[image:]
Digital Signature Service Metadata
Committee SpecificatonSpecification Draft 01 /
Public Review Draft 01
18 March 2019
Specification URIs
This version:
http://docs.oasis-open.org/dss-x/dss-md/csprd01/dss-md-csdprd01.docx (Authoritative)
http://docs.oasis-open.org/dss-x/dss-md/csprd01/dss-md-csdprd01.html
http://docs.oasis-open.org/dss-x/dss-md/csprd01/dss-md-csdprd01.pdf
Previous version:
N/A
Latest version:
http://docs.oasis-open.org/dss-x/dss-md/dss-md.docx (Authoritative)
http://docs.oasis-open.org/dss-x/dss-md/dss-md.html
http://docs.oasis-open.org/dss-x/dss-md/dss-md.pdf
Technical Committee:
OASIS Digital Signature Services eXtended (DSS-X) TC
Chair:
Andreas Kuehne (kuehne@trustable.de), Individual
Ernst Jan van Nigtevecht (EJvN@Sonnenglanz.net), Sonnenglanz Consulting
Editors:
Detlef Hühnlein (detlef.huehnlein@ecsec.de), Individual
Andreas Kuehne (kuehne@trustable.de), Individual
[bookmark: AdditionalArtifacts]Additional artefacts:
This prose specification is one component of a Work Product that also includes:
JSON and XML schemas: http://docs.oasis-open.org/dss-x/dss-md/schema/
[bookmark: RelatedWork]Related work:
This specification is a companion document to
Digital Signature Service Core Protocols, Elements, and Bindings Version 2.0. Edited by Andreas Kuehne, Stefan Hagen, 20 February 2019, Committee Specification Draft 02. http://docs.oasis-open.org/dss-x/dss-core/v2.0/csprd02/dss-core-v2.0-csprd02.docx.
Declared XML namespaces:
http://docs.oasis-open.org/dss-x/ns/info
http://docs.oasis-open.org/dss-x/ns/base
Abstract:
This document defines JSON and XML structures and discovery mechanisms for metadata related to digitialdigital signature services.
Status:
This document was last revised or approved by the OASIS Digital Signature Services eXtended (DSS-X) TC on the above date. The level of approval is also listed above. Check the "Latest version" location noted above for possible later revisions of this document. Any other numbered Versions and other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dss-x#technical.
TC members should send comments on this specification to the TC's email list. Others should send comments to the TC's public comment list, after subscribing to it by following the instructions at the "Send A Comment" button on the TC's web page at https://www.oasis-open.org/committees/dss-x/.
This specification is provided under the RF on Limited Terms Mode of the OASIS IPR Policy, the mode chosen when the Technical Committee was established. For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the TC’s web page (https://www.oasis-open.org/committees/dss-x/ipr.php).
Note that any machine-readable content (Computer Language Definitions) declared Normative for this Work Product is provided in separate plain text files. In the event of a discrepancy between any such plain text file and display content in the Work Product's prose narrative document(s), the content in the separate plain text file prevails.
Citation format:
When referencing this specification, the following citation format should be used:
[DSS-MD]
Digital Signature Service Metadata. Edited by Detlef Hühnlein and Andreas Kuehne. 18 March 2019. OASIS Committee Specification Draft 01 / Public Review Draft 01. http://docs.oasis-open.org/dss-x/dss-md/csprd01/dss-md-csdprd01.html. Latest version: http://docs.oasis-open.org/dss-x/dss-md/dss-md.html
.
Notices
Copyright © OASIS Open 2019. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.
The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above guidance.
Table of Contents
1	Introduction	6
1.1 IPR Policy	6
1.2 Terminology	6
1.2.1 Terms and Definitions	6
1.2.2 Abbreviated Terms	6
1.3 Normative References	6
1.4 Non-Normative References	7
1.5 Typographical Conventions	8
1.6 Motivation and related work (Non-normative)	8
2	Overview	9
3	Data Structure Models	10
3.1 Data Structure Models defined in this document	10
3.1.1 Component Provider	10
3.1.1.1 Provider – JSON Syntax	10
3.1.1.2 Provider – XML Syntax	12
3.1.2 Component Protocol	12
3.1.2.1 Protocol – JSON Syntax	12
3.1.2.2 Protocol – XML Syntax	13
3.1.3 Component Profile	14
3.1.3.1 Profile – JSON Syntax	14
3.1.3.2 Profile – XML Syntax	15
3.1.4 Component Operation	16
3.1.4.1 Operation – JSON Syntax	16
3.1.4.2 Operation – XML Syntax	18
3.1.5 Component Parameter	18
3.1.5.1 Parameter – JSON Syntax	19
3.1.5.2 Parameter – XML Syntax	20
3.1.6 Component Format	20
3.1.6.1 Format – JSON Syntax	21
3.1.6.2 Format – XML Syntax	22
3.1.7 Component Policy	22
3.1.7.1 Policy – JSON Syntax	23
3.1.7.2 Policy – XML Syntax	24
3.1.8 Component PolicyByRef	24
3.1.8.1 PolicyByRef – JSON Syntax	24
3.1.8.2 PolicyByRef – XML Syntax	25
3.1.9 Component Extension	25
3.1.9.1 Extension – JSON Syntax	25
3.1.9.2 Extension – XML Syntax	26
3.1.10 Component TypedLocator	26
3.1.10.1 TypedLocator – JSON Syntax	27
3.1.10.2 TypedLocator – XML Syntax	27
3.2 Element / JSON name lookup tables	28
4	Metadata Discovery	31
Appendix A. Acknowledgments	32
Appendix B. List of Figures	33
Appendix C. Revision History	34
1	Introduction	6
1.1 IPR Policy	6
1.2 Terminology	6
1.2.1 Terms and Definitions	6
1.2.2 Abbreviated Terms	6
1.3 Normative References	6
1.4 Non-Normative References	7
1.5 Typographical Conventions	8
1.6 Motivation and related work (Non-normative)	9
2	Overview	10
3	Data Structure Models	11
3.1 Data Structure Models defined in this document	11
3.1.1 Component Provider	11
3.1.1.1 Provider – JSON Syntax	11
3.1.1.2 Provider – XML Syntax	13
3.1.2 Component Protocol	13
3.1.2.1 Protocol – JSON Syntax	13
3.1.2.2 Protocol – XML Syntax	15
3.1.3 Component Profile	15
3.1.3.1 Profile – JSON Syntax	15
3.1.3.2 Profile – XML Syntax	17
3.1.4 Component Operation	17
3.1.4.1 Operation – JSON Syntax	18
3.1.4.2 Operation – XML Syntax	19
3.1.5 Component Parameter	19
3.1.5.1 Parameter – JSON Syntax	20
3.1.5.2 Parameter – XML Syntax	21
3.1.6 Component Format	21
3.1.6.1 Format – JSON Syntax	22
3.1.6.2 Format – XML Syntax	23
3.1.7 Component Policy	23
3.1.7.1 Policy – JSON Syntax	24
3.1.7.2 Policy – XML Syntax	25
3.1.8 Component PolicyByRef	25
3.1.8.1 PolicyByRef – JSON Syntax	25
3.1.8.2 PolicyByRef – XML Syntax	26
3.1.9 Component Extension	26
3.1.9.1 Extension – JSON Syntax	27
3.1.9.2 Extension – XML Syntax	27
3.2 Element / JSON name lookup tables	27
4	Metadata Discovery	30
Appendix A. Acknowledgments	31
Appendix B. List of Figures	32
Appendix C. Revision History	33

