York, NY, USA, 29-36. DOI: https://doi.org/10.1145/1655121.1655129

[RFC7049] C. Bormann, University Bremen TZI, Concise Binary Object Representation
(CBOR), ISSN: 2070-1721, October 2013. https.//tools.ietf.org/html/rfc7049

[RFC7515]** **M. Jones, Microsoft, JSON Web Signature (JWS), ISSN: 2070-1721, May 2015.
https.//tools.ietf.org/html/rfc7515.

1.5 Typographical Conventions

Keywords defined by this specification use this monospaced font.

Normative source code uses this paragraph style.

Text following the special symbol («) —an opening Guillemet (or French quotation mark) —within this
specification identifies automatically testable requirements to aid assertion tools. Every such statement is
separated from the following text with the special end symbol (») — a closing Guillemet and has been
assigned areference that follows that end symbol in one of the three patterns:

1. [DSS-section#-local#] if it applies regardless of syntax

2. [JDSS-section#-local#] if it applies only to JSON syntax

http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/
http://www.w3.org/TR/xmlschema11-1/
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/
http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/xpath
https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx
https://www.oasis-open.org/committees/download.php/62576/localsig-v1.0-csprd04.pdf
https://www.oasis-open.org/committees/download.php/62576/localsig-v1.0-csprd04.pdf
https://www.iso.org/standard/40874.html
https://www.iso.org/standard/40874.html
https://www.iso.org/obp/ui#iso:std:iso:639:-1:ed-1:v1:en
https://doi.org/10.1145/1655121.1655129
https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/rfc7515

3. [XDSS-section#-local#] if it applies only to XML syntax

Some sections of this specification are illustrated with non-normative examples.
Example 1: text describing an example uses this paragraph style
Non-normative examples use this paragraph style.

All examplesin this document are non-normative and informative only.
Representation-specific text is indented and marked with vertical lines.
Representation-Specific Headline

Normative representation-specific text

All other text is normative unless otherwise labeled e.g. like:

Non-normative Comment:

Thisis apure informative comment that may be present, because the information conveyed is deemed

useful advice or common pitfalls learned from implementer or operator experience and often given
including the rationale.

1.6 DSS Overview (Non-nor mative)

This specification describes two request/response protocols:
1. signing protocol
2. verifying protocol
Using the first protocol a client can send documents (or document hashes) to a server and receive back a
signature on the documents. Using the second protocol a client can send documents (or document hashes)
and a signature to a server and receive back an answer on whether the signature is valid or not.
The top-level components for the signing protocol are
SignRequest (see section 4.2.6) as input and
SignResponse (see section 4.2.7) as outpui.
For the verification protocol the top-level components are

VerifyRequest (see section 4.2.10) as input and

VerifyResponse (see section 4.2.11) as outpui.

Additionally, this version of the core includes asynchronous requests initially specified in the
Asynchronous Processing Abstract Profile [DSSAsync].

The elements in which the protocols are formulated are provided in a sematic level and also in JSON and
XML syntax. Provided are additional mappings from the generic to the specific entities.

These protocol operations could be useful in avariety of contexts —for example, they could allow clients
to access a single corporate key for signing press releases, with centralized access control, auditing and
archiving of signature requests. They could also allow clients to create and verify signatures without the
need for complex client software and security-sensitive configuration.

The signing and verifying protocols are chiefly designed to support the creation and verification of XML
signatures [XMLDSI G], XML timestamps (see [DSS1Core], section 5.1), binary timestamps [RFC 3161]
and CM S signatures [REC 5652]. These protocols are intended be extensible to other types of signatures
and timestamps, such as PGP signatures [RFC 2440].

It is expected that the signing and verifying protocols will be profiled to meet many different application
scenarios. In anticipation of this, these protocols have only aminimal set of required elements, which
deal with transferring “input documents’ and signatures back and forth between client and server. The
input documents to be signed or verified can be transferred in their entirety or the client can hash the
documents themselves and only send the hash values to save bandwidth and protect the confidentiality of
the document content.

All functionality besides transferring input documents and signatures is relegated to aframework of
“optional inputs’ and “optional outputs’. This document defines a number of optional inputs and
outputs. Profiles of these protocols can pick and choose which optional inputs and outputs to support and
can introduce their own optional inputs and outputs when they need functionality not anticipated by this
specification.

Examples of optional inputs to the signing protocol include: what type of signature to produce, which key
to sign with, who the signature is intended for, and what signed and unsigned properties to place in the
signature. Examples of optional inputs to the verifying protocol include: the time for which the client
would like to know the signature’ s validity status, additional validation data necessary to verify the
signature (such as certificates and CRLS), and requests for the server to return information such as the
signer’ s name or the signing time.

The signing and verifying protocol messages must be transferred over some underlying protocol (s) which
provide message transport and security. A binding specifies how to use the signing and verifying
protocols with some underlying protocol such asHTTP POST or TLS. Section 7 Asynchronous
Processing Model provides an initial set of bindings.

The previous version of specification ([DSS1Core]) defines two elements that are related to these
protocols. First, an XML timestamp element is defined in [DSS1Core], section 5.1. The signing and
verifying protocols can be used to create and verify both XML and binary timestamps; a profile for doing
soisdefined in [XML-TSP]. Second, a Requesterldentity element is defined in (see [DSS1Core],
section 5.2). This element can be used as a signature property in an XML signature, to give the name of
the end-user who requested the signature. These elements remain unchanged and are not repeated in this
specification.

2 Design Consider ations

2.1 Version 2.0 goal [non-nor mative]

The main changes of this version of the DSS/X core document compared to version 1.0 are:
Considering the set of comments and bug reports arrived since version DSS 1.0 became standard
Inclusion of requirements that became known only after publication of version 1.0

Simplification of the core schema, e.g. by dropping elements seldom used

Support for syntaxes other than XML

Support transport formats other than SOAP

Integration of the ‘ Asynchronous Processing Profile’ [DSSAsync] into the core
Define a sematic model that can be mapped to different syntaxes. In this document the focusison XML
and JSON, but support for other syntaxes should be possible. Therefore, only the common denominator
of syntax features can be used:

Focus on Base64 as the most versatile way to transport documents and signatures

Avoid the use of XML specifics (like e.g. mixed content)

Provide namespace / URI for XPath evaluation explicitly

Avoid xs.any by replacing it with an enumeration of possible types, and if that is not feasible, use
base64 blobs as a fallback

To support implementers and to ease the use of the protocol with common frameworks the following list
of requirements was compiled:

One unique object model for all transport syntaxes
Define type and cardinality of Optionallnputs and Optional Outputs child elements explicitly
Rearrange sequences and choices to produce a strongly typed object model

Regardless of the use of JSON as a transport syntax the handling of JSON signatures will not be covered
by this document. Specific profiles will address signatures e.g. conformant to [REC7515].

The provided schemes of DSS-X version 2 reflect these requirements. The XML schemes of version 1
and 2 share many similarities but are not compatible.

2.2 Transforming DSS 1.0 into 2.0

This section describes the several actions taken to fulfil the goals listed in the previous section.

2.2.1 Circumventing xs.any

The XML schematype ‘any’ alows an object to contain arbitrary structures. This comes handy for
writers of specifications as an extension point because the structures transported don’t need to be defined
upfront. But this advantage at the specification stage comes with a price at the implementation stage. The
structures intended to be supported by aclient or a server system MUST be known to be implementable.
But the usual tools for schema support leave the task of handling the content of an any type to the
developer. Without extensive testing problems with unexpected content may occur at runtime, even while
using typed languages.

As asuccessor of the OptionalInputs element (see section 2.7 of version 1.0 of this document) the
component OptionalInputsV erify (see section 4.3.5) definesits child elements and their cardinality
explicitly. When using additional profiles, the relevant components of the core schema can be redefined
using the XML schema’s ‘redefine’ element or JSON schema’s ‘allOf’ as described in section 2.5.1 .

Another usage scenario for ‘xs:any’ is the transport of unknown data objects. As sample use caseisthe
Property component (see section 4.3.17). This component is intended to contain signature attributes of
unknown structure. In this version of the specification the *xs:any’ typeis replaced by a structure

containing base64-encoded data and meta data (component Any, see section 4.1.2). When using XML as
the transport syntax this seemsto be a disadvantage. But direct XML fragment copying may introduce
namespace problems and security concerns. Most importantly the cherry-picking of transport syntax
features would inhibit a transport independent object model, both on the client and the server side. More
complex programming and testing would be inevitable.

2.2.2 Substituting the mixed Schema Attribute

Mixing sub-elements and text within asingle element is a great advantage of XML. But when XML is
applied for serializing an object model this ‘markup language’ featureis of little use. Other serialization
syntaxes (like JSON) don’t support such afeature. There is the need to substitute the ‘mixed’ construct to
become syntax independent. The substitution is done by removing the mixed attribute and introduce an
additional ‘value' element to contain the textual content.

2.2.3 Introducing the NsPr efixM appingT ype Component

Namespaces are an outstanding feature of the XML world. A replacement isrequired for all syntaxes that
don’t such afeature. The use of naming conventions and prefixes are used to avoid naming collisions. A
special challengeisthe use of XPath-Expression as elements. The XPath expression itself is represented
asasimple string. But the expression may depend on namespace/prefix mappings that are defined within
the namespace context of the XML element. The NsPrefixMappingType component (see section 4.1.1)
represents the required namespace/prefix mapping. It is recommended to use this element for XML
syntax, too. This simplifies the handling on the consumer side and circumvents problems with namespace
prefix assignments handled by web frameworks.

2.2.4 lmported XML schemes

A special challengeisimposed by the imported schemes, like the [XM L DSI G] scheme, that uses
features not supportable by the mentioned ‘ multi-syntax’ approach. For example, the ** [XMLDSIG]
**type ‘ Transform’ is defined like this:

<xs: conpl exType nane="Transfor nType" m xed="true">
<xs:choice m nCccurs="0" nmaxCccur s="unbounded" >
<Xs:any nanespace="##other" processContents="|ax"/>
<l-- (1,1) elements from (0, unbounded) nanespaces -->
<xs: el enent nanme="XPath" type="string"/>
</ xs: choi ce>
<xs:attribute name="Algorithm type="xs:anyURl" use="required"/>
</ xs: conpl exType>

Most of the restrictions listed above do apply here:

The complexType may contain mixed content (child elements and text). This concept is not
supported by JSON. The workaround for this limitation isto drop the ‘mixed’ attribute and to introduce a
‘value’ element.

The choice construct is mapped in an untyped way by Java s JAXB framework. Therefore, the
choice element is changed to a sequence.

The any type is replaced by a base64 encoded blob.

The option to provide arbitrary namespace / prefix mappings to support the evaluation of XPath
expression is not available in e.g. JISON syntax. Therefore an element mapping prefixes to namespaces
(of type dsh:NsPrefixMappingType) is added.

<xs: conpl exType nane="Transf or nifype" >
<XS: sequence>
<xs: el ement maxCccurs="1" m nCccurs="0" nanme="val ue" type="string"/>

<xs: el enent maxCccurs="1" m nCccurs="0" nanme="Base64Content" type="xs:base64Bi nary"/:

<xs: el ement maxCccurs="unbounded”" m nCccurs="0" name="XPat h"
type="string"/>
<xs: el enent maxCccur s="unbounded" m nCccurs="0" nanme="NsPr efi xMappi ng"
type="dsb: NsPref i xMappi ngType"/ >
</ Xxs: sequence>
<xs:attribute nane="Al gorithnm type="xs:string" use="required"/>
</ xs: conpl exType>

To apply the necessary changes to the imported schemes the XML schema language provides the

override functionality to change existing schemes. But Java’ s JAXB framework’ s schema compiler does
not support override so the adapted schemes are provided alongside DSS-X core schemes.

2.2.5 Syntax variants

Thisversion of the DSS/X core document handles the representation of requests and response elements
according to the JSON and XML syntax. The general semantics of the elementsis discussed in the
element’ s main section. Details of the JSON or XML formats are discussed in specific subsections

*. * Component — JSON Syntax

*. * Component — XML Syntax

2.2.6JSON Syntax Extensions

JSON, as described in [RFC8259], defines atext format for serializing structured data. Objects are
serialized as an unordered collection of name/value pairs.

JSON does not define any semantics around the name/value pairs that make up an object, nor does it
define an extensibility mechanism for adding control information to a payload.

DSS' s JSON format extends JSON by defining general conventions for name/value pairs that annotate a
JSON object, property or array. DSS defines a set of canonical annotations for control information such
asids, types, and links, and custom annotations MAY be used to add domain-specific information to the

payload.

Annotations are used in JSON to capture control information that cannot be predicted aswell asa
mechanism to provide values where a computed value would be wrong.

2.3 Construction Principles

2.3.1 Multi Syntax approach

In the years since DSS 1.0 became standard many other formats (like JISON) became popular for data
interchange. Nevertheless, XML is still an important and commonly used format. To support these
developments DSS 2.0 is taking a multi-syntax approach:

For each structural component there is semantic section describing the elements, restrictions and
relations to other components in a syntax-neutral way.

Following the sematic definition there are syntax-specific sections describing the mapping of the
given requirements to XML and JSON.

Schemes are provided for XML and JSON.

Element name mappings are given for JSON.

Subsequent versions of this protocol may define additional syntax mappings, e.g. for ASN.1 or CBOR.

The restriction of this approach is limitation to the common denominator of capabilities of the used
transfer formats. The section ‘ Transforming DSS 1.0 into 2.0" targets these limitations. The imported
schemafiles defined by other parties are also affected. An example is the ‘ Component Transform’, that
was originally defined in [XMLDSIG] and the aspects described in 2.2.1 Circumventing xs.any, 2.2.2
Substituting the mixed Schema Attribute and 2.2.3 Introducing the NsPrefixM appingType Component

apply.

2.4 Schema Organization and Namespaces

The structures described in this specification are contained in the schemafile [Core2.0-XSD]. All
schemallistings in the current document are excerpts from the schemafile. In the case of a disagreement
between the schemafile and this document, the schemafile shall take precedence.

This schema s associated with the following XML namespace
http://docs. oasi s- open. or g/ dss-x/ ns/ base
and

http://docs. oasi s-open. or g/ dss-x/ ns/ core
If afuture version of this specification is needed, it will use a different namespace.
Conventional XML namespace prefixes are used in the schema:

® The prefix dss2: stands for the DSS core version 2.0 namespace* * [DSS2X SD]* *.ref DSS2X SD

® The prefix dsh: stands for the DSS base namespace**[DSBX SD].** ref DSS2X SD

® The prefix ds-rw: stands for a namespace of elements based on the W3C XML Signature
[XMLDSIG].

® The prefix xs. stands for the W3C XML Schema namespace [Schemal].

® The prefix saml2-rw: stands for a namespace of elements based on the OASIS SAML 2 Schema
namespace [SAML Core2.0].

Applications MAY use different namespace prefixes, and MAY use whatever namespace defaulting
/scoping conventions they desire, aslong as they are compliant with the Namespacesin XML
specification [XML-ng|.

The following schema fragment defines the XML namespaces and other header information for the DSS
core schema:

<xs:schema xm ns:dss2="http://docs. oasi s-open. or g/ dss- x/ ns/ core"
xm ns: dsb="http://docs. oasi s- open. or g/ dss- x/ ns/ base"
xm ns: ds-rw="http://docs. oasi s- open. org/ dss-x/ns/ xm dsig/rewitten"
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena"
xm ns: sam -rw="http://docs. oasi s-open. org/ dss-x/ ns/ SAML\ _1. 0/ assertion/rewitten”
xm ns: sam 2-rw="htt p://docs. oasi s- open. org/ dss-x/ns/sam 2/ rewitten”
t ar get Namespace="htt p://docs. oasi s- open. or g/ dss- x/ ns/ cor e"
el ement For mDef aul t =" qual i fi ed"
attri but eFornDef aul t ="unqual i fi ed" >
<xs:annotati on>
<xs:documentation xm :1ang="en">This Schema defines the Digital Signature Service (
</ xs: annot at i on>
<xs:inport nanespace="http://docs. oasi s-open.org/dss-x/ns/xm dsig/rewitten"
schemalLocat i on=" xnl dsi g-cor e- scherma- dss-rw. xsd"/ >
<xs:import namespace="http://docs. oasi s-open. org/dss-x/ns/SAM.\ _1. 0/ assertion/rewitt
schenmalLocat i on="oasi s-sst c-sanl - schenma- prot ocol - 1. 1-dss-rw. xsd"/ >
<xs:inport namespace="http://docs. oasi s-open. org/dss-x/ns/sam 2/rewitten”

schemaLocati on="saml - schena- assertion-2. 0-dss-rw. xsd"/ >
<xs:inport namespace="http://ww. w3. org/ XM./ 1998/ nanespace”
schemalLocati on="htt p://ww. w3. or g/ 2001/ xm . xsd"/ >

2.5 DSS Component Overview

The DSS core is designed to be extended by profiles to support additional functionalities. The DSS
specification comes with a set of profiles (see https.//www.oasis-open.org/standards#dssv1.0). With
version 2.0 there will be extensions to augment the use cases beyond the sign and verify scope of the
previous version. The extensions will define other requests and responses while using e.g. the
ResultType. A sample for an extension is the ChipGateway Protocol (c.f. clause 3.4 of [CHPGW]). To
support this approach, the DSS 2.0 schemais split into ageneric ‘base’ and the more specific ‘ core
schema.

Figure 1:Component overview

“Info=<Cally> . =<;/Info-

|

e’ i :
; Dpt,:!. ota] Trpnat Profile :
! i crna 10k '
: SignBPequest :
H S1ignBesponse oyrzRequest '
H WTerifyRequest Core Extendon mrEResponse :
| VerifyResponse L) .
i Bass
; Result | :
i ReraestBase Type -
ResponseBas eType i

Info

The diagram above shows the relationship between the different building blocks.

2.5.1 Schema Extensions

Most profiles define additional Optionallnputs or Optional Outputs. To support atype-safe extension of
the set of optional elementsit is recommended to use the XML schema redefine mechanism to extend the
core schema and derive the related JSON schemafromit:

<xs:redefine schemaLocati on="cor e-schena. xsd" >
<xs: conpl exType name="dss: Opti onal Qut put sVeri fyType">
<xs: conpl exCont ent >
<xs: extension base="dss: Opti onal Qut putsVerifyType">
<xs:group ref="prf:optional Qut put Goup"/>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs:redefine>

The snippet above extends the set of sub-components of Optional OutputsV erify Type with the group of
elements of the profile.

https://www.oasis-open.org/standards#dssv1.0

In asimilar way extension of the core’s JISON scheme can be performed by using the ‘alOf’ keyword:

"dss2- Opti onal Qut putsVerifyType": ({
"allOF "o
{"\$ref": "\#/definitions/prf-OptionialElenment"},
{
"type": "object",
"properties": {

"policy": {
"type": "array",
"items": {
"type": "string"
}

With this mechanism it is possible to extend the core schema to specific requirements while preserving
the advantage of type safety and tool / IDE support. This sample illustrates the use of ‘extension’. in the
same wal restriction can be applied. In more complex scenarios (e.g. multiple profiles apply, need for
extending andrestriction the core schema) the use of other techniques (e.g. XSLT) may be required.

It may be useful to process a profile (or a set of profiles) using a distinct endpoint. This enables the server
instance to provide a specific WSDL including an appropriate schemawith all profile-related elements.

3 DataType Models

3.1 Boolean M odel

The boolean data type is used to specify atrue or false

3.2 Integer M odel

The integer datatype is used to specify a numeric value without a fractional component.

3.3 String M odel

The string data type can represent characters, line feeds, carriage returns, and tab characters.

3.4 Binary Data M odel

The base64Binary type holds Base64-encoded binary data

3.5 URI Mod€

Uniform Resource Identifier (URI) isastring of characters used to identify aresource

3.6 Unique I dentifier M odel

A unique identifier isanumeric or alphanumeric string that is associated with a single entity within a
given system.

3.7 Dateand Time M od€l

The specific concept of date and time used in this document is defined in this section and noted in
subsequent usage as** :**

DateTime

« All date time valuesinside a DSS document MUST adhere to the I SO 8601 [1SO8601] basic or
extended Format (as given there in section 4.3.2 “ Complete representations’ and with the addition of
decimal fractions for seconds, similar to ibid. section 4.2.2.4 * Representations with decimal fraction” but
with the full stop (.) being the preferred separator for DSS). » [DSS-3.7-1].

3.8 Lang M od€l

The specific concept of language used in this document is defined in this section and noted in subsequent
usage as**:**

Language

« All language values inside a DSS document MUST adhere to the 1SO 639-1 [1SO639-1] format (as
given therein section 4 “ Two-letter language code” . » [DSS-3.8-1].

4 Data Structure Models

Operation requests and responses

The XML elements of this section are defined in the XML namespace 'http://docs.oasi s-open.org/dss/ns
[/core'.[category operation in namespace http://docs.oasis-open.or g/dss/ns/cor e explanation]

Component SignRequest

The SgnRequest component is sent by the client to request a signature or timestamp on some input
documents.

Below follows alist of the sub-componentsthat MAY be present within this component:
The optional InputDocuments element MUST contain a sub-component. A given element MUST satisfy

the requirements specified in this document in section [nputDocumentsType. [sub component
InputDocuments detail s]

The optional Optionallnputs element MUST contain a sub-component. A given element MUST satisfy
the requirements specified in this document in section OptionalInputsSignType. It isintended to
transport additional input elements of the signing request.

Non-nor mative Comment:

[component SignRequest non nor mative details|

SignRequest —JSON Syntax

The SignRequest Type JSON object SHALL implement in JISON syntax the requirements defined in the
SignReguest component.

Properties of the JSON object SHALL implement the sub-components of SignRequestType using JSSON-
specific names mapped as shown in the table below.

Element

Implementing JSON member name Comments
InputDocuments inDocs
Optiona Inputs optinp

[]
[]

The SignRequestType JSON object is defined in the JISON schema [DSS2JSON] and is provided below
as aservice to the reader.

"dss2- Si gnRequest Type" : {

"type" : "object",
"properties” : {
"profile" : {
"type" : "array",
"itenms" : {
"type" : "string"
}
},
"regl D' : {
"type" : "string"
3
"inDocs" : {
"$ref" : "#/definitions/dss2-InputDocunentsType"
¥
"opt !l np" :
"$ref" : "#/definitions/dss2-OptionallnputsSi gnType"
}
}

}
[component SgnRequest JSON schema details]

SignRequest — XML Syntax

The XML type SignRequestType SHALL implement the requirements defined in the
SignRequestcomponent.

The SignRequestType XML element is defined in XML Schema[DSS2XSD], and is copied below for
information.

<xs: conpl exType nane="Si gnRequest Type" >
<xs: conpl exCont ent >
<xs: extension base="dsh: Request BaseType" >
<Xs:sequence>
<xs:el enent m nCccurs="0"

name="I| nput Docunment s" type="dss2: | nput Docunent sType"/>
nanme="Qpti onal | nputs” type="dss2: Opti onal | nput sSi gnType
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Each child element of SignRequestType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component SgnRequest XML schema details]

Component SignResponse

The SgnResponse component returns the requested signature or timestamp to the requestor.

Below follows alist of the sub-componentsthat MAY be present within this component:

The optional Optional Outputs element MUST contain a sub-component. A given element MUST satisfy

the requirements specified in this document in section Optional OutputsSignType. The Optional Outputs
element contains additional signing related outputs returned by the server.

The optional SignatureObject element MUST contain a sub-component. A given element MUST satisfy
the requirements specified in this document in section SignatureObjectType. [sub component
SgnatureObject detail |

Non-nor mative Comment:

[component SignResponse non normative details|

SignResponse — JSON Syntax

The SignResponseType JSON object SHALL implement in JSON syntax the requirements defined in the
SignResponse component.

Properties of the JSON object SHALL implement the sub-components of SignResponseType using
JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
Optional Outputs optOutp (]
SignatureObject sigObj (]

The SignResponseType JSON object is defined in the JISON schema [DSS2JSON] and is provided below
asaservice to the reader.

"dss2- Si gnResponseType" : {

"type" : "object",
"properties” : {
"result" : {
"$ref" : "#/definitions/dsb-ResultType"
3
"profile" : {
"type" : "array",
"itenms" : {
"type" : "string"
}
3
"reql D' : {
"type" : "string"
"respl D' : {
"type" : "string"
3
"optQutp" : {

"$ref" : "#/definitions/dss2-0Optional QutputsSi gnType"

"siglhj " ¢ {
"$ref" : "#/definitions/dss2-SignatureCbjectType"

}
}
}

[component S gnResponse JSON schema details]

SignResponse — XML Syntax

The XML type SignResponseType SHALL implement the requirements defined in the
SignResponsecomponent.

The SignResponseType XML element is defined in XML Schema [DSS2XSD], and is copied below for
information.

<xs: conpl exType nane="Si gnResponseType" >
<xs: conpl exCont ent >
<xs: extensi on base="dsh: ResponseBaseType" >
<Xs:sequence>
<xs: el enent m nCccurs="0" name="Cptional Qut puts" type="dss2: Opti onal Qut put sSi gnTy
<xs: el ement m nCccurs="0" nane="Si gnat ureChj ect" type="dss2: Si gnat urebj ect Type"/
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Each child element of SignResponseType XML element SHALL implement in XML syntax the sub-
component that has a name equal to its local name. [component S gnResponse XML schema details)

Component VerifyRequest

The VerifyRequest component is sent by the client to verify a signature or timestamp on some input
documents.

Below follows alist of the sub-componentsthat MAY be present within this component:

The optional InputDocuments element MUST contain a sub-component. A given element MUST satisfy
the requirements specified in this document in section InputDocumentsType. [sub component
InputDocuments detail s|

The optional Optionallnputs element MUST contain a sub-component. A given element MUST satisfy
the requirements specified in this document in section Optional InputsV erifyType. [sub component
OptionalInputs details]

The optional SignatureObject element MUST contain a sub-component. A given element MUST satisfy
the requirements specified in this document in section SignatureObjectType. The SgnatureObject el ement
contains a signature or timestamp, or else contains a < SgnaturePtr> that pointsto an XML signaturein
one of the input documents.

Non-nor mative Comment:

[component VerifyRequest non normative details]

VerifyRequest — JSON Syntax

The VerifyRequestType JSON object SHALL implement in JSON syntax the requirements defined in the
VerifyRequest component.

Properties of the JSON object SHALL implement the sub-components of VerifyRequestType using
JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
InputDocuments inDocs []
Optionallnputs optinp [
SignatureObject sigObj [l

The VerifyRequestType JSON object is defined in the JSON schema [DSS2JSON] and is provided below
as aservice to the reader.

"dss2- Veri f yRequest Type" : {

"type" : "object",
"properties" : {
"profile" : {
"type" : "array",
"items" : {
"type" : "string"
}
b,
"reql D' : {
"type" @ "string"
b,
"inDocs" : {
"$ref" : "#/definitions/dss2-InputDocunentsType"
b
"optlnp" : {
"$ref" : "#/definitions/dss2-OptionallnputsVerifyType"
}

"siglhj " ¢ {
"$ref" : "#/definitions/dss2-SignatureCbjectType"

}
}
}

[component VerifyRequest JSON schema details]

VerifyRequest — XML Syntax

The XML type VerifyRequestType SHALL implement the requirements defined in the
V erifyRequestcomponent.

The VerifyRequestType XML element is defined in XML Schema [DSS2X SD], and is copied below for
information.

<xs: conpl exType nane="VerifyRequest Type">
<xs: conpl exCont ent >
<xs: extensi on base="dsh: Request BaseType" >
<XS:sequence>
<xs: el enment m nCccurs="0" nanme="I| nput Docunent s" type="dss2: | nput Docunment sType"/ >

<xs: el enent m nCccurs="0" name="COptional | nputs" type="dss2: Optional | nputsVeri fyTy
<xs: el enent m nCccurs="0" nanme="Si ghatureObj ect” type="dss2: Si gnat ureObj ect Type"/
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Each child element of VerifyRequestType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component VerifyRequest XML schema details|
Component VerifyResponse

The VerifyResponse component is returned by the server to provide the results of verification.

Below follows alist of the sub-componentsthat MAY be present within this component:

The optional Optional Outputs element MUST contain a sub-component. A given element MUST satisfy
the requirements specified in this document in section Optional OutputsV erifyType. [sub component
Optional Outputs details]

Non-nor mative Comment:

[component VerifyResponse non nor mative details|

VerifyResponse — JSON Syntax

The VerifyResponseType JSON object SHALL implement in JSON syntax the requirements defined in
the VerifyResponse component.

Properties of the JSON object SHALL implement the sub-components of VerifyResponseType using
JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
Optional Outputs optOutp (]

The VerifyResponseType JSON object is defined in the JSON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2- VerifyResponseType" : {

"type" : "object”,
"properties" : {
"result" : {
"$ref" : "#/definitions/dsb-ResultType"
3
"profile" : {
"type" : "array",
"items" : {
"type" : "string"
}
3
"regl D' : {
"type" : "string"
3
"respl D' : {

"type" : "string"

} 1
"opt Qut p" : {
"$ref" : "#/definitions/dss2-Optional QutputsVerifyType"

}
}
}

[component VerifyResponse JSON schema details|

VerifyResponse— XML Syntax

The XML type VerifyResponseType SHALL implement the requirements defined in the
V erifyResponsecomponent.

