Refactoring State (BTA, CA, CBTA), Embedding, and Interfaces of BT status values.
Part 2 of Refactoring project

1Refactoring State and Embedding

9Returns values, ComplexBTA and BTA, and the runtime traversal of the BP graph

Refactoring State and Embedding
Within UML 1.5, there is a way to handle embedded (or nested) states. Consider the following diagram
[image: image1.png]3.00.¢ Example

Figure 3.76 on page 3-144 and Figure 377 on page 3-147 for examples of
composite transitions. The following are examples of stubbed transitions and the
history indicator

Figure 375 Stubbed Transiions

The internal structure of a state may abstract over a subprocess and may also abstract over states that are embedded within the abstracting (complex) state. The “stubbing” and “history” syntax elements are tied to UML 1.5. It isn’t worthwhile to become too wired into those conventions within BPSS. However, it is worthwhile to distinguish simple from complex states in BPSS. [Incidentally, UML 2.0 distinguishes Composite, Simple, SubMachine, and Orthogonal kinds of State, so at least these distinctions remain in that UML Statechart and Activity diagram approach.]
Within BPSS 1.x, the main element corresponding to a state has been the BusinessTransactionActivity, which is itself a container for BusinessTransactions.

There is also a CollaborationActivity, which “contains” another BinaryCollaboration (a submachine state.)
Finally, there has been a special flag on the Transition element to indicate a complex state that embeds a reference to a BT, and a second BT that is to be executed before the first completes.
However, recursive embedding was not supported with onInitiation, and the Transition marked with onInitiation “dead-ended.” That is, there was no next-state link as in an ordinary transition because that link had been consumed in pointing to the embedded state. This made a Transition marked with an onInitiation flag a significantly different component than an ordinary Transition that connected states along a labelled path.
In addition, UML descriptions tends to treat Transition as something that is neither a pseudo-state nor a state. But an embedded state is a real state, albeit complex. [Part 1 treated Transitions and Pseudo-states as both basically associations of Vertices. Obviously, the actual UML models for Activity diagrams and state charts are not adhered to very closely in BPSS in either the original or this refactored version.]
Hence, it is worthwhile reorganizing the XML syntax so that:
1. Transition is not so overloaded. That is, we should declare a new state type to handle embeddings that can be treated on a par with the existing BusinessTransactionActivity (which is similar in some ways to the CollaborationActivity, which bundles up a whole subchoreography). In other words, complex BTAs and simple BTAs should basically be usable in the BPSS notation as components of the same kind.
2. The embedding construct should permit recursive embeddings. This would be needed for industries wishing to model (and perhaps begin to design visibility into) multi-tier supply chains, for example.

3. We have a slightly improved alignment with UML Statechart diagrams (that underlie Activity Diagrams) [This is probably not decisive. Fidelity to UML diagrams is far less important that getting a usabl notation.]

Digression on current choreography model and modifications needed for refactoring.
[image: image2.png]<<absiract->
BusinessState

BinaryCollaboration

Transition

*pattern:anyURI
+HimeToPerformduration

+iniatingRolelDREF - GUIDREF
+isinnerCallaboration:boalean

entering

+namelD:6UID
+oninitiation:boalean
+ftomBusinessStateIDREF:GUIDF]
+fromBusinessstate:string
+oBusinessState:string
+oBusinessStatelDREF GUIDREF]
+CondiionGuardNMTOKEN

edting

Decision <=absiract>
BusinessActiity

Fork Join

Start CompletionState

uses

+name:string
+namelD:GUID
+wailForAllboalean

+name:string
+namelD:6UID
+hype:NMTOKEN
+HimeToPerform.duration

+ConditionGuardNMTOKEN
+ftomBusinessstate:string
+ftomBusinessStateIDREF:GUIDF]

+oBusinessState:sting
+oBusinessStatelDREF GUIDREF]

+name:string
+namelD:GUID
+beginsWhen:sting
+endswhen:string
+preCondiionsiring
+postCondition:string

+name:string
+namelD:6UID

Success Failure

BusinessTransactionActity | [CollaborationActivity

+ftomRole:string
+ftomRolelDREF:GUIDREF
+oRale:string
+oRaleIDREF:GUIDREF
+businessTransactionstring
+businessTransactionlDREF GUI
+isCancunrenthoolean
+isLegalyBindingboolean
+imeToPerformduration

