[image: image2.png]OASIS m Advancing E-Business Standards Since 1993

Context management system for late binding of bpss configuration values
Version 1.0

Technical note

DRAFT
DRAFT
DRAFT
DRAFT
DRAFT
DRAFT
CHANGE HISTORY

	Status
	Version
	Revision
	Date
	Editor
	Summary of Changes

	Draft
	1.0
	0.14
	14 December, 2003
	DRRW
	Initial Draft

	
	
	0.15
	26 January, 2004
	DRRW
	Initial Draft

	
	
	0.151
	2 February 2004
	DRRW
	Revised to include 3 examples

	
	
	0.2
	May 15, 2004
	DRRW
	Revised, simplified and reduced to core use cases only.

	
	
	
	
	
	

	
	
	
	
	
	

OASIS COPYRIGHT NOTICE

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS] (1 March 2001). All Rights Reserved

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification, can be obtained from the OASIS Executive Director.
OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.
OASIS has been notified of intellectual property rights claimed in regard to some or all of the contents of this specification. For more information consult the online list of claimed rights.
TABLE OF CONTENTS

51.0
Acknowledgements

2.0
Introduction
6
3.0
Business Process Mechanism (BPM) Context Support
7
3.1 Possible Scenarios and Use of Agreed Context
8
4.0
References
14

1.0 Acknowledgements

OASIS wishes to acknowledge the contributions of the members of the CAM, CPP/CPA and BPSS Technical Committees to this standards work.

2.0 Introduction

Providing a mechanism to manage context in an eBusiness exchange is the focus of this document. This document provides the main details and aspects of the context mechanism, which is expressed in a separate XML instance that is associated with a BPSS instance as needed.

The specification here is intended as a technical note to supplement the BPSS specification. It is also a guide to using the context mechanism described here in, and specifically there are three use cases that are supported directly:
#1) support late binding of specific control value parameters within the BPSS based on business factors that occur during a BPSS use

#2) support ability to configure BPSS flows to match locale or other factors globally based on known context for a particular BPSS scenario – and especially for business transaction needs (e.g. produceType="mustRefridgerate")

#3) provide context to external components that may be directed by BPSS - such as transaction handling software (Java, EDI Mapper, XSLT, CAM, EAI adaptor, et al), or web service step.

The technical details of the handling for each case are addressed directly in the remainder of this document.

3.0 Business Process Mechanism (BPM) Context Support

The focus here is that of supporting the original ebXML vision of eBusiness interactions that are predefined and have deterministic outcomes and behaviour paths (in simple terms this requirement is for “no surprises” when a BPSS process is actually used). This in turn means that all behaviour paths should be known and documented at design time.

Therefore the model is one that calls for exposing the context decisions at the level of the business process, and then fixing these rules in place as the business process is agreed to. Therefore any context decisions that are used in the BPSS itself and related transaction handling actions from the BPSS are exposed in a separate XML instance that can be inspected and verified, and not encoded within the BPSS itself. By separating the BPSS from the context details this also provides re-usable BPSS definitions that can be tailored by setting context values.
The need is to support the following main functional behaviours:

#1 – simple generic context passing – where the target is to direct actions of an external XML processor such as XSLT, Java, SAX, or CAM associated with a step within the BPSS itself.
#2 – static setting of BPSS parameters from the context instance (making re-usable BPSS models possible) for a given business scenario and configuration needs.
#3 – late binding of BPSS parameters based on transaction payload information or other external sources (such as a web service) so that various behaviours of the BPSS itself can be dynamically adjusted based on the context at that moment.
There is also of course the combination of one or more of these uses together. This section describes the mechanism for providing these context rules and variables for the BPSS processor.
The need is to provide a consistent mechanism in XML syntax for the propagation and specifying of context variables and their values. These then provide the ability to affect late binding on a BPSS for a specific business scenario. Typical examples of such overall context settings include such things as time-to-perform of BPSS steps, messaging options, participant business roles, product features and overall criteria (e.g. refrigerated produce, fragile components, hazardous materials, special handling needs) that drive the terms and conditions across the overall business collaboration.