The VerifyResponseType XML element is defined in XML Schema [DSS2XSD], and is copied below
for information.

<xs: conpl exType nane="VerifyResponseType">
<xs: conpl exCont ent >
<xs: extensi on base="dsh: ResponseBaseType" >
<Xs:sequence>
<xs: el enent m nCccurs="0" name="Cptional Qut puts” type="dss2: Opti onal Qut put sVeri fy
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Each child element of VerifyResponseType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component VerifyResponse XML schema details)
Component PendingRequest

The PendingRequest component is sent by the client to retrieve the result of a previous request. The
client MUST provide the Responsel D received with the initial response. The Profile element MUST NOT
be present as the profile selection was done with the initial request.

Below follows alist of the sub-components that MAY be present within this component:

The optional Claimedidentity element MUST contain a sub-component. A given element MUST satisfy
the requirements specified in this document in section ClaimedidentityType. This element allows the
authentication of the requestor.

Non-nor mative Comment:

[component PendingRequest non nor mative detail |

PendingRequest — JSON Syntax

The PendingRequestType JSON object SHALL implement in JSON syntax the requirements defined in
the PendingRequest component.

Properties of the JSON object SHALL implement the sub-components of PendingRequestType using
JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
ClaimedIdentity claimedidentity []

The PendingRequestType JSON object is defined in the JSON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2- Pendi ngRequest Type" : {

"type" : "object”,
"properties" : {
"profile" : {
"type" : "array",
"items" : {
"type" : "string"
}
b,
"reql D' : {
"type" : "string"
}

¢l ai medl dentity" : {
"$ref" : "#/definitions/dss2-d ai nedl dentityType"

}
}
}

[component PendingRequest JSON schema details|

PendingRequest — XML Syntax

The XML type PendingRequestType SHALL implement the requirements defined in the
PendingRequestcomponent.

The PendingRequestType XML element is defined in XML Schema [DSS2XSD], and is copied below
for information.

<xs: conpl exType nane="Pendi ngRequest Type" >
<xs: conpl exCont ent >
<xs: extensi on base="dsh: Request BaseType" >
<Xs:sequence>
<xs: el enent maxCccurs="1" m nCccurs="0" nanme="C ai nedl dentity" type="dss2: C ai mec
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Each child element of PendingRequestType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component PendingRequest XML schema details)|

Optional data structures defined in this document

The XML elements of this section are defined in the XML namespace 'http://docs.oasi s-open.org/dss/ns
[/core'.[category optionals in namespace http://docs.oasi s-open.or g/dss/ns/cor e explanation]

Component RequestiD

[component RequestID normative details)

Below follows alist of the sub-componentsthat MAY be present within this component:

The value element MUST contain one instance of a string. [sub component value detail s

Non-normative Comment:
[component RequestID non normative details]|

RequestI D — JSON Syntax

The component RequestIDis derived from the string type.
[component RequestID JSON schema details)

RequestID — XML Syntax

The XML type RequestID SHALL implement the requirements defined in the Requestl Dcomponent.

The RequestID XML element is defined in XML Schema[DSS2XSD], and is copied below for
information.

<xs: si nmpl eType nane="Request|D'>
<xs:restriction base="xs:string"/>
</ xs: si npl eType>

Each child element of RequestID XML element SHALL implement in XML syntax the sub-component
that has aname equal to itslocal name. [component RequestiD XML schema details)

Component Responsel D

[component Responsel D normative details]

Below follows alist of the sub-components that MAY be present within this component:

The value element MUST contain one instance of a string. [sub component value details]

Non-normative Comment:
[component Responsel D non normative details]

Responsel D — JSON Syntax

The component Responsel Dis derived from the string type.
[component Responsel D JSON schema details]

Responsel D — XML Syntax

The XML type Responsel D SHALL implement the requirements defined in the Responsel Dcomponent.

The ResponselD XML element is defined in XML Schema [DSS2X SD], and is copied below for
information.

<xs: si npl eType nane="Responsel D'>
<xs:restriction base="xs:string"/>
</ xs: si npl eType>

Each child element of ResponselD XML element SHALL implement in XML syntax the sub-component
that has a name equal to itslocal name. [component Responsel D XML schema details)

Component Optionall nputsBase

The Optional InputsBase contains a common set of additional inputs associated with the processing of the
request. Profiles will specify the allowed optional inputs and their default values. If a server doesn’t
recognize or can’'t handle any optional input, it MUST reject the request with a ResultMajor code of
RequesterError and a ResultMinor code of NotSupported.All request messages can contain an
OptionalInputSgn or OptionallnputVerify element depending on the method called. The
OptionalInputsBase component defines the elements that are common to all optional inputs defined in
this document. Several optional inputs are defined in this document, and profiles can define additional
ones.

Below follows alist of the sub-components that MAY be present within this component:

The optional Claimedidentity element MUST contain a sub-component. A given element MUST satisfy
the requirements specified in this document in section Claimedldentity Type. This element indicates the
identity of the client who is making a request. The server may use thisto parameterize any aspect of its

processing. Profiles that make use of this element MUST define its semantics.

The optional Schemas element MUST contain a sub-component. A given element MUST satisfy the
reguirements specified in this document in section SchemasType. The Schemas element provides a
mechanism for transporting XML schemas required for validating an XML document along with the
request message.

The optional AddTimestamp element MUST contain a sub-component. A given element MUST satisfy
the requirements specified in this document in section AugmentSignaturel nstructionType. The
AddTimestamp element indicates that the client wishes the server to embed a timestamp token as a
property or attribute of the resultant or the supplied signature. The timestamp token will be applied to
the signature value in the case of CMSPKCS7 signatures or the <ds: SgnatureValue> element in the
case of XML signatures. Note: Procedures for handling other forms of timestamp may be defined in
profiles of the Core. In particular, the DSS AJES profile [DSS AJES-P] defines procedures for
generating timestamps over the content which is about to be signed (sometimes called content
timestamps), and the DSS Timestamp profile [DSS-TS-P] defines procedures for handling standalone
timestamps.

Non-normative Comment:
[component Optional | nputsBase non normative details|

Optionall nputsBase — JSON Syntax

The component OptionallnputsBaseis abstract and therefore has no JSON definition.
[component Optionall nputsBase JSON schema detail g

Optionall nputsBase— XML Syntax

The XML type Optional InputsBaseType SHALL implement the requirements defined in the
Optional | nputsBasecomponent.

The OptionalInputsBaseType XML element is defined in XML Schema [DSS2XSD], and is copied
below for information.

<xs: conpl exType abstract="true" name="Opti onal | nput sBaseType" >
<xs: conpl exCont ent >
<xs: extension base="dsbh: Opti onal | nput sType" >
<Xs:sequence>
<xs: el enment maxCccurs="1" m nCccurs="0" nane="d ai nedl dentity" type="dss2: d ai nmec

<xs: el enent maxCccurs="1" m nCccurs="0" nanme="Schenmas" type="dss2: SchemasType"/ >

<xs: el enent maxCccurs="1" m nCccurs="0" nane="AddTi nest anp” type="dss2: Augnent Si ¢
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Each child element of OptionallnputsBaseType XML element SHALL implement in XML syntax the
sub-component that has a name equal to itslocal name. [component Optional lnputsBase XML schema
details]

Component Optionall nputsSign

The Optional InputsSign component defines a set of additional inputs associated with the processing of a
signing request. The Optional InputsS gn component contains additional inputs associated with the
processing of a signing request. Profiles MAY specify the allowed optional inputs and their default
values. The definition of an optional input MAY include a default value, so that a client may omit the
Optional InputsSign yet still get service from any profile-compliant DSS server. If a server doesn’t
recognize or can’t handle any optional input, it MUST reject the request with a ResultMajor code of
RequesterError and a ResultMinor code of NotSupported.

Below follows alist of the sub-components that MAY be present within this component:

The optional SignatureType element MUST contain a URI. The SgnatureType element indicates the type
of signature or timestamp to produce (such as a XML signature, a XML timestamp, a RFC 3161
timestamp, a CMSsignature, etc.). See section 7.1 for some URI references that MAY be used asthe
value of this element.

The optional IntendedAudience element MUST contain a sub-component. A given element MUST
satisfy the requirements specified in this document in section IntendedAudienceType. This element gives
a hint regarding the target audience of the requested signature.

The optional KeySelector element MAY occur zero or more times containing a sub-component. |f
present each instance MUST satisfy the requirements specified in this document in section

KeySelectorType. The KeySelector provides details which key or sets of keys the client is expecting to be
used.

The optional Properties element MUST contain a sub-component. A given element MUST satisfy the
requirements specified in this document in section PropertiesHolderType. The Properties element is used
to instruct the server to add certain signed or unsigned properties (aka “ signature attributes”) into the
signature. The client MAY send the server a particular value to use for each property, or leave the value
up to the server to determine. The server MAY add additional properties, even if these aren’t requested
by the client.

The optional IncludeObject element MAY occur zero or more times containing a sub-component. If
present each instance MUST satisfy the requirements specified in this document in section
IncludeObjectType. The IncludeObject element is used to request the creation of an XMLSg enveloping
signature.

The optional IncludeEContent element MUST contain a boolean. Its default valueis 'false'.
If the value of the IncludeEContent is ‘true’ a CMS signature includes envel oped (or ‘encapsulated’)
content.

The optional SignaturePlacement element MUST contain a sub-component. A given element MUST
satisfy the requirements specified in this document in section SignaturePlacementType. The
SgnaturePlacement element is used to request the creation of an XMLS g enveloped signature placed
within a document. The resulting document with the enveloped signature is placed in the optional output
DocumentWithSgnature.

The optional SignedReferences element MUST contain a sub-component. A given element MUST satisfy
the requirements specified in this document in section SignedReferencesType. The SgnedReferences
element gives the client greater control over how the <ds: Reference> elements of a XMLS g signature
are formed.

The optional Nonce element MUST contain an integer. The Nonce element MAY be used to provide a
large random number to enable the client correlate a timestamp request with the response.

The optional SignatureAlgorithm element MUST contain a string. The SgnatureAlgorithm element MAY
be used to request a specific signing algorithm. This may be useful to narrow down the set of algorithms
the server may apply. Support for specific signature algorithms may change over time and the use of
other input elements, especially Profile and ServicePolicy. The use of the SgnatureAlgorithm valueis
context specific, maybe different when requesting a CMSor XML signature.

The optional SignatureQualityLevel element MUST contain aURI. Legal and regulatory frameworks
distinguish signatures by their level of quality, where a higher level of quality usually implies stronger
restrictions on holder identification, protection of private key and certification of signature creation
device and software. A server MAY be able to generate signatures of different quality levels. This element
allows the requester to define a minimum signature quality level. Values for this URI may be specified by
profiles.

Non-nor mative Comment:

[component Optional lnputsSgn non normative details|

Optionall nputsSign —JSON Syntax

The Optional InputsSignType JSON object SHALL implement in JISON syntax the requirements defined
in the Optional I nputsSign component.

Properties of the JSON object SHALL implement the sub-components of OptionallnputsSignType using
JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
SignatureType sigType [
IntendedAudience aud [
KeySelector keySel

Properties props

IncludeObject IncObj

IncludeEContent incContent

SignaturePlacement sigPlacement
SignedReferences signedRefs
Nonce nonce
SignatureAlgorithm sigAlgo

]
]
]
]
]
]
]
]
]
SignatureQualityLevel quality]

[— p— p— p— p— p— p— p— p—

The Optional InputsSignType JSON object is defined in the JSON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2- Optional | nput sSi gnType" : {

"type" : "object”,
"properties" : {
"policy" : {
"type" : "array",
"itenms" : {
"type" : "string"
}
3
"lang" : {
"type" : "string"
},
"other" : {
"type" : "array",
"items" : {
“$ref" : "#/definitions/dsb-AnyType"
}
"clai medldentity" : {
"$ref" : "#/definitions/dss2-d ai nedl dentityType"
3
"schemas" : {
"$ref" : "#/definitions/dss2-SchemasType"
3
"addTi mestamp" : {
"$ref" : "#/definitions/dss2-Augnent Si gnaturel nstructionType"
3
"sigType” : {
"type" : "string"
3

"aud" : {

"$ref"

"#/ definitions/dss2-I1ntendedAudi enceType"

b,
"keySel " {
"type" "array",
"itens" : {
"$ref" "#/ definitions/dss2-KeySel ector Type"
}
},
"props” : {
"$ref" "#/ definitions/dss2-PropertiesHol der Type"
3
"incQoj " {
"type" "array",
"itenms" : {
"$Sref" : "#/definitions/dss2-IncludeOjectType"
}
},
"incContent" : {
"type" : "bool ean"
"default" : "fal se"
},
"sigPlacenent" : {
"$ref" : "#/definitions/dss2-SignaturePl acenent Type"
},
"si gnedRefs" : {
"$ref" : "#/definitions/dss2-Si gnedRef erencesType"
b
"nonce" : {
"type" : "integer"
},
"sigAl go" : {
"type" : "string"
¥
"quality" @ {
"type" : "string"
}

}
}

[component Optional InputsSign JSON schema details)

Optionall nputsSign — XML Syntax

The XML type OptionalInputsSignType SHALL implement the requirements defined in the
Optional | nputsSigncomponent.

The OptionallnputsSignType XML element is defined in XML Schema[DSS2XSD], and is copied
below for information.

<xs: conpl exType nane="0Opti onal | nput sSi gnType" >
<xs: conpl exCont ent >
<xs: extensi on base="dss2: Opti onal | nput sBaseType" >
<Xs:sequence>

<xs: el enent maxCccurs="1" m nCccurs="0" nanme="Si gnat ureType" type="xs:anyURl "/>
<xs: el enment maxCccurs="1" m nCccurs="0" nane="Int endedAudi ence" type="dss2:|ntenc
<xs: el enent maxCccur s="unbounded" m nCccurs="0" nane="KeySel ector" type="dss2: Ke)
<xs: el enent maxCccurs="1" m nCccurs="0" nanme="Properties" type="dss2: PropertiesH
<xs: el ement maxCccur s="unbounded” m nCccurs="0" nanme="1ncludeCbject" type="dss2:|
<xs: el enent default="fal se" maxCccurs="1" mi nCccurs="0" name="Incl udeEContent" t\
<xs: el enent maxCccurs="1" m nCccurs="0" nanme="Si gnaturePl acenent" type="dss2:Si gr
<xs: el enent maxCccurs="1" m nCccurs="0" nanme="Si gnedRef erences” type="dss2: Si gnec
<xs: el enment maxCccurs="1" m nCccurs="0" nane="Nonce" type="xs:integer"/>
<xs: el enent maxQccurs="1" m nCccurs="0" nanme="Si gnhatureAl gorithnl type="xs:string
<xs: el enent maxCccurs="1" m nCccurs="0" nanme="Si gnatureQualitylLevel" type="xs:any

</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Each child element of OptionalInputsSignType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component Optional InputsSgn XML schema details|

Component Optionall nputsVerify

The Optional I nputsVerify component defines a set of additional inputs associated with the processing of
a verification request. Profiles MAY specify the allowed optional inputs and their default values. The
definition of an optional input MAY include a default value, so that a client may omit the
OptionalInputsVerify yet still get service from any profile-compliant DSS server.If a server doesn’'t
recognize or can’'t handle any optional input, it MUST reject the request with a ResultMajor code of
RequesterError and a ResultMinor code of NotSupported.

Below follows alist of the sub-componentsthat MAY be present within this component:

The optional UseVerificationTime element MUST contain a sub-component. A given element MUST
satisfy the requirements specified in this document in section UseVerificationTimeType. The
UseVerificationTime element instructs the server to attempt to determine the signature’ s validity at the
specified time, instead of a time determined by the server policy.

The optional ReturnVerificationTimelnfo element MUST contain a boolean. Its default value is 'false'.
This element cam be used by the client to obtain the time instant used by the server to validate the
signature.

The optional AdditionalKeylnfo element MAY occur zero or more times containing a sub-component. If
present each instance MUST satisfy the requirements specified in this document in section
AdditionalKeylnfoType. This element provides the server with additional data (such as certificates and
CRLs) which it can use to validate the signature. These options are not allowed in multi-signature
verification.

The optional ReturnProcessingDetails element MUST contain a boolean. Its default value is 'false'.
This element instructs the server to return a ProcessingDetails element. It is not allowed in multi-
signature verification.

The optional ReturnSigningTimelnfo element MUST contain a boolean. Its default valueis 'false'.
This element allows the client to instruct the server to return the time instant associated to the signature
creation as a SgningTimelnfo element.

The optional ReturnSignerldentity element MUST contain a boolean. Its default value is 'false'.

The optional ReturnAugmentedSignature element MAY occur zero or more times containing a sub-
component. If present each instance MUST satisfy the requirements specified in this document in section
AugmentSignaturel nstructionType. This element allows the client to instruct the server to return an
AugmentedS gnature output, containing an augmented signature. This document does not define values
for this element, but profiles may provide a set of URIs.

The optional ReturnTransformedDocument element MAY occur zero or more times containing a sub-
component. If present each instance MUST satisfy the requirements specified in this document in section
ReturnTransformedDocumentType. The ReturnTransformedDocument el ement instructs the server to
return an input document to which the XML signature transforms specified by a particular <ds:
Reference> have been applied. The result of the transformations will be returned as a
TransformedDocument element.

The optional ReturnTimestampedSignature element MUST contain a sub-component. A given element
MUST satisfy the requirements specified in this document in section AugmentSignaturel nstructionType.
It indicates that the client wishes the server to update the signature after its verification by embedding a
signature timestamp token as an unauthenticated attribute (see "unauthAttrs" in section 9.1 [RFC 3852])
or *unsigned* property (see section 6.2.5 "The UnsignedS gnatureProperties element” and section 7.3
"The SgnatureTimeStamp element” [XAdES]) of the supplied signature. The timestamp token will be on
the signature value in the case of CMSPKCS7signatures or the <ds. SgnatureValue> element in the
case of XML signatures.

The optional VerifyManifests element MUST contain a boolean. Its default value is 'false'.
This element is allowed in multi-signature verification requests.

Non-nor mative Comment:

[component Optional I nputsVerify non normative detail |

Optionall nputsVerify —JSON Syntax

The OptionalInputsV erify Type JSON object SHALL implement in JSON syntax the requirements
defined in the Optional InputsV erify component.

Properties of the JSON object SHALL implement the sub-components of OptionalInputsVerifyType
using JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
UseVerificationTime useVerificationTime []
ReturnVerificationTimelnfo returnVerificationTime []
AdditionalKeylnfo addKeyInfo []
ReturnProcessingDetails returnProcDetails []
ReturnSigningTimelnfo returnSigningTime []
ReturnSignerldentity returnSigner []
ReturnAugmentedSignature returnAugmented []
ReturnTransformedDocument returnTransformed []
ReturnTimestampedSignature returnTimestamped [
VerifyManifests verifyManifests [

The Optional I nputsVerify Type JSON object is defined in the JSON schema [DSS2JSON] and is
provided below as a service to the reader.

"dss2- Optional I nputsVerifyType" : {
"type" : "object",

"properties" : {

"policy" : {
"type" @ "array",
"items" : {
"type" : "string"
}
}
"lang" : {
"type" : "string"
8
"other" : {
"type" : "array",
"itens"
"$ref" : "#/definitions/dsb-AnyType"
}
3
"clai medldentity" : {
"$ref" : "#/definitions/dss2-d ai nedl dentityType"
},
"schemas" : {
"$ref" : "#/definitions/dss2-SchemasType"
},
"addTi mestamp” : {
"$ref" : "#/definitions/dss2-Augnent Si gnaturel nstructionType"
},
"useVerificationTime" : {
"$ref" : "#/definitions/dss2-UseVerificationTi meType"
’
"returnVerificationTinme" : {
"type" : "bool ean"
"default" : "fal se"
},
"addKeyl nfo" : {
"type" : "array",
"itens" : {
"$ref" : "#/definitions/dss2-Additional Keyl nfoType"
}
3
"returnProcDetail s" : {
"type" : "bool ean"
"default™ : "fal se"
8
"returnSi gni ngTi me" : {
"type" : "bool ean"
"default™ : "fal se”
8
"returnSi gner" : {
"type" : "bool ean"
"default" : "fal se"
},
"returnAugnented" : {
"type" @ "array",
"itenms" : {
"$ref" : "#/definitions/dss2-Augnent Si gnaturel nstructi onType"
}
8
"returnTransfornmed" : {
"type" : "array",
"items" : {
"$ref" : "#/definitions/dss2-ReturnTransfornedDocunment Type"
}
H
"returnTi nestanped” : {
"$ref" : "#/definitions/dss2-Augnment Si gnat urel nstructionType"
}

,erifyhhnifests" A
"type" : "bool ean"
"default" : "fal se"

}
}
}

[component Optionall nputsVerify JSON schema details]

OptionallnputsVerify — XML Syntax

The XML type Optional InputsVerifyType SHALL implement the requirements defined in the
Optionall nputsV erifycomponent.

The Optional InputsVerifyType XML element is defined in XML Schema [DSS2X SD], and is copied
below for information.

<xs: conpl exType nane="QOpti onal | nput sVeri fyType">
<xs: conpl exCont ent >
<xs: extensi on base="dss2: Opti onal | nput sBaseType" >
<Xs:sequence>
<xs: el enent maxCccurs="1" m nCccurs="0" nanme="UseVerificationTi ne" type="dss2: Use¢

<xs: el enent default="fal se" maxCccurs="1" m nCccurs="0" nane="ReturnVerification”

<xs: el enent maxCccur s="unbounded" m nCccurs="0" nane="Addi ti onal Keyl nfo" type="ds
<xs: el enent default="fal se" maxCccurs="1" mi nCccurs="0" name="Ret ur nProcessi ngDet

<xs: el enent default="fal se" maxCccurs="1" mi nCccurs="0" nanme="ReturnSi gni ngTi nelr
<xs: el enent default="fal se" maxCccurs="1" minCccurs="0" name="ReturnSi gnerldentit
<xs: el enent maxCccur s="unbounded” m nCccurs="0" nanme="Ret ur nAugnent edSi gnat ure" t
<xs: el enent maxCccur s="unbounded” m nCccurs="0" name="Ret ur nTr ansf or mredDocunent "

<xs: el enment maxCccurs="1" m nCccurs="0" nane="Ret urnTi nest anpedSi gnature" type="¢
<xs: el enent default="fal se" maxCccurs="1" mi nCccurs="0" name="VerifyManifests" ty\
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Each child element of OptionallnputsVerifyType XML element SHALL implement in XML syntax the
sub-component that has a name equal to itslocal name. [component Optional InputsVerify XML schema
detailg|

Component OptionalOutputsBase

The Optional OutputsBase contains a common set of additional outputs associated with the processing of
the request. The client MAY request the server to respond with certain optional outputs by sending
certain optional inputs. The server MAY also respond with outputs the client didn’t request, depending
on the server’ s profile and policy. If a server doesn’t recognize or can’t handle any optional input, it
MUST reject the request with a ResultMajor code of RequesterError and a ResultMinor code of
NotSupported.

Below follows alist of the sub-componentsthat MAY be present within this component:

The optional TransformedDocument element MUST contain a sub-component. A given element MUST
satisfy the requirements specified in this document in section TransformedDocumentType. The
TransformedDocument element contains a document corresponding to the specified <ds: Reference>,
after all the transformsin the reference have been applied. In other words, the hash value of the returned
document should equal the <ds: Reference> element’s <ds.DigestValue>.

The optional Schemas element MUST contain a sub-component. A given element MUST satisfy the
requirements specified in this document in section SchemasType. The Schemas element is typically used

as an optional input in a VerifyRequest. However, there are situations where it may be used as an
optional output. For example, a service that makes use of the ReturnUpdatedS gnature mechanism may,
after verifying a signature over an input document, generate a signature over a document of a different
schema than the input document. In this case the Schemas element MAY be used to communicate the
XML schemas required for validating a returned XML document.

The optional DocumentWithSignature element MUST contain a sub-component. A given element MUST
satisfy the requirements specified in this document in section Document\WithSignatureType.
DocumentWithS gnature element contains the input document with the signature inserted.

Non-normative Comment:
[component Optional OutputsBase non normative details]

OptionalOutputsBase — JSON Syntax

The component Optional OutputsBasei s abstract and therefore has no JSON definition.
[component Optional OutputsBase JSON schema detail s

OptionalOutputsBase — XML Syntax

The XML type Optional OutputsBaseType SHALL implement the requirements defined in the
Optional OutputsBasecomponent.

The Optional OutputsBaseType XML element is defined in XML Schema[DSS2XSD], and is copied
below for information.

<xs: conpl exType abstract="true" nanme="Opti onal Qut put sBaseType" >
<xs: conpl exCont ent >
<xs: extension base="dsh: Opti onal Qut put sType" >
<Xs:sequence>
<xs: el enent maxCccurs="1" m nCccurs="0" nanme="Transfor nedDocunment” type="dss2: Tr¢
<xs: el enent maxCccurs="1" m nCccurs="0" name="Schemas" type="dss2: SchemasType"/ >
<xs: el enent maxCccurs="1" m nCccurs="0" nane="Docunent WthSi gnature" type="dss2:I
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Each child element of Optional OutputsBaseType XML element SHALL implement in XML syntax the
sub-component that has a name equal to itslocal name. [component Optional OutputsBase XML schema
details]

Component OptionalOutputsSign

The Optional OutputsS gnType component defines a set of additional outputs associated with the
processing of a signing request. This document does not define any additional outputs but profiles may
extend the set of additional outputs.

Below follows alist of the sub-components that MAY be present within this component:

Non-nor mative Comment:
[component Optional OutputsSign non nor mative detail s
OptionalOutputsSign —JSON Syntax

The Optional OutputsSignType JSON object SHALL implement in JSON syntax the requirements
defined in the Optional OutputsSign component.

The Optional OutputsSignType JSON object is defined in the JISON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2- Optional Qut put sSi gnType" : {

"type" : "object",
"properties" : {
"policy" : {
"type" : "array",
"itenms" : {
"type" : "string"
}
b,
"other" : {
"type" : "array",
"itenms" : {
"$Sref" : "#/definitions/dsb-AnyType"
}
}s
"transfornmed" : {
"$ref" : "#/definitions/dss2-TransformedDocunent Type"
b,
"schemas" : {
"$ref" : "#/definitions/dss2-SchemasType"
}

ocWthSignature" : {
"$ref" : "#/definitions/dss2-Docunent Wt hSi gnatureType"

}
}
}

[component Optional OutputsSgn JSON schema details|

OptionalOutputsSign — XML Syntax

The XML type Optional OutputsSignType SHALL implement the requirements defined in the
Optional OutputsSigncomponent.

The Optional OutputsSignType XML element isdefined in XML Schema [DSS2XSD], and is copied
below for information.

<xs: conpl exType nane="Opti onal Qut put sSi gnType" >
<xs: conpl exCont ent >
<xs: extensi on base="dss2: Opti onal Qut put sBaseType"/ >
</ xs: conpl exCont ent >
</ xs: conpl exType>

Each child element of Optional OutputsSignType XML element SHALL implement in XML syntax the
sub-component that has a name equal to itslocal name. [component Optional OutputsSign XML schema
details]

Component OptionalOutputsVerify

The Optional OutputsVerify component defines a set of additional outputs associated with the processing
of a verification request.

Below follows alist of the sub-components that MAY be present within this component:
The optional VerifyManifestResults element MUST contain a sub-component. A given element MUST

satisfy the requirements specified in this document in section VerifyManifestResultsType. [sub
component VerifyManifestResults details|

The optional SigningTimelnfo element MUST contain a sub-component. A given element MUST satisfy
the requirements specified in this document in section SigningTimelnfoType. The SgningTimelnfo
element returns the signature’ s creation date and time. When there's no way for the server to determine
the signing time, the server MUST omit this element.

The optional VerificationTimelnfo element MUST contain a sub-component. A given element MUST
satisfy the requirements specified in this document in section VerificationTimelnfoType. In addition to
the verification time, the server MAY include in the VerificationTimelnfo element any other relevant time
instants that may have been used when determining the verification time or that may be useful for its
qualification.

The optional ProcessingDetails element MUST contain a sub-component. A given element MUST satisfy
the requirements specified in this document in section ProcessingDetailsType. The ProcessingDetails
element elaborates on what signature verification steps succeeded or failed.

The optional Signerldentity element MUST contain a sub-component. A given element MUST satisfy the
requirements specified in section NamelDType. The Sgnerldentity element contains an indication of
who performed the signature.

The optional AugmentedSignature element MUST contain a sub-component. A given element MUST
satisfy the requirements specified in this document in section AugmentedSignatureType. This element
contains the processed signature.

The optional TimestampedSignature element MUST contain a sub-component. A given element MUST
satisfy the requirements specified in this document in section AugmentedSignatureType. The
TimestampedS gnature element contains the returned timestamped signature.

Non-nor mative Comment:

[component Optional OutputsVerify non normative details]

OptionalOutputsVerify —JSON Syntax

The Optional OutputsV erify Type JSON object SHALL implement in JISON syntax the requirements
defined in the Optional OutputsV erify component.