Eventually the above Choreography model should probably shift somewhat to match the refactoring that is being proposed, provided it seems acceptable.I think we will then align better with textual distinctions of “pseudo states” versus other states that we currently have in the specification text.
One group of components would be the linking constructs, now called PseudoStates. In this group would be Start, CompletionState (and subspecializations of that, Success and Failure), Fork, Join, Decision (or Choice), and Transition. [They would also be marked as having Links and ConditionExpression components.] They would correspond to bundles of labelled edges of a directed possibly cyclic graph. At their core, they are collections of pairs of nodes, and describe the potential paths of a BP.
Then, collapse BusinessState <<abstract>> with BusinessActivity. (Unless there is some reason against doing this. At present, it does not seem to be a distinction with great import for implementation. It might be harmless to leave it as an abstract element if it has some theoretical significance.)
 Next, introduce three specializations of that reduced result: BusinessTransactionActivity, CollaborationActivity, and ComplexBusinessTransactionActivity. These are the nodes of the directed graph. The Binary, Multiparty, and any other collaborations then become graphs and subgraphs, and basically they have components from both categories in them.
 [Is there an original structured diagram ?]

The resulting UML diagram would be a better component model for the present refactoring proposal, parts 1 and 2.
So the main proposed new element is the ComplexBusinessTransactionState. Some changes also occur in BTA, to accommodate Role bindings via the new Performs element. Let us review these new components in more detail. We can then proceed to consider how their interface semantics can be aligned with our current BusinessTransaction status values (and their role in triggering Guards on Completion states, for example).

First here is the Performs element used for Role binding between Roles declared in the referring and Roles found in the referred to contexts.

element Performs

	diagram
	
[image: image3.png]

	namespace
	http://www.oasis-open.org/committees/ebBP/BPS/2.0

	type
	extension of PerformsType

	children
	Documentation

	used by
	complexTypes
BusinessTransactionActivityType CollaborationActivityType

	attributes
	Name
Type
Use
Default
Fixed
Annotation
fromRole
xsd:string
optional

fromRoleIDREF
xsd:IDREF
required

toRole
xsd:string
optional

toRoleIDREF
xsd:IDREF
required

	identity constraints
	
Name
Refer
Selector
Field(s)
unique
Performs-ID

.
nameID

	source
	<xsd:element name="Performs">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="PerformsType"/>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:unique name="Performs-ID">
 <xsd:selector xpath="."/>
 <xsd:field xpath="nameID"/>
 </xsd:unique>
</xsd:element>

Here is BTA refactored to make use of Performs.

element BusinessTransactionActivity

	diagram
	
[image: image4.png]

	namespace
	http://www.oasis-open.org/committees/ebBP/BPS/2.0

	type
	BusinessTransactionActivityType

	children
	Documentation Performs

	used by
	element
ComplexBusinessTransactionActivity
complexTypes
BinaryCollaborationType BusinessCollaborationType MultiPartyCollaborationType

	attributes
	Name
Type
Use
Default
Fixed
Annotation
name
xsd:string
optional

nameID
xsd:ID
required

businessTransaction
xsd:string
required

businessTransactionIDREF
xsd:IDREF

isConcurrent
xsd:boolean

true

timeToPerform
xsd:duration

	source
	<xsd:element name="BusinessTransactionActivity" type="BusinessTransactionActivityType"/>

And here is CollaborationActivity refactored for Performs.

element CollaborationActivity

	diagram
	
[image: image5.png]

	namespace
	http://www.oasis-open.org/committees/ebBP/BPS/2.0

	type
	CollaborationActivityType

	children
	Documentation Performs

	used by
	complexTypes
BinaryCollaborationType BusinessCollaborationType MultiPartyCollaborationType

	attributes
	Name
Type
Use
Default
Fixed
Annotation
name
xsd:string
optional

nameID
xsd:ID
required

binaryCollaboration
xsd:string
required

binaryCollaborationIDREF
xsd:IDREF
required

	source
	<xsd:element name="CollaborationActivity" type="CollaborationActivityType"/>

The reason that Performs can be omitted is that we have proposed the convention that if the actual values of Roles in the referring context and in the referred-to context are the same (string-identical), then they match. If a new value is found in the referred to context, and it has not been associated with a previous role by a Performs declaration, then it is a new Role!

