
[image: image1.png]OASIS)

Electronic Business Service Oriented Architecture

Service Broker – Proxy Pattern
Document identifier:

TBA
Location:

http://www.oasis-open.org/committees/ebsoa

Editors:

Matthew MacKenzie, Adobe Systems <mattm@adobe.com>

Contributors:
Duane Nickull, Adobe Systems < duane@nickull.net >

Kathryn Breininger, Boeing

Tim Mathews, LMI

Ron Schuldt, Lockheed Martin

Abstract:

This pattern is part of a service oriented architecture specification. Together with the specification document, a catalog of specification and other specifications, it constitutes the OASIS Electronic Business Service Oriented Architecture.
Status:

This document is in DRAFT status. It is not intended to compose constraints on any service oriented architecture implementation. It captures a specific pattern of service oriented architecture independent of any implementation technology, yet maps to some specific implementation technology where applicable. To implement this pattern, implementers should study the contents, then rely on profiles published by the WS-I organization in order to ensure maximum potential for interoperability and conformance.
Committee members should submit comments to the ebsoa@lists.oasis-open.org list.

Others should submit comments by filling out the form at http://www.oasis-open.org/committees/comments/form.php?wg_abbrev=ebsoa
Table of Contents

21.1
Document Structure

31.2
Terminology

42
Pattern

42.1
Service Broker – Proxy Pattern

42.2
Also known As (optional)

42.3
Business Problem (Story)

42.4
Context

42.5
Derived Requirements

52.5.1
Forces

52.5.2
Constraints

52.6
Generalized Solution

52.7
Static Structure

62.8
Dynamic Behavior

72.9
Implementation

72.10
Business Problem (Story?) Resolved

82.11
Specializations

82.12
Known Uses

92.13
Consequences

102.14
References

11Appendix A. Revision History

12Appendix B. Notices

1.1 Document Structure

This specification is comprised of several inter-related components. This document is an instance of a pattern and is referenced via the Pattern Catalogue. This pattern is a stand alone document and is structured in the format specified in the eb SOA Specification, in the section on Patterns Meta Model.
[image: image2.png]Spelcation

Catalog of Pattems

Pattern

Pattem

While care has been taken not to create dependencies between patterns, some implementers may find that dependencies exist for their specific application.

The status of each Pattern may change throughout its’ approval lifecycle (example: draft, committee draft, candidate recommendation, approved specification).

1.2 Terminology

The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this document, and the patterns themselves, are to be interpreted as described in Error! Reference source not found..

2 Pattern

2.1 Service Broker – Proxy Pattern
This pattern depicts abstraction of environmental technology in order to allow service consumption using well accepted industry standards.

2.2 Also known As (optional)

The term “Web Services” generally imply an implementation of this pattern.

2.3 Business Problem (Story)

Several businesses that make up a vertical industry sector wish to provide service that may be consumed by other members of the consortium. Because each of the businesses use different back ends systems, different operating systems and different models for their business information, they need to develop a mechanism to allow each other to publish and consume services using industry standards that are abstract of proprietary technologies. If this is not done, it would force each business to support the specific proprietary format of every other business in the vertical making the entire system unfeasibly complex and likely unmanageable due to constant changes with each proprietary format.
The desire is to have one set of common standards including a data serialization protocol, a transport mechanism and an interfacing methodology.

2.4 Context

The context in which this problem occurs is any virtual network of applications that require a set of standards in order to facilitate integration between the participants.
2.5 Derived Requirements

The group of participants within the vertical must adopt a single set of service enabling technologies on which to base their service offerings. These should be based on mature industry standards. Each business must then map their internal, proprietary business service interfaces to the more abstract service layer.
2.5.1 Forces

The adopted service enabling standards must be abstract of any specific programming technology, programming paradigm, operating system and any other force that would create unnecessary binding problems.
2.5.2 Constraints

The standards chosen must be robust enough to facilitate the basic service request – service response pattern, via a proxy to abstract the service consumer from any specific standards.
Easy to implement software packages, in most major programming languages must be present to support implementation of the service proxies on all platforms within the vertical ecosystem.
2.6 Generalized Solution

The generalized solution for the problem is to use a “Service Proxy” or “Service Broker” in order to simplify communications between disparate systems.
A Service Proxy is an application that usually resides on the service providers systems and maps the specific business functionality to a more abstract interface. In an example where a business uses an SAP system to manage critical business systems, instead of forcing other business to send service requests in the SAP format using an SAP binding transport technology, the business could build a service provider proxy that accepts binding using SOAP to deliver the payload, and the payload to be delivered in XML format. The service provider proxy would then map the incoming SOAP and XML message into the specific format for the SAP system.

2.7 Static Structure

Illustrating this using a simple stack diagram shows the interactions between the components.

[image: image3.png]Service Consumer

XL over SOAP.

SOAP. XML Parser

Senvice Proxy

Proprietary Service ‘Business Daa
And Logic

Persisten

r
\

\

\

\

| Proprietay format
\ ¥

\

\

\

\

\

\

s Service Provider Domain Data Sire

The service proxy basically abstracts the client from having to know any specific proprietary nuances in order to invoke the business functionality. Since the service proxy can be based on open and commonly used standards, the investment may be also reused should the business decide to integrate their systems with constituents in other vertical sectors
2.8 Dynamic Behavior
The pattern is event driven, like any other pattern in a service oriented architecture. The service sits in a state of readiness, waiting for a trigger that will invoke the services. In this implementation, the event is a message sent to the service provider proxy.