Properties of the JSON object SHALL implement the sub-components of Optional OutputsVerifyType
using JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
VerifyManifestResults result []
SigningTimelnfo signingTimelnfo [
VerificationTimelnfo verificationTimelnfo []
ProcessingDetails procDetails [
Signerldentity signerldentity []
AugmentedSignature augSig [
TimestampedSignature timestampedSig [

The Optional OutputsV erify Type JSON object is defined in the JSON schema [DSS2JSON] and is
provided below as a service to the reader.

"dss2- Opti onal Qut putsVerifyType" : ({

"type" : "object”
"properties" : {

"policy" : {

"type" : "array",

"items" : {

"type" : "string"

}
},
"other" : {

"type" : "array",

"itenms" : {

"$ref" : "#/definitions/dsb-AnyType"

}
}1
"transformed" : {

"$ref" : "#/definitions/dss2-TransformedDocunent Type"
}1
"schemas" : {

"$ref" : "#/definitions/dss2-SchemasType"
}1
"docWthSignature” : {

"$ref" : "#/definitions/dss2-Docunment Wt hSi gnat ureType"
}1
"result" : {

"$ref" : "#/definitions/dss2-VerifyManifestResultsType"
3
"si gni ngTi nel nfo" : {

"$ref" : "#/definitions/dss2-SigningTinelnfoType"
3
"verificationTinelnfo" : {

"$ref" : "#/definitions/dss2-VerificationTi melnfoType"
}1
"procDetails" : {

"$ref" : "#/definitions/dss2-ProcessingDetail sType"
}1
"signerldentity” : {

"$ref" : "#/definitions/sam 2rw Nanel DType"
}1
"augSi g" : {

"$ref" : "#/definitions/dss2-Augnment edSi gnat ureType"
}1
"timestanmpedSi g" : {

"$ref" : "#/definitions/dss2-Augnent edSi gnat ureType"
}

}
}

[component Optional OutputsVerify JSON schema details]

OptionalOutputsVerify — XML Syntax

The XML type Optiona OutputsV erify Type SHALL implement the requirements defined in the
Optional OutputsV erifycomponent.

The Optional OutputsVerify Type XML element is defined in XML Schema[DSS2XSD], and is copied
below for information.

<xs: conpl exType nane="Opti onal Qut put sVeri fyType">
<xs: conpl exCont ent >
<xs: extension base="dss2: Opti onal Qut put sBaseType" >
<Xs:sequence>

<xs: el enent maxQccurs="1" m nCccurs="0" nane="VerifyManifestResults" type="dss2:)

0

0" name="Si gni ngTi nel nfo" type="dss2: Si gni n¢
<xs: el enent maxCccurs="1" m nCccurs="0" name="VerificationTi nel nfo" type="dss2: VW
<xs: el enment maxCccurs="1" m nCccurs="0" nanme="Processi ngDetail s" type="dss2: Proce
0
0
0

<xs: el enment maxQccurs="1" m nCccur s=

<xs: el enent maxCccurs="1" m nCccurs="0" nane="Si gnerldentity" type="sam 2-rw Nam
" nanme="Augnment edSi gnat ure" type="dss2: Augr
nanme="Ti nmest anpedSi gnat ure" type="dss2: Al

<xs: el enent maxQccurs="1" m nCccurs=
<xs: el enent maxQccurs="1" m nCccurs=
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >

</ xs: conpl exType>

Each child element of Optional OutputsVerifyType XML element SHALL implement in XML syntax the
sub-component that has a name equal to itslocal name. [component Optional OutputsVerify XML schema
details]

Component Claimed|dentity

This element indicates the identity of the client who is making a request. The server may use thisto
parameterize any aspect of its processing. Profiles that make use of this element MUST define its
semantics.

Below follows alist of the sub-componentsthat MAY be present within this component:

The Name element MUST contain one instance of a sub-component. This element MUST satisfy the
requirements specified in section NamelDType. The claimed identity may be authenticated using the
security binding, according to section 6, or using authentication data provided in the Supportinglnfo
element. The server MUST check that the asserted Name is authenticated before relying upon the Name.

The optional Supportinglnfo element MUST contain a sub-component. A given element MUST satisfy
the requirements specified in section AnyType. The Supportinglnfo element can be used by profilesto
carry information related to the claimed identity. One possible use of Supportinginfo isto carry
authentication data that authenticates the request as originating from the claimed identity (examples of
authentication data include a password or SAML Assertion, a signature or MAC calculated over the
request using a client key).

Non-nor mative Comment:

[component Claimedidentity non normative details]

Claimedl dentity —JSON Syntax

The Claimedidentity Type JSON object SHALL implement in JSON syntax the requirements defined in
the Claimedl dentity component.

Properties of the JSON object SHALL implement the sub-components of Claimedldentity Type using
JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
Name name []
Supportinglnfo supplnfo []

The Claimedidentity Type JSON object is defined in the JSON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2-d ai nedl denti tyType" : {

"type" : "object",
"properties" : {
"name" : {
"$ref" : "#/definitions/sam 2rw Nanel DType"
}1
"suppl nfo" : {
"$ref" : "#/ definitions/dsb-AnyType"
}
}1
"required" : ["nane"]

}
[component Claimedldentity JSON schema details]

Claimedldentity — XML Syntax

The XML type ClaimedidentityType SHALL implement the requirements defined in the
ClaimedI dentitycomponent.

The ClaimedidentityType XML element is defined in XML Schema [DSS2X SD], and is copied below
for information.

<xs: conpl exType nanme="Cl ai nedl dentityType">
<XS: sequence>
<xs: el enent nanme="Nane" type="sanl 2-rw Nanel DType"/>
<xs: el enent m nCccurs="0" nanme="Supportinglnfo" type="dsb: AnyType"/>
</ xs: sequence>
</ xs: conpl exType>

Each child element of ClaimedidentityType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component Claimedldentity XML schema detail |
Component Schemas

The Schemas component provides an in band mechanism for communicating XML schemas required for
validating an XML document.

Below follows alist of the sub-components that MAY be present within this component:

The Schemaelement MUST occur 1 or more times containing a sub-component. Each instance MUST
satisfy the requirements specified in this document in section DocumentType. [sub component Schema
details]

Non-nor mative Comment:

Note: It isrecommended to use xml:id as defined in [xml:id] asid in the payload being referenced by a
<ds:Reference>, because the schema then does not have to be supplied for identifying the Id elements.

Schemas—JSON Syntax

The SchemasType JSON object SHALL implement in JSON syntax the requirements defined in the
Schemas component.

Properties of the JSON object SHALL implement the sub-components of SchemasType using JSON-
specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
Schema schema []

The SchemasType JSON object is defined in the JISON schema [DSS2JSON] and is provided below as a
service to the reader.

"dss2- SchemasType" : {

"type" : "object",
"properties" : {
"schema" : {
"type" : "array",
"itenms" : {
"$ref" : "#/definitions/dss2-Docunent Type"
}
}
¥
"required" : ["schemn"]

}

[component Schemas JSON schema details]

Schemas— XML Syntax

The XML type SchemasType SHALL implement the requirements defined in the Schemascomponent.

The SchemasType XML element is defined in XML Schema [DSS2XSD], and is copied below for
information.

<xs: conpl exType nane="SchemasType" >
<XSs: sequence>
<xs: el ement maxCccur s="unbounded" name="Schem" type="dss2: Docunent Type"/>
</ xs: sequence>
</ xs: conpl exType>

Each child element of SchemasType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component Schemas XML schema detail]

Component AugmentSignatur el nstruction

The AugmentS gnatur el nstruction component can be used as an optional input for both signing and
verification requests and defines the type of augmentation that should to be applied. The augmented
signature will be returned in an AugmentedS gnature (see section 4.3.32) or a DocumentWithSgnature
(see section 4.3.20) component. ES defines the term ‘augmentation’ as followsin ETS TR 119 001
[ES Frame]: "signature augmentation: process of incorporating to a digital signature information
aiming to maintain the validity of that signature over the long term"

Below follows alist of the sub-componentsthat MAY be present within this component:
The optional Type element MUST contain one instance of a URI. [sub component Type details]

Non-normative Comment:
[component AugmentS gnatur el nstruction non normative details|

AugmentSignatur el nstruction —JSON Syntax

The AugmentSignaturel nstructionType JSON object SHALL implement in JSON syntax the
requirements defined in the AugmentSignaturel nstruction component.

Properties of the JSON object SHALL implement the sub-components of
AugmentSignaturel nstructionType using JSON-specific hames mapped as shown in the table below.

Element I mplementing JSON member name Comments
Type type []

The AugmentSignaturel nstructionType JSON object is defined in the JSON schema [DSS2JSON] and is
provided below as a service to the reader.

"dss2- Augrent Si gnat urel nstructi onType" : {
"type" : "object",
"properties” : {
"type' © {
"type" : "string",
"format" : "uri"
}
}
}

[component AugmentS gnatur el nstruction JSON schema detail s

AugmentSignaturel nstruction — XML Syntax

The XML type AugmentSignaturel nstructionType SHALL implement the requirements defined in the
AugmentSignaturel nstructioncomponent.

The AugmentSignaturel nstructionType XML element is defined in XML Schema [DSS2XSD], and is
copied below for information.

<xs: conpl exType name="Augnent Si gnat urel nstructi onType">
<xs:attribute nane="Type" type="xs:anyURI " use="optional"/>
</ xs: conpl exType>

Each child element of AugmentSignaturel nstructionType XML element SHALL implement in XML

syntax the sub-component that has a name equal to itslocal name. [component
AugmentS gnaturel nstruction XML schema detail |

Component IntendedAudience

The IntendedAudience element tells the server who the target audience of this signatureis. The server
MAY use this to parameterize any aspect of its processing (for example, the server MAY choose to sign
with a key that it knows a particular recipient trusts).

Below follows alist of the sub-componentsthat MAY be present within this component:

The Recipient element MUST occur 1 or more times containing a sub-component. Each instance MUST
satisfy the requirements specified in section Namel DType. [sub component Recipient details]
Non-normative Comment:

[component IntendedAudience non normative details]

IntendedAudience — JSON Syntax

The IntendedAudienceType JSON object SHALL implement in JSON syntax the requirements defined in
the IntendedA udience component.

Properties of the JSON object SHALL implement the sub-components of IntendedAudienceType using
JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
Recipient recipient [

The IntendedAudienceType JSON object is defined in the JSON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2- | nt endedAudi enceType" : {

"type" : "object",
"properties” : {
"recipient"” : {
"type" : "array",
"itenms" : {
"$ref" : "#/definitions/sam 2rw Nanel DType"
}
}
}

’equired" ["recipient”]

}

[component IntendedAudience JSON schema details|

IntendedAudience— XML Syntax

The XML type IntendedAudienceType SHALL implement the requirements defined in the
I ntendedA udiencecomponent.

The IntendedAudienceType XML element isdefined in XML Schema [DSS2XSD], and is copied below
for information.

<xs: conpl exType name="1nt endedAudi enceType" >
<XS: sequence>
<xs: el enent maxQOccur s="unbounded" nane="Reci pient" type="sam 2-rw. Nanel DType"/ >
</ xs: sequence>
</ xs: conpl exType>

Each child element of IntendedAudienceType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component IntendedAudience XML schema details|

Component KeySelector

The KeySelector component holds data that selects a specific key or certificate or group of certificates.
Only one of its sub-components MUST be present. But a KeySelector component can occur multiple
times as a sub-component in the Optional | nputsSign component

Below follows alist of the sub-componentsthat MAY be present within this component:
The optional X509Digest element MUST contain one instance of a sub-component. This element MUST

satisfy the requirements specified in this document in section X509DigestType. [sub component
X509Digest details]

The optional X509SubjectName element MUST contain one instance of a string. The X509SubjectName
element contains an X.509 subject distinguished name that SHOULD be represented as a string that
complies with section 3 of RFC4514 [LDAP-DN].

The optional X509SK | element MUST contain one instance of base64 encoded binary data. The X5095K|
element contains the base64 encoded plain (i.e. non-DER-encoded) value of a X509 V.3
SubjectKeyldentifier extension.

The optional X509Certificate element MUST contain one instance of base64 encoded binary data. The
X509Certificate element contains a base64-encoded [X509V3] certificate.

The optional KeyName element MUST contain one instance of astring. It selects a key to be used for
signing in a generic way. Usually the client knows about the valid values for KeyName.

Non-nor mative Comment:

[component KeySelector non nor mative details|

KeySelector — JSON Syntax

The KeySelectorType JSON object SHALL implement in JSON syntax the requirements defined in the
KeySelector component.

Properties of the JSON object SHALL implement the sub-components of KeySelectorType using JSON-
specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
X509Digest x509Digest []
X509SubjectName sub []
X509SK1 ski []
X509Certificate cert [
KeyName name []

The KeySelectorType JSON object is defined in the JISON schema [DSS2JSON] and is provided below
as aservice to the reader.

"dss2- KeySel ect or Type" : {

"type" : "object",
"properties” : {
"x509Di gest" : {
"$ref" : "#/definitions/dss2-X509D gest Type"
3
"sub" : {
"type" : "string"
3
"ski" o {
"type" @ "string"
"cert" : {
"type" : "string"
¥
"name" : {
"type" : "string"
}
b
"m nProperties" : 1,
"maxProperties" @ 1

}
[component KeySelector JSON schema details]

KeySelector — XML Syntax

The XML type KeySelectorType SHALL implement the requirements defined in the
K ey Sel ectorcomponent.

The KeySelectorType XML element is defined in XML Schema [DSS2XSD], and is copied below for
information.

<xs: conpl exType nanme="KeySel ect or Type" >
<xs: choi ce>
<xs: el enent nanme="X509Di gest" type="dss2: X509Di gest Type"/ >
<xs: el enent nanme="X509Subj ect Nane" type="xs:string"/>
<xs: el enent nanme="X509SKl" type="xs:base64Bi nary"/>

<xs: el enent nanme="X509Certificate" type="xs:base64Binary"/>
<xs: el enent nane="KeyNane" type="xs:string"/>
</ xs: choi ce>
</ xs: conpl exType>

Each child element of KeySelectorType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component KeySelector XML schema details)

Component X509Digest

The X509Digest component contains a base64-encoded digest of a certificate. The digest algorithm URI
isidentified with a required Algorithm element. The input to the digest MUST be the raw octets that
would be base64-encoded of a X509Certificate.

Below follows alist of the sub-componentsthat MAY be present within this component:

The value element MUST contain one instance of base64 encoded binary data. [sub component value
detailg|

The Algorithm element MUST contain one instance of a string. The string describes the digest algorithm
in an appropriate way for the server side processing. Depending on the signature format this may be an
OID (e.g.2.16.840.1.101.3.4.2.1'), an URI (e.g. ‘ http://mmww.w3.0rg/2001/04/xmlenc#sha256’) or a
descriptive string (* SHA-256").

Non-normative Comment:
[component X509Digest non normative details|
X509Digest — JSON Syntax

The X509DigestType JSON object SHALL implement in JSON syntax the requirements defined in the
X509Digest component.

Properties of the JSON object SHALL implement the sub-components of X509DigestType using JSON-
specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
value value []
Algorithm ag []

The X509DigestType JSON object is defined in the JISON schema [DSS2JSON] and is provided below
as aservice to the reader.

"dss2- X509Di gest Type" : {

"type" : "object",
"properties” : {
"value" : {
"type" : "string"
}1
"alg" @ {

"type" : "string"
}

}

}
[component X509Digest JSON schema details]

,equired" : ["al g"]

X509Digest — XML Syntax

The XML type X509DigestType SHALL implement the requirements defined in the
X509Digestcomponent.

The X509DigestType XML element is defined in XML Schema [DSS2X SD], and is copied below for
information.

<xs: conpl exType name="X509Di gest Type" >
<xs: si npl eCont ent >
<xs: extensi on base="xs: base64Bi nary" >
<xs:attribute name="Algorithm type="xs:string" use="required"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>

Each child element of X509DigestType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component X509Digest XML schema details|

Component PropertiesHolder

The PropertiesHolder component is used to request that the server add certain signed or unsigned
properties (aka “ signature attributes’) into the signature. The client can send the server a particular
value to use for each property, or leave the value up to the server to determine. The server can add
additional properties, even if these aren’t requested by the client.

Below follows alist of the sub-componentsthat MAY be present within this component:
The optional SignedProperties element MUST contain a sub-component. A given element MUST satisfy

the requirements specified in this document in section PropertiesType. These properties will be covered
by the signature.

The optional UnsignedProperties element MUST contain a sub-component. A given element MUST
satisfy the requirements specified in this document in section PropertiesType. These properties will not
be covered by the signature.

Non-nor mative Comment:

[component PropertiesHolder non normative detail |

PropertiesHolder — JSON Syntax

The PropertiesHolderType JSON object SHALL implement in JSON syntax the requirements defined in
the PropertiesHolder component.

Properties of the JSON object SHALL implement the sub-components of PropertiesHolderType using
JSON-specific names mapped as shown in the table below.

Element Implementing JISON member name Comments
SignedProperties signedProps (]
UnsignedProperties unsignedProps []

The PropertiesHolderType JSON object is defined in the JSON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2- PropertiesHol der Type" : {

"type" : "object",
"properties" : {
"signedProps" : {
"$ref" : "#/definitions/dss2-PropertiesType"

}

’nsignedProps" A
"$ref" : "#/definitions/dss2-PropertiesType"
}
}
}

[component PropertiesHolder JSON schema detail 5|

PropertiesHolder — XML Syntax

The XML type PropertiesHolderType SHALL implement the requirements defined in the
PropertiesHol dercomponent.

The PropertiesHolderType XML element is defined in XML Schema [DSS2XSD], and is copied below
for information.

<xs: conpl exType nane="Properti esHol der Type" >
<XSs: sequence>
<xs: el enment m nCccurs="0" nanme="Si gnedProperties" type="dss2: PropertiesType"/>

<xs: el enent m nCccurs="0" nane="Unsi gnedProperties" type="dss2: PropertiesType"/>
</ xs: sequence>
</ xs: conpl exType>

Each child element of PropertiesHolderType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component PropertiesHolder XML schema detail |

Component Properties

[component Properties normative details]

Below follows alist of the sub-componentsthat MAY be present within this component:

The Property element MUST occur 1 or more times containing a sub-component. Each instance MUST
satisfy the requirements specified in this document in section Property Type. [sub component Property
detail]

Non-nor mative Comment:

[component Properties non normative details|
Properties—JSON Syntax

The PropertiesType JSON object SHALL implement in JISON syntax the requirements defined in the
Properties component.

Properties of the JSON object SHALL implement the sub-components of PropertiesType using JSON-
specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
Property prop []

The PropertiesType JSON object is defined in the JSON schema [DSS2JSON] and is provided below as
aservice to the reader.

"dss2-PropertiesType" : {

"type" : "object",
"properties" : {
"prop" : {
"type" : "array",
"itenms" : {
"$ref" : "#/definitions/dss2-PropertyType"
}
}
}

}

[component Properties JSON schema detail s]

,equired" : ["prop"]

Properties— XML Syntax
The XML type PropertiesType SHALL implement the requirements defined in the Propertiescomponent.

The PropertiesType XML element is defined in XML Schema [DSS2XSD], and is copied below for
information.

<xs: conpl exType name="Properti esType">
<XSs: sequence>
<xs: el enent maxCccur s="unbounded" nane="Property" type="dss2: PropertyType"/>
</ xs: sequence>
</ xs: conpl exType>

Each child element of PropertiesType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component Properties XML schema detail |
Component Property

[component Property normative details]|

Below follows alist of the sub-componentsthat MAY be present within this component:

The Identifier element MUST contain one instance of a string.

The optional Vaue element MUST contain a sub-component. A given element MUST satisfy the
requirements specified in section AnyType. The Value element contains arbitrary content wrapped in an
Fehler! Verweisquelle konnte nicht gefunden werden..

Non-normative Comment:
[component Property non normative details)
Property —JSON Syntax

The Property Type JSON object SHALL implement in JSON syntax the requirements defined in the
Property component.

Properties of the JSON object SHALL implement the sub-components of Property Type using JSON-
specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
Identifier id (]
Vaue va []

The Property Type JSON object is defined in the JSON schema [DSS2JSON] and is provided below as a
service to the reader.

"dss2-PropertyType" : {

"type" : "object",
"properties" : {
"id" o {
"type" : "string"
3
"val " o {
"$ref" : "#/definitions/dsb-AnyType"
}
}

'equired" o[mid"]
}

[component Property JSON schema details|

Property — XML Syntax
The XML type Property Type SHALL implement the requirements defined in the Propertycomponent.

The PropertyType XML element is defined in XML Schema[DSS2XSD], and is copied below for
information.

<xs: conpl exType nane="PropertyType">
<Xs:sequence>
<xs:elenment nane="ldentifier" type="xs:string"/>
<xs: el enent m nCccurs="0" nanme="Val ue" type="dsh: AnyType"/ >
</ xs: sequence>
</ xs: conpl exType>

Each child element of Property Type XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. . Therefore it occursin the XML schema, too.

Component I ncludeObject

The IncludeObject component is used to request the creation of an XMLS g envel oping signature.
Multiple occurrences of this optional input can be present in a single SgnRequest message. Each
occurrence will cause the inclusion of an object inside the signature being created.

Below follows alist of the sub-componentsthat MAY be present within this component:

The optional WhichDocument element MUST contain one instance of a unique identifier reference. This
element identifies the input document which will be inserted into the returned signature.

The optional HasObjectTagsAndAttributesSet element MUST contain one instance of a boolean. Its
default valueis 'false'.
[sub component HasObjectTagsAndAttributesSet details]

The optional Objld element MUST contain one instance of astring. It setsthe Id attribute on the
returned <ds: Object>.

The optional createReference element MUST contain one instance of a boolean. Its default valueis 'true'.
If the createReference element is set to false inhibits the creation of the <ds: Reference> associated to the
RefURI element of the input document referred by the WhichDocument element, effectively allowing
clients to include <ds: Object> elements not covered/protected by the signature being created.

Non-nor mative Comment:

[component IncludeObject non normative detail]

IncludeObject —JSON Syntax

The IncludeObjectType JSON object SHALL implement in JSON syntax the requirements defined in the
IncludeObject component.

Properties of the JSON object SHALL implement the sub-components of IncludeObjectType using
JSON-specific names mapped as shown in the table below.

Element I mplementing JSON member name Comments
WhichDocument whichDoc [
HasObjectTagsAndAttributesSet hasObjectTagsAndAttributesSet []
Objid objld []
createReference createRef []

The IncludeObjectType JSON object is defined in the JSON schema [DSS2JSON] and is provided below
asaservice to the reader.

"dss2- I ncl udej ect Type" : {

"type" : "object”,
"properties" : {
"whi chDoc" : {
"$ref" : "#/definitions/dss2-DocunentBaseType"
3
"hasObj ect TagsAndAttri butesSet" : {
"type" : "bool ean",
"default™ : "fal se”
3
"objld" : {
"type" : "string"
"createRef" : {
"type" : "bool ean",
"default"™ : "true"

}
}
}

[component IncludeObject JSON schema details]

IncludeObject — XML Syntax

The XML type IncludeObjectType SHALL implement the requirements defined in the
IncludeObj ectcomponent.

The IncludeObjectType XML element is defined in XML Schema [DSS2X SD], and is copied below for
information.

<xs: conpl exType nane="Incl udeCbj ect Type" >
<xs:attribute nanme="Whi chDocunent" type="xs:|DREF"/>
<xs:attribute default="fal se" nane="HasObj ect TagsAndAttri butesSet" type="xs:bool ean"/>
<xs:attribute nane="Chjld" type="xs:string" use="optional"/>
<xs:attribute default="true" nanme="creat eReference" type="xs:bool ean" use="optional "/>
</ xs: conpl exType>

Each child element of IncludeObjectType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component IncludeObject XML schema details]

Component Signatur ePlacement

The SgnaturePlacement component is used to request the creation of an XMLS g envel oped signature
placed within an input document. The resulting document with the enveloped signatureis placed in the
optional output DocumentWithS gnature element. The server places the signature in the document
identified using the WhichDocument attribute. In the case of a non-XML input document then the server
will return an error unless alternative procedures are defined by a profile or in the server policy for
handling such a situation.

Below follows alist of the sub-components that MAY be present within this component:
The optional XPathAfter element MUST contain one instance of astring. This elements holds an XPath

expression which identifies an element, inside the XML input document, after which the signature will be
inserted.

The optional XPathFirstChildOf element MUST contain one instance of a string. This elements holds an
XPath expression which identifies an element, in the XML input document, which the signature will be
inserted as the first child of.

The optional NsPrefixMapping element MAY occur zero or more times containing a sub-component. If
present each instance MUST satisfy the requirements specified in section NsPrefixMappingType. [sub
component NsPrefixMapping details|

The optional WhichDocument element MUST contain one instance of a unique identifier reference. The
WhichDocument element identifies the input document which the signature will be inserted into.

The optional CreateEnvel opedSignature element MUST contain one instance of a boolean. Its default
valueis'true'.

If the CreateEnvel opedSgnature element is set to true a reference having an enveloped signature
transformis created.

Non-normative Comment:
[component SignaturePlacement non normative details]
SignaturePlacement — JSON Syntax

The SignaturePlacementType JSON object SHALL implement in JSON syntax the requirements defined
in the SignaturePlacement component.

Properties of the JSON object SHALL implement the sub-components of SignaturePlacementType using
JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
XPathAfter xPathAfter [
XPathFirstChildOf xPathFirstChildOf [
NsPrefixMapping nsDecl [
WhichDocument whichDoc []
CreateEnvel opedSignature createEnvel opedSignature [

The SignaturePlacementType JSON object is defined in the JSON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2- Si gnat ur ePl acenment Type" : {
"type" : "object",
"properties” : {
"xpathAfter" : {
"type" : "string"
}

"xpat hFi rstChi | dOF" : {
"type" @ "string"

}1

"xPat hAfter" : {
"type" : "string"

}1

"xPat hFirstChildOF" @ {

"type" : "string"
}1
"nsDecl " : {
"type" : "array",
"items" : {
"$ref" : "#/definitions/dsb-NsPrefixMappi ngType"
}
3
"whi chDoc" : {
"$ref" : "#/definitions/dss2-Docunent BaseType"
}1
"creat eEnvel opedSi gnature” : {
"type" : "bool ean"
"default" : "true"
}

}
}

[component SgnaturePlacement JSON schema details]

SignaturePlacement — XML Syntax

The XML type SignaturePlacementType SHALL implement the requirements defined in the
SignaturePlacementcomponent.

The SignaturePlacementType XML element is defined in XML Schema[DSS2XSD], and is copied
below for information.

<xs: conpl exType nane="Si gnat ur ePl acenent Type" >
<Xs:sequence>
<xs: choi ce>
<xs:el enent nanme="XPat hAfter" type="xs:string"/>
<xs: el enent nane="XPat hFi rst Chi | dOf" type="xs:string"/>
</ xs: choi ce>
<xs: el enent maxCccur s="unbounded" m nCccurs="0" name="NsPrefi xMappi ng" type="dsb: NsPr
</ xs: sequence>
<xs:attribute nane="Whi chDocunent" type="xs:|DREF"/>
<xs:attribute default="true" name="Creat eEnvel opedSi gnature" type="xs: bool ean"/>
</ xs: conpl exType>

Each child element of SignaturePlacementType XML element SHALL implement in XML syntax the

sub-component that has a name equal to itslocal name. [component S gnaturePlacement XML schema
details|

Component DocumentWithSignature

The DocumentWithS gnature component contains a 3.1.14 with the signature inserted as requested with
the SgnaturePlacement component.

Below follows alist of the sub-componentsthat MAY be present within this component:

The Document element MUST contain one instance of a sub-component. This element MUST satisfy the
requirements specified in this document in section DocumentType. This contains the input document with
a signature inserted in some fashion.

Non-nor mative Comment:

[component DocumentWithS gnature non nor mative details|
DocumentWithSignature— JSON Syntax

The DocumentWithSignatureType JSON object SHALL implement in JSON syntax the requirements
defined in the DocumentWithSignature component.

Properties of the JSON object SHALL implement the sub-components of DocumentWithSignatureType
using JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
Document doc []

The DocumentWithSignatureType JSON object is defined in the JSON schema [DSS2JSON] and is
provided below as a service to the reader.

"dss2- Docunent Wt hSi gnat ureType" : {

"type" : "object",
"properties" : {
"doc" : {
"$ref" : "#/definitions/dss2-Docunent Type"
}
¥
"required" : ["doc"]

}

[component DocumentWithS gnature JSON schema details]

DocumentWithSignature— XML Syntax

The XML type DocumentWithSignatureType SHALL implement the requirements defined in the
DocumentWithSignaturecomponent.

The DocumentWithSignatureType XML element is defined in XML Schema [DSS2XSD], and is copied
below for information.

<xs: conpl exType nane="Docunent Wt hSi gnat ureType" >
<XS: sequence>
<xs: el enment nanme="Docunent” type="dss2: Docunent Type"/>
</ xs: sequence>
</ xs: conpl exType>

Each child element of DocumentWithSignatureType XML element SHALL implement in XML syntax

the sub-component that has a name equal to its local name. [component DocumentWithS gnature XML
schema detail s

Component SignedRefer ences

The SgnedReferences component gives the client greater control over how the <ds: Reference> elements
are formed.