Also – because BPSS processing may require dynamic behaviour based on the actual document information being passed by a process step (late binding), the context system provides the means to reference a document instance and a value within that to determine what action should occur.

Also support for the specialized UBL / CCTS context mechanism is inherent in this generalized mechanism, so as to allow correlation between a UMM model and a context parameter instance in a business agreement. An example of such context use is also provided here, (see figure 3.3 below for the default set of codes that denote this usage).

Figure 3.0 ebContext structures as an XSD model diagram

[image: image1.emf]

Next we look at the actual XML syntax to be used in the Context instance itself for each of the three use cases we have identified.
3.1 Possible Scenarios and Use of Agreed Context

Each scenario is now considered and further defined, and a simple example given (section 3.2 then discusses the full details of the syntax shown here).
#1 – simple generic context passing – where the target is to direct actions of an external XML processor such as XSLT, Java, SAX, or CAM associated with a step within the BPSS itself.

In this example the BPSS itself does not require any context directing. However the associated business process transaction handling does (e.g. setting address format to local delivery country). Therefore the BPSS will simply pass a URI reference to the XML processor, which will then retrieve the XML instance, pointed to by that URI and access the context parameter rules and parameters accordingly. The ebContext example here shows this use.
Figure 3.1a XML structure for simple context variable passing:

<ebContext UIDref='SDIR03400' interchangeID='123456789' BPMref='ABC123456:01'
CPAref='ABC012345'

xmlns:as="http://www.oasis-open.org/committees/cam"
>

 <header>

 <description>An example simple context instance</description>

 <version>1.0</version>

 <language refcode='eng' codelist='ISO639-2' name='English'/>

 <usage>XSLT</usage>

 <usage>Java</usage>

 </header>

 <conditions>
 <!-- Here is where we specify two example context item variables and settings -->
 <!-- at the CPA level participants can see exactly what significant conditions exist

 that they must conform to when using the associated BPSS (e.g. “context bubble up”) -->
 <condition item="$Country"
value="USA" label="Ship to Country" as:member="USA,CA,MX"/>

 <condition item="$productType" value="nonperishable" label="Produce type:" as:member="nonperishable,perishable,refridgerated,fragile,heavy"/>

 </conditions>

</ebContext>
#2 – static setting of BPSS parameters from the XML instance (making re-usable BPSS models possible) for a given business scenario and configuration needs.
In this example we now add a second namespace declaration so that the context rules can reference the BPSS associated with the context directly. That namespace is then used with the XPath statement to reference the explicit part of the BPSS (use of XPath wildcards is also permitted). This then allows us to create generic BPSS models that can be tailored to users own exchange needs and default configurations. (Note: also, in order to allow generic logical references these could also be urn: based references to components of the BPSS rather than explicit XPath names).
The ebContext example here shows this use.

Figure 3.1b XML structure for static setting of BPSS behaviour(s):

<ebContext UIDref='SDIR03400' interchangeID='123456789' BPMref='ABC123456:01'
CPAref='ABC012345'

xmlns:as="http://www.oasis-open.org/committees/cam"
xmlns:bpss="http://www.oasis-open.org/committees/bpss"
>

 <header>

 <description>An example static setting context instance</description>

 <version>1.0</version>

 <language refcode='eng' codelist='ISO639-2' name='English'/>

 <usage>BPSS</usage>

 <usage>ebMS</usage>

 </header>

 <conditions>

 <!-- Here is where we specify a static override for a BPSS setting -->
 <!-- at the CPA level participants can see exactly what significant conditions exist

 that they must conform to when using the associated BPSS (“P1H, P2H, P1D”) -->

 <condition item="\\bpss:timeToAcknowledgeAcceptance*" value="P2H"

label=="NORMAL TIMEOUT" as:member="P1H,P2H,P1D" />

</conditions>

</ebContext>

#3 – late binding of BPSS parameters based on transaction payload information or other external sources (such as a web service) so that various behaviours of the BPSS itself can be dynamically adjusted based on the context at that moment.