Finally, we come to the newly introduced ComplexBusinessTransactionActivity. Let us first view its content model, and then discuss how it is used.

element ComplexBusinessTransactionActivity

	diagram
	
[image: image6.png]ComplexBusinessTransactionAc..]

Freturns.
BusinessTransact
Freturns.

	namespace
	http://www.oasis-open.org/committees/ebBP/BPS/2.0

	type
	extension of BusinessTransactionActivityType

	children
	Documentation Performs ComplexBusinessTransactionActivity Returns BusinessTransactionActivity

	used by
	element
ComplexBusinessTransactionActivity

	attributes
	Name
Type
Use
Default
Fixed
Annotation
name
xsd:string
optional

nameID
xsd:ID
required

businessTransaction
xsd:string
required

businessTransactionIDREF
xsd:IDREF

isConcurrent
xsd:boolean

true

timeToPerform
xsd:duration

	source
	<xsd:element name="ComplexBusinessTransactionActivity">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="BusinessTransactionActivityType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:sequence>
 <xsd:element ref="ComplexBusinessTransactionActivity"/>
 <xsd:element ref="Returns"/>
 </xsd:sequence>
 <xsd:sequence>
 <xsd:element ref="BusinessTransactionActivity"/>
 <xsd:element ref="Returns"/>
 </xsd:sequence>
 </xsd:choice>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
</xsd:element>

First, the ComplexBusinessTransactionActivity includes one BTA. This first BTA declares the BT from which the embedding unfolds.
The next unbounded choice construct is over a sequence of BTA with a Returns element or a sequence of a ComplexBTA with a Returns element. [If necessary, the model can be generalized to allow an unbounded number of BTAs with an extended Returns construct. We would then need to say how the statuses from multiple BTAs combine in a generalized Returns construct. This project might better be left to version 3.0 when coordination or transaction approaches are to be captured at the BPSS level of abstraction.]
So ComplexBTAs can be nested, and can declare nestings within nestings for multi-tier representations.

The Returns element is included in order to specify which status values of the embedded processes are considered, if any, when returning the status value to the context in which the toplevel ComplexBTA was included. More discussion is provided on this topic in the second section of this refactoring proposal.
Those CompletionStates that have a FromLink from the toplevel ComplexBTA are checked with respect to their conditionGuard attribute. When a conditionGuard value matches the conditionGuard attribute, the transition is made to the CompletionState (Success or Failure). The conditionGuard value is something known at runtime and in a BTA is communicated back to the collaboration context.

element Returns

	diagram
	[image: image7.png]Freturns.

	namespace
	http://www.oasis-open.org/committees/ebBP/BPS/2.0

	type
	ConditionGuardValueList

	used by
	elements
ComplexBusinessTransactionActivity ComplexBusinessTransactionActivity

	source
	<xsd:element name="Returns" type="ConditionGuardValueList"/>

The Returns element has a simple content model of type ConditionGuardValueList

simpleType ConditionGuardValueList

	namespace
	http://www.oasis-open.org/committees/ebBP/BPS/2.0

	type
	list of ConditionGuardValue

	used by
	element
Returns

	source
	<xsd:simpleType name="ConditionGuardValueList">
 <xsd:list itemType="ConditionGuardValue"/>
</xsd:simpleType>

Also, ConditionGuardValue has been factored out as named simple type: Like DocumentLanguage expression values, runtime software of some sort is presumed to be implemented to generate these values for a monitoring application that is verifying a flow as conforming to a BPSS instance.
simpleType ConditionGuardValue

	namespace
	http://www.oasis-open.org/committees/ebBP/BPS/2.0

	type
	restriction of xsd:NMTOKEN

	used by
	simpleType
ConditionGuardValueList
attribute
FromLink/@conditionGuard

	facets
	enumeration
ProtocolSuccess
enumeration
AnyProtocolFailure
enumeration
RequestReceiptFailure
enumeration
RequestAcceptanceFailure
enumeration
ResponseReceiptFailure
enumeration
ResponseAcceptanceFailure
enumeration
SignalTimeout
enumeration
ResponseTimeout
enumeration
BusinessSuccess
enumeration
BusinessFailure
enumeration
Success
enumeration
Failure

