OASIS ebXML CPP/A Technical Committee

16/10/2002

[image: image5.wmf]Figure 2: Overview of Collaboration-Protocol Profiles (CPP)

What

Business

capabilities

it can perform

when conducting a

Business

Collaboration

 with

other parties

Party

 A

Party’s

 information

-

Party

 name

- contact info

Transport Protocol

Transport Security Protocol

Messaging Protocol

Link to Process-

Specification document

Time out/Retry

-etc.

CPP

Describe

Build

Collaboration-Protocol Profile and Agreement Specification -

Transaction Management Extension

Version 0.1

OASIS ebXML Collaboration Protocol Profile and Agreement Technical Committee

31 October, 2002

1 Status of this Document

This document specifies an ebXML SPECIFICATION for the eBusiness community.

Distribution of this document is unlimited. [Currently under development and therefore limited to the CPP/A and BTP specification development communities.]

The document formatting is based on the Internet Society’s Standard RFC format.

This version:

URL

Errata for this version:

URL
Previous version:

None, this is the first version of this document.

2 Technical Committee Members

Selim Aissi

Intel

Arvola Chan

TIBCO

James Bryce Clark
Individual Member

David Fischer

Drummond Group

Tony Fletcher

Choreology

Brian Hayes

Collaborative Domain

Neelakantan Kartha
Sterling Commerce

Kevin Liu

SAP

Pallavi Malu

Intel

Dale Moberg

Cyclone Commerce

Himagiri Mukkamala
Sybase

Peter Ogden

Cyclone Commerce

Marty Sachs

IBM

Yukinori Saito

Individual Member

David Smiley

Mercator

Tony Weida

Individual Member

Pete Wenzel

SeeBeyond

Jean Zheng

Vitria

3 ebXML Participants

The authors wish to recognize the following for their significant participation in developing the Collaboration Protocol Profile and Agreement Specification, Version 1.0.

David Burdett, CommerceOne

Tim Chiou, United World Chinese Commercial Bank
Chris Ferris, Sun

Scott Hinkelman, IBM

Maryann Hondo, IBM

Sam Hunting, ECOM XML

John Ibbotson, IBM

Kenji Itoh, JASTPRO
Ravi Kacker, eXcelon Corp.

Thomas Limanek, iPlanet

Daniel Ling, VCHEQ

Henry Lowe, OMG

Dale Moberg, Cyclone Commerce

Duane Nickull, XML Global Technologies

Stefano Pogliani, Sun

Rebecca Reed, Mercator

Karsten Riemer, Sun

Marty Sachs, IBM

Yukinori Saito, ECOM

Tony Weida, Edifecs

4 Table of Contents

11
Status of this Document

22
Technical Committee Members

33
ebXML Participants

44
Table of Contents

85
Introduction

85.1 Summary of Contents of Document

85.2 Document Conventions

95.3 Versioning of the Specification and Schema

105.4 Definitions

105.5 Audience

105.6 Assumptions

105.7 Related Documents

116
Design Objectives

127
System Overview

127.1 What This Specification Does

147.2 Forming a CPA from Two CPPs

167.3 Forming a CPA from a CPA Template

167.4 How the CPA Works

167.5 Where the CPA May Be Implemented

167.6 Definition and Scope

178
CPP Definition

178.1 CPP Structure

188.2 CollaborationProtocolProfile element

198.3 PartyInfo Element

218.3.1 PartyId element

228.3.2 PartyRef element

228.3.2.1 xlink:type attribute

238.3.2.2 xlink:href attribute

238.3.2.3 type attribute

238.3.2.4 schemaLocation attribute

238.3.3 CollaborationRole element

268.3.4 ProcessSpecification element

278.3.4.1 name attribute

278.3.4.2 version attribute

278.3.4.3 xlink:type attribute

278.3.4.4 xlink:href attribute

278.3.4.5 uuid attribute

278.3.4.6 ds:Reference element

298.3.5 Role element

308.3.5.1 name attribute

308.3.5.2 xlink:type attribute

308.3.5.3 xlink:href attribute

308.3.6 ApplicationCertificateRef element

308.3.6.1 certId attribute

318.3.7 ApplicationSecurityDetailsRef element

318.3.7.1 SecurityId attribute

318.3.8 ServiceBinding element

318.3.9 Service element

318.3.9.1 type attribute

328.3.10 CanSend element

328.3.11 CanReceive element

338.3.12 ThisPartyActionBinding element

338.3.12.1 action attribute

348.3.12.2 packageId attribute

348.3.12.3 xlink:href attribute

348.3.12.4 xlink:type attribute

348.3.13 OtherPartyActionBinding

348.3.14 BusinessTransactionCharacteristics element

358.3.14.1 isNonRepudiationRequired attribute

358.3.14.2 isNonRepudiationReceiptRequired attribute

368.3.14.3 isConfidential attribute

368.3.14.4 isAuthenticated attribute

368.3.14.5 isAuthorizationRequired attribute

368.3.14.6 isTamperProof attribute

368.3.14.7 isIntelligibleCheckRequired attribute

378.3.14.8 timeToAcknowledgeReceipt attribute

378.3.14.9 timeToAcknowledgeAcceptance attribute

378.3.14.10 timeToPerform attribute

378.3.14.11 retryCount attribute

378.3.15 ChannelId element

388.3.16 ActionContext element

388.3.16.1 binaryCollaboration attribute

388.3.16.2 businessTransactionActivity attribute

388.3.16.3 requestOrResponseAction attribute

398.3.17 CollaborationActivity element

398.3.17.1 name attribute

398.3.18 Certificate element

408.3.18.1 certId attribute

408.3.18.2 ds:KeyInfo element

408.3.19 SecurityDetails element

408.3.19.1 securityId attribute

418.3.20 TrustAnchors element

418.3.21 SecurityPolicy element

418.3.22 DeliveryChannel element

438.3.22.1 channelId attribute

438.3.22.2 transportId attribute

438.3.22.3 docExchangeId attribute

438.3.23 MessagingCharacteristics element

438.3.23.1 syncReplyMode attribute

458.3.23.2 ackRequested attribute

458.3.23.3 ackSignatureRequested attribute

468.3.23.4 duplicateElimination attribute

468.3.23.5 actor attribute

478.3.24 Transport element

488.3.24.1 transportId attribute

488.3.25 TransportSender element

488.3.26 TransportProtocol element

488.3.27 AccessAuthentication element

498.3.28 TransportClientSecurity element

498.3.29 TransportSecurityProtocol element

498.3.30 ClientCertificateRef element

508.3.31 ServerSecurityDetailsRef element

508.3.32 Encryption Algorithm

518.3.33 TransportReceiver element

518.3.34 Endpoint element

518.3.34.1 uri attribute

518.3.34.2 type attribute

518.3.35 TransportServerSecurity element

528.3.36 ServerCertificateRef element

528.3.37 ClientSecurityDetailsRef element

528.3.38 Transport protocols

528.3.38.1 HTTP

538.3.38.2 SMTP

538.3.38.3 FTP

548.3.39 DocExchange Element

558.3.39.1 docExchangeId attribute

568.3.40 ebXMLSenderBinding element

568.3.40.1 version attribute

568.3.41 ReliableMessaging element

568.3.41.1 Retries and RetryInterval elements

578.3.41.2 MessageOrderSemantics element

578.3.42 PersistDuration element

578.3.43 SenderNonRepudiation element

588.3.44 NonRepudiationProtocol element

588.3.45 HashFunction element

588.3.46 SignatureAlgorithm element

588.3.46.1 oid attribute

598.3.46.2 w3c attribute

598.3.46.3 enumeratedType attribute

598.3.47 SigningCertificateRef element

598.3.48 SenderDigitalEnvelope element

598.3.49 DigitalEnvelopeProtocol element

598.3.50 EncryptionAlgorithm element

608.3.50.1 minimumStrength attribute

608.3.50.2 oid attribute

608.3.50.3 w3c attribute

608.3.50.4 enumeratedTypeAttribute

608.3.51 EncryptionSecurityDetailsRef element

618.3.52 NamespaceSupported element

618.3.53 ebXMLReceiverBinding element

618.3.54 ReceiverNonRepudiation element

628.3.55 SigningSecurityDetailsRef element

628.3.56 ReceiverDigitalEnvelope element

638.3.57 EncryptionCertificateRef element

638.3.58 OverrideMshActionBinding element

638.4 SimplePart element

648.5 Packaging element

658.5.1 ProcessingCapabilities element

658.5.2 CompositeList element

678.6 Signature element

678.7 Comment element

699
CPA Definition

699.1 CPA Structure

719.2 CollaborationProtocolAgreement element

729.3 Status Element

729.4 CPA Lifetime

739.4.1 Start element

739.4.2 End element

749.5 ConversationConstraints Element

749.5.1 invocationLimit attribute

749.5.2 concurrentConversations attribute

759.6 PartyInfo Element

759.6.1 ProcessSpecification element

759.7 SimplePart element

759.8 Packaging element

759.9 Signature element

769.9.1 Persistent Digital Signature

769.9.1.1 Signature Generation

769.9.1.2 ds:SignedInfo element

769.9.1.3 ds:CanonicalizationMethod element

779.9.1.4 ds:SignatureMethod element

779.9.1.5 ds:Reference element

779.9.1.6 ds:Transform element

779.9.1.7 ds:Algorithm attribute

789.10 Comment element

789.11 Composing a CPA from Two CPPs

789.11.1 ID Attribute Duplication

789.12 Modifying Parameters of the Process-Specification Document Based on Information in the CPA

8010
References

8111
Conformance

8212
Disclaimer

8313
Contact Information

85Notices

86Appendix A Example of CPP Document (Non-Normative)

90Appendix B Example of CPA Document (Non-Normative)

94Appendix C Requirements on this BTP Transdaction Management extension

9514
Scenarios

97Appendix D W3C XML Schema Document Corresponding to Complete CPP and CPA Transaction Management (BTP) extension Definition (Normative)

101Appendix E CPA Composition (Non-Normative)

102Appendix F Glossary of Terms

5 Introduction

5.1 Summary of Contents of Document

The specification of a Collaboration-Protocol Profile (CPP) and a Collaboration-Protocol Agreement (CPA) is found in the base Specification [BTP]. Included in the CPP and CPA are details of transport, messaging, security constraints, and bindings to a Business-Process-Specification (or, for short, Process-Specification) document that contains the definition of the interactions between the two Parties while engaging in a specified electronic Business Collaboration.

This specification contains an extension of the basic detailed definitions of the Collaboration-Protocol Profile (CPP) and the Collaboration-Protocol Agreement (CPA), which allows the use of a transaction management facility to be indicated and the associated details to be specified and agreed in the resulting CPA. An example of a transaction management facility is the Business Transaction Protocol (BTP) [BTP] and the details in this version of this specification relate specifically to BTP. However, similar extensions could be specified, following the pattern of this specification, for other transaction management facilities with broadly similar features.

This specification is a component of the suite of ebXML specifications.

The rest of this specification is organized as follows:

· Section 6 defines the objectives of this specification.

· Section 7 provides a system overview.

· Section 8 contains the definition of the CPP extension, identifying the structure and all necessary fields.

· Section 9 contains the definition of the CPA extension.

· Section 10 lists all other documents referenced in this specification.

· Section 11 provides a conformance statement.

· Section 12 contains a disclaimer.

· Section 13 lists contact information for the contributing authors and the coordinating editor for this version of the specification.

· The appendices include examples of CPP and CPA documents (non-normative), an example XML Business Process Specification (non-normative), an XML Schema document (normative), a description of how to compose a CPA from two CPPs (non-normative), a summary of corresponding ebXML Messaging Service and CPA parameters (normative), and a Glossary of Terms.

5.2 Document Conventions

Terms in Italics are defined in Appendix F (Glossary of Terms). Terms listed in Bold Italics represent the element and/or attribute content of the XML CPP, CPA, or related definitions.

In this specification, indented paragraphs beginning with "NOTE:" provide non-normative explanations or suggestions that are not mandated by the specification.