In this example we now add a third namespace declaration so that the context rules can reference the logical document(s) linked to the BPSS associated with the context directly. That namespace is then used with the XPath statement to reference the explicit part of the document (use of XPath wildcards is not permitted). This then allows us to create generic BPSS models that can be tailored to users own exchange needs based off values provided at runtime. However such values are not arbitrary. They must conform to know values sets dictated by the as:member() statement, or number range constraints. In other words, the context instance dictates for late binding what are the known decision sets that can occur.
The ebContext example here shows this use.

Figure 3.1c XML structure for late binding behaviour setting:

<ebContext UIDref='SDIR03400' interchangeID='123456789' BPMref='ABC123456:01'
CPAref='ABC012345'

xmlns:as="http://www.oasis-open.org/committees/cam"
xmlns:bpss="http://www.oasis-open.org/committees/bpss"
xmlns:doc="http://www.mycompany.com/bpss/context"
>

 <header>

 <description>An example late binding BPSS behaviour setting</description>

 <version>1.0</version>

 <language refcode='eng' codelist='ISO639-2' name='English'/>

 <usage>BPSS</usage>

 <usage>ebMS</usage>

 </header>

 <conditions>

 <!—- Scenario #3 : Here is a late binding statement, using the XPath to the document

 to find out the condition, then adjust the BPSS accordingly from

 the allowed list of values of member choices -->

 <context condition="doc:\\CustomerPO\Header\orderType='URGENT'"

<condition name=="bpss:timeToAcknowledgeAcceptance*" value="P10M"

label=="URGENT TIMEOUT" as:member="P5M,P10M,P15M" />

 </conditions>

</ebContext>

Note: the example here shows static setting, but this could also use an doc:XPath statement in the value=”doc:XPath” to retrieve a value, but that value is not arbitrary, it must be a valid member.
3.2 Context Mechanism Syntax Detailed Notes.

An <ebContext> structure is associated directly with a BPSS instance and it can rely on the content referencing and data typing from the ebContext template to direct the parsing of conditions. To facilitate standalone use of the <ebContext> structures, use is made of a base subset of information handling functions (see table 3.2 below) in conjunction with the xmlns:as namespace declaration to identify when such functions are being used. Most conditions are anticipated to be denominated lists, so the as:member() function can be used for that. Alternatively for string values such as part numbers, as:setLength() and as:setMask() can be used to specify the data constraints, while standard data types can be used for numeric and date values. These functions are shared from the OASIS CAM specification, as this provides a ready-made set of functions that are simple and concise.
Some condition examples are shown in Figure 3.2 and these equate to the conceptual semantic model using parameters for category, classification, industry, type and language labelling.

This approach provides a lightweight implementation, while stopping short of requiring a complete and complex XML parsing mechanism and template to describe the ebContext structure itself. Instead a subset of the features should be adequate for the anticipated constrained use cases of context documents (see Figure 3.2 below) that can be easily implemented using existing typical programming language XML parsing libraries.
There are three standard namespaces that can be used to denote how the conditions apply. The default CAM namespace “as:” (for content assembly) refers to content parsing instructions, a BPSS namespace of “bpss:” that overrides that particular item in the BPSS instance (matching the XPath expression), and then a document namespace “doc:” that relates to a document instance associated with that particular step in the BPSS (can be either a received or response document).

Also in order to allow dynamic assignments of context to a standard BPSS instance the declarative element <context condition=”XPath expression”/> can be used to provide additional flexibility. These <context/> conditions will typically reference a doc: namespace reference to determine if the context applies. (Note: more than one <context/> condition may be used to accommodate variations in physical instances of a BPSS step logical document. The rule that matches the XPath expression will be the one selected.)
Any <condition/> without a <context/> outer block is a default condition that will apply unless overridden by a specific <context/> assignment.

Figure 3.2 XML structure for eBusiness context variable multiple condition examples.