	source
	<xsd:simpleType name="ConditionGuardValue">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="ProtocolSuccess"/>
 <xsd:enumeration value="AnyProtocolFailure"/>
 <xsd:enumeration value="RequestReceiptFailure"/>
 <xsd:enumeration value="RequestAcceptanceFailure"/>
 <xsd:enumeration value="ResponseReceiptFailure"/>
 <xsd:enumeration value="ResponseAcceptanceFailure"/>
 <xsd:enumeration value="SignalTimeout"/>
 <xsd:enumeration value="ResponseTimeout"/>
 <xsd:enumeration value="BusinessSuccess"/>
 <xsd:enumeration value="BusinessFailure"/>
 <xsd:enumeration value="Success"/>
 <xsd:enumeration value="Failure"/>
 </xsd:restriction>
</xsd:simpleType>

[Check on whether any subtypes of this enumeration should be defined.]
Returns values, ComplexBTA and BTA, and the runtime traversal of the BP graph
John Yunker writes:

“What I am finding as the easiest way to implement and communicate the dependencies between the "real world business process (semantic process)" and the "systems implementation of business process (service choreography)" is to have the real world business process subscribe to events happening in the services layer, and update the real world state when the event is received. This allows a complete decoupling of the implementation, as well as clear view of the required information at the real BP layer.

“Thus you still need a state model at the BPSS, but instead of the state model "driving" the collaboration, the state model both "monitors" the collaboration and "specifies event visibility" of the service layer model. Thus the BPSS state model and its expression become incredibly simple (enumeration of the semanitic business events), and the complexity is forced onto the mapping of service events (the swarm of technical events) onto business events (semantic business occurances). This decoupling is extremely powerful as incremental improvements in both service and business layer are linear in their implementation cost, plus additional technical implementations have a simple binding to the business layer.”
I read this in a message from John Yunker while I was working on this section and believe it summarizes how I had been thinking about how to have BPSS support the monitoring/verification task for business processes.

We now have basically three kinds of runtime information that supply values used in deciding what trajectory is being followed through the BPSS transition graph. These are: the status values of type ConditionGuardType that are found during a BT, the document event values that indicate what message has been exchanged between service points, and document details (Xpaths) within the documents indicating values relevant to selecting which state to flow to. [The documentation of beginsWhen, endsWhen, etc have been omitted in this refactoring. They seem to me to have had more relevance to an execution language and to orchestration than to monitoring and simulation. They can be returned if the use of this information for supported tasks is clarified.]
So, it seems useful to view monitoring a process as the process of obtaining these three kinds of information by analyzing runtime messaging events, while verifying a process as a task of traversing a path through the graph to a completion state (of whatever BusinessCollaboration we started in). Because even many error conditons let us reach the Failure completion state, failure to verify really means that something most peculiar has happened that warrants human attention.
(Incidentally, I added an abstract BusinessCollaboration element and type as generalizations over MultipartyCollaboration and BinaryCollaboration. Perhaps eventually—3.0 timeframe—it can replace both of these specializations.)
For practical purposes, however, runtime information available across a given initiating role administrative domain’s messaging interface to its collaboration community will be incomplete in many ways. This is especially true for business processes involving interactions of first tier collaborators with their second collaborators or the nth tier with the nth+1 tier. That is, information about the document events across their interfaces will not, given existing protocols and services, be available to tier one. This means that complexBTAs will generally not be chased by a verification engine, but must either wait for timeout events that produce status changes, for signals, or for the actual Response document that reflects completion of the nested BTAs. So BPSS notation can quite easily outrun the monitoring information normally available and needed for verification.
The implication of this for monitoring is that collaboration communities seeking to have complete visibility of state will need to “broadcast” business event information about document and BTA statuses to their collaboration community to arrive at global transparency. There is nothing that BPSS can itself do to overcome this limitation as far as I can see. The remedy is in creating services or distributed event communities that keep all collaboration members informed about the agreed upon relevant document exchange and transaction status events. Eventually coordination and transaction services may be harnessed as sources of monitoring information supporting verification of global highly nested processes.
[to do: time and traversal, waiting for the events to occur to move transitions, timeouts as events moving traversal, etc.]