References to external documents are represented with BLOCK text enclosed in brackets, e.g. [RFC2396]. The references are listed in Section 10, "References".

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as described in [RFC 2119].

NOTE: Vendors SHOULD carefully consider support of elements with cardinalities (0 or 1) or (0 or more). Support of such an element means that the element is processed appropriately for its defined function and not just recognized and ignored. A given Party might use these elements in some CPPs or CPAs and not in others. Some of these elements define parameters or operating modes and SHOULD be implemented by all vendors. It might be appropriate to implement elective elements that represent major run-time functions, such as various alternative communication protocols or security functions, by means of plug-ins so that a given Party MAY acquire only the needed functions rather than having to install all of them.

By convention, values of [XML] attributes are generally enclosed in quotation marks, however those quotation marks are not part of the values themselves.

5.3 Versioning of the Specification and Schema

Whenever this specification is modified, it SHALL be given a new version number.

It is anticipated that during the review period, errors and inconsistencies in the specification and in the schema may be detected and have to be corrected. All known errors in the specification as well as necessary changes to the schema will be summarized in an errata page found at

URL
The specification, when initially approved by the OASIS ebXML Collaboration Protocol Profile and Agreement Technical Committee for public review, SHALL carry a version number of “1_0”. At that time, the schema SHALL have a version number of “1_0a” and the suffix letter after “1_0” will be advanced as necessary when bug fixes to the schema have to be introduced. Such versions of the schema SHALL be found under the directory

http://www.oasis-open.org/committees/ebxml-cppa/schema/
In addition, the latest version of the schema SHALL always be found at

http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd
since the latter is the namespace URI used for this specification and the corresponding schema is supposed to be directly resolvable from the namespace URI.

The value of the version attribute of the Schema element in a given version of the schema SHALL be equal to the version of the schema.
5.4 Definitions

Technical terms in this specification are defined in Appendix F.

5.5 Audience

One target audience for this specification is implementers of ebXML services and other designers and developers of middleware and application software that is to be used for conducting electronic Business. Another target audience is the people in each enterprise who are responsible for creating CPPs and CPAs.

5.6 Assumptions

It is expected that the reader has an understanding of XML and is familiar with the concepts of electronic Business (eBusiness).

5.7 Related Documents

Related documents include Specifications on the following topics:

· Business Transaction Protocol [BTP]

and the ebXML Specifications on the following topics:

· ebXML Collaboration-Protocol Profile and Agreement [ebCPPA]

· ebXML Business Process Specification Schema [ebBPSS]

See Section 10 for the complete list of references.

6 Design Objectives

The objective of this specification is to ensure interoperability between two Parties even though they MAY procure application software and run-time support software from different vendors. This extension to the CPP specification defines a Party's explicit transaction management capabilities. The CPA defines the way two Parties will interact in performing explicit transactions. Both Parties SHALL use identical copies of the CPA, including this extension, to configure their run-time systems. This assures that they are compatibly configured to exchange Messages whether or not they have obtained their run-time systems from the same vendor. The configuration process MAY be automated by means of a suitable tool that reads the CPA and performs the configuration process.

In addition to supporting direct interaction between two Parties, this specification MAY also be used to support interaction between two Parties through an intermediary such as a transaction coordination hub.

It is an objective of this specification that a CPA SHALL be capable of being composed by intersecting the respective CPPs of the Parties involved. The resulting CPA SHALL contain only those elements that are in common, or compatible, between the two Parties. Variable quantities, such as number of retries of errors, are then negotiated between the two Parties. The design of the CPP and CPA schemata facilitates this composition/negotiation process. However, the composition and negotiation processes themselves are outside the scope of this specification.

7 System Overview

7.1 What This Specification Does

The exchange of information between two Parties under transaction control requires each Party to know the other Party's supported transaction capabilities, and the technology details about how the other Party sends and receives Messages. It is necessary for the two Parties to reach agreement on some of these details.

The way each Party can exchange information, about their transaction management capabilities, can be described by a Collaboration-Protocol Profile (CPP) extended as described in this specification. The agreement between the Parties can be expressed as a Collaboration-Protocol Agreement (CPA) extended as described in this specification.

A Party MAY describe itself in a single CPP. A Party MAY create multiple CPPs that describe, for example, different transaction management capabilities that it supports.

The document that defines the interactions between two Parties is a Process-Specification document that MAY conform to the ebXML Business Process Specification Schema [ebBPSS]. The CPP and CPA include references to this Process-Specification document. This Process-Specification document SHALL indicate the points at which transactions are initiated and terminated, by whom and with whom and the reaction to the possible transaction outcomes.

This specification defines the markup language vocabulary for creating electronic CPPs and CPAs that include transaction capabilities. CPPs and CPAs are [XML] documents. In the appendices of this specification are two sample CPPs, a sample CPA formed from the CPPs, a sample Process-Specification referenced by the CPPs and the CPA, and the XML Schema governing the structures of CPPs and CPAs. ???

[image: image6.wmf]Figure 3: Overview of

Collaboration-Protocol Agreements

 (

CPA

)

CPA

 ID

Party’s

 information

-

 Party

 A

-

Party

 B

Transport Protocol

Transport Security

DocExchange

 Protocol

Link to Process-

Specification Doc.

Retry

-etc.

CPP

For

Party

 A

CPP

For

Party

 B

CPA

Agreed

CPA

Agreed

CPA

1

negotiate

2

negotiate

3

Agree-

ment

 on

CPA

 has

arrived.

3

Agree-

ment

 on

CPA

 has

arrived.

4 Start Business activities with each other

The CPPA specification is concerned with software that conducts business on behalf of Parties by exchanging Messages[ebMS]. In particular, it is concerned with Client and Server software programs that engage in Business Transactions [ebBPSS] by sending and receiving Messages. Those Messages convey Business Documents and/or business signals [ebBPSS] in their payload. Under the terms of a CPA:

· A Client initiates a connection with a Server.
· A Role initiates a Transaction with a complementary Role as defined in the business process specification.

· A Sender sends a Message to a Receiver.

Thus, Client and Server are software counterparts, Roles are business counterparts, and Sender and Receiver are messaging counterparts. There is no fixed relationship between counterparts of different types. For example, consider a purchasing collaboration. Client software representing the buying party might connect to Server software representing the selling party, and then make a purchase request by sending a Message containing a purchase order over that connection. If the CPA specifies a synchronous business response, the Server might then respond by sending a Message containing an acceptance notice back to the Client over the same connection. Alternatively, if the CPA specifies an asynchronous business response, Client software representing the selling party might later respond by connecting to Server software representing the buying party and then sending a Message containing an acceptance notice.

In general, the Parties to a CPA can have both client and server characteristics. A client requests services and a server provides services to the Party requesting services. In some applications, one Party only requests services and one Party only provides services. These applications have some resemblance to traditional client-server applications. In other applications, each Party MAY request services of the other. In that case, the relationship between the two Parties can be described as a peer-peer relationship rather than a client-server relationship.

7.2 Forming a CPA from Two CPPs

Please refer to the base specification [ebCPPA] for an elaboration of this process.

Figure 2 illustrates forming a CPP. Party A tabulates the information to be placed in a repository for the discovery process, constructs a CPP that contains this information, and enters it into an ebXML Registry or similar repository along with additional information about the Party. The additional information might include a description of the Businesses that the Party engages in. Once Party A's information is in the repository, other Parties can discover Party A by using the repository's discovery services.

[image: image7.wmf]Figure 4: Overview of Working Architecture of CPP/CPA with

ebXML

 Registry

Registry

 Party

 B

(Buyer,Server)

 Party

 A

(Seller,Server)

CPP(A)

CPP

(B)

CPP

(X)

CPP

(Y)

CPP

(Z)

CPP

(A)

CPA

(A,B)

CPA

(A,B)

(Document)

(Exe. Code)

CPA

(A,B)

CPA

(A,B)

(Document)

(Exe. Code)

1. Any

Party

 may register its

CPPs

to an

ebXML

 Registry.

2.

Party

 B discovers trading partner

A (Seller) by searching in the

Registry and downloads

CPP

(A) to

Party

B’s server.

3.

Party

 B creates

CPA

(A,B) and

sends

CPA

(A,B) to

Party

 A.

4.

Parties

 A and B negotiate and

store identical copies of the

completed

CPA

 as a document in

both servers. This process is done

manually or automatically.

5.

Parties

 A and B configure their

run-time systems with the

information in the

CPA

.

6.

Parties

A and B

do business under

the new

CPA.

2.

6.

5.

5.

3.

4.

1.

1.

In Figure 3, Party A and Party B use their CPPs to jointly construct a single copy of a CPA by calculating the intersection of the information in their CPPs. The resulting CPA defines how the two Parties will behave in performing their Business Collaboration.

[image: image8.wmf]Delivery Channel

DC1

Transport

T1

Doc.

Exch

.

X1

Delivery Channel

DC2

Transport

T2

Doc.

Exch

.

X2

Delivery Channel

DC3

Transport

T2

Doc.

Exch

.

X1

Figure 5: Three Delivery Channels

[image: image9.wmf]Figure 1: Structure of CPP & Business Process Specification in

an

ebXML

Registry

Repository

Business

Collaboration

<PartyInfo PartyId=“N01”>

 <

ProcessSpecification xlink

:href=“http://

<

PartyInfo

 PartyId=“N02”>

 <

ProcessSpecification xlink

:href=“http://

CPP(A)

Process Specification(A1)

Process Specification(A2)

Business

Collaboration

Figure 4 illustrates the entire process. The steps are listed at the left. The end of the process is that the two Parties configure their systems from identical copies of the agreed CPA and they are then ready to do Business.

7.3 Forming a CPA from a CPA Template

Please refer to the base specification [ebCPPA] for an elaboration of this process.

7.4 How the CPA Works

Please refer to the base specification [ebCPPA] for an elaboration of how the CPA works and may be utilised.

7.5 Where the CPA May Be Implemented

Please refer to the base specification [ebCPPA] for an elaboration of where the CPA may be implemented.

7.6 Definition and Scope

This extension to the base CPPA specification defines and explains the contents of the CPP and CPA XML documents as they relate to transaction management capabilities. Its scope is limited to these definitions. It does not define how to compose a CPA from two CPPs nor does it define anything related to run-time support for the CPP and CPA. See Section 11 for a discussion of conformance to this specification.

NOTE: This specification is limited to defining the contents of the CPP and CPA, and it is possible to be conformant with it merely by producing a CPP or CPA document that conforms to the XML Schema document defined herein. It is, however, important to understand that the value of this specification lies in its enabling a run-time system that supports electronic commerce between two Parties under the guidance of the information in the CPA.
8 CPP Definition

A CPP defines the capabilities of a Party to engage in electronic Business with other Parties. This extension to the base CPP [ebCPPA] covers transaction management capabilities as provided by BTP [BTP] only.

This section defines and discusses the details of this extension to the base CPP in terms of the individual XML elements. The discussion is illustrated with some XML fragments. See Appendix D for the XML Schema, and Appendix A for sample CPP documents.

The TransactionManagement_BTP_CPP_Ext element of the CPP describes the Transaction management capabilities available through the use of the Business Transaction Protocol.

8.1 CPP Structure

Following is the overall structure of a CPP that includes this exstension. Unless otherwise noted, CPP elements MUST be in the order shown here. Subsequent sections describe each of the elements in greater detail.

<tp:CollaborationProtocolProfile

 xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 tp:cppid="uri:companyA-cpp"

 tp:version="2_0c">

 <tp:PartyInfo> <!-- one or more -->

 ...

 </tp:PartyInfo>

 <tp:SimplePart id="..."> <!-- one or more -->

 ...

 </tp:SimplePart>

 <tp:Packaging id="..."> <!-- one or more -->

 ...

 </tp:Packaging>

 <tp:Signature> <!-- zero or one -->

 ...

 </tp:Signature>

<btpext:TransactionManagement_BTP_CPP_Ext btpext:BTP_CPPA_ext_version="1.0">
 <!-- zero or one -->
 <btpext:BTP_Version> <!-- one or more -->
 ...