		
Copyright © OASIS Open 2004.All Rights Reserved. 		Page 5 of 150

[bookmark: _GoBack]dss-md-csdprd01		18 March 2019
Standards Track Work Product	Copyright © OASIS Open 2019. All Rights Reserved.	Page 31 of 32
1 [bookmark: _Toc480914659][bookmark: _Toc481064850][bookmark: _Ref512158346][bookmark: _Ref514173371][bookmark: _Toc522668476][bookmark: _Ref534804142][bookmark: _Ref534804148][bookmark: _Ref534804150][bookmark: _Toc3837597]Introduction

1.1 [bookmark: _Toc485123858][bookmark: _Toc522668477][bookmark: _Toc3837598]IPR Policy
[bookmark: _Hlk522725139]This specification is provided under the RF on Limited Terms Mode of the OASIS IPR Policy, the mode chosen when the Technical Committee was established. For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the TC’s web page (https://www.oasis-open.org/committees/dss-x/ipr.php).
1.2 [bookmark: _Toc85472893][bookmark: _Toc287332007][bookmark: _Toc480914661][bookmark: _Toc481064852][bookmark: _Toc516357994][bookmark: _Toc522668478][bookmark: _Toc3837599]Terminology
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119] and [RFC8174].
[bookmark: _Toc478074531][bookmark: _Toc480914662][bookmark: _Toc481064853][bookmark: _Toc516359662][bookmark: _Toc522668479][bookmark: _Toc3837600]Terms and Definitions
For the purposes of this document no specific terms or definitions have been identified as deviating from the usual meaning in the context of XML / JSON schema, digital signatures or transport.
1.2.1 [bookmark: _Toc478074532][bookmark: _Toc480914663][bookmark: _Toc481064854][bookmark: _Toc516359663][bookmark: _Toc522668480][bookmark: _Toc3837601]Abbreviated Terms
JSON	— JavaScript Object Notation
URI 	— (IETF) Uniform Resource Identifier according to [RFC3986]
URL	— Uniform Resource Locator
XML 	— (W3C) Extensible Markup Language
XSD 	— (W3C) XML Schema
1.3 [bookmark: _Ref7502892][bookmark: _Toc12011611][bookmark: _Toc85472894][bookmark: _Toc287332008][bookmark: _Toc480914664][bookmark: _Toc481064855][bookmark: _Toc516357995][bookmark: _Toc522668481][bookmark: _Toc3837602]Normative References
[bookmark: ref_DSS2_JSON][DSS2-JSON]	A. Kuehne, S. Hagen. DSS 2.0 Core JSON Schema. OASIS.
[bookmark: ref_DSS2_XSD][DSS2-XSD]	A. Kuehne, S. Hagen. DSS 2.0 Core XML Schema. OASIS.
[bookmark: ref_DSSMD_JSON][DSSMD-JSON]	D. Hühnlein, A. Kuehne. Digital Signature Service Metadata JSON Schema. OASIS.
[bookmark: ref_DSSMD_XML][DSSMD-XML]	D. Hühnlein, A. Kuehne. Digital Signature Service Metadata XML Schema. OASIS.
[bookmark: ref_ISO3166_1][ISO3166-1]	ISO 3166-1:2013: "Codes for the representation of names of countries and their subdivisions — Part 1: Country codes".
[bookmark: RFC2119][bookmark: refRFC2119][RFC2119]	Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, http://www.rfc-editor.org/info/rfc2119.
[bookmark: ref_RFC3986][RFC3986]	Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986, DOI 10.17487/RFC3986, January 2005, https://www.rfc-editor.org/info/rfc3986.
[bookmark: ref_RFC5646][RFC5646]	Phillips, A., Ed., and M. Davis, Ed., "Tags for Identifying Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646, September 2009, https://www.rfc-editor.org/info/rfc5646
[RFC8174]	Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, http://www.rfc-editor.org/info/rfc8174.
1.4 [bookmark: _Toc85472895][bookmark: _Toc287332009][bookmark: _Toc480914665][bookmark: _Toc481064856][bookmark: _Toc516357996][bookmark: _Toc522668482][bookmark: _Toc3837603]Non-Normative References
[bookmark: ref_BDX_SMP_v1][BDX-SMP-v1.0]	Service Metadata Publishing (SMP) Version 1.0. Edited by Jens Aabol, Kenneth Bengtsson, Erlend Klakegg Bergheim, Sander Fieten, and Sven Rasmussen. 01 August 2017. OASIS Standard. http://docs.oasis-open.org/bdxr/bdx-smp/v1.0/os/bdx-smp-v1.0-os.html
[bookmark: ref_BDX_SMP_v2][BDX-SMP-v2.0]	Service Metadata Publishing (SMP) Version 2.0. Edited by Kenneth Bengtsson, Erlend Klakegg Bergheim, Sander Fieten, and G. Ken Holman. 30 January 2019. OASIS Committee Specification Draft 02 / Public Review Draft 02. https://docs.oasis-open.org/bdxr/bdx-smp/v2.0/csprd02/bdx-smp-v2.0-csprd02.html. Latest version: https://docs.oasis-open.org/bdxr/bdx-smp/v2.0/bdx-smp-v2.0.html
[bookmark: CSC_v1][CSC-v1.0]	Cloud Signature Consortium, “Architectures and protocols for remote signature applications”, Published version 1.0.3.0, 2018
[bookmark: ref_DSS1Core][DSS-v1.0]	Digital Signature Service Core Protocols, Elements, and Bindings Version 1.0. Edited by Stefan Drees. 11 April 2007. OASIS Standard. http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html.
[bookmark: ref_DSS2Core][DSS-v2.0]	Digital Signature Service Core Protocols, Elements, and Bindings Version 2.0. Edited by Andreas Kuehne and Stefan Hagen. 20 February 2019. OASIS Committee Specification Draft 02 / Public Review Draft 02. http://docs.oasis-open.org/dss-x/dss-core/v2.0/csprd02/dss-core-v2.0-csprd02.html. Latest version: http://docs.oasis-open.org/dss-x/dss-core/v2.0/dss-core-v2.0.html.
[bookmark: ref_eIDAS][eIDAS]	Regulation (EU) No 910/2014 of the European Parliament and of the Council of of 23 July 2014 on electronic identification and trust services for electronic transactions in the internal market and repealing Directive 1999/93/EC, http://data.europa.eu/eli/reg/2014/910/oj.
[bookmark: ref_OIDC_Metadata][OIDC-MD]	OpenID Connect Discovery 1.0. Edited by N. Sakimura, J. Bradley, M. Jones and E. Jay, 8 November 2014, https://openid.net/specs/openid-connect-discovery-1_0.html
[bookmark: ref_OpenAPI][OpenAPI]	The OpenAPI Specification, https://github.com/OAI/OpenAPI-Specification
[bookmark: ref_RFC_8414_OAuth2_Auth_Server_Metadata][RFC8414]	M. Jones, N. Sakimura, J. Bradley. OAuth 2.0 Authorization Server Metadata. IETF RFC 8414, June 2018.