<ebContext UIDref='SDIR03400' interchangeID='123456789' BPMref='ABC123456:01'
CPAref='ABC012345'

xmlns:as="http://www.oasis-open.org/committees/cam"
xmlns:bpss="http://www.oasis-open.org/committees/bpss" xmlns:doc="http://www.mycompany.com/bpss/context">

 <header>

 <description>An example context instance</description>

 <version>1.0</version>

 <language refcode='eng' codelist='ISO639-2' name='English'/>

 <usage>CAM</usage>
 <usage>XSLT</usage>

 <usage>BPM</usage>

 </header>

 <conditions>

 <condition item="Country"
value="USA" as:member="USA,CA,MX" as:CCTScategory="GP"/>

 <condition item="productType"
value="nonperishable" label="Item type:" as:member="nonperishable,perishable,refridgerated,fragile,heavy" as:CCTScategory="PC"/>

<condition item="partnerType"
value="wholesale" label="Partner type:" as:member="wholesale,retail,distributor,oem,service"/>

 <condition item="Catalogue" value="A2003-Q1"
as:setLength="8" as:setMask="XNNNN-QN"
as:UIDreference="SGIR:030451"/>
 <condition item="bpss:timeToAcknowledgeAcceptance*" value="P2H"

label=="NORMAL TIMEOUT" as:member="P1H,P2H,P1D" />

 <!—- Scenario #3 : Here is a late binding statement, using the XPath to the document

 to find out the condition, then adjust the BPSS accordingly from

 the allowed list of values of member choices -->

 <context condition="doc:\\CustomerPO\Header\orderType='URGENT'" bpss:RefID='BPSS_DOC1'

<condition item=="bpss:timeToAcknowledgeAcceptance*" value="P10M"
label=="URGENT TIMEOUT" as:member="P5M,P10M,P15M" />
 </context>
 </conditions>

</ebContext>

Figure 3.2 Table of functions for ebContext usage

	Function name
	Required?

	member()
	Optional

	setLength()
	Optional

	setMask() - see CAM specification

	Optional

	UIDreference()
	Optional

	datatype()
	Optional – specify XSD datatype

	
	

This table contains a suggested selection of functions that will provide the bulk of typical functionality in configuring context instances. Notice that implementers may also choose to allow additional functions to be inserted as annotations that are simply ignored by the processor, but will act of notes for reference.

The optional UBL / CCTS mechanism further categorizes context variables using the following classifications.

Figure 3.3 UBL / CCTS context category classifications

	Business process (BP)
	Process, collaboration, or transaction.

	Business process role (BPR)
	Sender and receiver roles.

	Supporting role (SR)
	Third party supporting role.

	Industry classification (IC)
	Vertical industry sector

	Product classification (PC)
	Type of product or service

	Geopolitical (GP)
	Trading region

	Official constraints (OC)
	Legal or contractual requirements

	System capabilities (SC)
	Restrictions of physical system or compliance constraints.

The examples previously provided give constraint examples in the area of geopolitical and supporting role contexts. The use of the optional in-line attribute as:CCTScategory allows provision for use of this classification of context.

4.0 References

· XML Path Language (XPath) specifications document, version 1.0, W3C Recommendation 16 November 1999, http://www.w3.org/TR/xpath/

· Extensible Markup Language (XML) specifications document, version 1.1, W3C Candidate Recommendation, 15 October 2002, http://www.w3.org/TR/xml11/

· XNL: Specifications and Description Document, OASIS CIQ TC, http://www.oasis-open.org/committees/ciq
· XAL: Specifications and Description Document, OASIS CIQ TC, http://www.oasis-open.org/committees/ciq
· ISO 16642 – Representing data categories http://www.loria.fr/projets/TMF/

· CEFACT – Core components specifications - http://webster.disa.org/cefact-groups/tmg/

· UN – eDocs resource site - http://www.unece.org/etrades/unedocs/
· UN – Codelists reference site for eDocs - http://www.unece.org/etrades/unedocs/codelist.htm

· Jaxen reference site - http://jaxen.org/

� See the main CAM specification for details on the picture mask feature set.

Copyright© OASIS. All Rights Reserved