 </btpext:BTP_Version>

 <btpext:Standard_Bindings> <!-- zero or more -->
 ...

 </btpext:Standard_Bindings> <!-- zero or more -->
 <btpext:Transaction_Time_Limit_Range> <!-- zero or one -->
 ...
 </btpext:Transaction_Time_Limit_Range>

 <btpext:Inferior_Timeout_Range> <!-- zero or one -->
 ...

 </btpext:Inferior_Timeout_Range>

 <btpext:Min_Inferior_Timeout_Range> <!-- zero or one -->
 ...

 </btpext:Min_Inferior_Timeout_Range>

 <btpext:Actor-Role> <!-- one or more -->
 ...

 </btpext:Actor-Role>

 <btpext:Factory_default_address> <!-- zero or more -->
 ...

 </btpext:Factory_default_address>

 <btpext:Message_Timeout_Range> <!-- zero or one -->
 ...

 </btpext:Message_Timeout_Range>

 <btpext:Standard_Qualifiers_supported> <!-- zero or more -->
 ...

 </btpext:Standard_Qualifiers_supported>

 <btpext:Other_Qualifiers_supported> <!-- zero or more -->
 ...
 </btpext:Other_Qualifiers_supported>

<btpext:Recovery_Capable> <!-- zero or one -->
 ...

 <btpext:Recovery_Capable>

 <tp:Comment xml:lang="aa-AA"> <!-- zero or more -->
 ...

 </tp:Comment>

</btpext:TransactionManagement_BTP_CPP_Ext>

 <tp:Comment>text</tp:Comment> <!-- zero or more -->

</tp:CollaborationProtocolProfile>

8.2 CollaborationProtocolProfile element

The CollaborationProtocolProfile element is the root element of the CPP XML document.

The REQUIRED XML [XML] Namespace [XMLNS] declarations for the basic document are as follows:

· The CPP/CPA namespace: xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd",

· The XML Digital Signature namespace: xmlns:ds="http://www.w3.org/2000/09/xmldsig#",

· and the XLink namespace: xmlns:xlink="http://www.w3.org/1999/xlink".
In addition, the CollaborationProtocolProfile element contains a REQUIRED cppid attribute that supplies a unique identifier for the document, plus a REQUIRED version attribute that indicates the version of the schema. Its purpose is to identify the version of the schema that the CPP conforms to. The value of the version attribute SHOULD be a string such as "2_0a", "2_0b", etc.

NOTE: The method of assigning unique cppid values is left to the implementation.

The CollaborationProtocolProfile element SHALL consist of the following child elements:

· One or more REQUIRED PartyInfo elements that identify the organization (or parts of the organization) whose capabilities are described by the CPP,

· One or more REQUIRED SimplePart elements that describe the constituents used to make up composite Messages,

· One or more REQUIRED Packaging elements that describe how the Message Header and payload constituents are packaged for transmittal,

· Zero or one Signature element that contains the digital signature that signs the CPP document,
· Zero or more Comment elements.
A CPP document MAY be digitally signed so as to provide for a means of ensuring that the document has not been altered (integrity) and to provide for a means of authenticating the author of the document. A digitally signed CPP SHALL be signed using technology that conforms to the joint W3C/IETF XML Digital Signature specification[XMLDSIG].

8.3 PartyInfo Element

The PartyInfo element identifies the organization whose capabilities are described in this CPP and includes all the details about this Party. More than one PartyInfo element MAY be provided in a CPP if the organization chooses to represent itself as subdivisions with different characteristics. Each of the sub-elements of PartyInfo is discussed later. The overall structure of the PartyInfo element is as follows:

<tp:PartyInfo

 tp:partyName="..."

 tp:defaultMshChannelId="..."

 tp:defaultMshPackageId="...">

 <tp:PartyId tp:type="..."> <!-- one or more -->

 ...

 </tp:PartyId>

 <tp:PartyRef xlink:href="..."/>

 <tp:CollaborationRole> <!-- one or more -->

 ...

 </tp:CollaborationRole>

 <tp:Certificate> <!-- one or more -->

 ...

 </tp:Certificate>

 <tp:SecurityDetails> <!-- one or more -->

 ...

 </tp:SecurityDetails>

 <tp:DeliveryChannel> <!-- one or more -->

 ...

 </tp:DeliveryChannel>

 <tp:Transport> <!-- one or more -->

 ...

 </tp:Transport>

 <tp:DocExchange> <!-- one or more -->

 ...

 </tp:DocExchange>

 <tp:OverrideMshActionBinding> <!-- zero or more -->

 ...

 </tp:OverrideMshActionBinding>

</tp:PartyInfo>

The PartyInfo element contains a REQUIRED partyName attribute that indicates the common, human readable name of the organization. Unlike PartyID, partyName might not be unique; however, the value of each partyName attribute SHALL be meaningful enough to directly identify the organization or the subdivision of an organization described in the PartyInfo element.

The following example illustrates two possible party names.

<tp:PartyInfo tp:partyName="Example, Inc."...</tp:PartyInfo>

<tp:PartyInfo tp:partyName="Example, Inc. US Western Division">

...

</tp:PartyInfo>

The PartyInfo element also contains a REQUIRED defaultMshChannelId attribute and a REQUIRED defautMshPackageId attribute. The defaultMshChannelId attribute identifies the default DeliveryChannel to be used for sending standalone Message Service Handler [ebMS] level messages (i.e., Acknowledgment, Error, StatusRequest, StatusResponse, Ping, Pong) that are to be delivered asynchronously. When synchronous reply mode is in use, Message Service Handler level messages are by default returned synchronously. The default can be overridden through the use of OverrideMshActionBinding elements. The defaultMshPackageId attribute identifies the default Packaging to be used for sending standalone Message Service Handler [ebMS] level messages.

The PartyInfo element consists of the following child elements:

· One or more REQUIRED PartyId elements that provide logical identifiers for the organization.

· One or more REQUIRED PartyRef elements that provide pointers to more information about the Party.

· One or more REQUIRED CollaborationRole elements that identify the roles that this Party can play in the context of a Process Specification.

· One or more REQUIRED Certificate elements that identify the certificates used by this Party in security functions.

· One or more REQUIRED SecurityDetails elements that identify trust anchors and specify security policy used by this Party in security functions.

· One or more REQUIRED DeliveryChannel elements that define the characteristics that the Party can use to send and/or receive Messages. It includes both the transport protocol (e.g. HTTP) and the messaging protocol (e.g. ebXML Message Service).

· One or more REQUIRED Transport elements that define the characteristics of the transport protocol(s) that the Party can support to send and/or receive Messages.

· One or more REQUIRED DocExchange elements that define the Message-exchange characteristics, such as the signature and encryption protocols, that the Party can support.

· Zero or more OverrideMshActionBinding elements that specify the DeliveryChannel to use for asynchronously delivered Message Service Handler level messages.

8.3.1 PartyId element

The REQUIRED PartyId element provides an identifier that SHALL be used to logically identify the Party. Additional PartyId elements MAY be present under the same PartyInfo element so as to provide for alternative logical identifiers for the Party. If the Party has preferences as to which logical identifier is used, the PartyId elements SHOULD be listed in order of preference starting with the most-preferred identifier.

In a CPP that contains multiple PartyInfo elements, different PartyInfo elements MAY contain PartyId elements that define different logical identifiers. This permits a large organization, for example, to have different identifiers for different purposes.

The value of the PartyId element is any string that provides a unique identifier. The identifier MAY be any identifier that is understood by both Parties to a CPA. Typically, the identifier would be listed in a well-known directory such as DUNS (Dun and Bradstreet) or in any naming system specified by [ISO6523].

The PartyId element has a single IMPLIED attribute: type that has an anyURI [XMLSCHEMA-2] value.

If the type attribute is present, then it provides a scope or namespace for the content of the PartyId element.

If the type attribute is not present, the content of the PartyId element MUST be a URI that conforms to [RFC2396]. It is RECOMMENDED that the value of the type attribute be a URN that defines a namespace for the value of the PartyId element. Typically, the URN would be registered in a well-known directory of organization identifiers.
The following example illustrates two URI references.

 <tp:PartyId tp:type="urn:oasis:names:tc:ebxml-cppa:partyid-type:duns">123456789</tp:PartyId>

 <tp:PartyId>urn:icann:example.com</tp:PartyId>

The first example is the Party's DUNS number. The value is the DUNS number of the organization.

The second example shows an arbitrary URN. This might be a URN that the Party has registered with IANA, the Internet Assigned Numbers Authority (http://www.iana.org) to identify itself directly.

The following document discusses naming agencies and how they are identified via URI values of the type attribute:

http://www.oasis-open.org/committees/ebxml-cppa/documents/PartyID_Types.shtml
8.3.2 PartyRef element

The PartyRef element provides a link, in the form of a URI, to additional information about the Party. Typically, this would be the URL from which the information can be obtained. The information might be at the Party's web site or in a publicly accessible repository such as an ebXML Registry, a UDDI repository (www.uddi.org), or a Lightweight Directory Access Protocol [RFC2251] (LDAP) directory. Information available at that URI MAY include contact information like names, addresses, and phone numbers, or context information like geographical locales and industry segments, or perhaps more information about the Business Collaborations that the Party supports. This information MAY be in the form of an ebXML Core Component [ccOVER]. It is not within the scope of this specification to define the content or format of the information at that URI.

The PartyRef element is an [XLINK] simple link. It has the following attributes:

· a FIXED xlink:type attribute,

· a REQUIRED xlink:href attribute,

· an IMPLIED type attribute,

· an IMPLIED schemaLocation attribute.

The contents of the document referenced by the partyRef element are subject to change at any time. Therefore, it SHOULD NOT be cached for a long period of time. Rather, the value of the xlink:href SHOULD be dereferenced only when the contents of this document are needed.

8.3.2.1 xlink:type attribute

The FIXED xlink:type attribute SHALL have a value of "simple". This identifies the element as being an [XLINK] simple link.

8.3.2.2 xlink:href attribute

The REQUIRED xlink:href attribute SHALL have a value that is a URI that conforms to [RFC2396] and identifies the location of the external information about the Party.

8.3.2.3 type attribute

The value of the IMPLIED type attribute identifies the document type of the external information about the Party. It MUST be a URI that defines the namespace associated with the information about the Party. If the type attribute is omitted, the external information about the Party MUST be an HTML web page.

8.3.2.4 schemaLocation attribute

The value of the IMPLIED schemaLocation attribute provides a URI for the schema that describes the structure of the external information.

An example of the PartyRef element is:

<tp:PartyRef xlink:type="simple"

 xlink:href="http://example2.com/ourInfo.xml"

 tp:type="urn:oasis:names:tc:ebxml-cppa:contact-info"

 tp:schemaLocation="http://example2.com/ourInfo.xsd"/>

8.3.3 CollaborationRole element

The CollaborationRole element associates a Party with a specific role in the Business Collaboration. Generally, the Process-Specification is defined in terms of roles such as "buyer" and "seller". The association between a specific Party and the role(s) it is capable of fulfilling within the context of a Process-Specification is defined in both the CPP and CPA documents. In a CPP, the CollaborationRole element identifies which role the Party is capable of playing in each Process Specification documents referenced by the CPP. An example of the CollaborationRole element, based on RosettaNet™ PIP 3A4 is:

<tp:CollaborationRole >

 <tp:ProcessSpecification

 tp:version="2.0a"

 tp:name="PIP3A4RequestPurchaseOrder"

 xlink:type="simple"

 xlink:href="http://www.rosettanet.org/processes/3A4.xml"/>

 <tp:Role

 tp:name="Buyer"

 xlink:type="simple"

 xlink:href="http://www.rosettanet.org/processes/3A4.xml#BuyerId"/>

 <tp:ApplicationCertificateRef tp:certId="CompanyA_AppCert"/>

 <tp:ServiceBinding>

 <tp:Service tp:type="anyURI">urn::icann:rosettanet.org:bpid:3A4$2.0</tp:Service>

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID1"

 tp:action="Purchase Order Request Action"

 tp:packageId="CompanyA_RequestPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT2H"

 tp:timeToPerform="P1D"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Request Action"/>

 <tp:ChannelId>asyncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanSend>

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID2"

 tp:action="ReceiptAcknowledgment"

 tp:packageId="CompanyA_ReceiptAcknowledgmentPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT2H"

 tp:timeToPerform="P1D"/>

 <tp:ChannelId>asyncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanSend>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID3"

 tp:action="Purchase Order Confirmation Action"

 tp:packageId="CompanyA_ResponsePackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT2H"

 tp:timeToPerform="P1D"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Confirmation Action"/>

 <tp:ChannelId>asyncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanReceive>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID4"

 tp:action="ReceiptAcknowledgment"

 tp:packageId="CompanyA_ReceiptAcknowledgmentPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT2H"

 tp:timeToPerform="P1D"/>

 <tp:ChannelId>asyncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanReceive>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID5"

 tp:action="Exception"

 tp:packageId="CompanyA_ExceptionPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT2H"

 tp:timeToPerform="P1D"/>

 <tp:ChannelId>asyncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanReceive>

 </tp:ServiceBinding>

</tp:CollaborationRole>

To indicate that the Party can play roles in more than one Business Collaboration or more than one role in a given Business Collaboration, the PartyInfo element SHALL contain more than one CollaborationRole element. Each CollaborationRole element SHALL contain the appropriate combination of ProcessSpecification element and Role element.