http://www.ietf.org/rfc/rfc8414.txt.
[bookmark: ref_SAML_Metadata][SAML-MD]	Metadata for the OASIS Security Assertion Markup Language (SAML) V2.0. Edited by Scott Cantor, Jahan Moreh, Rob Philpott and Eve Maler. 15 March 2005, OASIS Standard. https://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf
[bookmark: TS119432][TS119432]	ETSI, “Electronic Signatures and Infrastructures (ESI); Protocols for remote digital signature creation”, Draft ETSI TS 119 432, V0.0.10 (2019-03).
[bookmark: TS119442][TS119442]	ETSI, “Electronic Signatures and Infrastructures (ESI); Protocol profiles for trust service providers providing AdES digital signature validation services”, ETSI TS 119 442, V1.1.1 (2019-02), https://www.etsi.org/deliver/etsi_ts/119400_119499/119442/01.01.01_60
[bookmark: TS119512][TS119512]	ETSI, “Electronic Signatures and Infrastructures (ESI); Protocols for trust service providers providing long-term data preservation services”, Draft ETSI TS 119 512, V0.0.8 (2019-03).
[bookmark: TS119612][TS119612]	ETSI, “Electronic Signatures and Infrastructures (ESI); Trusted Lists”, ETSI TS 119 612, V2.2.1 (2016-04), https://www.etsi.org/deliver/etsi_ts/119600_119699/119612/02.02.01_60/.
[bookmark: ref_WSDL][WSDL]	Web Services Description Language (WSDL) 1.1, W3C Note 15 March 2001, https://www.w3.org/TR/2001/NOTE-wsdl-20010315
1.5 [bookmark: _Toc478074535][bookmark: _Toc480914666][bookmark: _Toc481064857][bookmark: _Toc516357997][bookmark: _Toc522668483][bookmark: _Toc3837604]Typographical Conventions
Keywords defined by this specification use this monospaced font.
Normative source code uses this paragraph style.
Text following the special symbol («) – an opening Guillemet (or French quotation mark) – within this specification identifies automatically testable requirements to aid assertion tools. Every such statement is separated from the following text with the special end symbol (») – a closing Guillemet and has been assigned a reference that follows that end symbol in one of the three patterns:
1. [DSS-section#-local#] if it applies regardless of syntax
2. [JDSS-section#-local#] if it applies only to JSON syntax
3. [XDSS-section#-local#] if it applies only to XML syntax
Some sections of this specification are illustrated with non-normative examples.
Example 1: text describing an example uses this paragraph style
Non-normative examples use this paragraph style.
All examples in this document are non-normative and informative only.
Representation-specific text is indented and marked with vertical lines.
[bookmark: _Toc516357998][bookmark: _Toc516359664]Representation-Specific Headline
[bookmark: _Toc516359665]Normative representation-specific text
All other text is normative unless otherwise labelled e.g. like:
Non-normative Comment:
[bookmark: _Toc477207085][bookmark: _Toc477245605][bookmark: _Toc477257709][bookmark: _Toc477260062][bookmark: _Toc477267469][bookmark: _Toc477298449][bookmark: _Toc477298722][bookmark: _Toc477299172][bookmark: _Toc477346350][bookmark: _Toc477382561][bookmark: _Toc477425004][bookmark: _Toc477207086][bookmark: _Toc477245606][bookmark: _Toc477257710][bookmark: _Toc477260063][bookmark: _Toc477267470][bookmark: _Toc477298450][bookmark: _Toc477298723][bookmark: _Toc477299173][bookmark: _Toc477346351][bookmark: _Toc477382562][bookmark: _Toc477425005][bookmark: _Toc477207087][bookmark: _Toc477245607][bookmark: _Toc477257711][bookmark: _Toc477260064][bookmark: _Toc477267471][bookmark: _Toc477298451][bookmark: _Toc477298724][bookmark: _Toc477299174][bookmark: _Toc477346352][bookmark: _Toc477382563][bookmark: _Toc477425006]This is a pure informative comment that may be present, because the information conveyed is deemed useful advice or common pitfalls learned from implementer or operator experience and often given including the rationale.
1.6 [bookmark: _Toc114309475][bookmark: _Ref114333742][bookmark: _Toc157224992][bookmark: _Toc158797459][bookmark: _Toc159076027][bookmark: _Toc480914672][bookmark: _Toc481064863][bookmark: _Toc516357999][bookmark: _Toc522668484][bookmark: _Ref476950153][bookmark: _Toc478074536][bookmark: _Toc480914667][bookmark: _Toc481064858][bookmark: _Toc3837605]Motivation and related work (Non-normative)
Based on existing [DSS-v1.0] and emerging [DSS-v2.0] standards for digital signature services as well as the [eIDAS] regulation on electronic identifcationidentification and trust services, there is a growing ecosystem consisting of providers and consumers of a variety of digital signature related services, which raises the demand for a normalised discovery and provision of service-related metadata.
While there are already standards for the handling of service-related metadata for services for exchanging business documents (see [BDX-SMP-v1.0] and [BDX-SMP-v2.0]) or identity management services (see [SAML-MD], [RFC8414] and [OIDC-MD]), there is currently no comprehensive metadata standard for digital signature services, but only first steps towards filling this gap (see [CSC-v1.0], [TS119432] and [TS119512]).
Against this background, the present document aims at providing a generic and extensible structure (see clauses 2 and 3) and simple discovery mechanism (see clause 4) for digital signature service-related metadata, which is intended to be used in conjunction with [DSS-v2.0] and related profiles and extensions, such as [TS119432], [TS119442] and [TS119512] for example.
2 [bookmark: sec_DesignConsiderations][bookmark: _Toc3837606]Overview
As depicted in Figure 1, the main components of the service-related metadata structure specified in the present document comprise Provider, Protocol, Profile, Operation and Policy.