Below follows alist of the sub-componentsthat MAY be present within this component:

The SignedReference element MUST occur 1 or more times containing a sub-component. Each instance
MUST satisfy the requirements specified in this document in section SignedReferenceType. [sub
component SgnedReference details)

Non-normative Comment:
[component S gnedReferences non normative details|
SignedReferences— JSON Syntax

The SignedReferencesType JSON object SHALL implement in JSON syntax the requirements defined in
the SignedReferences component.

Properties of the JSON object SHALL implement the sub-components of SignedReferencesType using
JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
SignedReference signedRef []

The SignedReferencesType JSON object is defined in the JISON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2- Si gnedRef erencesType" : {

"type" : "object",
"properties" : {
"signedRef " : {
"type" : "array",
"itenms" : {
“$ref" : "#/definitions/dss2-Si gnedReferenceType"
}
}
}

,equired" : ["signedRef"]
}

[component S gnedReferences JSON schema detail s]

SignedReferences— XML Syntax

The XML type SignedReferencesType SHALL implement the requirements defined in the
SignedReferencescomponent.

The SignedReferencesType XML element is defined in XML Schema [DSS2X SD], and is copied below
for information.

<xs: conpl exType name="Si gnedRef er encesType" >
<Xs:sequence>
<xs: el enent maxCccur s="unbounded" nanme="Si gnedRef erence" type="dss2: Si gnedRef erenceT)
</ xs: sequence>
</ xs: conpl exType>

Each child element of SignedReferencesType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component S gnedReferences XML schema details|

Component SignedReference

Each SgnedReference component refers to an input document and allows multiple < ds: Reference>
elements to be based on a single input document. Furthermore, the client can request additional
transforms to be applied to each <ds: Reference>, and can set each <ds: Reference> element’s Id or URI
attribute. These aspects of the <ds: Reference> can only be set through the S gnedReference component;
they cannot be set through the input documents, since they are aspects of the reference to the input
document, not the input document itself.

Below follows alist of the sub-components that MAY be present within this component:
The optional Transforms element MUST contain a sub-component. A given element MUST satisfy the

requirements specified in section TransformsType. The Transforms element requests the server to
perform additional transforms on this reference.

The WhichDocument element MUST contain one instance of a unique identifier reference. This definesw
hich input document this reference refersto.

The optional RefURI element MUST contain one instance of a URI. If this element is present, the
corresponding <ds: Reference> element’s URI attributeis set to its value. If it isnot present, the URI
attribute is omitted in the corresponding <ds: Reference>.

The optional Refld element MUST contain one instance of a string. This element sets the Id attribute of
the corresponding <ds. Reference>.

Non-nor mative Comment:

[component SignedReference non normative details|

SignedReference —JSON Syntax

The SignedReferenceType JSON object SHALL implement in JSON syntax the requirements defined in
the SignedReference component.

Properties of the JSON object SHALL implement the sub-components of SignedReferenceType using
JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
Transforms transforms []
WhichDocument whichDoc [
RefURI refURI [
Refld refld []

The SignedReferenceType JSON object is defined in the JSON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2- Si gnedRef erenceType" : {
"type" : "object",
"properties" : {

"transforms" : {

"$ref" : "#/definitions/dsigrw TransfornsType"
}1
"whi chDoc" : {
"$ref" : "#/definitions/dss2-DocunentBaseType"
},
"refURI" @ {
"type" : "string"
b
"refld" : {
"type" : "string"
}

}

}

[component SignedReference JSON schema detail g

'equired" ;["whichDoc"]

SignedReference— XML Syntax

The XML type SignedReferenceType SHALL implement the requirements defined in the
SignedReferencecomponent.

The SignedReferenceType XML element is defined in XML Schema [DSS2XSD], and is copied below
for information.

<xs: conpl exType nane="Si gnedRef erenceType" >
<Xs:sequence>
<xs: el enent m nCccurs="0" nanme="Transforns" type="ds-rw TransfornmsType"/>
</ xs: sequence>
<xs:attribute nane="Wi chDocurment" type="xs:|DREF" use="required"/>
<xs:attribute nane="Ref URI" type="xs:anyURl " use="optional "/>
<xs:attribute nane="Refld" type="xs:string" use="optional"/>
</ xs: conpl exType>

Each child element of SignedReferenceType XML element SHALL implement in XML syntax the sub-
component that has a name equal to its local name. [component SignedReference XML schema details]

Component VerifyManifestResults

The results of verifying individual <ds:Reference>'swithin a <ds:Manifest> are returned in the
VerifyManifestResults component.

Below follows alist of the sub-componentsthat MAY be present within this component:

The ManifestResult element MUST occur 1 or more times containing a sub-component. Each instance
MUST satisfy the requirements specified in this document in section ManifestResultType. [sub
component ManifestResult details]

Non-nor mative Comment:

[component VerifyManifestResults non normative details]

VerifyM anifestResults— JSON Syntax

The VerifyManifestResultsType JSON object SHALL implement in JISON syntax the requirements
defined in the VerifyManifestResults component.

Properties of the JSON object SHALL implement the sub-components of VerifyManifestResultsType
using JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
ManifestResult result [

The VerifyManifestResultsType JSON object is defined in the JSON schema [DSS2JSON] and is
provided below as a service to the reader.

"dss2-VerifyMani f est Resul t sType" : {
"type" : "object",
"properties" : {
"result" : {
"type" : "array",
"itens" : {
"$ref" : "#/definitions/dss2-ManifestResultType"

}
}

'equired" : ["result"]

}

}
[component VerifyManifestResults JSON schema details]

VerifyM anifestResults— XML Syntax

The XML type VerifyManifestResultsType SHALL implement the requirements defined in the
VerifyManifestResultscomponent.

The VerifyManifestResultsType XML element is defined in XML Schema [DSS2XSD], and is copied
below for information.

<xs: conpl exType nane="VerifyMani f est Resul t sType" >
<Xs:sequence>
<xs: el enent maxCccur s="unbounded" name="Mani festResult" type="dss2: Manif est Resul t Type
</ xs: sequence>
</ xs: conpl exType>

Each child element of VerifyManifestResultsType XML element SHALL implement in XML syntax the
sub-component that has a name equal to itslocal name. [component VerifyManifestResults XML schema
detailg|

Component ManifestResult

The VerifyManifestResults component is comprised of one or more ManifestResult

Below follows alist of the sub-components that MAY be present within this component:

The ReferenceX path element MUST contain one instance of a string. This element identifies the manifest
reference, in the XML signature, to which thisresult pertains.

The Status element MUST contain one instance of a URI. Itsvalueislimited to an item of the following
Set:

® urn:oasis:names:tc:dss:1.0:manifeststatus:Valid
® urn:oasis:names:tc:dss:1.0:manifeststatus:Invalid
This element indicates the manifest validation outcome.
The optional NsPrefixMapping element MAY occur zero or more times containing a sub-component. If
present each instance MUST satisfy the requirements specified in section NsPrefixMappingType. [sub
component NsPrefixMapping details|
Non-normative Comment:
[component ManifestResult non normative details|
ManifestResult — JSON Syntax

The ManifestResultType JSON object SHALL implement in JSON syntax the requirements defined in
the ManifestResult component.

Properties of the JSON object SHALL implement the sub-components of ManifestResultType using
JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
ReferenceXpath xPath (]
Status status []
NsPrefixMapping nsDecl []

The ManifestResultType JSON object is defined in the JSON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2- Mani f est Resul t Type" : {

"type" : "object",
"properties" : {
"xPath" : {
"type" : "string"
’
"status" : {
"type" : "string",
"enunt : ["urn:oasis:nanmes:tc:dss:1.0:nanifeststatus:Valid",
"urn:oasis:nanes:tc:dss: 1. 0: mani feststatus: Invalid"]
H
"nsDecl " : {
"type" : "array",
"itenms" : {
"$ref" : "#/definitions/dsb-NsPrefixMappi ngType"
}
}
H
"required" : ["xPath",
"status"]

}

[component ManifestResult JSON schema details]

ManifestResult — XML Syntax

The XML type ManifestResultType SHALL implement the requirements defined in the
ManifestResultcomponent.

The ManifestResultType XML element is defined in XML Schema [DSS2X SD], and is copied below for
information.

<xs: conpl exType nane="Mani f est Resul t Type" >
<Xs:sequence>
<xs: el enent nane="Ref erenceXpath" type="xs:string"/>
<xs:el enent nanme="Stat us">
<xs: si mpl eType>
<xs:restriction base="xs:anyURl ">
<xs:enuneration val ue="urn: oasi s: nanes:tc:dss: 1. 0: mani feststatus: Valid"/>
<xs:enuneration val ue="urn: oasis: nanes:tc:dss:1.0: mani feststatus:Invalid"/>
</xs:restriction>
</ xs: si npl eType>
</ xs: el ement >
<xs: el ement maxQOccur s="unbounded"” m nCccurs="0" nanme="NsPrefi xMappi ng" type="dsb: NsPr
</ xs: sequence>
</ xs: conpl exType>

Each child element of ManifestResultType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component ManifestResult XML schema details]

Component UseVerificationTime

This UseVerificationTime component instructs the server to attempt to determine the signature’ s validity
at the specified time, instead of a time determined by the server policy.

Below follows alist of the sub-componentsthat MAY be present within this component:
The optional CurrentTime element MUST contain one instance of aboolean. Its default value is 'false.

This element instructs the server to use its current time (normally the time associated with the server-side
request processing).

The optional SpecificTime element MUST contain one instance of a date/time value. The SpecificTime
element allows the client to manage manually the time instant used in the verification process. It
SHOULD be expressed as UTC time (Coordinated Universal Time) to reduce confusion with the local
time zone use.

The optional Base64Content element MUST contain base64 encoded binary data. The Base64Content
element allows the provision of additional date/time data.

Non-nor mative Comment:

[component UseVerificationTime non normative details|

UseVerificationTime—JSON Syntax

The UseVerificationTimeType JSON object SHALL implement in JISON syntax the requirements
defined in the UseVerificationTime component.

Properties of the JSON object SHALL implement the sub-components of UseVerificationTimeType
using JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
CurrentTime currTime [
SpecificTime specTime []
Base64Content b64Content []

The UseVerificationTimeType JSON object is defined in the JISON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2-UseVerificationTi meType" : {

"type" : "object”,
"properties" : {
"currTime" : {
"type" : "bool ean"
"default” : "fal se"
}1
"specTine" : {
"type" @ "integer",
"format" : "utc-mllisec”
}1
"b64Content" : {
"type" : "string"
}1
"mnProperties" @ 1,
"maxProperties" : 1

}

[component UseVerificationTime JSON schema details|

UseVerificationTime— XML Syntax

The XML type UseVerificationTimeType SHALL implement the requirements defined in the
UseVerificationTimecomponent.

The UseVerificationTimeType XML element isdefined in XML Schema [DSS2XSD], and is copied
below for information.

<xs: conpl exType nane="UseVerificationTi neType">
<xs: choi ce>
<xs: el enent defaul t="fal se" name="CurrentTi ne" type="xs:bool ean"/>
<xs: el enent nanme="SpecificTi me" type="xs:dateTinme"/>
<xs: el enent maxQccurs="1" m nCccurs="0" nanme="Base64Content" type="xs:base64Bi nary"/:
</ xs: choi ce>
</ xs: conpl exType>

Each child element of UseVerificationTimeType XML element SHALL implement in XML syntax the

sub-component that has a name equal to itslocal name. [component UseVerificationTime XML schema
detailg|

Component Additional Timel nfo

The Additional Timel nfo component contains other time instant(s) relevant in the context of the
verification time determination.

Below follows alist of the sub-componentsthat MAY be present within this component:
The value element MUST contain one instance of a date/time value. [sub component value details|

The Type element MUST contain one instance of a URI. Itsvalue is limited to an item of the following
Set:

urn:oasis.names:tc:dss. 1.0:additionaltimeinfo:signatureTimestamp
urn:oasis.names:tc:dss. 1.0:additionaltimeinfo:signatureTimemark
urn:oasis.names:tc:dss: 1.0:additi onal timeinfo:signedObj ect Timestamp
urn:oasi s:names:tc:dss: 1.0:additionaltimeinfo:claimedSigningTime

The Type attribute qualifies the kind of time information included in the response. This specification
defines the listed types, whose values MUST satisfy the format defined as xs: dateTime and SHOULD be
expressed as UTC time (Coordinated Universal Time). Profiles MAY include and define new val ues for
the Type attribute.

The optional Ref element MUST contain one instance of a string. It allows to establish references to the

source of the time information, and SHOULD be used when there is a need to disambiguate several
Additional Timelnfo components with the same Type attribute.

Non-normative Comment:
[component Additional Timelnfo non normative details|

Additional Timel nfo— JSON Syntax

The Additional TimelnfoType JSON object SHALL implement in JISON syntax the requirements defined
in the Additional Timelnfo component.

Properties of the JSON object SHALL implement the sub-components of Additional TimelnfoType using
JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments

value vaue []
Type type (]
Ref ref Il

The Additiona TimelnfoType JSON object is defined in the JSON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2- Addi ti onal Ti nel nfoType" : {

"type" : "object",
"properties" : {
"val ue" : {
"type" : "integer",

"format" : "utc-mllisec"

b

"type" @ {

"type" @ "string",

"format" : "uri"
b,
"ref" : {

"type" : "string"
}

}

}

[component Additional Timelnfo JSON schema details]

,equired" D ["type"]

AdditionalTimelnfo— XML Syntax

The XML type Additional TimelnfoType SHALL implement the requirements defined in the
Additional Timel nfocomponent.

The Additional TimelnfoType XML element is defined in XML Schema [DSS2XSD], and is copied
below for information.

<xs: conpl exType nanme="Addi ti onal Ti nel nf oType" >
<xs: si npl eCont ent >
<xs:extension base="xs: dateTi ne">
<xs:attribute name="Type" use="required">
<xs: si nmpl eType>
<xs:restriction base="xs:anyURl ">

<xs:enuneration val ue="urn: oasi s: nanes:tc: dss: 1. 0:additionaltineinfo:signatur
<xs:enuneration val ue="urn:oasis: names:tc:dss: 1. 0: addi tional tinei nfo: signatur
<xs:enuneration val ue="urn:oasis: nanes:tc:dss: 1. 0:additionaltineinfo:signedQ
<xs:enuneration val ue="urn: oasi s: hanmes:tc:dss: 1. 0: addi ti onal ti nei nf o: cl ai ned:

</ xs:restriction>
</ xs: si npl eType>
</ xs:attribute>
<xs:attribute name="Ref" type="xs:string" use="optional"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>

Each child element of Additional TimelnfoType XML element SHALL implement in XML syntax the
sub-component that has a name equal to itslocal name. [component Additional Timelnfo XML schema
details|

Component VerificationTimel nfo

The VerificationTimel nfo component allows the client to obtain the time instant used by the server to
validate the signature.

Below follows alist of the sub-componentsthat MAY be present within this component:
The VerificationTime element MUST contain one instance of a date/time value. This time instant used by

the server when verifying the signature. It SHOULD be expressed as UTC time (Coordinated Universal
Time) to reduce confusion with the local time zone use.

The optional Additional Timelnfo element MAY occur zero or more times containing a sub-component.
If present each instance MUST satisfy the requirements specified in this document in section

Additional TimelnfoType. The Additional Timel nfo element can contain any other time instant(s) relevant
in the context of the verification time determination.

Non-nor mative Comment:

[component VerificationTimel nfo non normative details]

VerificationTimelnfo — JSON Syntax

The VerificationTimelnfoType JSON object SHALL implement in JSON syntax the requirements
defined in the VerificationTimel nfo component.

Properties of the JSON object SHALL implement the sub-components of VerificationTimelnfoType
using JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
VerificationTime verificationTime [
Additional Timelnfo additional Timelnfo []

The VerificationTimelnfoType JSON object is defined in the JSON schema [DSS2JSON] and is
provided below as a service to the reader.

"dss2-VerificationTi mel nfoType" : {

"type" : "object",
"properties” : {
"verificationTine" : {
"type" : "integer",
"format" : "utc-mllisec”
"addi tional Ti mel nfo" : {
"type" @ "array",
"items" : {
"$ref" : "#/definitions/dss2-Additional Ti mel nf oType"
}
}
,
"required" : ["verificationTine"]

}

[component VerificationTimelnfo JSON schema detail S|

VerificationTimelnfo— XML Syntax

The XML type VerificationTimelnfoType SHALL implement the requirements defined in the
VerificationTimel nfocomponent.

The VerificationTimelnfoType XML element is defined in XML Schema [DSS2X SD], and is copied
below for information.

<xs: conpl exType nane="VerificationTi nel nfoType">
<Xs:sequence>
<xs: el enent nanme="VerificationTine" type="xs:dateTinme"/>
<xs: el enent maxQOccur s="unbounded"” m nCOccurs="0" name="Additional Ti mel nfo" type="dss2
</ xs: sequence>
</ xs: conpl exType>

Each child element of VerificationTimelnfoType XML element SHALL implement in XML syntax the
sub-component that has a name equal to itslocal name. [component VerificationTimelnfo XML schema
details|

Component AdditionalK eyl nfo

The Additional Keylnfo component provides the server with additional data (such as certificates and
CRLSs) which it can use to validate the signature.

Below follows alist of the sub-components that MAY be present within this component:
The optional X509Digest element MUST contain one instance of a sub-component. This element MUST

satisfy the requirements specified in this document in section X509DigestType. This element contains a
base64-encoded digest of a certificate.

The optional X509SubjectName element MUST contain one instance of a string. This element contains
an X.509 subject distinguished name that is represented as a string.

The optional X509SK | element MUST contain one instance of base64 encoded binary data. This element
contains the base64 encoded value of a X509 V.3 SubjectKeyldentifier.

The optional X509Certificate element MUST contain one instance of a sub-component. This element
MUST satisfy the requirements specified in section Base64DataType. This element MAY contain
certificates useful to build a certificate chain.

The optional KeyName element MUST contain one instance of a string. It contains a string value to
identify the key.

The optional X509CRL element MUST contain one instance of a sub-component. This element MUST
satisfy the requirements specified in section Base64DataType. In addition to the elements included in
component 3.1.33 the X509CRL element holds a CRL.

The optional OCSPResponse element MUST contain one instance of a sub-component. This element
MUST satisfy the requirements specified in section Base64DataType. This element can be used by the
client to provide available OCSP information. The server MAY consider this information.

The optional POE element MUST contain one instance of a sub-component. This element MUST satisfy
the requirements specified in section Base64DataType. This element can be used by the client to provide
‘Proof of Existence' data. Valid information MAY be considered within the validation process.

Non-normative Comment:
[component Additional Keylnfo non normative details]

AdditionalK eyl nfo — JSON Syntax

The AdditionalKeylnfoType JSON object SHALL implement in JSON syntax the requirements defined
in the AdditionalKeylnfo component.

Properties of the JSON object SHALL implement the sub-components of AdditionalKeylnfoType using
JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
X509Digest x509Digest []
X509SubjectName sub []
X509SK1 ski []
X509Certificate cert [
KeyName name []
X509CRL crl []
OCSPResponse ocsp []
PoE poe [

The AdditionalKeylnfoType JSON object is defined in the JSON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2- Addi ti onal Keyl nfoType" : {

"type" : "object",
"properties" : {
"ocspresponse” : {
"$ref" : "#/definitions/dsb-Base64Dat aType"
1
"x509Di gest" : {
"$ref" : "#/definitions/dss2-X509Di gest Type"
8
"sub" : {
"type" : "string"
3
"ski" o {
"type" : "string"
3
"cert" : {
"$ref" : "#/ definitions/dsh-Base64Dat aType"
},
"name" : {
"type" : "string"
},
"erl" o {
“$ref" : "#/definitions/dsb-Base64Dat aType"
},
"ocsp" : {
"$ref" : "#/definitions/dsb-Base64Dat aType"
’
"poe" : {
“$ref" : "#/ definitions/dsbh-Base64DataType"
}
H
“m nProperties" : 1,
"maxProperties" @ 1

}
[component AdditionalKeylnfo JSON schema detail |

AdditionalKeylnfo— XML Syntax

The XML type AdditionalKeylnfoType SHALL implement the requirements defined in the
Additional K eyl nfocomponent.

The AdditionalKeylnfoType XML element is defined in XML Schema[DSS2X SD], and is copied below
for information.

<xs: conpl exType nane="Addi ti onal Keyl nf oType" >
<xs: choi ce>
<xs: el enent nanme="X509Di gest" type="dss2: X509Di gest Type"/>
<xs: el enent nanme="X509Subj ect Nane" type="xs:string"/>
<xs: el enent nane="X509SKl" type="xs: hbase64Bi nary"/>
<xs: el enent nanme="X509Certificate" type="dsb: Base64Dat aType"/>
<xs: el enent nane="KeyNane" type="xs:string"/>
<xs: el enment nanme="X509CRL" type="dsb: Base64Dat aType" />
<xs: el enent nanme=" OCSPResponse" type="dsb: Base64Dat aType"/ >
<xs: el enent nanme="PoE" type="dsh: Base64Dat aType"/ >
</ xs: choi ce>
</ xs: conpl exType>

Each child element of AdditionaKeylInfoType XML element SHALL implement in XML syntax the sub-
component that has a name equal to its local name. [component Additional Keylnfo XML schema details|
Component ProcessingDetails

The ProcessingDetails component el aborates on what signature verification steps succeeded or failed.
Below follows alist of the sub-components that MAY be present within this component:

The optional ValidDetail element MAY occur zero or more times containing a sub-component. If present

each instance MUST satisfy the requirements specified in this document in section Detail Type. The
ValidDetail element holds verification details that were evaluated and found to be valid.

The optional IndeterminateDetail element MAY occur zero or more times containing a sub-component. If
present each instance MUST satisfy the requirements specified in this document in section Detail Type.
The IndeterminateDetail element holds verification details that could not be evaluated or were evaluated
and returned an indeterminate result.

The optional InvalidDetail element MAY occur zero or more times containing a sub-component. If
present each instance MUST satisfy the requirements specified in this document in section Detail Type.
The optional InvalidDetail element holds verification details that were evaluated and found to be invalid.
Non-nor mative Comment:

[component ProcessingDetails non normative details|

ProcessingDetails— JSON Syntax

The ProcessingDetailsType JSON object SHALL implement in JSON syntax the requirements defined in
the ProcessingDetails component.

Properties of the JSON object SHALL implement the sub-components of ProcessingDetailsType using
JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
VaidDetail valid []
IndeterminateDetail indeterminate [
InvalidDetail invalid []

The ProcessingDetailsType JSON object is defined in the JSON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2- Processi ngDet ai | sType" : {

"type" : "object",
"properties” : {
"valid" : {
"type" : "array",
"itenms" : {
"$ref" : "#/definitions/dss2-Detail Type"
}
}
"indeterm nate" : {
"type" : "array",
"itenms" : {
"$ref" : "#/definitions/dss2-Detail Type"
}
}
"invalid" : {
"type" @ "array",
"itenms" : {
"$ref" : "#/definitions/dss2-Detail Type"
}
}
}

}

[component ProcessingDetails JSON schema detail 5|
ProcessingDetails— XML Syntax

The XML type ProcessingDetailsType SHALL implement the requirements defined in the
ProcessingDetail scomponent.

The ProcessingDetailsType XML element isdefined in XML Schema [DSS2XSD], and is copied below
for information.

<xs: conpl exType nane="Processi ngDet ai | sType">
<XSs: sequence>

<xs: el enent maxCccur s="unbounded" m nCccurs="0" name="ValidDetail" type="dss2:Detail"
<xs: el enent maxQccur s="unbounded" m nCccurs="0" nanme="Indeterm nateDetail" type="dss:
<xs: el enent maxCccur s="unbounded" m nCccurs="0" nanme="InvalidDetail" type="dss2: Det ai

</ xs: sequence>
</ xs: conpl exType>

Each child element of ProcessingDetailsType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component ProcessingDetails XML schema detail |

Component Detail

[component Detail normative details]

Below follows alist of the sub-componentsthat MAY be present within this component:

The optional Code element MUST contain a URI. This URI which more precisely specifies why this
detail isvalid, invalid, or indeterminate. It must be a value defined by some other specification, since this
specification defines no values for this element.

The optional Message element MUST contain a sub-component. A given element MUST satisfy the
requirements specified in section International StringType. Thisis a human-readable message which MAY
be logged, used for debugging, etc.

The optional Base64Content element MUST contain base64 encoded binary data.

The Type element MUST contain one instance of a URI. The Type URI identifies the detail. It may be a
value defined by this specification, or a value defined by some other specification. Multiple detail
elements of the same Type may appear in a single ProcessingDetails component. For example, when a
signature contains a certificate chain that certifies the signing key, there may be details of the same Type
present for each certificate in the chain, describing how each certificate was processed.

Non-normative Comment:

Multiple detail elements of the same Type may appear in a single ProcessingDetails. For example, when
a signature contains a certificate chain that certifies the signing key, there may be details of the same
Type present for each certificate in the chain, describing how each certificate was processed.

Detail — JSON Syntax

The Detail Type JSON object SHALL implement in JSON syntax the requirements defined in the Detail
component.

Properties of the JSON object SHALL implement the sub-components of Detail Type using JSON-
specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
Code code []
Message msg []
Base64Content b64Content []
Type type [

The Detail Type JSON object is defined in the JSON schema [DSS2JSON] and is provided below as a
service to the reader.

"dss2-Detail Type" : {

"type" : "object"
"properties" : {
"code" : {

"type" : "string"
} H

"msg' : {
"$ref" : "#/definitions/dsb-International StringType"

} H
"b64Content" : {

"type" : "string"
b,
"type" @ {
"type" : "string",
"format" : "uri"

}

} y
equired” : ["type"]

}
[component Detail JSON schema details]

Detail — XML Syntax
The XML type Detail Type SHALL implement the requirements defined in the Detailcomponent.

The Detail Type XML element is defined in XML Schema [DSS2X SD], and is copied below for
information.

<xs: conpl exType nane="Det ai | Type">
<XS: sequence>
<xs: el enent m nCccurs="0" nane="Code" type="xs:anyURl "/>
<xs: el enent m nCccurs="0" nanme="Message" type="dsb:International StringType"/>

<xs: el enent maxCccurs="1" m nCccurs="0" nanme="Base64Content"” type="xs:base64Binary"/:
</ Xxs: sequence>
<xs:attribute nane="Type" type="xs:anyURl " use="required"/>
</ xs: conpl exType>

Each child element of Detail Type XML element SHALL implement in XML syntax the sub-component
that has aname equal to itslocal name. [component Detail XML schema detail |

Component SigningTimel nfo

This SgningTimelnfo component allows the client to obtain the time instant associated to the signature
creation.

Below follows alist of the sub-componentsthat MAY be present within this component:

The SigningTime element MUST contain one instance of a date/time value. This element returns the time
value considered by the server to be the signature creation time.

The optional SigningTimeBoundaries element MUST contain sub-components. This element returns the
trusted time values considered as lower and upper limits for the signing time.

The optional LowerBoundary element MUST contain a date/time value. The SgningTimeBoundaries
element MUST contain at least one of the LowerBoundary or UpperBoundary elements.

The optional UpperBoundary element MUST contain a date/time value. The SgningTimeBoundaries
element MUST contain at |east one of the LowerBoundary or UpperBoundary elements

Non-normative Comment:
[component SgningTimelnfo non nor mative details]
SigningTimelnfo — JSON Syntax

The SigningTimelnfoType JSON object SHALL implement in JISON syntax the requirements defined in
the SigningTimelnfo component.

"dss2- Si gni ngTi nel nf oType: Si gni ngTi neBoundari es" : {

"type" : "object",
"properties” : {
"1 ower Bound" : {
"type" : "integer",
"format" : "utc-mllisec"
3
"upper Bound" : {
"type" : "integer",
"format" : "utc-mllisec”

}
}
}

Properties of the JSON object SHALL implement the sub-components of SigningTimelnfoType using
JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
SigningTime signingTime [
SigningTimeBoundaries signingTimeBounds []
LowerBoundary lowerBound []
UpperBoundary upperBound [

The SigningTimelnfoType JSON object is defined in the JSON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2- Si gni ngTi nel nfoType" : {
"type" : "object",
"properties" : {

"signi ngTi me" : {
"type" : "integer",
"format" : "utc-millisec"

}

’igningTinEBounds" A
"$ref" : "#/definitions/dss2-SigningTinelnfoType¥3ASi gni ngTi neBoundari es"
}

'equired" : ["signingTinme"]

}

}

[component SigningTimelnfo JSON schema detail]

SigningTimelnfo— XML Syntax

The XML type SigningTimelnfoType SHALL implement the requirements defined in the
SigningTimel nfocomponent.

The SigningTimelnfoType XML element is defined in XML Schema [DSS2X SD], and is copied below
for information.

<xs: conpl exType nane="Si gni ngTi mel nf oType" >
<Xs:sequence>
<xs: el enent nane="Si gni ngTi me" type="xs: dateTi ne"/>

<xs: el enent m nCccurs="0" name="Si gni ngTi meBoundari es">
<xs: conpl exType>
<Xs:sequence>
<xs: el enent m nCccurs="0" name="Lower Boundary" type="xs: dateTinme"/>
<xs: el enent m nCccurs="0" name="Upper Boundary" type="xs:dateTi nme"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
</ xs: conpl exType>

Each child element of SigningTimelnfoType XML element SHALL implement in XML syntax the sub-
component that has a name equal to its local name. [component SgningTimelnfo XML schema details|

Component AugmentedSignature

The AugmentedS gnature component contains the resulting augmented signature or timestamp or, in the
case of a signature being enveloped in an output document, a pointer to the signature.