The CollaborationRole element SHALL consist of the following child elements: a REQUIRED ProcessSpecification element, a REQUIRED Role element, zero or one ApplicationCertificateRef elements, zero or one ApplicationSecurityDetailsRef element, and one ServiceBinding element. The ProcessSpecification element identifies the Process-Specification document that defines such role. The Role element identifies which role the Party is capable of supporting. The ApplicationCertificateRef element identifies the certificate to be used for application level signature and encryption. The ApplicationSecurityDetailsRef element identifies the trust anchors and security policy that will be applied to any application-level certificate offered by the other Party. The ServiceBinding element SHALL consist of zero or more CanSend elements and zero or more CanReceive elements. The CanSend and CanReceive elements identify the DeliveryChannel elements that are to be used for sending and receiving business action messages by the Role in question. They MAY also be used for specifying DeliveryChannels for business signal messages.

Each Party SHALL have a default delivery channel for the delivery of standalone Message Service Handler level signals like (Reliable Messaging) Acknowledgments, Errors, StatusRequest, StatusResponse, etc.
8.3.4 ProcessSpecification element

The ProcessSpecification element provides the link to the Process-Specification document that defines the interactions between the two Parties. It is RECOMMENDED that this Business-Collaboration description be prepared in accordance with the ebXML Business Process Specification Schema [ebBPSS]. The Process-Specification document MAY be kept in an ebXML Registry.

NOTE: A Party can describe the Business Collaboration using any desired alternative to the ebXML Business Process Specification Schema. When an alternative Business-Collaboration description is used, the Parties to a CPA MUST agree on how to interpret the Business-Collaboration description and how to interpret the elements in the CPA that reference information in the Business-Collaboration description. The affected elements in the CPA are the Role element, the CanSend and CanReceive elements, the ActionContext element, and some attributes of the BusinessTransactionCharacteristics element.
The syntax of the ProcessSpecification element is:

<tp:ProcessSpecification

 tp:version="2.0a"

 tp:name="PIP3A4RequestPurchaseOrder"

 xlink:type="simple"

 xlink:href="http://www.rosettanet.org/processes/3A4.xml"

 uuid="urn:icann:rosettanet.org:bpid:3A4$2.0">

 <ds:Reference ds:URI="http://www.rosettanet.org/processes/3A4.xml">

 <ds:Transforms>

 <ds:Transform

ds:Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </ds:Transforms>

 <ds:DigestMethod

 ds:Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:DigestValue>

 </ds:Reference>

</tp:ProcessSpecification>

The ProcessSpecification element has zero or more child ds:Reference elements, and the following attributes:

· a REQUIRED name attribute,

· a REQUIRED version attribute,

· a FIXED xlink:type attribute,

· a REQUIRED xlink:href attribute,

· an IMPLIED uuid attribute.

The ProcessSpecification element contains zero or more ds:Reference elements formulated according to the XML Digital Signature specification [XMLDSIG]. The first ds:Reference element, if present, relates to the xlink:type and xlink:href attributes as follows. Each ProcessSpecification element SHALL contain one xlink:href attribute and one xlink:type attribute with a value of "simple". In case the CPP (CPA) document is signed, the first ds:Reference element that is present MUST include a ds:URI attribute whose value is identical to that of the xlink:href attribute in the enclosing ProcessSpecification element. The ds:Reference element specifies a digest method and digest value to enable verification that the referenced Process-Specification document has not changed. Additional ds:Reference elements are needed if the referenced ProcessSpecification in turn includes (i.e., references) other ProcessSpecifications. Essentially, ds:Reference elements MUST be provided to correspond to the transitive closure of all ProcessSpecifications that are referenced directly or indirectly to ensure that none of them has been changed.

8.3.4.1 name attribute

The ProcessSpecification element MUST include a REQUIRED name attribute: a string that identifies the Business Process-Specification being performed. If the Process-Specification document is defined by the ebXML Business Process specification [ebBPSS], then this attribute MUST be set to the name for the corresponding ProcessSpecification element within the Business Process Specification instance.

8.3.4.2 version attribute

The ProcessSpecification element includes a REQUIRED version attribute to indicate the version of the Process-Specification document identified by the xlink:href attribute (and also identified by the ds:Reference element, if any).

8.3.4.3 xlink:type attribute

The xlink:type attribute has a FIXED value of "simple". This identifies the element as being an [XLINK] simple link.

8.3.4.4 xlink:href attribute

The REQUIRED xlink:href attribute SHALL have a value that identifies the Process-Specification document and is a URI that conforms to [RFC2396].

8.3.4.5 uuid attribute

The IMPLIED uuid attribute uniquely identifies the ProcessSpecification. If the Process-Specification document is defined by the ebXML Business Process specification [ebBPSS], then this attribute MUST be set to the uuid for the corresponding ProcessSpecification element within the business process specification instance.
8.3.4.6 ds:Reference element

The ds:Reference element identifies the same Process-Specification document as the enclosing ProcessSpecification element's xlink:href attribute and additionally provides for verification that the Process-Specification document has not changed since the CPP was created, through the use of a digest method and digest value as described below.

NOTE: Parties MAY test the validity of the CPP or CPA at any time. The following validity tests MAY be of particular interest:

· test of the validity of a CPP and the referenced Process-Specification documents at the time composition of a CPA begins in case they have changed since they were created,

· test of the validity of a CPA and the referenced Process-Specification documents at the time a CPA is installed into a Party's system,

· test of the validity of a CPA at intervals after the CPA has been installed into a Party's system. The CPA and the referenced Process-Specification documents MAY be processed by an installation tool into a form suited to the particular middleware. Therefore, alterations to the CPA and the referenced Process-Specification documents do not necessarily affect ongoing run-time operations. Such alterations might not be detected until it becomes necessary to reinstall the CPA and the referenced Process-Specification documents.
The syntax and semantics of the ds:Reference element and its child elements are defined in the XML Digital Signature specification [XMLDSIG]. In addition, to identify the Process-Specification document, the first ds:Reference element MUST include a ds:URI attribute whose value is identical to that of the xlink:href attribute in the enclosing ProcessSpecification element.

According to [XMLDSIG], a ds:Reference element can have a ds:Transforms child element, which in turn has an ordered list of one or more ds:Transform child elements to specify a sequence of transforms. However, this specification currently REQUIRES the Canonical XML [XMLC14N] transform and forbids other transforms. Therefore, the following additional requirements apply to a ds:Reference element within a ProcessSpecification element:

· The ds:Reference element MUST have a ds:Transforms child element.

· That ds:Transforms element MUST have exactly one ds:Transform child element.

· That ds:Transform element MUST specify the Canonical XML [XMLC14N] transform via the following REQUIRED value for its REQUIRED ds:Algorithm attribute: http://www.w3.org/TR/2001/Rec-xml-c14n-20010315.
Note that implementation of Canonical XML is REQUIRED by the XML Digital Signature specification [XMLDSIG].

To enable verification that the identified and transformed Process-Specification document has not changed, the ds:DigestMethod element specifies the digest algorithm applied to the Process-Specification document, and the ds:DigestValue element specifies the expected value. The Process-Specification document is presumed to be unchanged if and only if the result of applying the digest algorithm to the Process-Specification document results in the expected value.
A ds:Reference element in a ProcessSpecification element has implications for CPP validity:

· A CPP MUST be considered invalid if any ds:Reference element within a ProcessSpecification element fails reference validation as defined by the XML Digital Signature specification [XMLDSIG].

· A CPP MUST be considered invalid if any ds:Reference element within it cannot be dereferenced.
Other validity implications of such ds:Reference elements are specified in the description of the Signature element in Section 9.9.
NOTE: The XML Digital Signature specification [XMLDSIG] states "The signature application MAY rely upon the identification (URI) and Transforms provided by the signer in the Reference element, or it MAY obtain the content through other means such as a local cache" (emphasis on MAY added). However, it is RECOMMENDED that ebXML CPP/CPA implementations not make use of such cached results when signing or validating.

NOTE: It is recognized that the XML Digital Signature specification [XMLDSIG] provides for signing an XML document together with externally referenced documents. In cases where a CPP or CPA document is in fact suitably signed, that facility could also be used to ensure that the referenced Process-Specification documents are unchanged. However, this specification does not currently mandate that a CPP or CPA be signed.

NOTE: If the Parties to a CPA wish to customize a previously existing Process-Specification document, they MAY copy the existing document, modify it, and cause their CPA to reference the modified copy. It is recognized that for reasons of clarity, brevity, or historical record, the Parties might prefer to reference a previously existing Process-Specification document in its original form and accompany that reference with a specification of the agreed modifications. Therefore, CPP usage of the ds:Reference element's ds:Transforms sub-element within a ProcessSpecification element might be expanded in the future to allow other transforms as specified in the XML Digital Signature specification [XMLDSIG]. For example, modifications to the original document could then be expressed as XSLT transforms. After applying any transforms, it would be necessary to validate the transformed document against the ebXML Business Process Specification Schema [ebBPSS].

8.3.5 Role element

The REQUIRED Role element identifies which role in the Process Specification the Party is capable of supporting via the ServiceBinding element(s) siblings within this CollaborationRole element.

The Role element has the following attributes:

· a REQUIRED name attribute,

· a FIXED xlink:type attribute,

· a REQUIRED xlink:href attribute.

8.3.5.1 name attribute

The REQUIRED name attribute is a string that gives a name to the Role. Its value is taken from a name attribute of one of a BinaryCollaboration’s Role elements described in the Process Specification [ebBPSS].

See NOTE in Section 8.3.4 regarding alternative Business-Collaboration descriptions.

8.3.5.2 xlink:type attribute

The xlink:type attribute has a FIXED value of "simple". This identifies the element as being an [XLINK] simple link.

8.3.5.3 xlink:href attribute

The REQUIRED xlink:href attribute SHALL have a value that is a URI that conforms to [RFC2396]. It identifies the location of the element or attribute within the Process-Specification document that defines the role in the context of the Business Collaboration. An example is:

xlink:href="http://www.rosettanet.org/processes/3A4.xml#Buyer"

Where "Buyer" is the value of the ID attribute of the element in the Process-Specification document that defines the role name.

8.3.6 ApplicationCertificateRef element

The ApplicationCertificateRef element, if present, identifies a certificate for use by the business process/application layer. This certificate is not used by the ebXML messaging system, but it is included in the CPP so that it can be considered in the CPA negotiation process. The ApplicationCertificateRef element can occur zero or more times.

NOTE: It is up to the application software on both sides of a collaboration to determine the intended/allowed usage of an application certificate by inspecting the key usage extension within the certificate itself.