[image:]
[bookmark: _Ref3639553][bookmark: _Toc3731318]Figure 1: Overview of main components within the service-related metadata structures
The main component is the Provider element (see clause 3.1.1), which contains general metadata related to the provider of the service(s). As a service provider may support one or more protocols, for signature generation, signature validation or long-term preservation for example, and a provider may support different profiles of the supported protocols, the Provider element may contain one or more Protocol elements (see clause 3.1.2), which in turn may contain one or more Profile elements (see clause 3.1.3), which describe the supported profiles. A Profile element may in turn contain among other elements one or more Operation elements (see clause 3.1.4) and zero or more Policy elements (see 3.1.7), in which the applicable policies are specified or referenced.
3 [bookmark: _Toc3638160][bookmark: _Ref3646401][bookmark: _Toc3837607]Data Structure Models
3.1 [bookmark: _Toc3638161][bookmark: _Toc3837608]Data Structure Models defined in this document
The XML elements of this section are defined in the XML namespace 'http://docs.oasis-open.org/dss-x/ns/info'.
3.1.1 [bookmark: _RefComp8328BD89][bookmark: _Toc3638180][bookmark: _Toc3837609]Component Provider
The component Provider is the main element of the metadata structure and contains information about the provider of the related digital signature servicesservice. The structure of this component has been inspired by the content provided by the info call defined in [CSC-v1.0].
Below follows a list of the sub-components that constitute this component:
The Name element MUST contain one instance of a string, which contains the commercial name of the service provider. It is RECOMMENDED to limit the size of this string to 255 characters.
The Logo element MUST contain one instance of a URI, which refers to an image file containing the logo of the service provider. This image file MUST be published online and SHOULD either be in JPEG or PNG format and SHOULD NOT be larger than 256x256 pixels.
The Region element MUST contain one instance of a string with the [ISO3166-1] Alpha-2 code of the country in which the service provider is established.
The OPTIONAL SupportedLanguage element, if present, MAY occur zero or more times in order to signal the set of supported languages in line with [RFC5646].
The OPTIONAL Description element, if present, MAY occur zero or more times containing a sub-component, which provides additional information which describes the service. If present each instance MUST satisfy the requirements specified in [DSS-v2.0] for the InternationalString component, whereas it is RECOMMENDED to limit the size of the value component to 255 characters.
The OPTIONAL AuthInfo element, if present, MUST satisfy the requirements specified in clause 3.1.10 for the TypedLocator component. This component MUST contain a URII, which points to the location where the metadata document for the provides information on the authentication and authorisationauthorization service can be retrieved and MAY in addition contain a Type component, which specifies the type of the provided metadata document. The present document defines the following values for the Type component:mechanisms required to access the provided services.
· urn:ietf:rfc:8414 – for OAuth 2.0 metadata according to [RFC8414]
· urn:oasis:names:tc:SAML:2.0:metadata – for SAML 2.0 metadata according to [SAML-MD]
This URI SHOULD point to OAuth 2.0 [RFC8414] or SAML 2.0 [SAML-MD] specific metadata.
The Protocol element MUST occur 1 or more times containing a sub-component, which provides information about the supported protocols of the service. Each instance MUST satisfy the requirements specified in this document in section 3.1.2.
The OPTIONAL Extension element, if present, MAY occur zero or more times containing a sub-component, which extends the semantic of the Provider component. If present each instance MUST satisfy the requirements specified in this document in section 3.1.9.
3.1.1.1 [bookmark: _Toc3638181][bookmark: _Toc3837610]Provider – JSON Syntax
The ProviderType JSON object SHALL implement in JSON syntax the requirements defined in the Provider component.
Properties of the JSON object SHALL implement the sub-components of Provider using JSON-specific names mapped as shown in the table below.
	Element
	Implementing JSON member name

	Name
	name

	Logo
	logo

	Region
	region

	SupportedLanguage
	lang

	Description
	description

	AuthInfo
	authinfo

	Protocol
	protocol

	Extension
	ext

The ProviderType JSON object is defined in the JSON schema [DSSMD-JSON] and is provided below as a service to the reader.
"info-ProviderType": {
 "type": "object",
 "properties": {
 "name": {
 "type": "string"
 },
 "logo": {
 "type": "string"
 },
 "region": {
 "type": "string"
 },
 "lang": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "description": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/dsb-InternationalStringType"
 }
 },
 "authinfo": {
 "type": "string"
 },
 "protocol": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/info-ProtocolType"
 }
 },
 "ext": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/info-ExtensionType"
 }
 }
 },
 "required": ["name", "logo", "region", "protocol"]
}
3.1.1.2 [bookmark: _Toc3638182][bookmark: _Toc3837611]Provider – XML Syntax
The XML type ProviderType SHALL implement the requirements defined in the Provider component.
The ProviderType XML element is defined in XML Schema [DSSMD-XML], and is copied below for information.
<xs:complexType name="ProviderType">
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Logo" type="xs:anyURI"/>
 <xs:element name="Region" type="xs:string"/>
 <xs:element name="SupportedLanguage" type="xs:language" maxOccurs="unbounded" minOccurs="0"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" ref="info:Description"/>
 <xs:element name="AuthInfo" type="xs:anyURI" maxOccurs="1" minOccurs="0"/>
 <xs:element name="Protocol" type="info:ProtocolType" maxOccurs="unbounded" minOccurs="1"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" ref="info:Extension"/>
 </xs:sequence>
</xs:complexType>
Each child element of ProviderType XML element SHALL implement in XML syntax the sub-component that has a name equal to its local name.
3.1.2 [bookmark: _RefCompACE1111B][bookmark: _Toc3638183][bookmark: _Toc3837612]Component Protocol
The Protocol component is part of the Provider component specified in clause 3.1.1 and provides information about a digital signature related protocol supported by the service provider.
Below follows a list of the sub-components that constitute this component:
The OPTIONAL Server element, if present, MUST contain one instance of a URI, which SHOULD be the URL of the target host of the service supporting the protocol. For REST-based services this is the URL of Server Object component within [OpenAPI] and for SOAP-based services this is the soap:address within [WSDL].
The OPTIONAL Specification element, if present, MAY occur zero or more times containing a URI, which points to a specification document describing the digital signature related protocol. Examples of digital signature related protocols include the generation [DSS-v1.0, DSS-v2.0, TS119432], validation [TS119442] and preservation [TS119512] of digital signatures.
The OPTIONAL Version element, if present, MUST contain a string, which indicates the version of the protocol specification, if it is not specified within the specification document mentioned above.
The OPTIONAL Description element, if present, MAY occur zero or more times containing a sub-component, which provides additional information with respect to the supported protocol. If present, each instance MUST satisfy the requirements specified in [DSS-v2.0] for the InternationalString component.
The Profile element MUST occur 1 or more times containing a sub-component, which further describes the specific profile of the supported digital signature related protocol. Each instance MUST satisfy the requirements specified in this document in section 3.1.3.
The OPTIONAL Extension element, if present, MAY occur zero or more times containing a sub-component, which extends the semantics of the Protocol component. If present each instance MUST satisfy the requirements specified in this document in section 3.1.9.
3.1.2.1 [bookmark: _Toc3638184][bookmark: _Toc3837613]Protocol – JSON Syntax
The ProtocolType JSON object SHALL implement in JSON syntax the requirements defined in the Protocol component.
Properties of the JSON object SHALL implement the sub-components of Protocol using JSON-specific names mapped as shown in the table below.
	Element
	Implementing JSON member name

	Server
	srv

	Specification
	spec

	Version
	version

	Description
	description

	Profile
	profile

	Extension
	ext

The ProtocolType JSON object is defined in the JSON schema [DSSMD-JSON] and is provided below as a service to the reader.
"info-ProtocolType": {
 "type": "object",
 "properties": {
 "srv": {
 "type": "string"
 },
 "spec": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "version": {
 "type": "string"
 },
 "description": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/dsb-InternationalStringType"
 }
 },
 "profile": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/info-ProfileType"
 }
 },
 "ext": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/info-ExtensionType"
 }
 }
 },
 "required": ["profile"]
}