Below follows alist of the sub-componentsthat MAY be present within this component:
The SignatureObject element MUST contain one instance of a sub-component. This element MUST

satisfy the requirements specified in this document in section SignatureObjectType. This element
contains an augmented signature or timestamp.

The optional Type element MUST contain one instance of a URI. The URI defines what "augmentation’
was applied to the signature.

Non-normative Comment:

[component AugmentedS gnature non nor mative details]

AugmentedSignature—JSON Syntax

The AugmentedSignatureType JSON object SHALL implement in JSON syntax the requirements
defined in the AugmentedSignature component.

Properties of the JSON object SHALL implement the sub-components of AugmentedSignatureType
using JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
SignatureObject sigObj []
Type type []

The AugmentedSignatureType JSON object is defined in the JISON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2- Augrent edSi gnat ur eType" : {

"type" : "object",
"properties" : {
"sigOhj" : {
"$ref" : "#/definitions/dss2-SignatureCbjectType"
},
"type" @ { .
"type" @ "string",
"format" : "uri"

}

} y
equired" : ["sigOoj"]

}
[component AugmentedS gnature JSON schema detail s

AugmentedSignature— XML Syntax

The XML type AugmentedSignatureType SHALL implement the requirements defined in the
AugmentedSignaturecomponent.

The AugmentedSignatureType XML element is defined in XML Schema [DSS2XSD], and is copied
below for information.

<xs: conpl exType nane="Augnent edSi gnat ur eType" >
<XS: sequence>
<xs: el enent nane="Si gnat urehj ect” type="dss2: Si gnat ureChj ect Type"/ >
</ xs: sequence>
<xs:attribute nane="Type" type="xs:anyURl " use="optional"/>
</ xs: conpl exType>

Each child element of AugmentedSignatureType XML element SHALL implement in XML syntax the
sub-component that has a name equal to itslocal name. [component AugmentedSignature XML schema
details]

Component ReturnTransformedDocument

The ReturnTransformedDocument component instructs the server to return an input document to which
the XML signature transforms specified by a particular <ds: Reference> have been applied. The <ds:
Reference> isindicated by the zero-based WhichReference attribute (0 means the first <ds: Reference>
in the signature, 1 means the second, and so on). Multiple occurrences of this optional input can be
present in a single verify request message. Each occurrence will generate a corresponding optional
output.

Below follows alist of the sub-componentsthat MAY be present within this component:

The WhichReference element MUST contain one instance of an integer. To match outputs to inputs, each
TransformedDocument will contain a WhichReference attribute which matches the corresponding
optional inpuit.

Non-nor mative Comment:

[component Retur nTransformedDocument non normative detail s|

ReturnTransformedDocument — JSON Syntax

The ReturnTransformedDocumentType JSON object SHALL implement in JSON syntax the
requirements defined in the ReturnTransformedDocument component.

Properties of the JSON object SHALL implement the sub-components of
ReturnTransformedDocumentType using JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
WhichReference whichRef [

The ReturnTransformedDocumentType JSON object is defined in the JSON schema [DSS2JSON] and is
provided below as a service to the reader.

"dss2- Ret ur nTr ansf or redDocunent Type" : {
"type" : "object",
"properties" : {
"whi chRef" : {
"type" @ "integer"
}

} y
equi red" : ["whichRef"]

}

[component ReturnTransformedDocument JSON schema details|

ReturnTransformedDocument — XML Syntax

The XML type ReturnTransformedDocumentType SHALL implement the requirements defined in the
ReturnTransformedDocumentcomponent.

The ReturnTransformedDocumentType XML element is defined in XML Schema[DSS2XSD], and is
copied below for information.

<xs: conpl exType name="Ret ur nTr ansf or redDocunent Type" >
<xs:attribute nane="Wi chRef erence" type="xs:integer" use="required"/>
</ xs: conpl exType>

Each child element of ReturnTransformedDocumentType XML element SHALL implement in XML
syntax the sub-component that has a name equal to itslocal name. [component
ReturnTransformedDocument XML schema details]

Component Transfor medDocument

The TransformedDocument component contains a document corresponding to the specified <ds:
Reference>, after all the transformsin the reference have been applied.

Below follows alist of the sub-components that MAY be present within this component:
The Document element MUST contain one instance of a sub-component. This element MUST satisfy the

requirements specified in this document in section DocumentType. This element contains the
transformed document.

The WhichReference element MUST contain one instance of an integer. To match outputs to inputs, each
TransformedDocument will contain a WhichReference element which matches the corresponding
optional input.

Non-nor mative Comment:

[component TransformedDocument non nor mative details|

TransformedDocument —JSON Syntax

The TransformedDocumentType JSON object SHALL implement in JSON syntax the requirements
defined in the TransformedDocument component.

Properties of the JSON object SHALL implement the sub-components of TransformedDocumentType
using JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
Document doc [
WhichReference whichRef []

The TransformedDocumentType JSON object is defined in the JSON schema [DSS2JSON] and is
provided below as a service to the reader.

"dss2- Tr ansf or redDocunent Type" : {
"type" : "object",
"properties” : {
"doc" : {
"$ref" : "#/definitions/dss2-Docunent Type"
H
"whi chRef" : {
"type" : "integer"
}
,
"required" : ["doc"
"whi chRef "]

}

[component TransformedDocument JSON schema details)

TransformedDocument — XML Syntax

The XML type TransformedDocumentType SHALL implement the requirements defined in the
TransformedDocumentcomponent.

The TransformedDocumentType XML element is defined in XML Schema [DSS2X SD], and is copied
below for information.

<xs: conpl exType nane="Transf or nedDocunent Type" >
<XS: sequence>
<xs: el enent nanme="Docunment” type="dss2: Docunent Type"/>
</ xs: sequence>
<xs:attribute nane="Wi chRef erence" type="xs:integer" use="required"/>
</ xs: conpl exType>

Each child element of TransformedDocumentType XML element SHALL implement in XML syntax the
sub-component that has a name equal to itslocal name. [component TransformedDocument XML schema
details]

Request/Response related data structuresdefined in this
document

The XML elements of this section are defined in the XML namespace 'http://docs.oasi s-open.org/dss/ns
[coré.[category request in namespace http://docs.oasis-open.org/dss/ns/cor e explanation]

Component | nputDocuments

This element is used to send input documents to a DSS server, whether for signing or verifying. An input
document can be any piece of data that can be used asinput to a signature or timestamp calculation. An
input document can even be a signature or timestamp (for example, a pre-existing signature can be
counter-signed or timestamped). An input document could also be a <ds:Manifest>, allowing the client
to handle manifest creation while using the server to create the rest of the signature. Manifest validation
is supported by an optional input / output.

Below follows alist of the sub-componentsthat MAY be present within this component:

The Document element MAY occur zero or more times containing a sub-component. If present each
instance MUST satisfy the requirements specified in this document in section DocumentType. [sub
component Document details]

The TransformedData element MAY occur zero or more times containing a sub-component. If present
each instance MUST satisfy the requirements specified in this document in section TransformedDataType
. It contains the binary output of a chain of transforms applied by a client.

The DocumentHash element MAY occur zero or more times containing a sub-component. If present each
instance MUST satisfy the requirements specified in this document in section DocumentHashType. It
contains a set of digest algorithm and the corresponding hashes. Required transformation steps

Non-nor mative Comment:
[component InputDocuments non normative details]
I nputDocuments — JSON Syntax

The InputDocumentsType JSON object SHALL implement in JSON syntax the requirements defined in
the InputDocuments component.

Properties of the JSON object SHALL implement the sub-components of InputDocumentsType using
JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
Document doc []
TransformedData transformed []

DocumentHash docHash []

The InputDocumentsType JSON object is defined in the JSON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2- | nput Docunent sType" : {

"type" : "object",
"properties" : {
"doc" : {
"type" : "array",
"items" : {
"$ref" : "#/definitions/dss2-Docunent Type"
}
3
"transfornmed" : {
"type" @ "array",
"items" : {
“$ref" : "#/definitions/dss2-TransfornedDat aType"
}
},
"docHash" : {
"type" : "array",
"itens" : {
"$Sref" : "#/definitions/dss2-Docunment HashType"
}
}

}
}

[component InputDocuments JSON schema detail S|

InputDocuments— XML Syntax

The XML type InputDocumentsType SHALL implement the requirements defined in the
| nputDocumentscomponent.

The InputDocumentsType XML element is defined in XML Schema[DSS2XSD], and is copied below
for information.

<xs: conpl exType nane="I|nput Docunent sType" >
<Xs:sequence>
<xs: sequence maxQccur s="unbounded"” m nCccurs="0">
<xs: el enent nanme="Docunent" type="dss2: Docunent Type"/>
</ xs: sequence>
<xs:sequence maxCccurs="unbounded” m nCccurs="0">
<xs: el enent nane="Tr ansfornedDat a" type="dss2: Tr ansf or nedDat aType"/ >
</ Xs: sequence>
<xs:sequence maxCccurs="unbounded” m nCccurs="0">
<xs: el enent nanme="Docunment Hash" type="dss2: Docunment HashType"/ >
</ xs: sequence>
</ xs: sequence>
</ xs: conpl exType>

Each child element of InputDocumentsType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component | nputDocuments XML schema detail |

Component DocumentBase

The DocumentBaseType forwards its el ements to the components DocumentType, TransformedDataType
and DocumentHashType. The DocumentBaseType contains the basic information shared by the

inheriting components and remaining persistent during the process from input document retrieval until
digest calculation for the relevant document.

Below follows alist of the sub-components that MAY be present within this component:

The optional Id element MUST contain one instance of a unique identifier. Thisidentifier gives the input
document a unique label within a particular request message. Through thisidentifier, an optional input
can refer to a single input document. Using this identifier and the IdRef element it is possible to avoid
redundant content.

The optional RefURI element MUST contain one instance of a URI. This specifies the value for a <ds:
Reference> element’ s URI attribute when referring to thisinput document. The RefURI el ement
SHOULD be specified. Not more than one RefURI element may be omitted in a single signing request.

The optional Ref Type element MUST contain one instance of a URI. This specifies the value for a <ds:
Reference> element’ s Type attribute when referring to thisinput document.

The optional SchemaRefs element MUST contain one instance of a unique identifier reference. The
identified schemas are to be used to process the Id element during parsing and for XPath evaluation. If
anything else but Schema are referred to, the server MUST report an error. If a referred to Schema is not
used by the XML document instance this MAY beignored or reported to the client in the subcomponent
ResultMessage. The Document is assumed to be valid against the first Schema referred to by SchemaRefs.
If a Schemas element isreferred to first by SchemaRefs the document is assumed to be valid against the
first Schema inside SchemaRefs. In both cases, the remaining schemas may occur in any order and are
used either directly or indirectly by the first schema. If present, the server MUST use the schemas to
identify the Id element and MAY also perform complete validation against the schemas.

Non-nor mative Comment:

It is recommended to use xml:id as defined in [xml:id] asid in the payload being referenced by a <ds:
Reference>, because the schema then does not have to be supplied for identifying the ID attributes.

DocumentBase — JSON Syntax

The DocumentBaseType JSON object SHALL implement in JSON syntax the requirements defined in
the DocumentBase component.

Properties of the JSON object SHALL implement the sub-components of DocumentBaseType using
JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments

Id ID [
RefURI refURI [
RefType refType []
SchemaRefs schemaRefs [

The DocumentBaseType JSON object is defined in the JSON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2- Docunent BaseType" : {

"type" : "object”,
"properties" : {
"ID |
"type" : "string"
b,
"refURI" : {
"type" : "string"
b,
"ref Type" : {
"type" : "string"
}1
"schemaRefs" : {
"type" : "array",
"itenms" : {
"$ref" : "#/definitions/dss2-Docunent Type"
}
}

}
}

[component DocumentBase JSON schema detail s

DocumentBase— XML Syntax

The XML type DocumentBaseType SHALL implement the requirements defined in the
DocumentBasecomponent.

The DocumentBaseType XML element is defined in XML Schema[DSS2X SD], and is copied below for
information.

<xs:conpl exType abstract="true" nane="Docunment BaseType" >
<xs:attribute nane="ID" type="xs:|ID" use="optional"/>
<xs:attribute nane="Ref URI" type="xs:anyURl" use="optional"/>
<xs:attribute nane="Ref Type" type="xs:anyURI " use="optional"/>
<xs:attribute nane="SchenaRefs" type="xs:|DREFS" use="optional"/>
</ xs: conpl exType>

Each child element of DocumentBaseType XML element SHALL implement in XML syntax the sub-

component that has a name equal to itslocal name. [component DocumentBase XML schema details|

Component Document

The Document component contains input data for DSS processing.

Below follows alist of the sub-components that MAY be present within this component:

The Base64Data element MUST contain one instance of a sub-component. This element MUST satisfy
the requirements specified in section Base64DataType. [sub component Base64Data detail s

Non-nor mative Comment:

[component Document non nor mative details|

Document — JSON Syntax

The DocumentType JSON object SHALL implement in JSON syntax the requirements defined in the
Document component.

Properties of the JSON object SHALL implement the sub-components of DocumentType using JSON-
specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
Base64Data b64Data []

The DocumentType JSON object is defined in the JSON schema [DSS2JSON] and is provided below as
aservice to the reader.

"dss2- Docunent Type" : {

"type" : "object",
"properties" : {
"ID |
"type" : "string"
3
"refURI" : {
"type" : "string"
3
"ref Type" : {
"type" : "string"
},
"schemaRefs" : {
"type" : "array",
"itenms" : {
"$Sref" : "#/definitions/dss2-Docunment Type"
}
3
"b64Data" : {
"$ref" : "#/definitions/dsbh-Base64Dat aType"
}

} y
"required" : ["b64Data"]
}

[component Document JSON schema detail S|

Document — XML Syntax
The XML type DocumentType SHALL implement the requirements defined in the Documentcomponent.

The DocumentType XML element is defined in XML Schema [DSS2XSD], and is copied below for
information.

<xs: conpl exType nane="Docunent Type" >
<xs: conpl exCont ent >
<xs: extensi on base="dss2: Docunent BaseType" >
<Xs:sequence>
<xs: el enent maxCccurs="1" m nCccurs="1" nanme="Base64Data" type="dsb: Base64Dat aTy}
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Each child element of DocumentType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component Document XML schema details)

Component TransformedData

[component TransformedData normative detail s]

Below follows alist of the sub-components that MAY be present within this component:

The optional Transforms element MUST contain a sub-component. A given element MUST satisfy the
requirements specified in section TransformsType. Thisis the sequence of transforms applied by the
client. It specifies the value for a <ds:Reference> element’s <ds: Transforms> child element. In other
words, this specifies transforms that the client has already applied to the input document before the
server will hash it. This component is required on a SgnRequest, optional on a VerifyRequest.

The Base64Data element MUST contain one instance of a sub-component. This element MUST satisfy
the requirements specified in section Base64DataType. This element gives the binary output of a
sequence of transforms to be hashed at the server side.

The optional WhichReference element MUST contain one instance of an integer. As there may be
multiple TransformedDataType / DocumentHashType components of the same document having the same
URI [RFC 2396] and RefType on a SgnRequest or VerifyRequest - their correspondance to an already
existing <ds: Reference> however needs to be established on a VerifyRequest only. Thereis a need to
disambiguate such cases. This element hence offers a way to clearly identify the <ds: Reference> when
URI and RefType match multiple components. The corresponding <ds: Reference> isindicated by this
zer o-based WhichReference element (0 means the first <ds: Reference> in the signature, 1 means the
second, and so on). This component isignored on a SgnRequest, optional on a VerifyRequest.

Non-nor mative Comment:

It may be possible to establish the <ds: References> / TransformedDataType / DocumentHashType
correspondence by comparing the optionally supplied chain of transforms to those of the <ds:
References> having the same URI and RefType in the supplied <ds: Sgnature> if this chain of transform
has been supplied. This can be quite expensive and even outnumber the advantages of
TransformedDataType / DocumentHashType.

TransformedData — JSON Syntax

The TransformedDataType JSON object SHALL implement in JSON syntax the requirements defined in
the TransformedData component.

Properties of the JSON object SHALL implement the sub-components of TransformedDataType using
JSON-specific names mapped as shown in the table below.

Element I mplementing JSON member name Comments
Transforms transforms []
Base64Data b64Data []
WhichReference whichRef [

The TransformedDataType JSON object is defined in the JSON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2- Transf or mredDat aType" : {

"type" : "object",
"properties" : {
"ID |
"type" : "string"
},
"refURI" @ {
"type" : "string"
3
"ref Type" : {
"type" : "string"
}1
"schemaRefs" : {
"type" @ "array",
"itenms" : {
"$ref" : "#/definitions/dss2-Docunent Type"
}
}1
"transforms" : {
"$ref" : "#/definitions/dsigrw TransfornsType"
}1
"b64Dat a" : {
"$ref" : "#/definitions/dsbh-Base64Dat aType"

b,
"whi chRef" : {
"type" : "integer"
}
}

"’equired" : ["b64Dat a"]
}

[component TransformedData JSON schema detail S|

TransformedData— XML Syntax

The XML type TransformedDataType SHALL implement the requirements defined in the
TransformedDatacomponent.

The TransformedDataType XML element is defined in XML Schema[DSS2XSD], and is copied below
for information.

<xs: conpl exType nane="Transf or nedDat aType" >
<xs: conpl exCont ent >
<xs: extensi on base="dss2: Docunent BaseType" >
<Xs:sequence>
<xs: el enent m nCccurs="0" name="Transfornms" type="ds-rw TransfornsType"/>
<xs: el enent name="Base64Dat a" type="dsb: Base64Dat aType"/ >
</ xs: sequence>
<xs:attribute name="Whi chRef erence" type="xs:integer" use="optional"/>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Each child element of TransformedDataType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component TransformedData XML schema details]

Component DocumentHash

The DocumentHash component represents a document that will not be transported to the server but just
the calculated digest of it. This may be useful to limit the amount of data transferred or to ensure privacy
of the document.

Below follows alist of the sub-componentsthat MAY be present within this component:

The optional Transforms element MUST contain a sub-component. A given element MUST satisfy the
requirements specified in section TransformsType. It specifies the value for a <ds: Reference> element’s
<ds. Transforms> child element when referring to this document hash. In other words, this specifies
transforms that the client has already applied to the input document before hashing it. This component is
required on a SgnRequest, optional on a VerifyRequest. This component is required on a SgnRequest,
optional on a VerifyRequest.

The DigestInfos element MUST occur 1 or more times containing a sub-component. Each instance
MUST satisfy the requirements specified in section DigestinfoType. This element MAY contain more
than one DigestInfo sub-component to represent the digest values calculated with different digest
algorithms. This may be useful when a requestor doesn’t know upfront which digest algorithms are
supported / accepted by the server for signing. In the case of a verification request the client may not be
able to parse the signature and instead cal culate the digest for a comprehensive set of digest algorithms.

The optional WhichReference element MUST contain one instance of an integer. As there may be
multiple TransformedDataType / DocumentHashType components of the same document having the same
URI [RFC 2396] and RefType on a SgnRequest or VerifyRequest - their correspondence to an already
existing <ds:. Reference> however needs to be established on a VerifyRequest only. Thereis a need to
disambiguate such cases. This element hence offers a way to clearly identify the <ds: Reference> when
URI and RefType match multiple components. The corresponding <ds: Reference> isindicated by this
zer o-based WhichReference element (0 means the first <ds: Reference> in the signature, 1 means the
second, and so on).

Non-normative Comment:
[component DocumentHash non nor mative details|
DocumentHash —JSON Syntax

The DocumentHashType JSON object SHALL implement in JSON syntax the requirements defined in
the DocumentHash component.

Properties of the JSON object SHALL implement the sub-components of DocumentHashType using
JSON-specific names mapped as shown in the table below.

Element I mplementing JSON member name Comments
Transforms transforms [
Digestinfos dis [
WhichReference whichRef []

The DocumentHashType JSON object is defined in the JISON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2- Docunent HashType" : {

"type" : "object"
"properties" : {
"D |

"type" : "string"

}

"refURI" : {
"type" : "string"
3
"ref Type" : {
"type" : "string"
3
"schemaRefs" : {
"type" : "array",
"itenms" : {
"$ref" : "#/definitions/dss2-Docunent Type"
}
},
"transforns" :
"$ref" : "#/definitions/dsigrw TransfornsType"
3
"dis" : {
"type" : "array",
"itenms" : {
“$ref" : "#/definitions/dsbh-DigestlnfoType"
}
},
"whi chRef" : {
"type" : "integer"
}

}

}

[component DocumentHash JSON schema details]

required : ["dis"]

DocumentHash — XML Syntax

The XML type DocumentHashType SHALL implement the requirements defined in the
DocumentHashcomponent.

The DocumentHashType XML element is defined in XML Schema [DSS2X SD], and is copied below for
information.

<xs: conpl exType name="Docunent HashType" >
<xs: conpl exCont ent >
<xs: ext ensi on base="dss2: Docunent BaseType" >
<XS:sequence>
<xs: el enent m nCccurs="0" name="Transforns" type="ds-rw TransfornmsType"/>
<xs: el enent maxCccur s="unbounded" m nCccurs="1" nane="Di gestlnfos" type="dsh: D ge¢
</ xs: sequence>
<xs:attribute name="Whi chRef erence" type="xs:integer" use="optional"/>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Each child element of DocumentHashType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component DocumentHash XML schema details)
Component Signatur eObject

The SgnatureObject component contains a signature or timestamp of some sort. This element is returned
in a sign response message, and sent in a verify request message.

Below follows alist of the sub-components that MAY be present within this component:

The optional Base64Signature element MUST contain one instance of a sub-component. This element
MUST satisfy the requirements specified in section Base64DataType. A base64 encoding of some
arbitrary signature, such as a XML signature [XMLDS G], PGP [RFC 2440] or CMS[RFC 5652]
signature or a RFC 3161 timestamp [RFC 3161]. The type of signature is specified by the MimeType
element of the Base64DataType component. Profiles MAY define the handling of additional types.

The optional SignaturePtr element MUST contain one instance of a sub-component. This element MUST
satisfy the requirements specified in this document in section SignaturePtrType. This element is used to
point to an XML signature in an input (for a verify request) or output (for a sign response) document in
which a signature is envel oped.

The optional SchemaRefs element MUST contain one instance of a unique identifier reference. The
identified schemas are to be used to process the Id elements during parsing and for XPath evaluation. If
anything else but <Schema> arereferred to, the server MUST report an error. If areferred to
<Schema> is not used by the XML document instance this MAY be ignored or reported to the client in
the Fehler! Verweisquelle konnte nicht gefunden werden. subcomponent ResultMessage (for the
definition of Schema subcomponent see the specification of 3.1.30)

Non-normative Comment:
[component SignatureObject non normative details|
SignatureObject —JSON Syntax

The SignatureObjectType JSON object SHALL implement in JSON syntax the requirements defined in
the SignatureObject component.

Properties of the JSON object SHALL implement the sub-components of SignatureObjectType using
JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
Base64Signature b64Sig [
SignaturePtr sigPtr [
SchemaRefs schemaRefs []

The SignatureObjectType JSON object is defined in the JSON schema [DSS2JSON] and is provided
below as a service to the reader.

"dss2- Si gnat ureChj ect Type" : {

"type" : "object",
"properties” : {
"b64Si g" : {
"$ref" : "#/definitions/dsb-Base64Dat aType"
} H
"sigPtr" : {
"$ref" : "#/definitions/dss2-SignaturePtrType"
} H
"schemaRefs" : {
"type" @ "array",
"items" : {

"$ref" : "#/definitions/dss2-Docunent BaseType"
}

}

inProperties" : 1

}

}
[component SignatureObject JSON schema details]

SignatureObject — XML Syntax

The XML type SignatureObjectType SHALL implement the requirements defined in the
SignatureObjectcomponent.

The SignatureObjectType XML element is defined in XML Schema [DSS2X SD], and is copied below
for information.

<xs: conpl exType nane="Si gnat ureChj ect Type" >
<xs: choi ce>
<xs: el enent nanme="Base64Si gnature" type="dsb: Base64Dat aType"/ >
<xs: el enment nanme="Si gnaturePtr" type="dss2: Si gnaturePtrType"/>
</ xs: choi ce>
<xs:attribute nane="SchenaRefs" type="xs:|DREFS" use="optional"/>
</ xs: conpl exType>

Each child element of SignatureObjectType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component SgnatureObject XML schema details|

Component Signatur ePtr

The SgnaturePtr component is used to point to a signature in an input (for a verify request) or output
(for a sign response) document in which a signature is envel oped.

Below follows alist of the sub-componentsthat MAY be present within this component:

The optional NsPrefixMapping element MAY occur zero or more times containing a sub-component. If
present each instance MUST satisfy the requirements specified in section NsPrefixMappingType. [sub
component NsPrefixMapping details|

The WhichDocument element MUST contain one instance of a unique identifier reference. This element
identifies the input document being pointed at.

The optional XPath element MUST contain one instance of a string. This element identifies the signature
element being pointed at within the selected document. The XPath expression is evaluated from the root
node (see section 5.1 of [XPATH]) of the document identified by WhichDocument. The context node for
the XPath evaluation is the document’ s DocumentElement (see section 2.1 Well-Formed XML
Documents [XML]). Regarding namespace declarations for the expression necessary for evaluation see
section 1 of [XPATH].

Non-normative Comment:
[component SignaturePtr non normative details]

SignaturePtr —JSON Syntax

The SignaturePtrType JSON object SHALL implement in JSON syntax the requirements defined in the
SignaturePtr component.

Properties of the JSON object SHALL implement the sub-components of SignaturePtrType using JSON-
specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
NsPrefixMapping nsDecl []
WhichDocument whichDoc (]
XPath xPath [

The SignaturePtrType JSON object is defined in the JSON schema [DSS2JSON] and is provided below
as aservice to the reader.

"dss2-SignaturePtrType" : {

"type" : "object",
"properties” : {
"xpath" : {
"type" : "string"
3
"nsDecl " : {
"type" : "array",
"items" : {
"$Sref" : "#/definitions/dsb-NsPrefixMappi ngType"
}
3
"whi chDoc" : {
"$ref" : "#/definitions/dss2-Docunent BaseType"
3
"xPat h" : {
"type" : "string"
}
}

’equired" : ["whichDoc"]
}

[component SgnaturePtr JSON schema detail S|

SignaturePtr — XML Syntax

The XML type SignaturePtrType SHALL implement the requirements defined in the
SignaturePtrcomponent.

The SignaturePtrType XML element is defined in XML Schema [DSS2XSD], and is copied below for
information.

<xs: conpl exType nane="Si gnat urePtr Type" >
<XS: sequence>
<xs: el enent maxQccur s="unbounded" m nCccurs="0" nanme="NsPrefi xMappi ng" type="dshb: NsPr
</ xs: sequence>
<xs:attribute nane="Wii chDocurment" type="xs:|DREF" use="required"/>
<xs:attribute nane="XPath" type="xs:string" use="optional"/>
</ xs: conpl exType>

Each child element of SignaturePtrType XML element SHALL implement in XML syntax the sub-
component that has a name equal to its local name. [component SgnaturePtr XML schema details|

Referenced from DSS-X base

Component Base64Data

The Base64Data component is a generic holder for arbitrary data. In addition to the data itself it also
contains additional elements to qualify the MimeType of the data. It also offersan Id / Reference pair to
implement a deduplication strategy, useful especially for bigger data blobs. The content is contained
inside the mutually exclusive elements Value or AttRefURI.

Below follows alist of the sub-components that MAY be present within this component:

The optional Vaue element MUST contain one instance of base64 encoded binary data. This element
holds an instance of generic content. This could be a document to be signed, a signature, a schema or
other data.

The optional AttRef element MUST contain one instance of sub-component. This element MUST satisfy
the requirements specified in section AttachmentReferenceType. This element allows to reference
content that is transferred in a non-inlined way. These mechanisms may take advantage of optimizations
(e.g. optimized transfer encodings). The content of MAY be integrity-protected by a message digest.

The optional MimeType element MUST contain one instance of astring. This element is denoting the
type of the arbitrary data in the value element or the referenced attachment.

The optional Id element MUST contain one instance of aunique identifier. Thisidentifier givesthe
binary data a unique label within a particular message. Using thisidentifier and the IdRef element it is
possible to avoid redundant content.

The optional |dRef element MUST contain one instance of a unique identifier reference. This element
identifies another binary data element within a particular message.

Non-nor mative Comment:

There are different standards defined for handling and referencing an attachment. Maybe there will be
more to come. Therefore the attachment reference mechanismis somehow generic here. Note: If MIME
is used as encapsulation mechanism, the MIME content-type is available via a MIME header. However,
the MIME headers may not be available to implementations and the SOAP 1.2 attachment feature is not
restricted to MIME. Further the MIME header is not secured by the AttachmentReference's Digestinfo,
which is calculated over the binary attachment data (not including the MIME headers).

Base64Data — JSON Syntax

The Base64DataType JSON object SHALL implement in JSON syntax the requirements defined in the
Base64Data component.

Properties of the JSON object SHALL implement the sub-components of Base64DataType using JSON-
specific names mapped as shown in the table below.