 NOTE: This element is included in the CPP/CPA to support interoperability with legacy systems that already perform cryptographic functions such as digital signature or encryption. Implementers should understand that use of ApplicationCertificateRef is necessary only in cases where interoperability with such legacy systems is required.

The ApplicationCertificateRef element has

· A REQUIRED certId attribute.

8.3.6.1 certId attribute

The REQUIRED certId attribute is an [XML] IDREF that associates the CollaborationRole element with a certificate. It MUST have a value equal the value of the certId attribute of one of the Certificate elements under PartyInfo.

8.3.7 ApplicationSecurityDetailsRef element

The ApplicationSecurityDetailsRef element, if present, identifies the trust anchors and security policy that this Party will apply to any application-level certificate offered by the other Party. These trust anchors and policy are not used by the ebXML messaging system, but are included in the CPP so that they can be considered in the CPA negotiation process.

The ApplicationSecurityDetailsRef element has

· A REQUIRED securityId attribute.

8.3.7.1 SecurityId attribute

The REQUIRED securityId attribute is an [XML] IDREF that associates the CollaborationRole with a SecurityDetails element that specifies a set of trust anchors and a security policy. It MUST have a value equal to the value of the securityId attribute of one of the SecurityDetails elements under PartyInfo.

8.3.8 ServiceBinding element

The ServiceBinding element identifies a DeliveryChannel element for all of the business Message traffic that is to be sent or received by the Party within the context of the identified Process-Specification document. It MUST contain at least one CanReceive or CanSend child element.
The ServiceBinding element has one child Service element, zero or more CanSend child elements, and zero or more CanReceive child elements.

8.3.9 Service element

The value of the Service element is a string that SHALL be used as the value of the Service element in the ebXML Message Header [ebMS] or a similar element in the Message Header of an alternative message service. The Service element has an IMPLIED type attribute.

If the Process-Specification document is defined by the ebXML Business Process Specification Schema [ebBPSS], then the value of the Service element MUST be the uuid (URI) attribute specified for the ProcessSpecification element in the Business Process Specification Schema instance document.

NOTE: The purpose of the Service element is to provide routing information for the ebXML Message Header. The CollaborationRole element and its child elements identify the information in the ProcessSpecification document that is relevant to the CPP or CPA. The Service element MAY be used along with the CanSend and CanReceive elements (and their descendants) to provide routing of received messages to the correct application entry point.
8.3.9.1 type attribute

If the type attribute is present, it indicates that the Parties sending and receiving the Message know, by some other means, how to interpret the value of the Service element. The two Parties MAY use the value of the type attribute to assist the interpretation.

If the type attribute is not present, the value of the Service element MUST be a URI [RFC2396]. If using the ebXML Business Process Specification [ebBPSS] for defining the Process-Specification document, the type attribute MUST be a URI [RFC2396].

8.3.10 CanSend element

The CanSend element identifies an action message that a Party is capable of sending. It has three sub-elements: ThisPartyActionBinding, OtherPartyActionBinding, and CanReceive. The ThisPartyActionBinding element is REQUIRED for both CPPs and CPAs. It identifies the DeliveryChannel and the Packaging the Party described by the encompassing PartyInfo element will use for sending the action invocation message in question. The OtherPartyActionBinding element is only used in the case of CPAs. Within a CPA and under the same CanSend element, the DeliveryChannels and Packaging used/expected by the two Parties MUST be compatible. The CanReceive element can occur zero or more times. When present, it indicates that one or more synchronous response actions are expected.

This is illustrated in the CPP and CPA examples in the appendices.

NOTE: While the schema permits arbitrary nesting levels under the CanSend element, use cases for nesting beyond two levels have not yet been presented. Two levels could be needed for a Request with a synchronously returned Response that additionally specified a synchronously returned Acknowledgment for that Response.

8.3.11 CanReceive element

The CanReceive element identifies an action invocation message that a Party is capable of receiving. It has three sub-elements: ThisPartyActionBinding, OtherPartyActionBinding, and CanSend. The ThisPartyActionBinding element is REQUIRED for both CPPs and CPAs. It identifies the DeliveryChannel the Party described by the encompassing PartyInfo element will use for receiving the action message in question and the Packaging it is expecting. The OtherPartyActionBinding element is only used in the case of CPAs. Within a CPA and under the same CanReceive element, the DeliveryChannels and Packaging used/expected by the two Parties MUST be compatible. The CanSend element can occur zero or more times. When present, it indicates that one or more synchronous response actions are expected. This is illustrated in the CPP and CPA examples in the appendices.

NOTE: While the schema permits arbitrary nesting levels under the CanReceive element, use cases for nesting beyond two levels have not yet been presented. Two levels could be needed for a Request with a synchronously returned Response that additionally specified a synchronously returned Acknowledgment for that Response.

8.3.12 ThisPartyActionBinding element

The ThisPartyActionBinding specifies one or more DeliveryChannel elements for Messages for a selected action and the Packaging for those Messages that are to be sent or received by the Party in the context of the Process Specification that is associated with the parent ServiceBinding element.

The ThisPartyActionBinding element has a REQUIRED child BusinessTransactionCharacteristics element, zero or one child ActionContext element and one or more ChannelID child elements.

The ThisPartyActionBinding element has the following attributes:

· a REQUIRED action attribute,

· a REQUIRED packageId attribute,

· an IMPLIED xlink:href attribute,

· a FIXED xlink:type attribute.

Under a given ServiceBinding element, there MAY be multiple CanSend or CanReceive child elements with the same action to allow different software entry points and Transport options. In such a scenario, the DeliveryChannels referred by the ChannelID child elements of ThisPartyActionBinding SHALL point to distinct EndPoints for the receiving MSH to uniquely identify the DeliveryChannel being used for this particular message exchange.

NOTE: An implementation MAY provide the capability of dynamically assigning delivery channels on a per Message basis during performance of the BinaryCollaboration. The delivery channel selected would be chosen, based on present conditions, from those identified by CanSend elements that refer to the BinaryCollaboration that is sending the Message. On the receiving side, the MSH can use the distinct EndPoints to identify the DeliveryChannel used for this message exchange.
Within a CanSend element or a CanReceive element, when both the ThisPartyActionBinding and OtherPartyActionBinding elements are present (i.e., in a CPA), they MUST have identical action values or equivalent ActionContext elements. In addition, the DeliveryChannel and Packaging that that they reference MUST be compatible.

8.3.12.1 action attribute

The value of the REQUIRED action attribute is a string that identifies the business document exchange to be associated with the DeliveryChannel identified by the ChannelId sub-elements. The value of the action attribute SHALL be used as the value of the Action element in the ebXML Message Header [ebMS] or a similar element in the Message Header of an alternative message service. The purpose of the action attribute is to provide a mapping between the hierarchical naming associated with a Business Process/Application and the Action element in the ebXML Message Header [ebMS]. This mapping MAY be implemented by using the ActionContext element. See NOTE in Section 8.3.4 regarding alternative Business Collaboration descriptions.

Business signals, when sent individually (i.e., not bundled with response documents in synchronous reply mode), SHALL use the values ReceiptAcknowledgment, AcceptanceAcknowledgment, or Exception as the value of their action attribute. In addition, they SHOULD specify a Service that is the same as the Service used for the original message.

NOTE: In general, the action name chosen by the two Parties to represent a particular requesting business activity or responding business activity in the context of a Binary Collaboration that makes use of nested BinaryCollaborations MAY not be identical. Therefore, when composing two CPPs to form a CPA, it is necessary to make use of information from the associated ActionContext (see Section 8.3.16) in order to determine if two different action names from the two CPPs actually represent the same ActionContext. When business transactions are not reused in different contexts, it is recommended that the names of the requesting business activity and responding business activity be used as action names.

8.3.12.2 packageId attribute

The REQUIRED packageId attribute is an [XML] IDREF that identifies the Packaging element to be associated with the Message identified by the action attribute.

8.3.12.3 xlink:href attribute

The IMPLIED xlink:href attribute, if present, SHALL provide an absolute [XPOINTER] URI expression that specifically identifies the RequestingBusinessActivity or RespondingBusinessActivity element within the associated Process-Specification document [ebBPSS] that is identified by the ProcessSpecification element.

8.3.12.4 xlink:type attribute

The IMPLIED xlink:type attribute has a FIXED value of "simple". This identifies the element as being an [XLINK] simple link.

8.3.13 OtherPartyActionBinding

The OtherPartyActionBinding element is only used in the case of CPAs. It is of type IDREF and identifies a matching ThisPartyActionBinding element that is found under the collaboration partner’s PartyInfo. It indirectly identifies the DeliveryChannel the other Party will use for sending or receiving the action message in question and the expected Packaging. Within a CPA and under the same CanSend or CanReceive element, the DeliveryChannels and Packaging used/expected by the two Parties, as indicated by the ThisPartyActionBinding and OtherPartyActionBinding elements, MUST be compatible.

8.3.14 BusinessTransactionCharacteristics element

The BusinessTransactionCharacteristics element describes the security characteristics and other attributes of the delivery channel, as derived from the ProcessSpecification(s) whose messages are transported using the delivery channel. The attributes of the BusinessTransactionCharacteristics element, MAY be used to override the values of the corresponding attributes in the Process-Specification document.

See NOTE in Section 8.3.4 regarding alternative Business-Collaboration descriptions.

CPP and CPA composition tools and CPA deployment tools SHALL check the delivery channel definitions for the sender and receiver (transport and document-exchange) for internal consistency as well as compatibility between the two partners. Typically, when an attribute has a particular value, sub-elements under the corresponding Transport and DocExchange elements would exist to further describe the implied implementation parameters.

The BusinessTransactionCharacteristics element has the following attributes:

· an IMPLIED isNonRepudiationRequired attribute,

· an IMPLIED isNonRepudiationReceiptRequired attribute,

· an IMPLIED isConfidential attribute,

· an IMPLIED isAuthenticated attribute,

· an IMPLIED isAuthorizationRequired attribute,

· an IMPLIED isTamperProof attribute,

· an IMPLIED isIntelligibleCheckRequired attribute,

· an IMPLIED timeToAcknowledgeReceipt attribute,

· an IMPLIED timeToAcknowledgeAcceptance attribute,

· an IMPLIED timeToPerform attribute,

· an IMPLIED retryCount attribute.

These attributes allow parameters specified at the Process-Specification level to be overridden. If one of these attributes is not specified, the corresponding default value should be obtained from the Process-Specification document.

8.3.14.1 isNonRepudiationRequired attribute

The isNonRepudiationRequired attribute is a Boolean with possible values of "true" and "false". If the value is "true" then the delivery channel MUST specify that the Message is to be digitally signed using the certificate of the Party sending the Message, and archived by bothParties. The SenderNonRepudiation element under DocExchange/ebXMLSenderBinding (see Section 8.3.43) and the ReceiverNonRepudiation element under DocExchange/ebXMLReceiverBinding (see Section 8.3.54) further describe various parameters related to the implementation of non-repudiation of origin, such as the hashing algorithm, the signature algorithm, the signing certificate, the trust anchor, etc.

8.3.14.2 isNonRepudiationReceiptRequired attribute

The isNonRepudiationReceiptRequired attribute is a Boolean with possible values of "true" and "false". If the value is "true" then the delivery channel MUST specify that the Message is to be acknowledged by a digitally signed Receipt Acknowledgment signal Message, signed using the certificate of the Party that received the Message, that includes the digest(s) of the payload(s) of the Message being acknowledged. The SenderNonRepudiation element under DocExchange/ebXMLSenderBinding (see Section 8.3.43) and the ReceiverNonRepudiation element under DocExchange/ebXMLReceiverBinding (see Section 8.3.54) further describe various parameters related to the implementation of non-repudiation of receipt.