3.1.2.2 [bookmark: _Toc3638185][bookmark: _Toc3837614]Protocol – XML Syntax
The XML type ProtocolType SHALL implement the requirements defined in the Protocol component.
The ProtocolType XML element is defined in XML Schema [DSSMD-XML], and is copied below for information.
<xs:complexType name="ProtocolType">
 <xs:sequence>
 <xs:element name="Server" type="xs:anyURI" maxOccurs="1" minOccurs="0"/>
 <xs:element name="Specification" type="xs:anyURI" maxOccurs="unbounded" minOccurs="0"/>
 <xs:element name="Version" type="xs:string" maxOccurs="1" minOccurs="0"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" ref="info:Description"/>
 <xs:element name="Profile" type="info:ProfileType" maxOccurs="unbounded" minOccurs="1"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" ref="info:Extension"/>
 </xs:sequence>
</xs:complexType>
Each child element of ProtocolType XML element SHALL implement in XML syntax the sub-component that has a name equal to its local name.
3.1.3 [bookmark: _RefComp41767709][bookmark: _Toc3638186][bookmark: _Toc3837615]Component Profile
The Profile component is part of the Protocol component specified in clause 3.1.2 and provides information about the specific profile of the supported digital signature related protocol.
Below follows a list of the sub-components that constitute this component:
The ProfileIdentifier element MUST contain one instance of a URI, which uniquely identifies the profile of the digital signature related protocol.
The OPTIONAL Specification element, if present, MAY occur zero or more times containing a URI, which points to a specification document describing the specific profile of the digital signature related protocol.
The OPTIONAL Description element, if present, MAY occur zero or more times containing a sub-component, which satisfies the requirements specified in [DSS-v2.0] for the InternationalString component and can be used to provide descriptions of the profile in multiple languages.
The Operation element MUST occur 1 or more times containing a sub-component, which describes a specific operation supported by the profile of the digital signature related protocol. For each supported operation there MUST be an Operation component and each instance MUST satisfy the requirements specified in this document in section 3.1.4.
The OPTIONAL Policy element, if present, MAY occur zero or more times containing a sub-component, which specifies the set of policies, which are applicable for the specific profile of the digital signature related protocol. If present each instance MUST satisfy the requirements specified in this document in section 3.1.7.
The OPTIONAL Extension element, if present, MAY occur zero or more times containing a sub-component, which extends the semantics of the Profile component.. If present each instance MUST satisfy the requirements specified in this document in section 3.1.9.
3.1.3.1 [bookmark: _Toc3638187][bookmark: _Toc3837616]Profile – JSON Syntax
The ProfileType JSON object SHALL implement in JSON syntax the requirements defined in the Profile component.
Properties of the JSON object SHALL implement the sub-components of Profile using JSON-specific names mapped as shown in the table below.
	Element
	Implementing JSON member name

	ProfileIdentifier
	prfid

	Specification
	spec

	Description
	description

	Operation
	op

	Policy
	pol

	Extension
	ext

The ProfileType JSON object is defined in the JSON schema [DSSMD-JSON] and is provided below as a service to the reader.
"info-ProfileType": {
 "type": "object",
 "properties": {
 "prfid": {
 "type": "string"
 },
 "spec": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "description": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/dsb-InternationalStringType"
 }
 },
 "op": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/info-OperationType"
 }
 },
 "pol": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/info-PolicyType"
 }
 },
 "ext": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/info-ExtensionType"
 }
 }
 },
 "required": ["prfid", "op"]
}

3.1.3.2 [bookmark: _Toc3638188][bookmark: _Toc3837617]Profile – XML Syntax
The XML type ProfileType SHALL implement the requirements defined in the Profile component.
The ProfileType XML element is defined in XML Schema [DSSMD-XML], and is copied below for information.
<xs:complexType name="ProfileType">
 <xs:sequence>
 <xs:element name="ProfileIdentifier" type="xs:anyURI"/>
 <xs:element name="Specification" type="xs:anyURI" maxOccurs="unbounded" minOccurs="0"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" ref="info:Description"/>
 <xs:element name="Operation" type="info:OperationType" maxOccurs="unbounded" minOccurs="1"/>
 <xs:element name="Policy" type="info:PolicyType" maxOccurs="unbounded" minOccurs="0"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" ref="info:Extension"/>
 </xs:sequence>
</xs:complexType>
Each child element of ProfileType XML element SHALL implement in XML syntax the sub-component that has a name equal to its local name.
3.1.4 [bookmark: _RefComp7FC5E81A][bookmark: _Toc3638165][bookmark: _Toc3837618]Component Operation
The Operation component is part of the Profile component specified in clause 3.1.3 and provides information about an operation supported by a specific profile of the supported digital signature related protocol.
Below follows a list of the sub-components that constitute this component:
The Name OperationIdentifier element MUST contain one instance of a stringURI, which MUST reflect the name of the request to invoke the operation. For REST-based services this corresponds to the Paths Object component within [OpenAPI] and the Name OperationIdentifier element SHOULD contain the relative path the endpoint at which the operation can be invoked, which is appended to the URL of the Server component within the Protocol element specified in clause 3.1.2. For SOAP-based services the Name element corresponds to the soap:operation within [WSDL].
The OPTIONAL Specification element, if present, MUST contain a URI, which points to a specification document describing the specific operation under consideration.
The OPTIONAL Description element, if present, MAY occur zero or more times containing a sub-component, which satisfies the requirements specified in [DSS-v2.0] for the InternationalString component and can be used to provide additional information with respect to the specific operation under consideration.
The OPTIONAL Input element, if present, MAY occur zero or more times containing a sub-component, which specifies details of a specific input parameter. If present each instance MUST satisfy the requirements specified in this document in section 3.1.5.
The OPTIONAL Option element, if present, MAY occur zero or more times containing a sub-component, which specifies details of a specific optional input parameter. If present each instance MUST satisfy the requirements specified in this document in section 3.1.5.
The OPTIONAL Output element, if present, MAY occur zero or more times containing a sub-component, which specifies details of a specific output parameter. If present each instance MUST satisfy the requirements specified in this document in section 3.1.5.
The OPTIONAL Schema element, if present, MUST contain a URI, which points to the applicable schema document, which defines the detailed syntax of the component implementing the operation under consideration.