[image: image4.png]‘Service Consumer Giient ‘Servioe Provider Proxy. Daia Conversion Service.

‘Service Request

Data Conversion Request

Data Conversion Response.

o
Converson Err essigs.

‘Asynerhonous or
Synchvonous.
messaging both
supporied

T
|
Native Servioe Request

Service Response

An internal function() is present to convert the incoming generic service request into a proprietary service request in order to talk to the native service in its native environment.
2.9 Implementation

It is HIGHLY RECOMMENDED that businesses within a vertical agree on a standard for a service provider proxy prior to beginning implementation. The implementation standards eligible will vary based on the required level of functionality between the service provider and service consumer.

When implementing this pattern, it is highly recommended that the WS-I profile work be examined for implementation details in order to ensure maximum possibility for interoperability and conformance to standards.

A simple implementation would likely implement the service provider proxy as a SOAP provider and the client side software would be a SOAP client. Parameters are passed back and forth using the eXtensible Markup Language (XML) in order to ensure maximum interoperability at the data parameter passing layer. XML is easy to serialize and de-serialize and convert to proprietary formats. XML should use UTF 8 encoding or some other agreed upon encoding to alleviate any platform specific dependencies.
2.10 Business Problem (Story?) Resolved

Each business within the vertical implemented a SOAP provider and SOAP client packages and agreed upon an XML Schema to constrain the XML instance messages passed back and forth within the SOAP bodies. WS-RM (Reliable Messaging) was used in order to ensure that messages between businesses did not get dropped or lost which may have adverse effects on the business functionality of the participants. Many open source or free software packages were available along with easy to follow instruction to allow implementation ina very quick time frame.
2.11 Specializations

There may instances where higher levels of business functionality are required. For example, a group of businesses may wish to constrain their services so only those who they wish to use them may in fact use them. This involves layering a service level agreement over top of the physical implementation. Instead of using SOAP for messaging, the ebXML messaging standard may be implemented to handle some of the high level functionality like thread tracking in instances where multiple asynchronous service request messages are send from the same client. The ebXML Messaging service contains a special attribute of “conversationID” that enables service requests to be reconciled with the original service request.
While the ConversationID token is an explicit and required attribute of an ebXML message header, it may also be utilized with SOAP messaging within the SOAP body as a required parameter as may be expressed in a WSDL instance file that constrains the service being provided.

Either method may accomplish the same task, the main difference being one is explicitly required in the header and one is optional within the SOAP:Body. One advantage of having this token in the message header may be an ability to trap it during a quick event style parse stream and to quickly redirect the message to the appropriate application to handle the content.
2.12 Known Uses

The main uses of this pattern today are known as web services. Most major software companies have developed functionality to ensure their software can offer services when it is likely that other software may wish to consumer its services.

CORBA – Common Object Request Broker Architecture

CORBA was an early implementer that used redirection through an object request broker (ORB) to abstract the request of any specific object. This is a good example of the Service Provider Proxy Pattern.
[image: image5.png]Object Request
Broker

Object Requestor

Some other specializations are application servers. In general, most J2EE application servers use a similar implementation of the Service Provider Proxy Pattern to abstract incoming service requests from the business tier of the J2EE architecture.
[image: image6.png]‘Data Porsistence Layer

IBM, BEA, Sun Microsystems and Oracle all have application servers that support the deployment of custom Java servlets that can offer binding via SOAP and XML parameters to be passed into the J2EE servlet environment.

Microsoft’s .NET framework is also a similar specialization of this pattern. A .NET service provider may allow service consumers to bind to a service without having to use the C# programming language.

Many components of Adobe Systems LiveCycle brand of server products are service providers using both SOAP and WSDL as well as Java related standards for SOA such as RMI.

2.13 Consequences

There are several critical considerations that need to be mitigated when deploying a service provider proxy.

Having to serialize and de-serialize every single call in and out of a new format (such as XML) requires processing bandwidth. The trade off of efficiency versus large scale interoperability has to be considered carefully.

A general security risk is associated with any web based service offering. Such risks fall into three general categories – security breaches, traffic monitoring and denial of service style attacks.

Security Breaches

A service being offered via a service provider proxy may be openly accessible via the internet. Someone may wish to invoke the service who would normally not be permitted to access the service according to the intent and policy of the service provider. While services may be protected by password and username requirements, it is still conceivable that someone may find a way to access and invoke the service either via a brute force type methodology (trying multiple username and password pairs until you get the correct one). Alternatively, social engineering may be used to gain the information required to access the service (such as spying on someone while working on their keyboard through a glass window.
Traffic Monitoring

This is a type of security breach that occurs when monitoring the traffic is used to gain knowledge of some other aspect. If someone can monitor the number of service requests and detects a spike in service requests, it may signify something else.

Denial of Service (DoS) Attacks
The basic premise of a service oriented architecture is to have components wait in a state of readiness, waiting to be invoked. If a service provider is capable of processing n concurrent incoming requests per second, a person may deny others the ability to use that service by sending in >n number of requests per second. A carefully orchestrated DoS attach may render a critical business function unusable.

2.14 References

Appendix A. Revision History

[This appendix is optional, but helpful. It should be removed for specifications that are at OASIS Standard level.]

	Rev
	Date
	By Whom
	What

	0.5
	Oct 20, 2004
	dnickull@adobe.com
	Initial version

	
	
	
	

	
	
	
	

Appendix B. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2002. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright © 2002 OASIS. All rights reserved.

Page 1 of 12
2
eb SOA-TC

2004

Copyright © OASIS Open 2004. All Rights Reserved.

Page 1 of 12