8.3.14.3 isConfidential attribute

The isConfidential attribute has the possible values of "none", "transient", "persistent", and "transient-and-persistent". These values MUST be interpreted as defined by the ebXML Business Process Specification Schema [ebBPSS]. In general, transient confidentiality can be implemented using a secure transport protocol like SSL; persistent confidentiality can be implemented using a digital envelope mechanism like S/MIME. Secure transport information is further provided in the TransportSender (see Section 8.3.25) and TransportReceiver (see Section 8.3.32) elements under the Transport element. Persistent encryption information is further provided in the SenderDigitalEnvelope element under DocExchange/ebXMLSenderBinding (see Section 8.3.48) and the ReceiverDigitalEnvelope element under DocExchange/ebXMLReceiverBinding (see Section 8.3.56).

8.3.14.4 isAuthenticated attribute

The isAuthenticated attribute has the possible values of "none", "transient", "persistent", and "persistent-and-transient”. If this attribute is set to any value other than "none", then the receiver MUST be able to verify the identity of the sender. In general, transient authentication can be implemented using a secure transport protocol like SSL (with or without the use of basic or digest authentication); persistent authentication can be implemented using a digital signature mechanism. Secure transport information is further provided in the TransportSender (see Section 8.3.25) and TransportReceiver (see Section 8.3.33) elements under the Transport element. Persistent authentication information is further provided in the SenderNonRepudiation element under DocExchange/ebXMLSenderBinding (see Section 8.3.43) and the ReceiverNonRepudiation element (under DocExchange/ebXMLReceiverBinding (see Section 8.3.54).

8.3.14.5 isAuthorizationRequired attribute

The isAuthorizationRequired attribute is a Boolean with possible of values of "true" and "false". If the value is "true" then it indicates that the delivery channel MUST specify that the sender of the Message is to be authorized before delivery to the application.

8.3.14.6 isTamperProof attribute

The isTamperProof attribute has the possible values of "none", "transient", "persistent", and "persistent-and-transient". If this attribute is set to a value other than "none", then it must be possible for the receiver to detect if the received message has been corrupted or tampered with. In general, transient tamper detection can be implemented using a secure transport like SSL; persistent tamper detection can be implemented using a digital signature mechanism. Secure transport information is further provided in the TransportSender (see Section 8.3.25) and TransportReceiver (see Section 8.3.48) elements under the Transport element. Digital signature information is further provided in the SenderNonRepudiation element under DocExchange/ebXMLSenderBinding (see Section 8.3.43) and the ReceiverNonRepudiation element under DocExchange/ebXMLReceiverBinding (see Section 8.3.54).
8.3.14.7 isIntelligibleCheckRequired attribute

The isIntelligibleCheckRequired attribute is a Boolean with possible values of "true" and "false". If the value is "true", then the receiver MUST verify that a business document is not garbled (i.e., passes schema validation) before returning a Receipt Acknowledgment signal.

8.3.14.8 timeToAcknowledgeReceipt attribute

The timeToAcknowledgeReceipt attribute is of type duration [XMLSCHEMA-2]. It specifies the time period within which the receiving Party has to acknowledge receipt of a business document.

If this attribute is specified, then the Receipt Acknowledgment signal MUST be used.

8.3.14.9 timeToAcknowledgeAcceptance attribute

The timeToAcknowledgeAcceptance attribute is of type duration [XMLSCHEMA-2]. It specifies the time period within which the receiving Party has to non-substantively acknowledge acceptance of a business document (i.e., after it has passed business rules validation).

If this attribute is specified, then the Acceptance Acknowledgment signal MUST be used.

8.3.14.10 timeToPerform attribute

The timeToPerform attribute is of type duration [XMLSCHEMA-2]. It specifies the time period, starting from the initiation of the RequestingBusinessActivity, within which the initiator of the transaction MUST have received the response, i.e., the business document associated with the RespondingBusinessActivity.

NOTE: The timeToPerform attribute associated with a BinaryCollaboration in BPSS is currently not modeled in this specification. Therefore, it cannot be overridden. In other words, the value specified at the BPSS level MUST be used.

When synchronous reply mode is in use (see Section 8.3.23.1), the TimeToPerform value SHOULD be used as the connection timeout.

8.3.14.11 retryCount attribute

The retryCount attribute is of type integer. It specifies the maximum number of times the Business Transaction MAY be retried should certain error conditions (e.g., time out waiting for the Receipt Acknowledgment signal) arise during its execution. Such retries MUST not be used when ebXML Reliable Messaging is employed to transport messages in the Business Transaction. In the latter case, retries are governed by the Retry, RetryInterval elements under the ReliableMessaging element.

8.3.15 ChannelId element

The ChannelId element identifies one or more DeliveryChannel elements that can be used for sending or receiving the corresponding action messages. Multiple ChannelId elements can be used to associate DeliveryChannel elements with different characteristics with the same CanSend or CanReceive element. For example, a Party that supports both HTTP and SMTP for sending the same action can specify different ChannelId attribute values for the corresponding channels. If using multiple DeliveryChannel elements, different EndPoint elements MUST be used, so that the receiving MSH can uniquely determine the DeliveryChannel element being used for this message exchange.

8.3.16 ActionContext element

The ActionContext element provides a mapping from the action attribute in the ThisPartyActionBinding element to the corresponding Business Process implementation-specific naming strategy, if any. If the Process-Specification document is defined by the ebXML Business Process Specification Schema [ebBPSS], the ActionContext element MUST be present.

Any business process/application implementation can use a combination of information in the action attribute and the ActionContext elements to make message routing decisions. If using alternative Business-Collaboration description schemas, the action attribute of the parent ThisPartyActionBinding element and/or the [XMLSCHEMA-1] wildcard element within the ActionContext element MAY be used to make routing decisions above the level of the Message Service Handler.

The ActionContext element has the following elements:

· zero or one CollaborationActivity element,

· zero or more [XML SCHEMA-1] wildcard elements.

The ActionContext element also has the following attributes:

· a REQUIRED binaryCollaboration attribute,

· a REQUIRED businessTransactionActivity attribute,

· a REQUIRED requestOrResponseAction attribute.

8.3.16.1 binaryCollaboration attribute

The REQUIRED binaryCollaboration attribute is a string that identifies the BinaryCollaboration for which the parent ThisPartyActionBinding is defined. If the Process-Specification document is defined by the ebXML Business Process Specification Schema [ebBPSS], then the value of the binaryCollaboration attribute MUST match the value of the name attribute of the BinaryCollaboration element as defined in the ebXML Business Process Specification Schema[ebBPSS].
8.3.16.2 businessTransactionActivity attribute

The REQUIRED businessTransactionActivity attribute is a string that identifies the Business Transaction for which the parent ThisPartyActionBinding is defined. If the Process-Specification document is defined by the ebXML Business Process Specification Schema[ebBPSS], the value of the businessTransactionActivity attribute MUST match the value of the name attribute of the BusinessTransactionActivity element, whose parent is the

 BinaryCollaboration referred to by the binaryCollaboration attribute.
8.3.16.3 requestOrResponseAction attribute

The REQUIRED requestOrResponseAction attribute is a string that identifies either the Requesting or Responding Business Activity for which the parent ThisPartyActionBinding is defined. For a ThisPartyActionBinding defined for the request side of a message exchange, if the Process-Specification document is defined by the ebXML Business Process Specification Schema [ebBPSS], the value of the requestOrResponseAction attribute MUST match the value of the name attribute of the RequestingBusinessActivity element corresponding to the Business Transaction specified in the businessTransactionActivity attribute. Similarly, for the response side of a message exchange, the value of the requestOrResponseAction attribute MUST match the value of the name attribute of the RespondingBusinessActivity element corresponding to the Business Transaction specified in the businessTransactionActivity attribute, as defined in the ebXML Business Process Specification Schema[ebBPSS].

8.3.17 CollaborationActivity element

The CollaborationActivity element supports the ActionContext element by providing the ability to map any nested BinaryCollaborations as defined in the ebXML Business Process Specification Schema[ebBPSS] to the action attribute. The CollaborationActivity element MUST be present when the BinaryCollaboration referred to by the binaryCollaboration attribute has a CollaborationActivity defined in the business process definition.

An example of the CollaborationActivity element is:

<tp:CollaborationActivity

 tp:name="Credit Check"/>

The CollaborationActivity element has zero or one child CollaborationActivity element to indicate further nesting of BinaryCollaborations.
The CollaborationActivity element also has one attribute:

· a REQUIRED name attribute.

8.3.17.1 name attribute
The REQUIRED name attribute is a string that identifies the CollaborationActivity included in the BinaryCollaboration. If the Process-Specification document is defined by the ebXML Business Process Specification Schema[ebBPSS], the value of the name attribute MUST match the value of the name attribute of the CollaborationActivity within the BinaryCollaboration, as defined in the ebXML Business Process Specification Schema[ebBPSS].
8.3.18 Certificate element

The Certificate element defines certificate information for use in this CPP. One or more Certificate elements can be provided for use in the various security functions in the CPP. An example of the Certificate element is:

<tp:Certificate tp:certId="CompanyA_SigningCert">

 <ds:KeyInfo>. . .</ds:KeyInfo>

</tp:Certificate>
The Certificate element has a single REQUIRED attribute: certId. The Certificate element has a single child element: ds:KeyInfo.

The ds:KeyInfo element may contain a complete chain of certificates, but the leaf certificate is the Certificate element containing the key used in various asymmetric cryptographic operations. (The leaf certificate will be one that has been issued but has not been used to issue certificates.) If the leaf certificate has been issued by an intermediate certificate authority, the complete chain to the root certificate authority SHOULD be included because it aids in testing certificate validity with respect to a set of trust anchors.

8.3.18.1 certId attribute

The REQUIRED certId attribute is an [XML] ID that is referred to by a CertificateRef element elsewhere in the CPP. Here is an example of how a CertificateRef would refer to the Certificate element shown in the previous section:

<tp:SigningCertificateRef tp:certId="CompanyA_SigningCert"/>

8.3.18.2 ds:KeyInfo element

The ds:KeyInfo element defines the certificate information. The content of this element and any sub-elements are defined by the XML Digital Signature specification[XMLDSIG].

NOTE: Software for creation of CPPs and CPAs MUST recognize the ds:KeyInfo element and insert the sub-element structure necessary to define the certificate.

8.3.19 SecurityDetails element

The SecurityDetails element defines a set of TrustAnchors and an associated SecurityPolicy for use in this CPP. One or more SecurityDetails elements can be provided for use in the various security functions in the CPP. An example of the SecurityDetails element is:

<tp:SecurityDetails tp:securityId="CompanyA_MessageSecurity">
<tp:TrustAnchors tp:trustId="MessageTrustAnchors">

<tp:AnchorCertificateRef tp:certId="TrustedRootCertA3"/>

<tp:AnchorCertificateRef tp:certId="TrustedRootCertA5"/>

</tp:TrustAnchors>

<tp:SecurityPolicy> ... </tp:SecurityPolicy>

</tp:SecurityDetails>

The SecurityDetails element has zero or one TrustAnchors element that identifies a set of certificates that are trusted by the Party. It also has zero or one SecurityPolicy element.

The SecurityDetails element allows agreement to be reached on what root certificates will be used in checking the validity of the other Party’s certificates. It can also specify policy regarding operation of the public key infrastructure.

The SecurityDetails element has one attribute:

· A REQUIRED securityId attribute.

8.3.19.1 securityId attribute

The REQUIRED securityId attribute is an [XML] ID that is referred to by an element elsewhere in the CPP. Here is an example of how a SigningSecurityDetailsRef would refer to the SecurityDetails element shown in the previous section:

<tp:SigningSecurityDetailsRef tp:securityId="CompanyA_MessageSecurity"/>

8.3.20 TrustAnchors element

The TrustAnchors element contains one or more AnchorCertificateRef elements, each of which refers to a Certificate element (under PartyInfo) that represents a certificate trusted by this Party. These trusted certificates are used in the process of certificate path validation. If a certificate in question does not “chain” to one of this Party’s trust anchors, it is considered invalid.