The OPTIONAL Extension element, if present, MAY occur zero or more times containing a sub-component, which extends the semantics of the Operation element. If present each instance MUST satisfy the requirements specified in this document in section 3.1.9.
3.1.4.1 [bookmark: _Toc3638166][bookmark: _Toc3837619]Operation – JSON Syntax
The OperationType JSON object SHALL implement in JSON syntax the requirements defined in the Operation component.
Properties of the JSON object SHALL implement the sub-components of Operation using JSON-specific names mapped as shown in the table below.
	Element
	Implementing JSON member name

	Name
	name

	Specification
	spec

	Description
	desc

	Input
	in

	Option
	opt

	Output
	out

	Schema
	schemaxsd

	Extension
	ext

The OperationType JSON object is defined in the JSON schema [DSSMD-JSON] and is provided below as a service to the reader.
"info-OperationType": {
 "type": "object",
 "properties": {
 "name": {
 "type": "string"
 },
 "spec": {
 "type": "string"
 },
 "desc": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/dsb-InternationalStringType"
 }
 },
 "in": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/info-ParameterType"
 }
 },
 "opt": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/info-ParameterType"
 }
 },
 "out": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/info-ParameterType"
 }
 },
 "xsdschema": {
 "type": "string"
 },
 "ext": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/info-ExtensionType"
 }
 }
 },
 "required": ["name"]
}

3.1.4.2 [bookmark: _Toc3638167][bookmark: _Toc3837620]Operation – XML Syntax
The XML type OperationType SHALL implement the requirements defined in the Operation component.
The OperationType XML element is defined in XML Schema [DSSMD-XML], and is copied below for information.
<xs:complexType name="OperationType">
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Specification" type="xs:anyURI" maxOccurs="1" minOccurs="0"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" ref="info:Description"/>
 <xs:element name="Input" type="info:ParameterType" maxOccurs="unbounded" minOccurs="0"/>
 <xs:element name="Option" type="info:ParameterType" maxOccurs="unbounded" minOccurs="0"/>
 <xs:element name="Output" type="info:ParameterType" maxOccurs="unbounded" minOccurs="0"/>
 <xs:element name="Schema" type="xs:anyURI" maxOccurs="1" minOccurs="0"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" ref="info:Extension"/>
 </xs:sequence>
</xs:complexType>
Each child element of OperationType XML element SHALL implement in XML syntax the sub-component that has a name equal to its local name.
3.1.5 [bookmark: _RefComp0510EDA8][bookmark: _Toc3638168][bookmark: _Toc3837621]Component Parameter
The Parameter component defines the syntax and semantics of the child components Input, Option and Output of the Operation component specified in clause 3.1.4 and allows to provide additional information with respect to specific input and output parameters as well as the available options for an operation, if this is not yet unambiguously specified by the document referenced in the child element Specification of the Operation according to clause 3.1.4.
Below follows a list of the sub-components that constitute this component:
The Name element MUST contain one instance of a string, which reflects the name of the paramterparameter under consideration.
The OPTIONAL Specification element, if present, MUST contain a URI, which points to a specification document describing additional details with respect to the parameter under consideration.
The OPTIONAL Description element, if present, MAY occur zero or more times containing a sub-component, which satisfies the requirements specified in [DSS-v2.0] for the InternationalString component and can be used to provide additional information with respect to the specific (optional) input or output parameter under consideration.
The OPTIONAL Format element, if present, MAY occur zero or more times containing a sub-component, which can be used to specify the format of the (optional) input or output parameter under consideration. If present each instance MUST satisfy the requirements specified in this document in section 3.1.6.
The OPTIONAL Schema element, if present, MUST contain a URI, which points to the applicable schema document, which defines the detailed syntax of the component implementing the specific (optional) input or output parameter under consideration.
The OPTIONAL Extension element, if present, MAY occur zero or more times containing a sub-component, which extends the semantissemantic of the Parameter component. If present each instance MUST satisfy the requirements specified in this document in section 3.1.9.
3.1.5.1 [bookmark: _Toc3638169][bookmark: _Toc3837622]Parameter – JSON Syntax
The ParameterType JSON object SHALL implement in JSON syntax the requirements defined in the Parameter component.
Properties of the JSON object SHALL implement the sub-components of Parameter using JSON-specific names mapped as shown in the table below.
	Element
	Implementing JSON member name

	Name
	name

	Specification
	spec

	Description
	desc

	Format
	form

	Schema
	schemaxsd

	Extension
	ext

The ParameterType JSON object is defined in the JSON schema [DSSMD-JSON] and is provided below as a service to the reader.
"info-ParameterType": {
 "type": "object",
 "properties": {
 "name": {
 "type": "string"
 },
 "spec": {
 "type": "string"
 },
 "desc": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/dsb-InternationalStringType"
 }
 },
 "form": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/info-FormatType"
 }
 },
 "xsdschema": {
 "type": "string"
 },
 "ext": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/info-ExtensionType"
 }
 }
 },
 "required": ["name"]
}

3.1.5.2 [bookmark: _Toc3638170][bookmark: _Toc3837623]Parameter – XML Syntax
The XML type ParameterType SHALL implement the requirements defined in the Parameter component.
The ParameterType XML element is defined in XML Schema [DSSMD-XML], and is copied below for information.
<xs:complexType name="ParameterType">
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Specification" type="xs:anyURI" maxOccurs="1" minOccurs="0"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" ref="info:Description"/>
 <xs:element name="Format" type="info:FormatType" maxOccurs="unbounded" minOccurs="0"/>
 <xs:element name="Schema" type="xs:anyURI" maxOccurs="1" minOccurs="0"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" ref="info:Extension"/>
 </xs:sequence>
</xs:complexType>
Each child element of ParameterType XML element SHALL implement in XML syntax the sub-component that has a name equal to its local name.
3.1.6 [bookmark: _RefCompD71B79D8][bookmark: _Toc3638171][bookmark: _Toc3837624]Component Format
The Format component is part of the Parameter component specified in clause 3.1.5 and allows to provide additional information with respect to format of the specific input and output parameters or options of an operation, if this is not yet unambiguously specified by the document referenced in the child element Specification of the Operation according to clause 3.1.4.
Below follows a list of the sub-components that constitute this component:
The FormatID element MUST contain one instance of a URI, which identifies the format of the parameter.
The OPTIONAL Specification element, if present, MUST contain a URI, which points to a specification document describing additional details with respect to the format under consideration.
The OPTIONAL Description element, if present, MAY occur zero or more times containing a sub-component, which satisfies the requirements specified in [DSS-v2.0] for the InternationalString component and can be used to provide additional information with respect to the format under consideration.
The OPTIONAL Parameter element, if present, MAY occur zero or more times containing a sub-component, which provides more information with respect to a specific parameter under consideration. If present each instance MUST satisfy the requirements specified in this document in section 3.1.5.
The OPTIONAL Extension element, if present, MAY occur zero or more times containing a sub-component, which extends the semantic of the Format component. If present each instance MUST satisfy the requirements specified in [DSS-v2.0] for the Any component.
The OPTIONAL IsDefault element, if present, MUST contain one instance of a boolean and indicates whether the format under consideration is the default format. Its default value is 'false'. The precise semantics what it means that a format is considered to be “the default format” MUST be defined by profiles or extensions of [DSS-v2.0].
3.1.6.1 [bookmark: _Toc3638172][bookmark: _Toc3837625]Format – JSON Syntax
The FormatType JSON object SHALL implement in JSON syntax the requirements defined in the Format component.
Properties of the JSON object SHALL implement the sub-components of Format using JSON-specific names mapped as shown in the table below.
	Element
	Implementing JSON member name