Element Implementing JSON member name Comments

Vaue val []
AttRef attRef [
MimeType mimeType [l
Id ID [
|dRef idRef []

The Base64DataType JSON object is defined in the JSON schema [DSS2JSON] and is provided below
as aservice to the reader.

"dsh- Base64Dat aType" : {

"type" : "object",
"properties” : {
"ID |
"type" : "string"
b,
"val " |
"type" : "string"
b,
"attRef" : {
"$ref" : "#/definitions/dsb-AttachnentReferenceType"
b,
"m meType" : {
"type" @ "string"
b,
"idRef" : {
"type" : "string"
}
b
"mnProperties” : 0

}
[component Base64Data JSON schema details]

Base64Data — XML Syntax

The XML element is defined in the XML namespace 'http://docs.oasis-open.org/dss-x/ng/base’ .The XML
type Base64DataType SHALL implement the requirements defined in the Base64Datacomponent.

The Base64DataType XML element is defined in XML Schema[DSBXSD], and is copied below for
information.

<xs: conpl exType nane="Base64Dat aType" >
<xs:choi ce m nCccurs="0">
<xs: el enent nane="Val ue" type="xs:base64Bi nary"/>
<xs: el enent nane="AttRef" type="dsh: Attachment Ref erenceType"/ >
</ xs: choi ce>
<xs:attribute nane="M neType" type="xs:string" use="optional"/>
<xs:attribute nane="1D" type="xs:|D" use="optional"/>
<xs:attribute nane="|DREF" type="xs:|DREF" use="optional"/>
</ xs: conpl exType>

Each child element of Base64DataType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. The elements ‘Id” and ‘IdRef’” have slightly different
names (‘ID’ and ' IDREF’) within XML syntax to match the XML schema standards for unique identifiers
and their reference.

Component AttachmentReference

Applications MAY support SOAP 1.2 attachment feature [SOAPALt] or other attachment specifications (e.
g. [SOAPMtom]) to transmit documents.

Below follows alist of the sub-components that MAY be present within this component:

The optional Digestinfo element MAY occur zero or more times containing sub-component. If present
each instance MUST satisfy the requirements specified in section DigestinfoType. An element of this
type can be used to ensure the integrity of the attachment data. If these elements are supplied the server
SHOULD compute a message digest using the algorithm given in DigestMethod over the binary data in
the octet stream and compare it against the supplied DigestValue. If the comparison fails then a
RequesterError qualified by a GeneralError and an appropriate message containing the AttRefURI is
returned.

The AttRefURI element MUST contain one instance of a URI. SOAP 1.2 attachment feature [SOAPALt]
states that any secondary part ("attachment™) can be referenced by a URI of any URI scheme. AttRefURI
refersto such a secondary part ("attachment") and MUST resolve within the compound SOAP message.
The default encapsulation mechanismis MIME as specified in the WS- Attachments Profile [WS1-Att]
(cf. swaRef, http://mmw.ws-i.org/Profiles/AttachmentsProfile-1.0.
html#Referencing_Attachments_from_the SOAP_Envelope).

Non-normative Comment:
[component AttachmentReference non normative details|

AttachmentReference —JSON Syntax

The AttachmentReferenceType JSON object SHALL implement in JISON syntax the requirements
defined in the AttachmentReference component.

Properties of the JSON object SHALL implement the sub-components of AttachmentReferenceType
using JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
Digestinfo di []
AttRefURI attURI [

The AttachmentReferenceType JSON object is defined in the JSON schema[DSS2JSON] and is
provided below as a service to the reader.

"dsh- Att achment Ref er enceType" : {
"type" : "object",
"properties" : {
"dit o |
"type" : "array",
"items" : {
"$ref" : "#/definitions/dsb-DigestlnfoType"
}
}1
"attURI " {
"type" : "string"
}

H
"required" @ ["attURI "]
}

[component AttachmentReference JSON schema detail s

AttachmentReference— XML Syntax

The XML element is defined in the XML namespace 'http://docs.oasis-open.org/dss-x/ng/base’ .The XML
type AttachmentReferenceType SHALL implement the requirements defined in the
AttachmentReferencecomponent.

The AttachmentReferenceType XML element is defined in XML Schema[DSBXSD], and is copied
below for information.

<xs:conpl exType name="Attachnment Ref erenceType" >
<Xs: sequence>
<xs: el enent maxQCccur s="unbounded" m nCccurs="0" nanme="Di gestlnfo" type="dsb: Di gest | nf
</ xs: sequence>
<xs:attribute nane="AttRef URI" type="xs:anyURl" use="required"/>
</ xs: conpl exType>

Each child element of AttachmentReferenceType XML element SHALL implement in XML syntax the
sub-component that has a name equal to itslocal name. [component AttachmentReference XML schema
details|

Component Digestlnfo

The DigestInfo component holds a digest value and an identification of the used digest algorithm. The
DigestMethod isn’'t strongly typed intentionally to support a broad variety of identifiers.

Below follows alist of the sub-components that MAY be present within this component:
The DigestMethod element MUST contain one instance of a string. The string describes the digest
algorithmin an appropriate way for the server side processing. Depending on the signature format this

may be an OID (e.g. ‘2.16.840.1.101.3.4.2.1'), an URI (e.g. * http://Amww.w3.0r g/2001/04/xmlenc#sha256
") or adescriptive string (SHA-256').

The DigestVaue element MUST contain one instance of base64 encoded binary data. [sub component
DigestValue detail]

Non-normative Comment:

[component Digestlnfo non normative detail]

Digestlnfo —JSON Syntax

The DigestinfoType JSON object SHALL implement in JISON syntax the requirements defined in the
DigestInfo component.

Properties of the JSON object SHALL implement the sub-components of DigestinfoType using JSON-
specific names mapped as shown in the table below.

Element Implementing JISON member name Comments
DigestMethod alg [
DigestValue val (]

The DigestinfoType JSON object is defined in the JISON schema [DSS2JSON] and is provided below as
aservice to the reader.

"dsb- Di gestInfoType" : {

"type" : "object",
"properties" : {
"al g" : {
"type" : "string"
} H
"val" : {
"type" : "string"
}
}

’equired" : ["alg",
"val "]

}
[component Digestinfo JSON schema details]

Digestinfo— XML Syntax

The XML element is defined in the XML namespace 'http://docs.oasis-open.org/dss-x/ns/base’ .The XML
type DigestinfoType SHALL implement the requirements defined in the Digestlnfocomponent.

The DigestinfoType XML element is defined in XML Schema [DSBXSD], and is copied below for
information.

<xs: conpl exType name="Di gest| nfoType">
<Xs:sequence>
<xs: el enent nane="Di gest Met hod" type="xs:string"/>
<xs: el enent nanme="Di gest Val ue" type="xs: base64Bi nary"/>
</ Xxs: sequence>
</ xs: conpl exType>

Each child element of DigestinfoType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component Digestlnfo XML schema detail]
Component NsPrefixM apping

The NsPrefixMapping component defines the mapping of namespace URIs to namespace prefixes. Thisis
required to evaluate XPath expression when using transport syntaxes that don’t support namespace.

Below follows alist of the sub-componentsthat MAY be present within this component:

The NamespaceURI element MUST contain one instance of a URI. [sub component NamespaceURI
detailg|

The NamespacePrefix element MUST contain one instance of a string. [sub component NamespacePr efix
detailg|

Non-nor mative Comment:

[component NsPrefixMapping non normative details|

NsPr efixM apping — JSON Syntax

The NsPrefixMappingType JSON object SHALL implement in JSON syntax the requirements defined in
the NsPrefixMapping component.

Properties of the JSON object SHALL implement the sub-components of NsPrefixMappingType using
JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
NamespaceURI uri [
NamespacePrefix pre []

The NsPrefixMappingType JSON object is defined in the JSON schema [DSS2JSON] and is provided
below as a service to the reader.

"dsh- NsPrefi xMappi ngType" : {

"type" : "object”,
"properties" : {
"uri" oo {
"type" : "string"
}s
"pre" : {
"type" : "string"
}
b,
"required" : ["uri",
"pre"]

}
[component NsPrefixMapping JSON schema details]

NsPrefixM apping — XML Syntax

The XML element is defined in the XML namespace 'http://docs.oasis-open.org/dss-x/ng/base’ .The XML
type NsPrefixMappingType SHALL implement the requirements defined in the
NsPrefixM appingcomponent.

The NsPrefixMappingType XML element is defined in XML Schema[DSBXSD], and is copied below
for information.

<xs: conpl exType nane="NsPrefi xMappi ngType" >
<Xs:sequence>
<xs: el enent nanme="NanmespaceURl " type="xs:anyURl "/>
<xs: el enent nanme="NanmespacePrefix" type="xs:string"/>
</ xs: sequence>
</ xs: conpl exType>

Each child element of NsPrefixMappingType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component NsPrefixMapping XML schema details|

Component Any

This element MAY hold a set of base64 encoded arbitrary data. To help the processing of the data it may
be qualified by the mime type element.

Below follows alist of the sub-componentsthat MAY be present within this component:

Non-nor mative Comment:

This component was introduced in DSS core version 1.0 and is used as a placeholder for arbitrary data.
In version 1.0 there were different ways defined to represent the data, e.g. asinline XML, encapsulated
XML or base64 encoded. The expansion of the scope to different syntaxes limits the options to base64
encoded data or attachments as represented in Base64Data. In this version the component Any does not
use additional subcomponents.

Any —JSON Syntax

The AnyType JSON object SHALL implement in JSON syntax the requirements defined in the Any
component.

The AnyType JSON object is defined in the JSON schema [DSS2JSON] and is provided below as a
service to the reader.

"dsh- AnyType" : {

"type" : "object",
"properties" : {
"ID |
"type" : "string"
b,
"val " {
"type" : "string"
b,
"attRef" : {
"$ref" : "#/definitions/dsb-AttachnentReferenceType"
b,
"m nmeType" : {
"type" : "string"
b,
"idRef" : {
"type" @ "string"
}
}

}
[component Any JSON schema details|

Any — XML Syntax

The XML element is defined in the XML namespace 'http://docs.oasis-open.org/dss-x/ng/base’ .The XML
type AnyType SHALL implement the requirements defined in the Anycomponent.

The AnyType XML element is defined in XML Schema [DSBXSD], and is copied below for
information.

<xs: conpl exType name="AnyType">
<xs: conpl exCont ent >
<xs: extensi on base="dsh: Base64Dat aType"/ >
</ xs: conpl exCont ent >
</ xs: conpl exType>

Each child element of AnyType XML element SHALL implement in XML syntax the sub-component
that has aname equal to itslocal name.

Component Result
The Result element is returned with every response message.

Below follows alist of the sub-components that MAY be present within this component:

The ResultMgor element MUST contain one instance of a URI. Itsvalueislimited to an item of the
following set:

urn:oasis:names:tc:dss:1.0:resultmajor: Success
urn:oasis.names:tc:dss:1.0:resultmajor:RequesterError

urn:oasi s:names:tc:dss: 1.0:resultmajor:ResponderError

urn:oasi s:names:tc:dss: 1.0:resultmajor:Insufficientl nformation

urn:oasi s:names:tc:dss: 1.0: profiles.asynchronousprocessing:resultmajor:Pending

The ResultMajor element describes the most significant component of the result code. The set values
MAY be extended.

The optional ResultMinor element MUST contain a URI.
The optional ResultMessage element MUST contain sub-component. A given element MUST satisfy the

requirements specified in section International StringType. It represents a message which MAY be
returned to an operator, logged by the client, used for debugging, etc.

The optional ProblemReference element MUST contain a string. In the case of processing problems the
server may want to give a reference to processing details (e.g. for debugging purposes) but doesn’t want
to disclose sensitive information this element can be used. It may contain a random string that links the
current request to internal logs, processing protocols or crash dumps.

Non-normative Comment:
[component Result non normative details|
Result —JSON Syntax

The ResultType JSON object SHALL implement in JSON syntax the requirements defined in the Result
component.

Properties of the JSON object SHALL implement the sub-components of ResultType using JSSON-
specific names mapped as shown in the table below.

Element Implementing JISON member name Comments
ResultMajor maj []
ResultMinor min [
ResultMessage msg [
ProblemReference pRef [

The ResultType JSON object is defined in the JISON schema [DSS2JSON] and is provided below asa
service to the reader.

"dsb- Resul t Type" : {

"type" : "object",
"properties" : {
"maj " o { _

"type" : "string",

"enunt : ["urn:oasis:nanes:tc:dss:1.0:resultngjor: Success",
"urn:oasis:nanes:tc:dss: 1.0:resul tmaj or: RequesterError",
"urn:oasis:nanes:tc:dss: 1. 0:resul t maj or: Responder Error™,
"urn:oasis:nanes:tc:dss: 1.0:resultmajor: I nsufficientlnformtion”,
"urn:oasis:nanes:tc:dss: 1. 0: profil es: asynchronousprocessi ng: resul t naj or: Pendi ng"]

H
"mn" o {
"type" : "string"
H
"msg” o {
"$ref" : "#/definitions/dsb-International StringType"
}
"pRef" : {
"type" @ "string"
}
H
"required" @ ["maj"]
}

[component Result JSON schema detail s]

Result — XML Syntax

The XML element is defined in the XML namespace 'http://docs.oasis-open.org/dss-x/ng/base’ .The XML
type ResultType SHALL implement the requirements defined in the Resultcomponent.

The ResultType XML element isdefined in XML Schema[DSBXSD], and is copied below for
information.

<xs: conpl exType nane="Resul t Type">
<XS:sequence>
<xs: el enent nane="Resul t Maj or" >
<xs: si npl eType>
<xs:restriction base="xs:anyURl ">
<xs:enuneration val ue="urn: oasi s: nanes: tc: dss:
<xs:enuneration val ue="urn: oasi s: nanes: tc: dss:
<xs:enuneration val ue="urn: oasi s: nanes: tc: dss:
<XS:enuneration val ue="urn:oasi s: nanes:tc:dss:
<xs:enuneration val ue="urn: oasi s: nanes: tc: dss:
</xs:restriction>
</ xs: si npl eType>
</ xs: el enent >
<xs: el enent m nCccurs="0" nanme="ResultM nor" type="xs:anyURl"/>

:resul t maj or: Success"/ >

:resul tmgj or: RequesterError"/:
:resul t maj or: ResponderError"/:
:resul tmajor: I nsufficientlnfor
:profiles:asynchronousprocess

PREREERE
ocoooo

<xs: el enent m nCccurs="0" nanme="Resul t Message" type="dsb:International StringType"/>

<xs:element m nCccurs="0" name="Probl enRef erence" type="xs:string"/>
</ xs: sequence>
</ xs: conpl exType>

Each child element of ResultType XML element SHALL implement in XML syntax the sub-component
that has a name equal to itslocal name. [component Result XML schema detail |

Component I nternational String

This element attaches an element to a human-readable string to specify the string’ s language.
Below follows alist of the sub-componentsthat MAY be present within this component:

The value element MUST contain one instance of a string. The human readable string. In non-XML
representations the value element contains the textual content.

The lang element MUST contain one instance of alSO language descriptor. This element identifies the
language of the value element.

Non-normative Comment:
[component International Sring non normative details|
International String — JSON Syntax

The International StringType JSON object SHALL implement in JSON syntax the requirements defined
in the International String component.

Properties of the JSON object SHALL implement the sub-components of International StringType using
JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
vaue vaue []
lang lang []

The International StringType JSON object is defined in the JSON schema [DSS2JSON] and is provided
below as a service to the reader.

"dsb-International StringType" : {

"type" : "object",
"properties" : {
"value" : {
"type" : "string"
} H
"lang" : {
"type" : "string"
}

"'equired" : ["lang"]

}

[component International Sring JSON schema details]

Inter national String — XML Syntax

The XML element is defined in the XML namespace 'http://docs.oasis-open.org/dss-x/ns/base’ .The XML
type Internationa StringType SHALL implement the requirements defined in the
I nternational Stringcomponent.

The International StringType XML element is defined in XML Schema [DSBXSD], and is copied below
for information.

<xs: conpl exType nane="International StringType">
<xs: si npl eCont ent >
<xs: extension base="xs:string">
<xs:attribute ref="xm:lang" use="required"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>

Each child element of International StringType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component International Siring XML schema details|
Component ResponseBase

The ResponseBase component is the base structure for response elements defined by the core protocol or
profiles.

Below follows alist of the sub-componentsthat MAY be present within this component:
The Result element MUST contain one instance of sub-component. This element MUST satisfy the

requirements specified in section ResultType. The Fehler! Verweisquelle konnte nicht gefunden werden.
element represents the status of the request..

The optional AppliedProfile element MAY occur zero or more times containing a URI. This element lists
the set of DSS profile applied by the server. This set MAY include the set of profiles requested by the
client. But the server MAY use more comprehensive set of profiles and add additional profiles not
requested by the client.

The optional RequestID element MUST contain one instance of a string. The RequestID element is used
to correlate this response with its request.

The optional Responsel D element MUST contain one instance of a string. The Responsel D element

Non-normative Comment:
[component ResponseBase non normative details|

ResponseBase — JSON Syntax

The ResponseBaseType JSON object SHALL implement in JSON syntax the requirements defined in the
ResponseBase component.

Properties of the JSON object SHALL implement the sub-components of ResponseBaseType using
JSON-specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
Result result []
AppliedProfile profile (]
RequestID reqlD []
ResponselD resplD [

The ResponseBaseType JSON object is defined in the JSON schema [DSS2JSON] and is provided below
as aservice to the reader.

"dsh- ResponseBaseType" : {

"type" : "object",
"properties” : {
"result" : {
"$ref" : "#/definitions/dsb-ResultType"
3
"profile" : {
"type" @ "array",
"items" : {
"type" : "string"
}
3
"reql D' : {
"type" : "string"
"respl D' : {
"type" : "string"
}
b
"required" : ["result"]

}

[component ResponseBase JSON schema detail S|

ResponseBase — XML Syntax

The XML element is defined in the XML namespace 'http://docs.oasis-open.org/dss-x/ng/base’ .The XML
type ResponseBaseType SHALL implement the requirements defined in the ResponseBasecomponent.

The ResponseBaseType XML element is defined in XML Schema [DSBXSD], and is copied below for
information.

<xs: conpl exType abstract="true" nanme="ResponseBaseType">
<XS: sequence>
<xs: el enent nanme="Result" type="dsb: Result Type"/>
<xs: el enent maxCccur s="unbounded" m nCccurs="0" nanme="AppliedProfile" type="xs:anyURI
</ xs: sequence>
<xs:attribute nane="Request|D' type="xs:string" use="optional"/>
<xs:attribute nane="Responsel D' type="xs:string" use="optional"/>
</ xs: conpl exType>

Each child element of ResponseBaseType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component ResponseBase XML schema details]

Referenced from other documents

Component Transforms

This component reflects the structure * Transforms’ defined in the XMLDS g specification [CLAUSE FOR
LINK TO THE XMLDSg SPEC]. This section provides the definition required to support the DSS-X 2.0
multi-syntax approach.

Below follows alist of the sub-components that MAY be present within this component:

The Transform element MUST occur 1 or more times containing sub-component. Each instance MUST
satisfy the requirements specified in section TransformType. [sub component Transform details|

Non-normative Comment:
[component Transforms non normative details]
Transforms—JSON Syntax

The TransformsType JSON object SHALL implement in JSON syntax the requirements defined in the
Transforms component.

Properties of the JSON object SHALL implement the sub-components of TransformsType using JSON-
specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
Transform transform [

The TransformsType JSON object is defined in the JSON schema [DSS2JSON] and is provided below as
aservice to the reader.

"dsi grw TransfornsType" : {
"type" : "object",
"properties" : {

"transfornm' : {
"type" @ "array",
"itenms" : {
"$ref" : "#/definitions/dsigrw TransforniType"
}
}
H
"required” : ["transforni]

}

[component Transforms JSON schema detail |

Transforms— XML Syntax

The XML element is defined in the XML namespace 'http://docs.oasis-open.org/dss-x/ns/xmldsig
/rewritten' .The XML type TransformsType SHALL implement the requirements defined in the
Transformscomponent.

The TransformsType XML element is defined in XML Schema [DSIGRWXSD], and is copied below for
information.

<conpl exType nane="TransfornsType" >
<sequence>
<xs: el enent maxCccur s="unbounded" nanme="Transform' type="ds-rw Transfornlype"/>
</ sequence>
</ conpl exType>

Each child element of TransformsType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. [component Transforms XML schema details|

Component Transform

This component reflects the structure ‘ Transforms' defined in the XMLDS g specification [CLAUSE FOR
LINK TO THE XMLDSg SPEC]. This section provides the definition required to support the DSS-X 2.0
multi-syntax approach. See section ‘ Transforming DSS 1.0 into 2.0’ for a detailed discussion of the
applied changes.

Below follows alist of the sub-components that MAY be present within this component:

The optional value element MUST contain a string. This string holds the text content part of a ‘ mixed’
XML element.

The optional Base64Content element MUST contain base64 encoded binary data.

The optional XPath element MAY occur zero or more times containing a string. [sub component XPath
detailg|

The optional NsPrefixMapping element MAY occur zero or more times containing sub-component. If
present each instance MUST satisfy the requirements specified in section NsPrefixMappingType. This
list has no direct correspondence in the XMLDS g schema definition. It is used to represent the XML
namespace prefix definitions in other syntaxes than XML.

The Algorithm element MUST contain one instance of a URI. [sub component Algorithm details)|

Non-nor mative Comment:
[component Transform non normative detail |
Transform —JSON Syntax

The TransformType JSON object SHALL implement in JSON syntax the requirements defined in the
Transform component.

Properties of the JSON object SHALL implement the sub-components of TransformType using JSON-
specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
value val []
Base64Content b64Content (]
XPath xPath [
NsPrefixMapping nsDecl [
Algorithm ag []

The TransformType JSON object is defined in the JISON schema [DSS2JSON] and is provided below as
aservice to the reader.

"dsi grw TransfornType" : {
"type" : "object”,
"properties" : {

"xpath" : {
"type" : "array",
"itens" : {
"type" : "string"
}
b,
"val " |
"type" : "string"
b,
"b64Content” : {
"type" : "string"
b,
"xPath" : {
"type" : "array",
"itenms" : {
"type" : "string"
}
J
"nsDecl " : {
"type" : "array",
"items" : {
"$ref" : "#/definitions/dsb-NsPrefixMappi ngType"
}
b,
"alg" ;| |
"type" : "string"
}

}

}

[component Transform JSON schema details]

'equi red" : ["al g"]

Transform — XML Syntax

The XML element is defined in the XML namespace 'http://docs.oasi s-open.org/dss-x/ng/xmldsig
/rewritten' . The original definition of this element uses the 'mixed' content attribute. To support non-

XML syntax using acommon object model the attribute is dropped and a'value' component is introduced.
The XML type TransformType SHALL implement the requirements defined in the

Transformcomponent.

The TransformType XML element is defined in XML Schema[DSIGRWXSD], and is copied below for
information.

<xs: conpl exType name="Tr ansf or nType" >
<Xs:sequence>
<xs: el enent maxCccurs="1" m nCccurs="0" name="val ue" type="string"/>

<xs: el enent maxCccurs="1" m nCccurs="0" nanme="Base64Content"” type="xs:base64Bi nary"/:
<xs: el ement maxCccur s="unbounded" m nCccurs="0" nanme="XPat h" type="string"/>
<xs: el enent maxQccur s="unbounded" m nCccurs="0" nanme="NsPrefi xMappi ng" type="dshb: NsPr
</ xs: sequence>
<xs:attribute nane="Al gorithnm type="xs:anyURl " use="required"/>
</ xs: conpl exType>

Each child element of TransformType XML element SHALL implement in XML syntax the sub-
component that has a name equal to its local name. [component Transform XML schema details|

Component Namel D

The Namel D component is used when an element serves to represent an entity by a string-valued name.
This component reflects the structure ‘Namel D’ defined in the SAML2 specification [CLAUSE FOR
LINK TO THE SAML2 SPEC]. This section provides the definition required to support the DSS-X 2.0
multi-syntax approach.

Below follows alist of the sub-componentsthat MAY be present within this component:

The value element MUST contain one instance of a string. In non-XML representations the value element
contains the actual identifier

The optional Format element MUST contain one instance of a URI. The Format element represents the
classification of string-based identifier information.

The optional SPProvidedID element MUST contain one instance of a string. The SPProvided| D element
defines the alternative identifier of the principal most recently set by the service provider or affiliation, if
any

The optional NameQualifier element MUST contain one instance of a string. The NameQualifier element
contains the security or administrative domain that qualifies the name. This attribute provides a means to
federate names from disparate user stores without collision.

The optional SPNameQualifier element MUST contain one instance of a string. The SPNameQualifier
element further qualifies a name with the name of a service provider or affiliation of providers. This
attribute provides an additional means to federate names on the basis of the relying party or parties.
Non-nor mative Comment:

[component Namel D non normative details]

Namel D —JSON Syntax

The Namel DType JSON object SHALL implement in JSON syntax the requirements defined in the
NamelD component.

Properties of the JSON object SHALL implement the sub-components of Namel DType using JSON-
specific names mapped as shown in the table below.

Element Implementing JSON member name Comments
value value [
Format format [
SPProvidediD provid []
NameQualifier nameQual []
SPNameQualifier spNameQual [

The Namel DType JSON object is defined in the JSON schema [DSS2JSON] and is provided below as a
service to the reader.

"sam 2rw Nanel DType" @ {

"type" : "object”
"properties" : {
"spprovidedl D' : {
"type" : "string"
“épnaneCpalifier“ {
"type" : "string"
}s
"val ue" : {
"type" : "string"
b,
"format" : {
"type" : "string"
}1
"provid" : {
"type" : "string"
}1
"nameQual " : {
"type" : "string"
}1
"spNameQual " : {
"type" : "string"
}
}

}

[component Namel D JSON schema detail S|

Namel D — XML Syntax

The XML element is defined in the XML namespace 'http://docs.oasis-open.org/dss/ns/saml 2/rewritten’ .
The XML type NamelDType SHALL implement the requirements defined in the Namel Dcomponent.

The NamelDType XML element isdefined in XML Schema [SAML2RWXSD], and is copied below for
information.