The TrustAnchors element eventually resolves into XMLDsig KeyInfo elements. These elements may contain several certificates (a chain), and may refer to those certificates using the RetrievalMethod element. When there is a chain, the trust anchor is the “leaf” certificate with respect to the “root” issuing certificate authority (CA) certificate. The root CA will be a self-issued and self-signed certificate, and using the Issuer information and perhaps key usage attributes, the leaf certificate (“issued but not issuing” within the chain) can be determined. The chain is included for convenience in that validity checks typically will chain to a “root” CA. Please note that the inclusion of a root CA in a chain does not mean that the root CA is being announced as a trust anchor. It is possible for there to be a PKI policy in which some, but not all, intermediate CAs are trusted. If a root CA were accepted as a trust anchor, all of its intermediate CAs, and all the certificates they issue, would be validated. That might not be what was intended.

8.3.21 SecurityPolicy element

The SecurityPolicy element is a placeholder for future apparatus that will enable the Party to specify its policy and compliance regarding specific components of its public key infrastructure. For example, it might stipulate revocation checking procedures or constraints related to name, usage, or path length.

8.3.22 DeliveryChannel element

A delivery channel is a combination of a Transport element and a DocExchange element that describes the Party's Message communication characteristics. The CPP SHALL contain one or more DeliveryChannel elements, one or more Transport elements, and one or more DocExchange elements. Each delivery channel SHALL refer to any combination of a DocExchange element and a Transport element. The same DocExchange element or the same Transport element can be referred to by more than one delivery channel. Two delivery channels can use the same transport protocol and the same document-exchange protocol and differ only in details such as communication addresses or security definitions. Figure 5 illustrates three delivery channels.

[image: image10.wmf]

The delivery channels have ID attributes with values "DC1", "DC2", and "DC3". Each delivery channel contains one transport definition and one document-exchange definition. Each transport definition and each document-exchange definition also has an ID attribute whose value is shown in the figure. Note that delivery channel DC3 illustrates that a delivery channel can refer to the same transport definition and document-exchange definition used by other delivery channels but a different combination. In this case delivery channel DC3 is a combination of transport definition T2 (also referred to by delivery channel DC2) and document-exchange definition X1 (also referred to by delivery channel DC1).

Following is the delivery-channel syntax.

<tp:DeliveryChannel

 tp:channelId="channel1"

 tp:transportId="transport1"

 tp:docExchangeId="docExchange1"

 <tp:MessagingCharacteristics

 tp:syncReplyMode="none"

 tp:ackRequested="always"

 tp:ackSignatureRequested="always"

 tp:duplicateElimination="always"

 tp:actor="urn:oasis:names:tc:ebxml-msg:actor:nextMSH"/>

</tp:DeliveryChannel>

Each DeliveryChannel element identifies one Transport element and one DocExchange element that together make up a single delivery channel definition.

The DeliveryChannel element has the following attributes:

· a REQUIRED channelId attribute,

· a REQUIRED transportId attribute,

· a REQUIRED docExchangeId attribute.

The DeliveryChannel element has one REQUIRED child element, MessagingCharacteristics.

8.3.22.1 channelId attribute

The channelId attribute is an [XML] ID attribute that uniquely identifies the DeliveryChannel element for reference, using IDREF attributes, from other parts of the CPP or CPA.

8.3.22.2 transportId attribute

The transportId attribute is an [XML] IDREF that identifies the Transport element that defines the transport characteristics of the delivery channel. It MUST have a value that is equal to the value of a transportId attribute of a Transport element elsewhere within the CPP document.

8.3.22.3 docExchangeId attribute

The docExchangeId attribute is an [XML] IDREF that identifies the DocExchange element that defines the document-exchange characteristics of the delivery channel. It MUST have a value that is equal to the value of a docExchangeId attribute of a DocExchange element elsewhere within the CPP document.

8.3.23 MessagingCharacteristics element

The MessagingCharacteristics element describes the attributes associated with messages delivered over a given delivery channel. The collaborating Parties can stipulate that these attributes be fixed for all messages sent through the delivery channel, or they can agree that these attributes be variable on a “per message” basis.

CPP and CPA composition tools and CPA deployment tools SHALL check the delivery channel definition (transport and document-exchange) for consistency with these attributes.

The MessagingCharacteristics element has the following attributes:

· An IMPLIED syncReplyMode attribute,

· an IMPLIED ackRequested attribute,

· an IMPLIED ackSignatureRequested attribute,

· an IMPLIED duplicateElimination attribute,

· an IMPLIED actor attribute.

8.3.23.1 syncReplyMode attribute

The syncReplyMode attribute is an enumeration comprised of the following possible values:

· "mshSignalsOnly"

· "signalsOnly"

· "responseOnly"

· "signalsAndResponse"

· "none"

This attribute, when present, indicates what the sending application expects in a synchronous response (the delivery channel MUST be bound to a synchronous communication protocol such as HTTP when syncReplyMode is not "none").

The value of "mshSignalsOnly" indicates that the response returned (on the HTTP 200 response in the case of HTTP) will only contain standalone Message Service Handler (MSH) level messages like Acknowledgment (for Reliable Messaging) and Error messages. All other application level responses are to be returned asynchronously (using a DeliveryChannel element determined by the service and action in question).

The value of "signalsOnly" indicates that the response returned (on the HTTP 200 response in the case of HTTP) will only include one or more Business signals as defined in the Process-Specification document[ebBPSS], plus any piggybacked MSH level signals, but not a Business-response Message. If the Process-Specification calls for the use of a Business-response Message, then the latter MUST be returned asynchronously. If the Business Process does not call for the use of an Acceptance Acknowledgment signal, then the Action element in the synchronously returned ebXML Message MUST be set to "ReceiptAcknowledgment". Otherwise, the Action element in the synchronously returned ebXML Message (which includes both a Receipt Acknowledgment signal and an Acceptance Acknowledgment signal) MUST be set to "AcceptanceAcknowledgment".

The value of "responseOnly" indicates that any Business signals, even if they are indicated in the Process Specification, are to be omitted and only the Business-response Message will be returned synchronously, plus any piggybacked MSH level signals. To be consistent, the timeToAcknowledgeReceipt and timeToAcknowledgeAcceptance attributes under the corresponding BusinessTransactionCharacteristics element SHOULD be set to zero to indicate that these signals are not to be used at all. The Action element in the synchronously returned ebXML Message is determined by the name of the action in the CPA that corresponds to the appropriate RespondingBusinessActivity in the Business Process.

The value of "signalsAndResponse" indicates that the application will synchronously return the Business-response Message in addition to one or more Business signals, plus any piggybacked MSH level signals. In this case, each signal and response that is bundled into the same ebXML message must appear as a separate MIME part (i.e., be placed in a separate payload container). To be consistent, the timeToAcknowledgeReceipt and timeToPerform attributes under the corresponding BusinessTransactionCharacteristics element SHOULD have identical values. The timeToAcknowledgeAcceptance attribute, if specified, SHOULD also have the same value as the above two timing attributes. The Action element in the synchronously returned ebXML Message is determined by the name of the action in the CPA that corresponds to the appropriate RespondingBusinessActivity in the Business Process.

The Receipt Acknowledgment signal for the Business-response Message, sent from the request initiator back to the responder, if called for by the Process-Specification, MUST also be delivered over the same synchronous connection.

NOTE: For HTTP 1.1 clients and servers, two HTTP requests and replies will have to be sent and received on the same connection. Implementations that implicitly assume that a HTTP connection will be closed after a single synchronous request reply interchange will not be able to support the "signalsAndResponse" synchronous reply mode.

The value of "none", which is the implied default value in the absence of the syncReplyMode attribute, indicates that neither the Business-response Message nor any Business signal(s) will be returned synchronously. In this case, all Message Service Handler level and Business level messages will be returned as separate asynchronous messages.

The ebXML Message Service's SyncReply element is included in the SOAP Header whenever the syncReplyMode attribute has a value other than "none". If the delivery channel identifies a transport protocol that has no synchronous capabilities (such as SMTP), the BusinessTransactionCharacteristics element SHALL NOT have a syncReplyMode attribute with a value other than "none".

When the value of the syncReplyMode attribute is other than "none", a synchronous delivery channel SHALL be used to exchange all messages necessary for conducting a business transaction. If the Process Specification calls for the use of non-repudiation of receipt for the response message, then the initiator is expected to return a signed ReceiptAcknowledgment signal for the responder’s response message.

8.3.23.2 ackRequested attribute

The IMPLIED ackRequested attribute is an enumeration comprised of the following possible values:

· "always"

· "never"

· "perMessage"

This attribute has the default value "perMessage" meaning whether the AckRequested element in the SOAP Header is present or absent can be varied on a "per message" basis. If this attribute is set to "always", then every message sent over the delivery channel MUST have an AckRequested element in the SOAP Header. If this attribute is set to "never", then every message sent over the delivery channel MUST NOT have an AckRequested element in the SOAP Header.

If the ackRequested attribute is not set to "never", then the ReliableMessaging element must be present under the corresponding DocExchange element to provide the necessary Reliable Messaging parameters.

8.3.23.3 ackSignatureRequested attribute

The IMPLIED ackSignatureRequested attribute is an enumeration comprised of the following possible values:

· "always"

· "never"

· "perMessage"

This attribute determines how the signed attribute within the AckRequested element in the SOAP Header is to be set. It has the default value "perMessage" meaning that the signed attribute in the AckRequested element within the SOAP Header can be set to "true" or "false" on a "per message" basis. If this attribute is set to "always", then every message sent over the delivery channel that has an AckRequested element in the SOAP Header MUST have its signed attribute set to "true". If this attribute is set to "never", then every message sent over the delivery channel that has an AckRequested element in the SOAP Header MUST have its signed attribute set to "false". If the ackRequested attribute is set to "never", the setting of the ackSignatureRequested attribute has no effect.

NOTE: By enabling the use of signed Acknowledgment for reliably delivered messages, a weak form of non-repudiation of receipt can be supported. This is considered weaker than the Receipt Acknowledgment signal because no schema check can be performed on the payload prior to the return of the Acknowledgment. The ackSignatureRequested attribute can be set independent of the value for the isNonRepudiationReceiptRequired attribute under the BusinessTransactionCharacteristics element. Thus, even if the original Process-Specification specifies that non-repudiation of receipt is to be performed, the CPP and/or CPA can override this requirement, set isNonRepudiationReceiptRequired to "false" and ackSignatureRequested to "always" and thereby achieve the weak form of non-repudiation of receipt.

8.3.23.4 duplicateElimination attribute

The IMPLIED duplicateElimination attribute is an enumeration comprised of the following possible values:

· "always"

· "never"

· "perMessage"

This attribute determines whether the DuplicateElimination element within the MessageHeader element in the SOAP Header is to be present. It has the default value "perMessage" meaning that the DuplicateElimination element within the SOAP Header can be present or absent on a "per message" basis. If this attribute is set to "always", then every message sent over the delivery channel MUST have a DuplicateElimination element in the SOAP Header. If this attribute is set to "never", then every message sent over the delivery channel MUST NOT have a DuplicateElimination element in the SOAP Header. If the duplicateElimination attribute is not set to "never", then the PersistDuration element must be present under the corresponding DocExchange element to provide the necessary persistent storage parameter.

8.3.23.5 actor attribute

The IMPLIED actor attribute is an enumeration of the following possible values:

· "urn:oasis:names:tc:ebxml-msg:actor:nextMSH"

· "urn:oasis:names:tc:ebxml-msg:actor:toPartyMSH"

This is a URI that will be used as the value for the actor attribute in the AckRequested element (see [ebMS]) in case the latter is present in the SOAP Header, as governed by the ackRequested attribute within the MessagingCharacteristics element in the CPA. If the ackRequested attribute is set to "never", the setting of the actor attribute has no effect.