	FormatID
	fid

	Specification
	spec

	Description
	desc

	Parameter
	format

	Extension
	ext

	IsDefault
	def

The FormatType JSON object is defined in the JSON schema [DSSMD-JSON] and is provided below as a service to the reader.
"info-FormatType": {
 "type": "object",
 "properties": {
 "fid": {
 "type": "string"
 },
 "spec": {
 "type": "string"
 },
 "desc": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/dsb-InternationalStringType"
 }
 },
 "format": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/info-ParameterType"
 }
 },
 "ext": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/dsb-AnyType"
 }
 },
 "def": {
 "type": "boolean",
 "default": "false"
 }
 },
 "required": ["fid"]
}
3.1.6.2 [bookmark: _Toc3638173][bookmark: _Toc3837626]Format – XML Syntax
The XML type FormatType SHALL implement the requirements defined in the Format component.
The FormatType XML element is defined in XML Schema [DSSMD-XML], and is copied below for information.
<xs:complexType name="FormatType">
 <xs:sequence>
 <xs:element name="FormatID" type="xs:anyURI"/>
 <xs:element name="Specification" type="xs:anyURI" maxOccurs="1" minOccurs="0"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" ref="info:Description"/>
 <xs:element name="Parameter" type="info:ParameterType" maxOccurs="unbounded" minOccurs="0"/>
 <xs:element name="Extension" type="dsb:AnyType" maxOccurs="unbounded" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="IsDefault" type="xs:boolean" default="false" use="optional"/>
</xs:complexType>
Each child element of FormatType XML element SHALL implement in XML syntax the sub-component that has a name equal to its local name.
3.1.7 [bookmark: _RefComp25E9B797][bookmark: _Toc3638174][bookmark: _Toc3837627]Component Policy
The Policy component appears within the Profile component specified in clause 3.1.3 and provides information about an applicable policy of the profile of the supported digital signature related protocol.
Below follows a list of the sub-components that constitute this component:
The OPTIONAL PolicyByRef element, if present, MUST contain one instance of a sub-component, which provides a reference to a human readiblereadable policy document. This element MUST satisfy the requirements specified in this document in section 3.1.8.
The OPTIONAL PolicyByDef element, if present, MUST contain one instance of a sub-component, which contains a machine readiblereadable policy document. This element MUST satisfy the requirements specified in [DSS-v2.0] for the Any component. The detailed syntax and semantics of the machine readable readibly policy document MUST be defined by profiles or extensions of [DSS-v2.0] or specifications referenced in such documents.
The OPTIONAL EarlierPolicy element, if present, MAY occur zero or more times containing a URI, which refers to an earlier policy document.
The OPTIONAL Extension element, if present, MAY occur zero or more times containing a sub-component, which extends the semantics of the Policy component. If present each instance MUST satisfy the requirements specified in this document in section 3.1.9.
The OPTIONAL Type element, if present, MUST contain one instance of a URI. The admissible or recommended values for the policy types SHOULD be defined by profiles or extensions of [DSS-v2.0].
3.1.7.1 [bookmark: _Toc3638175][bookmark: _Toc3837628]Policy – JSON Syntax
The PolicyType JSON object SHALL implement in JSON syntax the requirements defined in the Policy component.
Properties of the JSON object SHALL implement the sub-components of Policy using JSON-specific names mapped as shown in the table below.
	Element
	Implementing JSON member name

	PolicyByRef
	pbref

	PolicyByDef
	pbdef

	EarlierPolicy
	ep

	Extension
	ext

	Type
	type

The PolicyType JSON object is defined in the JSON schema [DSSMD-JSON] and is provided below as a service to the reader.
"info-PolicyType": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string",
 "format": "uri"
 },
 "pbref": {
 "$ref": "#/definitions/info-PolicyByRefType"
 },
 "pbdef": {
 "$ref": "#/definitions/dsb-AnyType"
 },
 "ep": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "ext": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/info-ExtensionType"
 }
 }
 }
}

3.1.7.2 [bookmark: _Toc3638176][bookmark: _Toc3837629]Policy – XML Syntax
The XML type PolicyType SHALL implement the requirements defined in the Policy component.
The PolicyType XML element is defined in XML Schema [DSSMD-XML], and is copied below for information.
<xs:complexType name="PolicyType">
 <xs:sequence>
 <xs:choice>
 <xs:element name="PolicyByRef" type="info:PolicyByRefType"/>
 <xs:element name="PolicyByDef" type="dsb:AnyType"/>
 </xs:choice>
 <xs:element name="EarlierPolicy" type="xs:anyURI" maxOccurs="unbounded" minOccurs="0"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" ref="info:Extension"/>
 </xs:sequence>
 <xs:attribute name="Type" type="xs:anyURI" use="optional"/>
</xs:complexType>
Each child element of PolicyType XML element SHALL implement in XML syntax the sub-component that has a name equal to its local name.
3.1.8 [bookmark: _RefComp73804EEC][bookmark: _Toc3638177][bookmark: _Toc3837630]Component PolicyByRef
The PolicyByRef component appears within the Policy component specified in clause 3.1.7 and provides a reference to a human readiblereadable policy document, which is applicable for a profile of the supported digital signature related protocol.
Below follows a list of the sub-components that constitute this component:
The PolicyID element MUST contain one instance of a URI, which uniquely identifies the policy under consideration.
The OPTIONAL PolicyLocation element, if present, MUST contain a URI, which SHOULD refer to the location where the policy document can be retrieved. If the PolicyID is already a retrievable URL, the PolicyLocation MAY be omitted.
3.1.8.1 [bookmark: _Toc3638178][bookmark: _Toc3837631]PolicyByRef – JSON Syntax
The PolicyByRefType JSON object SHALL implement in JSON syntax the requirements defined in the PolicyByRef component.
Properties of the JSON object SHALL implement the sub-components of PolicyByRef using JSON-specific names mapped as shown in the table below.
	Element
	Implementing JSON member name

	PolicyID
	polid

	PolicyLocation
	polloc

The PolicyByRefType JSON object is defined in the JSON schema [DSSMD-JSON] and is provided below as a service to the reader.
"info-PolicyByRefType": {
 "type": "object",
 "properties": {
 "polid": {
 "type": "string"
 },
 "polloc": {
 "type": "string"
 }
 },
 "required": ["polid"]
}
3.1.8.2 [bookmark: _Toc3638179][bookmark: _Toc3837632]PolicyByRef – XML Syntax
The XML type PolicyByRefType SHALL implement the requirements defined in the PolicyByRef component.
The PolicyByRefType XML element is defined in XML Schema [DSSMD-XML], and is copied below for information.
<xs:complexType name="PolicyByRefType">
 <xs:sequence>
 <xs:element name="PolicyID" type="xs:anyURI"/>
 <xs:element name="PolicyLocation" type="xs:anyURI" maxOccurs="1" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>
Each child element of PolicyByRefType XML element SHALL implement in XML syntax the sub-component that has a name equal to its local name.
3.1.9 [bookmark: _RefComp0772AEAC][bookmark: _Toc3638162][bookmark: _Toc3837633]Component Extension
The Extension component defined in the present document is used in several other components and provides a lightweight possibility for extending the semantics of other components.
Below follows a list of the sub-components that constitute this component:
The Name element MUST contain one instance of a string and specifies the name of the extension element.
The Value element MUST contain one instance of a string and specifies the value of the extension element.