<conpl exType nane="Nanel DType" >
<si mpl eCont ent >
<ext ensi on base="string">
<attributeGoup ref="sanml 2-rw. | DNaneQual i fiers"/>
<xs:attribute name="Format" type="anyURl " use="optional"/>

<xs:attribute name="SPProvi dedl D' type="string" use="optional"/>
</ ext ensi on>
</ si npl eCont ent >
</ conpl exType>

Each child element of NamelDType XML element SHALL implement in XML syntax the sub-
component that has a name equal to itslocal name. The element 'value' is represented by the component's
XML tag text content.[component Namel D XML schema details)

Element / JSON name |ookup tables The subsequent table alowsto find the names of a component's
element for a given JSON member name. JSON member name mapped from el ement name

additional Timelnfo Additional Timelnfo addK eylnfo AdditionalKeyInfo alg DigestMethod Algorithm
attRef AttRef attURI AttRefURI aud IntendedAudience augSig AugmentedSignature b64Content
Base64Content b64Data Base64Data b64Sig Base64Signature cert X509Certificate claimedi dentity
Claimedidentity code Code createEnvel opedSignature CreateEnvel opedSignature createRef
createReference crl X509CRL currTime CurrentTime di Digestinfo dis Digestinfos doc Document format
Format hasObjectTagsAndAttributesSet HasObjectTagsAndAttributesSet ID Id id Identifier idRef 1dRef
incContent IncludeEContent incObj IncludeObject indeterminate IndeterminateDetail inDocs
InputDocuments invalid InvalidDetail keySel KeySelector lowerBound LowerBoundary maj ResultMajor
mimeType MimeType min ResultMinor msg ResultM essage M essage nhame Name KeyName nonce
Nonce nsDecl NsPrefixMapping objld Objld ocsp OCSPResponse optlnp Optional I nputs optOutp
Optional Outputs poe PoE pre NamespacePrefix pRef ProblemReference procDetails ProcessingDetails
profile AppliedProfile prop Property props Properties provlid SPProvidedI D quality
SignatureQualityL evel recipient Recipient ref Ref refld Refld ref Type RefType refURI RefURI reglD
RequestI D respl D Responsel D result Result VerifyManifestResults ManifestResult returnAugmented
ReturnAugmentedSignature returnProcDetail s ReturnProcessingDetail s returnSigner
ReturnSignerldentity returnSigningTime ReturnSigningTimel nfo returnTimestamped
ReturnTimestampedSignature returnTransformed ReturnTransformedDocument returnVerificationTime
ReturnV erificationTimel nfo schema Schema schemaRefs SchemaRefs sigAlgo SignatureAlgorithm
signedProps SignedProperties signedRef SignedReference signedRefs SignedReferences signerldentity
Signerldentity signingTime SigningTime signingTimeBounds SigningTimeBoundaries signingTimelnfo
SigningTimelnfo sigObj SignatureObject sigPlacement SignaturePlacement sigPtr SignaturePtr sigType
SignatureType ski X509SK | specTime SpecificTime status Status sub X509SubjectName supplnfo
Supportinglnfo timestampedSig TimestampedSignature transform Transform transforms Transforms type
Type unsignedProps UnsignedProperties upperBound UpperBoundary uri NamespaceURI
useVerificationTime UseVerificationTime val DigestVaue Vaue value valid ValidDetail
verificationTime VerificationTime verificationTimelnfo VerificationTimelnfo verifyManifests
VerifyManifests whichDoc WhichDocument whichRef WhichReference x509Digest X509Digest xPath
XPath ReferenceX path xPathAfter X PathAfter xPathFirstChildOf X PathFirstChildOf The subsequent
table allows to find the abbreviated JSON member names for a given element name. Element
Implementing JSON member name AdditionalK eylnfo addK eylnfo Additional Timelnfo

additional Timelnfo Algorithm alg AppliedProfile profile AttRef attRef AttRefURI attURI
AugmentedSignature augSig Base64Content b64Content Base64Data b64Data Base64Signature b64Sig
Claimedidentity claimedidentity Code code CreateEnvel opedSignature createEnvel opedSignature
createReference createRef CurrentTime currTime Digestinfo di Digestinfos dis DigestMethod alg
DigestValue val Document doc Format format HasObjectTagsAndAttributesSet
hasObjectTagsAndAttributesSet Id ID Identifier id IdRef idRef 1ncludeEContent incContent
IncludeObject incObj IndeterminateDetail indeterminate | nputDocuments inDocs | ntendedA udience aud
InvalidDetail invalid KeyName name KeySelector keySel LowerBoundary lowerBound ManifestResult
result Message msg MimeType mimeType Name name NamespacePrefix pre NamespaceURI uri Nonce
nonce NsPrefixMapping nsDecl Objld objld OCSPResponse ocsp Optional I nputs optlnp Optiona Outputs
optOutp PoE poe ProblemReference pRef ProcessingDetails procDetails Properties props Property prop
Recipient recipient Ref ref ReferenceX path xPath Refld refld RefType ref Type RefURI refURI

RequestI D reql D Responsel D respl D Result result ResultMajor maj ResultM essage msg ResultMinor min
ReturnAugmentedSignature returnAugmented ReturnProcessingDetails returnProcDetails
ReturnSignerldentity returnSigner ReturnSigningTimelnfo returnSigningTime
ReturnTimestampedSignature returnTimestamped ReturnTransformedDocument returnTransformed
ReturnVerificationTimel nfo returnV erificationTime Schema schema SchemaRefs schemaRefs

SignatureAlgorithm sigAlgo SignatureObject sigObj SignaturePlacement sigPlacement SignaturePtr
sigPtr SignatureQualityL evel quality SignatureType sigType SignedProperties signedProps
SignedReference signedRef SignedReferences signedRefs Signerldentity signerldentity SigningTime
signingTime SigningTimeBoundaries signingTimeBounds SigningTimelnfo signingTimelnfo
SpecificTime specTime SPProvidedI D provid Status status Supportinglnfo supplnfo
TimestampedSignature timestampedSig Transform transform Transforms transforms Type type
UnsignedProperties unsignedProps UpperBoundary upperBound UseV erificationTime
useVerificationTime VaidDetail valid Value val value val VerificationTime verificationTime
VerificationTimelnfo verificationTimelnfo VerifyManifestResults result VerifyManifests verifyManifests
WhichDocument whichDoc WhichReference whichRef X509Certificate cert X509CRL crl X509Digest
x509Digest X509SK 1 ski X509SubjectName sub X Path xPath X PathAfter xPathAfter X PathFirstChildOf
xPathFirstChildOf 5 [Data Processing Model for Signing](#sec_DataProcessingM odel ForSigning)

The following process diagram illustrates the major buildings blocks of the processing of a signing
request. The sub processes are described in the next chapters.

Figure 2: Signing Overview

..:Q .

The workflow splitsinto the sections for XMLDSig and CM S signature processing. The input component
for asigning request is SignRequest (see section 4.2.6). The signature will be selected by the server
considering agiven SignatureType element of OptionallnputsSign and its configuration and policies.

« ProfilesMAY introduce additional signature types and thus MUST define the adequate processing
steps. » [DSS-5-1]

If the element AddTimestamp of OptionallnputsSign is set to ‘true’ the sub-process ‘add Timestamp’
adds a timestamp to the signature.

The task of building the SignResponse component is shared between all signature formats.

5.1 Processing for XML Signatures

The first sub-process ‘process references’ of the XML signature creation is the processing of the
references. The second sub-process handles the creation of the XML signature. These two sub-processes
are described in detail below.

If the element CreateEnvel opedSignature of SignaturePlacement is set to true the signature will be
inserted into the document and location selected by SignaturePlacement.

5.1.1 Sub process ‘processreferences

The following process diagram illustrates the processing steps for the assembly of references.

Figure 3: Process References

The input documents are read from the Base64Data element of the referred Document component into an
octet stream. « Thisdata MUST be awell-formed XML Document as defined in [XML] section
2.1.» [DSS-5.1.1-1]

If the optional input SignedReferencesis present each SignedReference element controls the creation of a
corresponding <ds:Reference>. The task ‘ collect references handles the SignedReferences.

Otherwise there will be a <ds:Reference> element for each given input document. The set of transforms
and their parameter will be selected by the server. The task ‘ use default transforms’ select this set of <ds:
Reference>.

Note: Transforms can be applied as a server implementation MAY choose to increase robustness of the
Signatures created. These Transforms may reflect idiosyncrasies of different parsers or solve encoding
issues or the like. Servers MAY choose not to apply transforms in basic processing and extract the binary
datafor direct hashing or canonicalize the data directly if certain optional inputs are not to be
implemented.

If the element CreateEnvel opedSignature of SignaturePlacement is set to true the list of transforms will
be prepended with an Envel opedSignatureTransform entry. The task ‘add EnvelopedSignatureTransform’
processes the corresponding <ds:Reference>.

« The RefURI attribute of <ds:Reference> element MUST be set to include a“ same-document” URI
which references either:

The whole Document containing the signature (by using aRefURI="")

The relevant parts of the Document to be covered/protected by the signature (by using a* same-
document” RefURI attribute having a value starting with “#’, like RefURI="#some-id”, RefURI="
#xpointer(/)”, RefURI="#xpointer(/DocumentElement/ToBeSignedElement)” or the like). If the result of
evaluating the expression included in the RefURI attribute doesn’t fit in any of the options described
above, the server MUST reject the request using a ResultM g or RequesterError which MAY be qualified
by a ResultMinor urn:oasis:names:tc.dss:1.0:resultminor:InvalidRefURI.

»[DSS-5.1.1-2]

This alignment will be performed by the task ‘align same-doc references'.

5.1.2 Sub process ‘create XML signature'

Figure 4. Create XML Signature

= ¢ e

The first task (‘ calculate remaining transforms’) of this section applies the given set of transforms. If a
TransformedData element is provided by the client these calculations MUST be respected and just the
remaining set of transforms must be processed by the server. « The case of a Document as base for a
reference processing all transform steps MUST be applied. » [DSS-5.1.2-1]

Note: « Asrequired in [XMLDSIG] if the end result isan XML node s&t, the server MUST attempt to
convert the node set back into an octet stream using Canonical XML [XML-C14N]. » [DSS-5.1.2-2]

The ‘calculate / use given hash’ task computes the digest upon the transformation output. If a
DocumentHash element is provided by the client the hash values are used as input for the following
steps. The DocumentHash MAY contain digests of different algorithms. The server selects the
appropriate hash agorithm.

Performing the task ‘build XMLDSIg' the server forms a set of <ds:Reference> with the elements and
attributes set as follows:

If the Document has a RefURI attribute, the <ds:Reference> element’s URI attribute is set to the
value of the RefURI attribute, else this attribute is omitted. « A signature MUST NOT be created if
more than one RefURI is omitted in the set of input documents and the server MUST report a
RequesterError by setting ResultMajor RequesterError qualified by a ResultMinor. » [DSS-5.1.2-3]

If the Document has a Ref Type attribute, the <ds:Reference> element’s Type attribute is set to the
value of the Ref Type attribute, else this attribute is omitted.

The <ds:DigestMethod> element is set to the hash method used.

The <ds.DigestVaue> element is set to the hash value that isto be calculated as per [XMLDSIG].

The <ds.Transforms> element is set to the sequence of transforms applied by the server in step b.
« This sequence MUST describe the effective transform as a reproducible procedure from parsing until

hash. » [DSS-5.1.2-4]

« References resulting from processing of optional inputs MUST be included. » [DSS-5.1.2-5] In
doing so, the server MAY reflect the ordering of the Document elements.

The server creates an XML signature using these <ds:Reference> elements according to the processing
rulesin [XMLDSIG].

The last task ‘insert ds:Object’ handles the creation of an enveloping signature. If one or more optional
input elements IncludeObject are present they will cause the inclusion of an object inside the signature
being created.

5.1.2.1 XML SignaturesVariant Optional Input IncludeObject

An enveloping signature is a signature having <ds:Object>s which are referenced by <ds:Reference>s
having a same-document URI.

For each <IncludeObject> the server creates a new <ds.Object> element containing the document, as
identified using the WhichDocument element, asits child. This object is carried within the enveloping
signature. The ordering of the <IncludeObject> optional inputs MAY be ignored by the server.

« This <Document> MUST include a “same-document” RefURI attribute (having a value starting with
“#") which references either:

The whole newly-created <ds:Object>.

The relevant parts of the newly-created <ds:Object>’s contents to be covered/protected by the
signature.

» [DSS-5.1.2.1-1] « f the result of evaluating the expression included in the RefURI element doesn't fit
in any of the options described above, the server MUST reject the request using a ResultMgjor
RequesterError which MAY be qualified by a ResultMinor

urn:oasis:names:tc:dss:1.0:resultminor:InvalidRefURI » [DSS-5.1.2.1-2]

Note: If the server does not support the ordering of <ds.Object>, it is recommended either to use ID-
based referencing to the <ds:Object> (using the client-generated 1D included in the Objld attribute) or to
rely on expressions based on <ds:Object>'s contents that allow to unambiguously refer to the included
object or their relevant parts.

The URI in the RefURI element of this <Document> should at |east reference the relevant parts of the
Object to be included in the calculation for the corresponding reference. « Clients MUST generate
requests in away that some <ds.Reference>’s URI values actually will reference the <ds.Object>
generated by the server once this element will have been included in the <ds:Signature> produced by the
server. » [DSS-5.1.2.1-3]

« For each IncludeObject the server MUST carry out the following steps before performing Basic
Processing:

1. Theserver identifies the Document that is to be placed into a <ds.Object> asindicated by the
WhichDocument element.

2. Thedatato be carried in the enveloping signature is extracted and decoded.

3. if the hasObjectTagsAndAttributesSet element is false or not present the server builds the <ds:
Object> asfollows:

a. The server generates the new <ds.Object> and setsits Id attribute to the value indicated in Objld
element of the optional input if present.

b. Inthe case of the Document pointed at by WhichDocument having Base64Data, <ds:Object>('s)
MIME Typeisto be set to the value of Base64Data('s) MIME Type value and the Encoding isto be set to
http://www.w3.0rg/TR/xmlschema-2/#base64Binary

4. The server splices the to-be-envel oped documents as <ds.Object>(s) into the <ds:Signature>, which
isto be returned.

5. If CreateReference is set to true generate a ds:Reference element referencing the spliced <ds:
Object> and exclude this <Document> from the set of <Document>s ready for further processing.
Otherwise just exclude this <Document> from the set of <Document>s ready for further processing.

» [DSS-5.1.2.1-4]

5.2 Processing for CM S Signatures

http://www.w3.org/TR/xmlschema-2/#base64Binary

5.2.1 Sub process ‘ process digest’

The following process diagram illustrates the processing steps required to calculate the digest for aCM S
signature.

Figure 5: Process Digest

1!
3>
'!f

ents child

The SignRequest component MUST contain either a single Document (not having RefURI or Ref Type
set) or a single DocumentHash component not having RefURI, RefType, Transforms.

If the InputDocuments component contains a Document element, the server hashes the octet stream
represented by the Document. Thisis performed by the task ‘ calculate digest’ If the InputDocuments
component contains a DocumentHash element, the server uses the hash values as an input for the

following steps. The DocumentHash MAY contain digests of different algorithms. The server selects the
appropriate hash algorithm.

5.2.2 Sub process ‘create CM S signature’
The following process diagram illustrates the processing steps to create a CM S signature.

Figure 6: Create CM S signature

i

L |

L .
-
:
-]

If the InputDocuments component contains a Document element and the IncludeEContent element of the
OptionallnputsSign component is set to true then the task ‘include content’ creates a CM S structure with
the document envel oped within the signature. For CM S details in this context please refer to [RFC 3852]
sections 5.1 “ SignedData Type” and 5.2 * EncapsulatedContentinfo Type”.

« Otherwise the resulting signature MUST be detached (aka. external or “without eContent”). » [DSS-
5.2.2-1]

The following task ‘build CM S signature’ builds a SignedData structure containing the Signerinfo
computed as follows:

The server forms a Signerinfo structure based on the input document. The components of the Signerinfo
are set asfollows:

The digestAlgorithm field is set to the OID value for the hash method that was used in the previous
processing step.

The signedAttributes field’ s message-digest attribute contains the hash value that was calculated /
provided in previous processing step. Other signedAttributes MAY be added by the server, according to
its profile or policy, or according to the Properties optional input.

The remaining fields (sid, signatureAlgorithm, and signature) arefilled in as per anormal CMS
signature.

5.3 General Timestamp Processing

5.3.1 Sub process ‘add Timestamp’
The following process diagram illustrates the processing steps to insert a timestamp.

Figure 7: Add Timestamp

-% - - SO—X o e ~X -O

The AddTimestamp element of OptionallnputsSign indicates that the client wishes the server to embed a
timestamp token as a property or attribute of the resultant or the supplied signature. The timestamp token
will be applied to the signature value in the case of CMS/PKCS7 signatures or the <ds:SignatureV alue>
element in the case of XML signatures.

Note: Procedures for handling other forms of timestamp may be defined in profiles of the Core. In
particular, the DSS AdES profile [DSS-AdES-P] defines procedures for generating timestamps over the
content which is about to be signed (sometimes called content timestamps), and the DSS Timestamp
profile [DSS-TS-P] defines procedures for handling standal one timestamps.

The Type element, if present, indicates what type of timestamp to apply. « Profiles that use this optional
input MUST define the allowed values, and the default value, for the Type attribute (unless only asingle
type of timestamp is supported, in which case the Type attribute can be omitted). » [DSS-5.3.1-1]

Two scenarios for the timestamping of both CMS and XML signatures are supported by this Optional
Input. They are as follows:

Create and embed a timestamp token into the signature being created as part of this SignRequest.

Create and embed a timestamp token into an existing signature, without verification, which is
passed in the InputDocuments element of this SignRequest.

The following subsections specify the use of RFC 3161 timestamps with CM S signatures and the use of
XML Timestamps or RFC 3161 timestamps with XML Signature. These subsections address both
scenarios.

Note: The server SHOULD not verify the incoming signature before adding the timestamp. If aclient
wishes that its signatures be verified as a condition of time stamping, the client SHOULD use the
AddTimestamp optional input of the Verify protocol.

5.3.1.1 Processing for CM S signatur estime-stamping

If the MimeType element of the Base64Data component is set to ‘ application/pkcs7-signature’ a
timestamp token is created and embedded into the existing signature, without verification, which is
passed in the InputDocuments component of this SignRequest. Otherwise a timestamp token is created
and embedded into the signature being created as part of the processing of this SignRequest.

« In both scenarios, the timestamp token created by the server SHALL be created according to [RFC
3161]. » [DSS-5.3.1.1-1] The Messagel mprint field within the TstInfo structure of the timestamp token
will be derived from the signature value of the just-created or incoming signature depending on the
scenario. « The timestamp SHALL be embedded in the CM S signature as an unsigned attribute with the
object identifier (see Appendix A of [RFC 3161]):

{ 1s0(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 14} » [DSS-
53.1.1-2]

The signature and its embedded timestamp is returned in the SignatureObject element of the
SignResponse component.

5.3.1.2 Processing for XML Timestampson XML signatures

« If the type attribute in the optional input AddTimestamp is urn:oasis:names:tc:dss:1.0:core:schema:
XMLTimeStampToken

and signature being timestamped is an XML signature, then the XML signature MUST contain <dss:
timestamp> as defined in [DSS1Core] section 5.1, placed in a <xades:X ML Timestamp> within a <xades:
SignatureTimeStamp> as defined in [XAdES]. » [DSS-5.3.1.2-1]

« The <dss:timestamp> MUST contain <ds:Signature> with at |east two <ds:Reference> elements:

One with the Type attribute set to urn:oasis.names:tc:dss:1.0:core:schema: X ML TimeStampT oken
and referencing a <ds:Object> element whose content is a <TSTInfo> element.

The other referencing the <ds:SignatureV alue> being timestamped.
»[DSS-5.3.1.2-2]
The present specification defines aformat for XML timestamp tokens. In addition, XAdES defines a
mechanism for incorporating signature timestamps in XML signatures. « The present document mandates
that signature timestampsin XML format MUST follow the syntax defined in [DSS1Core] section
5.1. » [DSS-5.3.1.2-3] « These time-stamp tokens MUST be added to XML signatures as specified by
XAdES. » [DSS-5.3.1.2-4]

« The signature and its embedded timestamp SHALL be returned in the <SignatureObject> of the
<SignResponse>. » [DSS-5.3.1.2-5]

5.3.1.3 Processing for RFC 3161 Timestampson XML signatures

« If the type attribute in this optional input AddTimestamp is

urn:ietf:rfc:3161

and signature being timestamped is an XML signature then the XML signature MUST contain an RFC

3161, placed in a <xades.Encapsul atedTimeStamp> within a <xades.SignatureTimeStamp> as defined in
[XAdES]. » [DSS-5.3.1.3-1]

6 DataProcessing Model for Verification

A DSS server that verifies XML signatures SHOULD perform the following steps, upon receiving a
verification with the top-level component V erifyRequest (see section 4.2.10). These steps may be
changed or overridden by the optional inputs, or by the profile or policy the server is operating under.
The results of the vewrification process are return to the caller within a V erifyResponse component (see

section 4.2.11). For more details on multi-signature verification, see section 6.1.1.1 Multi-Signature
Verification.

The following process diagram illustrates the mgjor buildings blocks of the processing of a verification
request. The sub processes are described in the following sub-chapters.

Figure 8: Verification Overview

x - - X - x - - x - —t—o

I, !

The workflow splits into the sections for XMLDSig and CM S signature processing. « The processing
path will be selected by the server considering a given SignatureType element of OptionallnputsVerify
and its configuration and policies. » [DSS-6-1] Profiles may introduce additional signature types and
MUST define the adequate processing steps.

If the element ReturnTimestampedSignature of OptionallnputsV erify is present, the sub-process
‘timestamp Signature’ adds a timestamp to the signature.

If the element ReturnUpdatedSignature of Optional InputsVerify is‘true’ the sub-process ‘ update
Signature’ inserts the updated signature into the Optional OutputsVerify.

6.1 Processing for XML Signature Verification

6.1.1 Sub process ‘retrieve XML signature

Figure 9: Retrieve XML Signature

e - sjgnat
rigve Signatira :I:.I'IIAUTE'
signature Obiedt redrieved

The server retrieves one or more <ds.Signature> objects as follows:

If the SignatureObject is present, the server retrieves either the <ds:Signature> that isa child
element of the SignatureObject (see: Note at the end of this section), or those <ds.Signature> objects
which are pointed to by the SignaturePtr in the SignatureObject.

If the SignaturePtr points to an input document but not a specific element in that document, the
pointed-to input document must be a Document element containing XML.

« If the SignatureObject is omitted, there MUST be only a single Document element. » [DSS-6.1.1-
1] Thiscaseishandled asif a SignaturePtr pointing to the single Document was present: the server will
search and find every <ds:Signature> element in this input document and verify each <ds:Signature>
according to the steps below.

6.1.1.1 Multi-Signature Verification

« If aclient requests verification of an entire input document, either using a SignaturePtr without an
XPath or amissing SignaturePtr (see section 6.1 step 1), then the server MUST determine whether the
input document contains zero, one, or more than one <ds:Signature> elements. » [DSS-6.1.1.1-1] If zero,
the server SHOULD return a ResultMgjor code of RequesterError.

« If more than one <ds:Signature> elements are present, the server MUST either reject the request with a
ResultMajor code of RequesterError and a ResultMinor code of NotSupported, or accept the request and
try to verify all of the signatures. » [DSS-6.1.1.1-2]

If the server accepts the request in the multi-signature case (or if only asingle signature is present) and
one of the signatures failsto verify, the server should return one of the error codes in section 6.2,
reflecting the first error encountered.

If al of the signatures verify correctly, the server should return the Success ResultMajor code and the
following ResultMinor code:

urn:oasi s:names:tc:dss:1.0:resultminor:ValidMulti Signatures

Non-normative Note:

These procedures only define procedures for handling of multiple signatures on one input document. The
procedures for handling multiple signatures on multiple documents are not defined in this core
specification, but however such procedures, along with any optional elements that may be required, may
be defined in profiles of this specification.

Only certain optional inputs and outputs are allowed when performing multi-signature verification. See
section 5.3 General processing for details.

6.1.2 Sub process ‘recalculate r eferences

Figure 10: Recal cul ate References

relerences
calculaled

For each <ds:Reference> in the <ds:Signature>, the server finds the input document with matching
RefURI and Ref Type values (omitted attributes match omitted attributes).

If the <ds:Reference> uses a same-document URI, the X Pointer should be evaluated against the
input document the <ds:Signature> is contained within, or against the <ds.Signature> itself if itis
contained within the SignatureObject element.

The SchemaRef element or optional input Schema of the input document or SignatureObject will
be used, if present, to identify ID attributes when evaluating the X Pointer expression.

If the <ds:Reference> uses an external URI and the corresponding input document is not present,
the server will skip the <ds:Reference>, and later return aresult code such as
ReferencedDocumentNotPresent to indicate this. The RefURI MAY be omitted in at most one of the set
of Input documents.

If the input document is a Document, the server extracts and decodes as described in 4.2.3
Component Document onwards depending of the form of the input document).

If the input document is a TransformedData, the server MAY check that the <ds: Transforms> (if
supplied) match between the TransformedData and the <ds:Reference> and then hashes the resultant data
object according to <ds:DigestMethod>. « The server MUST check that the result matches <ds:
DigestVaue>. » [DSS-6.1.2-1]

If the input document is a DocumentHash, the server MAY check that the <ds: Transforms>, <ds:
DigestMethod> (if supplied) and <ds:DigestValue> elements match between the DocumentHash and the
<ds:Reference>.

« If the combination of RefURI and Ref Type matches more than one input document all of them
MUST be either a TransformedData or a DocumentHash otherwise a RequesterError isissued qualified
by result minor of ReferencedDocumentNotPresent. » [DSS-6.1.2-2] Only one of them is allowed to have
aWhichReference value that matches the order of the <ds.Reference> within the <ds:Signedinfo> in
guestion otherwise a RequesterError isissued qualified by result minor of
ReferencedDocumentNotPresent.

6.1.3 Sub process ‘verify XML signature

Figure 11: Verify XML Signature

(_r)
L. - — . ___x__o

« If one or more timestamps are present on the given signature this/ these timestamps MUST be
verified. » [DSS-6.1.3-1] The ‘time of existence' asserted by the timestamp MAY be used to decide the
verification time. For details see section 6.1.3.1 and 6.1.3.2 .

The server verifies the validity of the signature at a particular time (i.e. current time, assumed signing
time or other time), depending on the server policy. This behavior MAY be altered by using the optional
input UseVerificationTime.

If the VerifyManifests element of OptionallnputsVerify is set to ‘true’ the server validates the manifests
inan XML signature. In accordance with [XMLDSIG] section 5.1, DSS Manifest validation does not
affect asignature's core validation. The results of verifying individual <ds:Reference>'s within a <ds:
Manifest> are returned in the VerifyManifestResults within the Optional OutputsV erify. If the optional
input VerifyManifestsis set to 'true’ and the XML Sig core validation succeeds, then the returned
ResultMinor is

urn:oasi s:names:tc:dss: 1.0:resultminor:valid:hasM anifestResults
In case of anegative XML Sig core validation no attempt is made to verify manifests.

If the signature validates correctly, the server returns one of the first three ResultMinor codes listed in
section 6.2, depending on the relationship of the signature to the input documents (not including the
relationship of the signature to those XML elements that were resolved through X Pointer evaluation; the
client will have to inspect those relationships manually). If the signature failsto validate correctly, the
server returns some other code; either one defined in section 6.2 of this specification, or one defined by
some profile of this specification.

6.1.3.1 Processing for RFC 3161 timestamp tokenson XML Signatures

The present section describes the processing rules for verifying an RFC 3161 timestamp token embedded
within an XML signature as an unsigned property. This XML signature may be passed in on aVerify call
within the SignatureObject or embedded within a Document’s child.

The server shall verify the timestamp token performing the steps detailed below. If any one of them
resultsin failure, then the timestamp token SHOULD be rejected.

1. Extract the timestamp token embedded in the incoming signature as defined in 5.3.1.2 Processing
for XML Timestamps on XML signatures.

2. Veify that the token's public verification certificate is authorized for time stamping by examining
the Extended Key Usage field for the presence of the time stamping OID "1.3.6.1.5.5.7.3.8".

3. Processthe signature timestamp as defined in [XAdES] Annex G.2.2.16.1.3.

4. Veify that the public verification certificate conformsto all relevant aspects of the relying-party's
policy including algorithm usage, policy OIDs, time accuracy tolerances, and the Nonce value.

5. Set the Result element as appropriate. urn:oasis:names:tc:dss:1.0:resultminor:valid:signature:
InvalidSignatureTimestamp MAY be used to indicate that the signature is valid but the timestamp against
that signatureisinvalid.

6.1.3.2 Processing for XML timestamp tokenson XML signatures

The present section describes the processing rules for verifying and XML Signature timestamp token
embedded within an XML signature using the incorporation mechanisms specified in XAdES (i.e., in the
<xades: XML TimeStamp> <xades:SignatureTimeStamp> element's child). This XML signature may be
passed in on a Verify call within the SignatureObject or embedded within a Document’s child.

The server shall verify the timestamp token performing the steps detailed below. If any one of them
resultsin failure, then the timestamp token SHOULD be rejected.

1. Extract the timestamp token embedded in the incoming signature as defined in 5.3.1.2 Processing
for XML Timestamps on XML signatures.

2. Veify that the verification key and algorithms used conforms to all relevant aspects of the
applicable policy. Should this key come within a public certificate, verify that the certificate conforms to
all relevant aspects of the applicable policy including algorithm usage, policy OIDs, and time accuracy
tolerances.

3. Veify that the aforementioned verification key is consistent with the ds:Signedinfo
/SignatureM ethod/ @A lgorithm attribute value.

4. Veify the timestamp token signature in accordance with the rules defined in [XMLDSIG].
5. Veify that the <ds:Signedinfo> element contains at least two <ds:Reference> elements.

6. Verify that one of the <ds:Reference> elements has its Type attribute set to “urn:oasis:names:
tc:dss:1.0:core:schema: XML TimeStampToken”. Take this one and proceed as indicated below:

a. Retrievethe referenced data object. Verify that it references a <ds.Object> element, which in turn
envelopes a<TSTInfo> element.

b. Verify that the <TSTInfo> element has avalid layout as per the present specification.

c. Extract the digest value and associated algorithm from its <ds:DigestVaue> and <ds:
DigestM ethod> elements respectively.

d. Recaculatethe digest of the retrieved data object as specified by **[XMLDSIG]**with the digest
algorithm indicated in <ds:DigestMethod>, and compare this result with the contents of <ds:
DigestValue>.

7. Take each of the other <ds.Reference> elements and for each validate the hash as specified in
[XMLDSIG].

8. Check that for one of the <ds:Reference> elements the retrieved data object is actually the <ds:
SignatureVaue> element and that it containsits digest after canonicalization.

9. Set the Result element as appropriate. Minor Error urn:oasis:names:tc:dss.1.0:resultminor:
valid:signature:InvalidSignatureTimestamp MAY be used to indicate that the signature is valid but the
timestamp against that signature isinvalid.

6.2 Processing for CM S Signature Verification

A DSS server that verifies CM S signatures SHOULD perform the following steps, upon receiving a
VerifyRequest. These steps may be changed or overridden by the optional inputs, or by the profile or
policy the server is operating under.

6.2.1 Sub process ‘retrieve CM S signature
Figure 12: Retrieve CM S Signature

Error

Signature
Object
present

_ x —r‘- x praulatiad | . >< ;—_O
e CMS | — -
ermeeloping

glgnature

signature
ratrievad

1. Theserver retrievesthe CMS signature by decoding the Base64Signature child of SignatureObject.

2. Theserver retrievestheinput data. « If the CMS signature is detached, there MUST be asingle
input document: i.e. asingle Document or DocumentHash element. » [DSS-6.2.1-1] « Otherwisg, if the
CMS signature is enveloping, it contains its own input data and there MUST NOT be any input
documents present. » [DSS-6.2.1-2]

3. TheCMSsignature and input data are verified in the conventional way (see [REC 5652] for
details).

4. If the signature validates correctly, the server returns the first ResultMinor code listed in section 6.2.

If the signature fails to validate correctly, the server returns some other code; either one defined in
section 6.2 of this specification, or one defined by some profile of this specification.