NOTE: In contrast to the Any component defined in [DSS-v2.0], the Extension element defined here only consists of a simple Name and Value pair, which maintains the direct readability by humans, but is less powerful than the Any component, which also allows features transformations for example.

3.1.9.1 [bookmark: _Toc3638163][bookmark: _Toc3837634]Extension – JSON Syntax
The ExtensionType JSON object SHALL implement in JSON syntax the requirements defined in the Extension component.
Properties of the JSON object SHALL implement the sub-components of Extension using JSON-specific names mapped as shown in the table below.
	Element
	Implementing JSON member name

	Name
	name

	Value
	value

The ExtensionType JSON object is defined in the JSON schema [DSSMD-JSON] and is provided below as a service to the reader.
"info-ExtensionType": {
 "type": "object",
 "properties": {
 "name": {
 "type": "string"
 },
 "value": {
 "type": "string"
 }
 },
 "required": ["name", "value"]
}

3.1.9.2 [bookmark: _Toc3638164][bookmark: _Toc3837635]Extension – XML Syntax
The XML type ExtensionType SHALL implement the requirements defined in the Extension component.
The ExtensionType XML element is defined in XML Schema [DSSMD-XML], and is copied below for information.
<xs:complexType name="ExtensionType">
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Value" type="xs:string"/>
 </xs:sequence>
</xs:complexType>
Each child element of ExtensionType XML element SHALL implement in XML syntax the sub-component that has a name equal to its local name.
3.1.10 [bookmark: _Ref3835910][bookmark: _Toc3837636]Component TypedLocator
The TypedLocator component defined in the present document is used for the definition of the AuthInfo component in clause 3.1.2 and MUST contain a URL, which points to a retrievable document and which MAY in addition contain a URI, which specifies the type of the provided document.
Below follows a list of the sub-components that constitute this component:
The value element MUST contain one instance of a URI, which specifies the location of the document.
The Type element MAY, if present, contain one instance of a URI, which specifies the type of the document.
3.1.10.1 [bookmark: _Toc983636][bookmark: _Toc3282943][bookmark: _Toc3837637]TypedLocator – JSON Syntax
The TypedLocatorType JSON object SHALL implement in JSON syntax the requirements defined in the TypedLocator component.
Properties of the JSON object SHALL implement the sub-components of TypedLocator using JSON-specific names mapped as shown in the table below.
	Element
	Implementing JSON member name

	value
	value

	Type
	type

The TypedLocatorType JSON object is defined in the JSON schema [DSSMD-JSON] and is provided below as a service to the reader.
"info-TypedLocator": {
 "type": "object",
 "properties": {
 "value": {
 "type": "string"
 },
 "type": {
 "type": "string"
 }
 },
 "required": ["value"]
}

3.1.10.2 [bookmark: _Toc983637][bookmark: _Toc3282944][bookmark: _Toc3837638]TypedLocator – XML Syntax
The XML type TypedLocatorType SHALL implement the requirements defined in the TypedLocator component.
The TypedLocatorType XML element is defined in XML Schema [DSSMD-XML], and is copied below for information.
<xs:complexType name="TypedLocatorType">
 <xs:simpleContent>
 <xs:extension base="xs:anyURI">
 <xs:attribute name="Type" type="xs:anyURI" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>
Each child element of TypedLocatorType XML element SHALL implement in XML syntax the sub-component that has a name equal to its local name.

3.2 [bookmark: _Toc3638215][bookmark: _Toc3837639]Element / JSON name lookup tables
The subsequent table allows to find the names of a component's element for a given JSON member name.
	JSON member name
	mapped from element name

	authinfo
	AuthInfo

	def
	IsDefault

	ep
	EarlierPolicy

	ext
	Extension

	fid
	FormatID

	form
	Format

	format
	Parameter

	ID
	Id

	in
	Input

	lang
	SupportedLanguage

	logo
	Logo

	nameopid
	NameOperationIdentifier

	op
	Operation

	opt
	Option

	out
	Output

	pbdef
	PolicyByDef

	pbref
	PolicyByRef

	prfid
	ProfileIdentifier

	pol
	Policy

	polid
	PolicyID

	polloc
	PolicyLocation

	pre
	NamespacePrefix

	profile
	Profile

	protocol
	Protocol

	region
	Region

	spec
	Specification

	type
	Type

	uri
	NamespaceURI

	value
	Value

	version
	Version

	xsd
	Schema

The subsequent table allows to find the abbreviated JSON member names for a given element name.
	Element
	Implementing JSON member name

	AuthInfo
	authinfo

	DigestMethod
	alg

	DigestValue
	val

	EarlierPolicy
	ep

	Extension
	ext

	Format
	form

	FormatID
	fid

	Id
	ID

	Input
	in

	IsDefault
	def

	Logo
	logo

	Name
	name

	NamespacePrefix
	pre

	NamespaceURI
	uri

	Operation
	op

	OperationIdentifier
	opid

	Option
	opt

	Output
	out

	Parameter
	format

	Policy
	pol

	PolicyByDef
	pbdef

	PolicyByRef
	pbref

	PolicyID
	polid

	PolicyLocation
	polloc

	Profile
	profile

	ProfileIdentifier
	prfid

	Protocol
	protocol

	Region
	region

	Schema
	xsdschema

	Specification
	spec

	SupportedLanguage
	lang

	Type
	type

	Value
	value

	Version
	version

[bookmark: _Ref3705991][bookmark: _Toc3837640]Metadata Discovery
Unless other discovery mechanisms are specified by profiles or extensions of [DSS-v2.0] for example, it is RECOMMENDED that digital signature service providers make available a JSON or XML document using the appropriate content type (i.e. application/json or application/xml) with the digital signature service metadata at the path formed by concatenating the string /.well-known/dss-info to the “canonical information URL” of the service provider, which is intended to provide information about the provided services.
The “TSP information URI” according to clause 5.4.4 of [TS119612] MAY be used as “canonical information URL” to provider the metadata for its digital signature related services.
[bookmark: _Toc522668750][bookmark: _Toc3837641]Acknowledgments
The following individuals have participated in the creation of this specification and are gratefully acknowledged:
Andreas Kuehne, Individual
Detlef Hühnlein, Individual
Ernst Jan van Nigtevecht, Sonnenglanz Consulting

[bookmark: _Toc522668752][bookmark: _Toc3837642]List of Figures
Figure 1: Overview of main components within the service-related metadata structures	9

[bookmark: _Toc522668753][bookmark: _Toc3837643]Revision History
	Revision
	Date
	Editor
	Changes Made

	WD01
	2019-03-17
	Detlef Hühnlein and Andreas Kuehne
	Draft for discussion within DSS-X and potential ballot public review

	CSD01
	2019-03-18
	Detlef Hühnlein and Andreas Kuehne
	Version for public review

image2.png
Provider

1

Protocol

1

Profile

= Operation o Input
0.* o Option
- Policy P
0.%

Output

image1.jpg