6.2.2 Sub process ‘verify CM S signatur €

Figure 13: Verify CMS Signature

« If one or more timestamps are present on the given signature this / these timestamps MUST be
verified. » [DSS-6.2.2-1] The ‘time of existence’ asserted by the timestamp MAY be used to decide the
verification time. For details see section 6.2.2.1 .

The server verifies the validity of the signature at a particular time (i.e. current time, assumed signing
time or other time), depending on the server policy. This behavior MAY be altered by using the optional
input UseVerificationTime.

If the signature validates correctly, the server returns one of the first three ResultMinor codes listed in
section 4.1.7 Component Result. If the signature fails to validate correctly, the server returns some other

code; either one defined in section 4.1.7 Component Result of this specification, or one defined by some
profile of this specification.

6.2.2.1 Processing for RFC 3161 Timestamp tokenson CM S Signatures.

The present section describes the processing rules for verifying a CMS RFC3161 timestamp token passed
inon aVerify call within the SignatureObject of the VerifyRequest element. In the CMS case, since the
"signature timestamp” is embedded in the signature as an unsigned attribute, only the time stamped
signature is required for verification processing. As such, no additional input is required.

The processing by the server is broken down into the following steps:

1. Thesignature timestamp is embedded in the incoming signature as an unsigned attribute whose
object identifier is 1.2.840.11359.1.9.16.2.14. Extract and verify the timestamp token.

2. Veify that the token's public verification certificate is authorized for time stamping by examining
the Extended Key Usage field for the presence of the time stamping OID "1.3.6.1.5.5.7.3.8".

3. Vadlidate that the TstInfo structure has avalid layout as defined in [RFC 3161].

4. Extract the Messagel mprint hash value and associated algorithm from the Tstinfo structure which
will be compared against the hash value derived in the next step.

5. Recalculate the hash of the signature value field of the signature in which the timestamp is
embedded.

6. Compare the hash values from the two previous steps, and if they are equivalent, then this
timestamp is valid for the signature that was time stamped.

7. Verify that the public verification certificate conforms to all relevant aspects of the relying-party's
policy including algorithm usage, policy OIDs, time accuracy tolerances, and the Nonce value.

8. Set the Result element as defined in this specification. Minor Error urn:oasis:names:tc:dss:
1.0:resultminor:valid:signature:InvalidSignatureTimestamp MAY be used to indicate that the signature is
valid but the timestamp against that signature isinvalid.

6.3 General Processing
The following steps are shared between all signature types.

6.3.1 Sub process ‘update Signatur e

The presence of the ReturnUpdatedSignature element of OptionallnputsV erify instructs the server to
return an UpdatedSignature output, containing a new or updated signature.

Figure 14: Update Signature

update ' : Signature
Signature updated

The Type element of ReturnUpdatedSignature defines the process of “updating” a signature. For
example, the updated signature may be the original signature with some additional unsigned signature
properties added to it (such as timestamps, counter-signatures, or additional information for use in
verification), or the updated signature could be an entirely new signature cal culated on the same input
documents as the input signature. « Profiles that use this optional input MUST define the allowed values
and their semantics, and the default value of ReturnUpdatedSignature (unless only a single type of
updated signature is supported, in which case the element can be omitted). » [DSS-6.3.1-1]

Multiple occurrences of this optional input can be present in asingle verify request message. « If multiple
occurrences are present, each occurrence MUST have a different value. » [DSS-6.3.1-2] Each occurrence
will generate a corresponding UpdatedSignature optional output. « These optiona outputs SHALL be
distinguishable based on their Type element, which will match each output with an input. » [DSS-6.3.1-
3]

A DSS server SHOULD perform the following steps to return the updated signature appropriately. These
steps may be changed or overridden by a profile or policy the server is operating under. (e.g. for PDF
documents enveloping CM S signatures).

Figure 15: Select Update Target

updated
Signature
returmed

« If the detached or enveloping signature to be verified and updated appears within a
Base64Signature then the UpdatedSignature optional output MUST contain the modified SignatureObject
with the updated signature. » [DSS-6.3.1-4]

« If the signature to be verified and updated is enveloped, and if the VerifyRequest contains a
SignatureObject with a SignaturePtr pointing to an InputDocument envel oping the signature then the
server MUST produce the following TWO optional outputs, first a DocumentWithSignature optional
output containing the document that envel opes the updated signature, second an UpdatedSignature
optional output containing a SignatureObject having a SignaturePtr element that MUST point to the
former DocumentWithSignature. » [DSS-6.3.1-5]

« If thereis no SignatureObject included in the request then the server MUST produce a
DocumentWithSignature optional output containing the document with the updated signature,
only. » [DSS-6.3.1-6] No UpdatedSignature element will be generated.

If created the DocumentWithSignature optional output contains the input document with the given
signature inserted. The server places the signature in the document identified using the SignatureObject /
SignaturePtr / WhichDocument element. « This Document MUST include a same-document RefURI
element which references the data updated (e.g of the form RefURI). » [DSS-6.3.1-7]

6.3.2 Sub process ‘timestamp Signatur €’

If the ReturnTimestampedSignature element of OptionallnputsVerify is present the server updates the
signature after its verification by embedding a signature timestamp token as an unauthenticated attribute
(see "unauthAttrs" in section 9.1 [REC 5652]) or *unsigned* property (see section 6.2.5"The
UnsignedSignatureProperties element™ and section 7.3 "The SignatureTimeStamp element” [XAdES]) of
the supplied signature.

The timestamp token will be on the signature value in the case of CM S/PK CS7signatures or the <ds:
SignatureVaue> element in the case of XML signatures.

Figure 16: Timestamp Signature

Y

The Type element of ReturnTimestampedSignature, if present, indicates what type of timestamp to build.
This document defines two values for it, namely:

urn:ietf:rfc:3161 for generating a RFC 3161 timestamp token on the signature

urn:oasi s:names:tc:dss: 1.0:core:schema: X ML TimeStampToken, for generating a XML timestamp
token as defined in section 5.3 General Timestamp Processing of this document.

« Profiles that use this optional input MUST define the allowed values and the default value for the Type
element (unless only a single type of timestamp is supported, in which case Type can be
omitted). » [DSS-6.3.2-1]

The sub process of returning the updated signatures is the same as described in the sub process * update
Signature’ (see section 6.3.1).

Note: Procedures for handling other forms of timestamp may be defined in profiles of the Core. In
particular, the DSS XAdES profile [DSS-XAJES-P] defines procedures for handling timestamps against
the document being signed, and the DSS Timestamp profile [DSS-TS-P] defines procedures for handling
standal one timestamps.

6.3.3 Task ‘build VerifyResponse

The task of building the VerifyResponse is shared between all signature formats. The
OptionallnputsVerify element, server configuration and applied policies may affect the set of elements
included in the Optional OutputsV erify.

If the ReturnV erificationTimelnfo element of Optional InputsVerify is set to ‘true’ the server returns the
VerificationTimelnfo within the Optional OutputsV erify. It contains the verification time and optionally
other relevant time instants that may have been used when determining the verification time or that may
be useful for its qualification.

If the ReturnSigningTimelnfo element of OptionallnputsVerify is set to ‘true’ the server returns the
SigningTimelnfo within the Optional OutputsVerify. It alows the client to obtain the time instant

associated to the signature creation. Depending on the applicable server policy, this signing time needs to
be qualified, in order to avoid unacceptable measurement errors or false claims, using time boundaries
associated to trustworthy time values (based on timestamps or time-marks created using trusted time
sources). In this case, the server MAY include these values in the LowerBoundary and UpperBoundary
elements, respectively.

Criteriafor determining when atime instant can be considered trustworthy and for determining the
maximum acceptable delays between the signing time and their boundaries (if any) is outside the scope
of this specification.

« When there's no way for the server to determine the signing time, the server MUST omit the
SigningTimelnfo output. » [DSS-6.3.3-1]

If the ReturnSignerldentity element of OptionalInputsVerify isset to ‘true’ the server returns the
Signerldentity element within the Optional OutputsVerify. The Signerldentity optional output contains an
indication of who performed the signature. This option is not allowed in multi-signature verification.

If the ReturnTransformedDocument element of Optional InputsVerify is present the server returns an
input document to which the XML signature transforms specified by a particular <ds:Reference> have
been applied. The <ds:Reference> isindicated by the zero-based WhichReference element (0 means the
first <ds:Reference> in the signature, 1 means the second, and so on). Multiple occurrences of this
optional input can be present in asingle verify request message. Each occurrence will generate a
corresponding optional output. These options are not allowed in multi-signature verification.

The TransformedDocument element within the Optional OutputsV erify contains a document
corresponding to the specified <ds:Reference> after al the transforms in the reference have been applied.
In other words, the hash value of the returned document should equal the <ds:Reference> element’ s <ds:
DigestValue>. To match outputs to inputs, each TransformedDocument component will contain a
WhichReference element which matches the corresponding ReturnTransformedDocument optional input
element.

If the ReturnProcessingDetails element of OptionalInputsVerify is set to ‘true’ the server returns the
ProcessingDetails element within the Optional OutputsV erify. The ProcessingDetails element elaborates
on what signature verification steps succeeded or failed. This option is not allowed in multi-signature
verification.

7 Asynchronous Processing M odel

The main functionality of the ‘ Asynchronous Processing Profile’ [DSSAsync] isincluded in this version
of the core.

The server MAY decide that the processing of arequest cannot be performed within a reasonable
timeframe and therefore return an instance of the ‘ Component ResponseBase’ with the ResultMajor
value of

urn:oasi s:names:tc:dss: 1.0: profiles.asynchronousprocessi ng:resultmajor:Pending

and the Responsel D element set to a server generated value.

The client MAY initiate a request with the top-level component PendingRequest (see section 4.2.12)
from time to time with the Responsel D of theinitial response included in the RequestID element.

If the server is still not able to return the requested response, it will respond with a ResultM gjor of
‘Pending’ again. When the server finally succeeds with its processing the results will be delivered to the
client with its next polling call. « In this case the ResultMagjor value MUST NOT be ‘Pending’ but the
ResultMgjor resulting from the request processing. » [DSS-7-1]

Clients not able to perform the Asynchronous Processing Model MAY treat the * Pending’ response as an
error or try to perform the operation at later point in time. Even without referring to the Responsel D the
server MAY be able to respond with full result immediately.

8 DSSCoreBindings

Mappings from DSS messages into standard communications protocols are called DSS bindings.
Transport bindings specify how DSS messages are encoded and carried over some lower-level transport
protocol. Security bindings specify how confidentiality, authentication, and integrity can be achieved for
DSS messages in the context of some transport binding. Below we specify an initial set of bindings for
DSS. Future bindings may be introduced by the OASIS DSS TC or by other parties.

8.1 HTTP POST Transport Binding

In this binding, the DSS request/response exchange occurs within an HTTP POST exchange [RFC 2616]

The following rules apply to the HTTP request:
1. Theclient may send an HTTPF/1.0 or HTTP/1.1 request.
2. TheRequest URI may be used to indicate a particular service endpoint.
3. « The Content-Type header MUST be set to “application/xml” or “application/json”. » [DSS-8.1-1]
4. « The Content-Length header MUST be present and correct. » [DSS-8.1-2]
5. «The DSS request message MUST be sent in the body of the HTTP Request. » [DSS-8.1-3]
The following rules apply to the HTTP Response:
1. «The Content-Type header MUST be set to “text/xml” or “application/json”. » [DSS-8.1-4]
2.« The Content-Length header MUST be present and correct. » [DSS-8.1-5]
3. «The DSS response message MUST be sent in the body of the HTTP Response. » [DSS-8.1-6]
4. «TheHTTP status code MUST be
a. either set to 200 if a DSS response message is returned.
b. or the status code can be set to

i. ether 3xxtoindicate aredirection

ii. or4xxtoindicate alow-level client error (such as a malformed request)

iii. or 5xx to indicate alow-level server error » [DSS-8.1-7]

8.2 SOAP 1.2 Transport Binding

In this binding, the DSS request/response exchange occurs using the SOAP 1.2 message protocol [SOAP]

The following rules apply to the SOAP request:

1. A single DSS SignRequest or VerifyRequest element will be transmitted within the body of the
SOAP message.

2. «Theclient MUST NOT include any additional XML elementsin the SOAP body. » [DSS-8.2-1]
3. « Thecharacter encoding UTF-8 MUST be used for the SOAP message. » [DSS-8.2-2]

4. Arbitrary SOAP headers may be present.

The following rules apply to the SOAP response:

1. «Theserver MUST return either asingle DSS SignResponse or V erifyResponse element within the
body of the SOAP message, or a SOAP fault code. » [DSS-8.2-3]

2. «Theserver MUST NOT include any additional XML elementsin the SOAP body. » [DSS-8.2-4]
3. «If aDSS server cannot parse a DSS request, or there is some error with the SOAP envelope, the
server MUST return a SOAP fault code » [DSS-8.2-5]. Otherwise, a DSS result code should be used to
signal errors.

4. «The character encoding UTF-8 MUST be used for the SOAP message. » [DSS-8.2-6]

5. Arbitrary SOAP headers may be present.

« On receiving a DSS response in a SOAP message, the client MUST NOT send afault code to the DSS
server. » [DSS-8.2-7]

8.3 Security Bindings

It is good practice to use a security binding (e.g. TLS) to provide confidentiality, authentication and
integrity.

The selection of security mechanism and the used parameters depends on many aspects of the usage
scenario, for example:

Required protection level of the content

Technical limitations (e.g. introduced by mobile clients)
Regulatory requirements

Export restrictions

Moreover, these decisions always need to be reconsidered due to new results crypto analysis and known
vulnerabilities. Therefore, details regarding protocols and cipher suites are out of scope of this document.

9 DSS-Defined Identifiers

The following sections define various URI-based identifiers. Where possible an existing URN is used to
specify aprotocol. Inthe case of IETF protocols the URN of the most current RFC that specifiesthe
protocol isused (see [RFC 2648]). URI references created specifically for DSS have the following stem:

urn:oasis.names:tc:dss:2.0:

9.1 Signature Type Ildentifiers

The following identifiers MAY be used as the content of the <SignatureType> optional input (see section
3.5.1).

9.1.1 XML Signature

® URI: urn:ietf:rfc:3275
® Thisrefersto an XML signature per [XMLDSIG].

9.1.2 XML TimeStampToken

® URI: urn:oasis:names:tc:dss:2.0:core:schema: XML TimeStampToken
® Thisrefersto an XML timestamp containing an XML signature, per section 5.1.

9.1.3 RFC 3161 TimeStampToken

® URI: urn:ietf:rfc:3161
® Thisrefersto an XML timestamp containing an ASN.1 TimeStampToken, per [RFC 3161].

9.1.4 CM S Signature

® URI: urn:ietf:rfc:3369
®* Thisrefersto aCMS signature per [REC 5652****] or prior versions of CMS.

9.1.5 PGP Signature

® URI: urn:ietf:rfc:2440
® Thisrefersto a PGP signature per [RFC 2440Q].

9.2 ResultMinors

The following list contains the values of ResultMinor that are used in this document.
Abbreviation

URI

OnAll Documents

urn:oasi s:names:tc:dss:2.0:resultminor:valid:signature:OnAllDocuments

NotAll Documents Refer enced

urn: oasi s: names: tc:dss:2.0:resul tm nor:valid: signature: Not Al | Docunent sRef erenced

Incorrect Signature

urn:oasi s:nanmes:tc:dss:2.0:resultm nor:invalid:IncorrectSi gnature

HasM anifest Results

urn:oasi s:names: tc:dss:2.0:resul tm nor:valid:signature: HasMani fest Resul ts

Invalid Signature Timestamp

urn: oasi s: names: tc:dss:2.0:resul tm nor:valid:signature:|nvalidSignatureTi mestanp

Referenced DocumentNot Present

ur n: oasi s: nanes: tc: dss: 2. 0:resul t m nor: Ref er encedDocunent Not Pr esent

KeylnfoNot Provided

urn: oasi s: nanmes: tc:dss: 1. 0:resul tm nor: Keyl nf oNot Provi ded

M oreThanOne RefUriOmitted

urn:oasi s: nanes:tc:dss: 2. 0:resul t m nor: MoreThanOneRef Uri Onitted

InvalidRefURI

urn:oasi s:nanes:tc:dss: 2.0:resul tm nor: | nval i dRef UR

NotSupported

urn: oasi s: nanmes: tc:dss: 2.0:resul tm nor: Not Supported

| nappropriate Signature

urn: oasi s: names: tc:dss:2.0:resul tm nor: | nappropriate: signature

General Error

urn: oasi s: nanes:tc:dss: 2.0:resul tm nor: General Error

KeyL ookup Failed

urn:oasi s:nanes:tc:dss:2.0:resultm nor:invalid: KeyLookupFai |l ed

CrINot Availiable

urn:oasis:names:tc:dss: 2.0:resultminor:CrINotAvailiable

OcspNot Availiable

urn:oasis:names:tc:dss: 2.0:resultminor:OcspNotAvailiable

Certificate Chain NotComplete

urn:oasi s:names:tc:dss:2.0:resultminor: CertificateChainNotCompl ete

10 Security Consider ations

There are several potential avenues for attack when processing incoming DSS documents. The following
list is non-exhaustive and should not and can not replace a comprehensive security review.

A comprehensive security review considers the unique technology stack and processes specific to an
implementation and not of all implementations.

10.1 Wdl-Known Attack Vectors

In the following subsections four well-known classes of attack vectors are highlighted:

1. XML Parsing Vulnerabilities

2. XML Canonicalization Vulnerabilities

3. Injection Attacks

4. JSON Deserialization Through Evaluation Attacks

The first two attack vector classes “XML Parsing Vulnerabilities’” and “XML Canonicalization
Vulnerabilities’ can occur in any XML language and therefore do not rely on any specific DSS
capabilities.

Thethird class, “Injection Attacks’ appliesto any format that is being processed in a deterministic way
by an active processor with additional capabilities potentially being triggered by an unexpected and
malicious payload.

“JSON Deserialization Through Evaluation Attacks’ attack vectors consider processing programming

languages and specifically collisions of constructs in the processing language used to consumer any
JSON text and the allowed constructs in the JSON format.

In addition to the attack vectors listed and further detailed in the following non-normative subsections,
DSS document processing requires interfaces to BASE64 and ASN.1 encoding and decoding in practical
implementations, which MAY result in further attack vectors.

10.1.1 XML Parsing Vulnerabilities [non-normative]

There have been vulnerabilitiesin XML parsing libraries that can cause either denial of service or actual
exploits. As an example, see Microsoft’s article on XML Denia of Service Attacks and Defenses. The
best defense for these types of attacks s, in short, to keep the XML parser up-to-date and ensure to
perform full validation prior to attempting to process the document.

10.1.2 XML Canonicalization Vulnerabilities [non-nor mative]

Exploitation of the use of canonicalization as content extractor MAY impact an implementation that
offerse.g. inclusion and processing of XML Fragments in payloads as described e.g. in [JENSEN-2009].

10.1.3 I njection Attacks [non-nor mative]

Any DSS content MAY be processed somewhere, thusinjection attacks MAY occur in many places
which are not specific to DSS. The best defense known, is to sanitize untrusted output (and anything
inside a DSS document received from outside the client or server system boundaries should be
considered untrusted). For more explanation on injection attacks, see e.g. this OWASP article (
https://www.owasp.org/index.php/Top 10-2017_A1-Injection).

10.1.4 JSON Deserialization Through Evaluation Attacks [non-nor mative]

Generally, there are security issues with processing languages that are capable to evaluate text in that
processing language during runtime and dynamically.

Sample vector for JavaScript:

“JSON is asubset of JavaScript that excludes assignment and invocation. Since JSON's syntax is
borrowed from JavaScript, it is possible to use that language's "eval ()" function to parse most JSON texts
(but not all; certain characters such as U+2028 LINE SEPARATOR and U+2029 PARAGRAPH
SEPARATOR arelega in JSON but not JavaScript). This generally constitutes an unacceptable security
risk, since the text could contain executable code along with data declarations. The same consideration
appliesto the use of eval()-like functionsin any other programming language in which JSON texts
conform to that language's syntax.” (cf. [REC8259] section 12 “ Security Considerations’.

11 Conformance

11.1 Conformance asa DSS version 2.0 document

To ease communication and subsequent resolution of any specific partial conformance violation, the
preceding chapters aready provide minimal requirements, that a specific instance component must fulfill,
to permit conformance of the complete DSS version 2.0 document.

11.1.1 Confor mance for JSON for mat

The following clause offers a simple two step process, to either prove or disprove the conformance of a
complete JSON document (formulated in terms specific to that implementation language) to this version
of DSS:

http://msdn.microsoft.com/en-us/magazine/ee335713.aspx
https://www.owasp.org/index.php/Top_10-2017_A1-Injection
https://www.owasp.org/index.php/Top_10-2017_A1-Injection

« Conformance Clause 1: “Valid JISON DSS Document” A JSON document instance conforms to this
specification as a DSS document if it meets all of the following COUNT_ME conditions:

1. IsvaidJSON
2. Vadlidates against the JSON Schema

» DSS-11.1.1-1]

11.1.2 Conformancefor XML format

The following clause offers a simple three step process, to either prove or disprove the conformance of a
complete XML document (formulated in terms specific to that implementation language) to this version
of DSS:

« Conformance Clause 1; “Vaid XML DSS Document” An XML document instance conforms to this
specification as a DSS document if it meets all of the following three conditions:

1. Iswdl-formed XML.

2. Consists of asingleroot element instance as defined in the namespace http://docs.oasi s-open.org/dss-
x/ns/core.

3. Isvaid XML.

»[DSS-11.1.2-1]

11.1.3 Conformancefor DSS Server

« Conformance Clause 1: “Conforming DSS Server” A DSS server instance conformsto this
specification if the server fulfills all requirements on servers stated in the normative sections of this
document. » [DSS-11.1.3-1]

11.1.4 Conformance for DSS Client

« Conformance Clause 1: “Conforming DSS Client” A DSS client instance conforms to this specification
if the client fulfills all requirements on clients stated in the normative sections of this document. » [DSS-
11.1.4-1]

Appendix A. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully
acknowledged:

Andreas Kuehne, Individua

Detlef Huehnlein, Individual

Ernst Jan van Nigtevecht, Sonnenglanz Consulting
Juan Carlos Cruellas, Univ Politecnica de Cataluna
Stefan Hagen, Individual

Appendix B. Index of Components and Elements

AdditionalKeyInfo
KeyName, 97
X509Certificate, 97
X509CRL, 97
X509Digest, 96
X509SK1, 97
X509SubjectName, 96
Additional Timelnfo
Ref, 94

Type, 94

value, 93

Any, 23
AttachmentReference
AttRefURI, 26
Digestinfo, 26
AugmentedSignature
SignatureObject, 104
Type, 104
AugmentSignaturel nstruction
Type, 74

Base64

AttRef, 28

Id, 28

|dRef, 28

MimeType, 28

Value, 28
Claimedidentity
Name, 71

Supportinginfo, 71

Detalil
Base64Content, 101
Code, 100

Message, 100

Type, 101
Digestinfo
DigestMethod, 25
DigestValue, 25
Document
Base64Data, 39
DocumentBase

ld, 37

RefType, 37

RefURI, 37
SchemaRefs, 37
DocumentHash
Digestinfos, 43
Tramsforms, 43
WhichReference, 43
DocumentWithSignature
Document, 86
IncludeObject
createReference, 82
hasObjectTagsAndAttributesSet, 82
Objld, 82
WhichDocument, 82
InputDocuments

Document, 36

DocumentHash, 36
TransformedData, 36
IntendedAudience
Recipient, 75

I nternational String
lang, 24

value, 24
KeySelector
KeyName, 76
X509Certificate, 76
X509Digest, 76
X509SKl, 76
X509SubjectName, 76
ManifestResult
NsPrefixMapping, 90
ReferenceX path, 90
Status, 90

Namel D

Format, 107
NameQualifier, 108
SPNameQualifier, 108
SPProvidedI D, 107
value, 107
NsPrefixMapping
NamespacePrefix, 22
NamespaceURI, 22
Optionall nputs
Language, 32

Other, 32

ServicePolicy, 32
OptionallnputsBase
AddTimestamp, 57
ClaimedIidentity, 57

Schemas, 57
OptionallnputsSign
IncludeEContent, 58
IncludeObject, 58
IntendedAudience, 58
KeySelector, 58

Nonce, 59

Properties, 58
SignatureAlgorithm, 59
SignaturePlacement, 59
SignatureQualityLevel, 59
SignatureType, 58
SignedReference, 59

Optiona InputsVerify
AdditionalKeylInfo, 62
ReturnAugmentedSignature, 62
ReturnProcessingDetails, 62
ReturnSignerldentity, 62
ReturnSigningTimelnfo, 62
ReturnTimestampedSignature, 63
ReturnTransformedDocument, 63
ReturnVerificationTimelnfo, 62
UseVerificationTime, 62

VerifyManifest, 63

Optional Outputs
AppliedPolicy, 33

Other, 33

Optional OutputsBase
DocumentWithSignature, 66
Schemas, 66
TransformedDocument, 66
Optional OutputsVerify
AugmentedSignature, 69
ProcessingDetails, 69
Signerldentity, 69
SigningTimelnfo, 69
TimestampedSignature, 69
VerificationTimelnfo, 69
VerifyManifestResults, 68
PendingRequest
Claimedidentity, 54
ProcessingDetails
IndeterminateDetail, 99
InvalidDetail, 99
ValidDetail, 99

Properties

Property, 80
PropertiesHolder
SignedProperties, 79
UnsignedProperties, 79
Property

Property, 81

Value, 81

RequestBase

Profile, 33

RequestID, 33
Request| D

value, 55
ResponseBase
AppliedProfile, 34
RequestID, 34
Responsel D, 34
Result, 34

Responsel D

value, 56

Result
ProblemReference, 30
ResultMagjor, 29
ResultMessage, 30
ResultMinor, 30
ReturnTransformedDocument
WhichReference, 105
Schemas

Schema, 73
SignatureObject
Base64Signature, 48
SchemaRefs, 48
SignaturePtr, 48
SignaturePlacement
CreateEnvel opedSignature, 84

NsPrefixMapping, 84

WhichDocument, 84
XPathAfter, 84
XPathFirstChildOf, 84
SignaturePtr
NsPrefixMapping, 49
WhichDocument, 49
XPath, 50
SignedReference
Refld, 88

RefURI, 88
Transforms, 88
WhichDocument, 88
SignedReferences
SignedReference, 87
SigningTimelnfo
LowerBoundary, 102
SigningTime, 102
SigningTimeBoundaries, 102
UpperBoundary, 102
SignRequests
InputDocuments, 45
Optionallnputs, 45
SignResponse
Optional Outputs, 46
SignatureObject, 46
Transform
Algorithm, 111
Base64Content, 111

NsPrefixMapping, 111

vaue, 111

XPath, 111
TransformedData
Base64Data, 41
Transforms, 40
WhichReference, 41
TransformedDocument
Document, 106
WhichReference, 106
Transforms
Transform, 110
UseVerificationTime
Base64Content, 92
CurrentTime, 92
SpecificTime, 92
VerificationTimelnfo
Additional Timelnfo, 95
VerificationTime, 95
VerifyManifestResults
ManifestResult, 89
VerifyRequest
InputDocuments, 51
Optionallnputs, 51
SignatureObject, 51
VerifyResponse
Optional Outputs, 52
X509Digest

Algorithm, 78

value, 77

Appendix C. List of Figures

Figure 1:Component OVENVIeW..........ccccervereeennnns 19
Figure 2: Signing OVerVieW.........ccccevenerereennene 121
Figure 3: Process References...........ccccceveicneenne. 121
Figure 4: Create XML Signature............cccoeveruenne 122
Figure 5: Process Digest.......cccovveerieeensienninnnnnns 124
Figure 6: Create CMS signature............cccoceveennne 125
Figure 7: Add Timestamp.......c.ccccevvevveveeseeennene 126
Figure 8: Verification Overview..........ccccceevveenene. 128
Figure 9: Retrieve XML Signature..........c.cccceuee... 129
Figure 10: Recalculate References...........c.ccoeue. 130
Figure 11: Verify XML Signature............cccocevenene 131
Figure 12: Retrieve CM S Signature.............cc.c..... 133
Figure 13: Verify CMS Signature.............ccccueneee. 133
Figure 14: Update Signature...........ccccceeeveerueennee. 134
Figure 15: Select Update Target.........ccceeevveueneen. 135
Figure 16: Timestamp Signature.............ccccuen..... 136

Appendix D. Revision History

Revision

Date

Editor

Changes Made

WDO06

2018-06-10

Andreas Kuehne and Stefan Hagen

Initial Draft version with feedback fromthe TC

WDO7

2018-08-12

Stefan Hagen

Minor editorial fixes

wD08

2018-08-13

Andreas Kuehne

Editorial fixes to ease reading for newcomers (grouping of elements)
WDO09

2018-08-20

Stefan Hagen

Revision of namespaces

wWD10

2018-08-21

Andreas Kuehne and Stefan Hagen

Fix for JSON Schema URL Encoded ref attribute, al phabetical ordering of refereemces, application of

OASI S conformance guidelines, addition of Security Considerations section, repair of broken links, and
insertion of test assertion tags.