8.3.24 Transport element

The Transport element defines the Party's network communication capabilities. One or more Transport elements MUST be present in a CPP, each of which describes a mechanism the Party uses to send messages, a mechanism it uses to receive messages, or both. The following example illustrates the structure of a typical Transport element:

<tp:Transport tp:transportId="transportA1">

 <tp:TransportSender> <!-- 0 or 1 time -->

 <tp:TransportProtocol tp:version="1.1">HTTP</tp:Protocol>

 <tp:TransportClientSecurity>

 <tp:TransportSecurityProtocol tp:version="3.0">

 SSL

 </tp:TransportSecurityProtocol>

 <tp:ClientCertificateRef tp:certId="CompanyA_ClientCert"/>

 <tp:ServerSecurityDetailsRef

 tp:securityId="CompanyA_TransportSecurity"/>

 </tp:TransportClientSecurity>

 </tp:TransportSender>

 <tp:TransportReceiver> <!-- 0 or 1 time -->

 <tp:TransportProtocol tp:version="1.1">HTTP</tp:Protocol>

 <tp:Endpoint

 tp:uri="https://www.CompanyA.com/servlets/ebxmlhandler"

 tp:type="allPurpose"/>

 <tp:TransportServerSecurity>

 <tp:TransportSecurityProtocol tp:version="3.0">

 SSL

 </tp:TransportSecurityProtocol>

 <tp:ServerCertificateRef tp:certId="CompanyA_ServerCert"/>

 <tp:ClientSecurityDetailsRef

 tp:securityId="CompanyA_TransportSecurity"/>

 </tp:TransportServerSecurity>

 </tp:TransportReceiver>

</tp:Transport>

The Transport element consists of zero or one TransportSender element and zero or one TransportReceiver element.

A Transport that contains both TransportSender and TransportReceiver elements is said to be bi-directional in that it can be used for send and receiving messages. If the Party prefers to communicate in synchronous mode (where replies are returned over the same TCP connections messages are sent on; see Section 8.3.23.1), its CPP MUST provide a ServiceBinding that contains ActionBindings that are bound to a DeliveryChannel that uses a bi-directional Transport.

A Transport that contains either a TransportSender or a TransportReceiver element, but not both, is said to be unidirectional. A unidirectional Transport can only be used for sending or receiving messages (not both) depending on which element it includes.

A CPP contains as many Transport elements as are needed to fully express the Party’s inbound and outbound communication capabilities. If, for example, the Party can send and receive messages via HTTP and SMTP, its CPP would contain a Transport element containing its HTTP properties and another Transport element containing its SMTP properties.

The Transport element has

· a REQUIRED transportId attribute.

8.3.24.1 transportId attribute

The REQUIRED transportId attribute is an [XML] ID that is refers to a Transport element elsewhere in the CPP. Here is an example of a DeliveryChannel that refers to the Transport element shown in the previous section:

<tp:DeliveryChannel tp:channelId="channelA1"

 tp:transportId="transportA1"

 tp:docExchangeId="docExchangeA1">

 <tp:MessagingCharacteristics . . . />

</tp:DeliveryChannel>

8.3.25 TransportSender element

The TransportSender element contains properties related to the sending side of a DeliveryChannel. Its REQUIRED TransportProtocol element specifies the transport protocol that will be used for sending messages. The AccessAuthentication element(s), if present, specifies the type(s) of access authentication supported by the client. The TransportClientSecurity element, if present, defines the Party’s provisions for client-side transport layer security.

The TransportSender element has no attributes.

8.3.26 TransportProtocol element

The TransportProtocol element identifies a transport protocol that the Party is capable of using to send or receive Business data. The IMPLIED version attribute identifies the specific version of the protocol.

NOTE: It is the aim of this specification to enable support for any transport capable of carrying MIME content using the vocabulary defined herein.

8.3.27 AccessAuthentication element

The AccessAuthentication element, if present, indicates the authentication mechanism that MAY be used by a transport server to challenge a client request and by a client to provide authentication information to a server. For example, [RFC2617] specifies two access authentication schemes for HTTP: "basic" and "digest". A client that supports both would have two AccessAuthentication elements, as shown below. When multiple schemes are supported, the order in which they are specified in the CPP indicates the order of preference.

<tp:TransportSender>
 <tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol>
 <tp:AccessAuthentication>digest</tp:AccessAuthentication>
 <tp:AccessAuthentication>basic</tp:AccessAuthentication>
 <tp:TransportClientSecurity>
 ...
 </tp:TransportClientSecurity>
</tp:TransportSender>

 NOTE: A CPA will contain, for each TransportSender or TransportReceiver, only the agreed-upon AccessAuthentication elements.

NOTE: For basic authentication, the userid and password values are configured through means outside of this specification.
8.3.28 TransportClientSecurity element

The TransportClientSecurity element provides information about this Party’s transport client needed by the other Party’s transport server to enable a secure connection to be established between the two. It contains a REQUIRED TransportSecurityProtocol element, zero or one ClientCertificateRef element, zero or one ServerSecurityDetailsRef element, and zero or more EncryptionAlgorithm elements.

In asynchronous messaging mode, the sender will always be a client to the receiver’s server. In synchronous messaging mode, the MSH-level reply (and maybe a bundled business signal and/or business response) is sent back over the same connection the initial business message arrived on. In such cases, where the sender is the server and the receiver is the client and the connection already exists, the sender’s TransportClientSecurity and the receiver’s TransportServerSecurity elements SHALL be ignored.

8.3.29 TransportSecurityProtocol element

The TransportSecurityProtocol element identifies the transport layer security protocol that is supported by the parent Transport. The IMPLIED version attribute identifies the specific version of the protocol.

For encryption, the protocol is TLS Version 1.0[RFC2246], which uses public-key encryption. Appendix E of the TLS Version 1.0 specification[RFC2246] covers backward compatibility with SSL [SSL].

8.3.30 ClientCertificateRef element

The ClientCertificateRef element identifies the certificate to be used by the client’s transport security module. The REQUIRED IDREF attribute certId identifies the certificate to be used by referring to the Certificate element (under PartyInfo) that has the matching ID attribute value. A TLS-capable HTTP client, for example, uses this certificate to authenticate itself with receiver’s secure HTTP server.

The ClientCertificateRef element, if present, indicates that mutual authentication between client and server (i.e., initiator and responder of the HTTP connection) MUST be performed.

The ClientCertificateRef element has

· A REQUIRED certId attribute.

8.3.31 ServerSecurityDetailsRef element

The ServerSecurityDetailsRef element identifies the trust anchors and security policy that this Party will apply to the other Party’s server authentication certificate.

The ServerSecurityDetailsRef element has

· A REQUIRED securityId attribute.

8.3.32 Encryption Algorithm

Zero or more EncryptionAlgorithm elements may be included under the TransportClientSecurity or TransportServerSecurity element. Multiple elements are of more use in a CPP context, to announce capabilities or preferences; normally, a CPA will contain the agreed upon context. When zero or more than one element is present in a CPA, the Parties agree to allow the automatic negotiation capability of the TransportSecurityProtocol element to determine the actual algorithm used.
The elements' ordering will reflect the preference for algorithms. A primary reason for including this element is to permit use of the minimumStrength attribute; a large value for this attribute can indicate that high encryption strength is desired or has been agreed upon for the TransportSecurityProtocol.

See section 8.3.50 for the full description of this element.

For SSL and TLS, it is customary to specify cipher suite values as text values for the EncryptionAlgorithm element. These values include, but are not limited to:

· SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA,

· TLS_RSA_WITH_3DES_EDE_CBC_SHA,

· SSL_RSA_WITH_3DES_EDE_CBC_SHA,

· SSL_RSA_WITH_RC4_128_MD5,

· SSL_RSA_WITH_RC4_128_SHA,

· SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA,

· SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA.

Consult the original specifications for enumerations and discussions of these values.

8.3.33 TransportReceiver element

The TransportReceiver element contains properties related to the receiving side of a DeliveryChannel. Its REQUIRED TransportProtocol element specifies the transport protocol that will be used for receiving messages. One or more REQUIRED Endpoint elements specify logical addresses where messages can be received. The AccessAuthentication element(s), if present, indicates the type(s) of access authentication supported by the server. Zero or one TransportServerSecurity element defines the Party’s provisions for server-side transport layer security.

The TransportReceiver element has no attributes.

8.3.34 Endpoint element

One or more Endpoint elements SHALL be provided for each TransportReceiver element. Each Endpoint specifies a logical address and an indication of what kinds of messages can be received at that location.

Each Endpoint has the following attributes:

· a REQUIRED uri attribute,

· an IMPLIED type attribute.

8.3.34.1 uri attribute

The REQUIRED uri attribute specifies a URI identifying the address of a resource. The value of the uri attribute SHALL conform to the syntax for expressing URIs as defined in [RFC2396].

8.3.34.2 type attribute

The type attribute identifies the purpose of this endpoint. The value of type is an enumeration; permissible values are "login", "request", "response", "error", and "allPurpose". There can be, at most, one of each. If the type attribute is omitted, its value defaults to "allPurpose". The "login" endpoint is used for the address for the initial Message between the two Parties. The "request" and "response" endpoints are used for request and response Messages, respectively. To enable error Messages to be received, each Transport element SHALL contain at least one endpoint of type "error", "response", or "allPurpose".

The types of Endpoint element within a TransportReceiver element MUST not be overlapping. Thus, it would be erroneous to include both an "allPurpose" Endpoint element along with another Endpoint element of any type.

8.3.35 TransportServerSecurity element

The TransportServerSecurity element provides information about this Party’s transport server needed by the other Party’s transport client to enable a secure connection to be established between the two. It contains a REQUIRED TransportSecurityProtocol element, a REQUIRED ServerCertificateRef element, zero or one ClientSecurityDetailsRef element, and zero or more EncryptionAlgorithm elements. See Section 8.3.32 for a description of the EncryptionAlgorithm element.

NOTE: See the note in Section 8.3.27 regarding the relevance of the TransportServerSecurity element when synchronous replies are in use.

8.3.36 ServerCertificateRef element

The ServerCertificateRef element, if present, identifies the certificate to be used by the server’s transport security module. The REQUIRED IDREF attribute certId identifies the certificate to be used by referring to the Certificate element (under PartyInfo) that has the matching ID attribute value. A TLS-enabled HTTP server, for example, uses this certificate to authenticate itself with the sender’s TLS client.

The ServerCertificateRef element MUST be present if the transport security protocol uses certificates. It MAY be omitted otherwise (e.g. if authentication is by password).

The ServerCertificateRef element has

· A REQUIRED certId attribute.

8.3.37 ClientSecurityDetailsRef element

The ClientSecurityDetailsRef element, if present, identifies the trust anchors and security policy that this Party will apply to the other Party’s client authentication certificate.

The ClientSecurityDetailsRef element has

· A REQUIRED securityId attribute.

8.3.38 Transport protocols

In the following sections, we discuss the specific details of each supported transport protocol.

8.3.38.1 HTTP

HTTP is Hypertext Transfer Protocol[HTTP]. For HTTP, the endpoint is a URI that SHALL conform to [RFC2396]. Depending on the application, there MAY be one or more endpoints, whose use is determined by the application.

Following is an example of an HTTP endpoint:

<tp:Endpoint tp:uri="http://example.com/servlet/ebxmlhandler"

 tp:type="request"/>

The "request" and "response" endpoints can be dynamically overridden for a particular request or asynchronous response by application-specified URIs in Business documents exchanged under the CPA.

For a synchronous response, the "response" endpoint is ignored if present. A synchronous response is always returned on the existing connection, i.e. to the URI that is identified as the source of the connection.

8.3.38.2 SMTP

SMTP is Simple Mail Transfer Protocol[SMTP]. For use with this standard, Multipurpose Internet Mail Extensions[MIME] MUST be supported. For SMTP, the communication address is the fully qualified mail address of the destination Party as defined by [RFC2822]. Following is an example of an SMTP endpoint:

<tp:Endpoint tp:uri="mailto:ebxmlhandler@example.com"

 tp:type="request"/>
NOTE: The SMTP Mail Transfer Agent (MTA) can encode binary data when the receiving MTA does not support binary transfer. In general, SMTP transfer may involve coding and recoding of Content-Transfer-Encodings as a message moves along a sequence of MTAs. Such changes can in some circumstances invalidate some kinds of signatures even though no malicious actions or transmission errors have occurred.

NOTE: SMTP by itself (without any authentication or encryption) is subject to denial of service and masquerading by unknown Parties. It is strongly suggested that those Parties who choose SMTP as their transport layer also choose a suitable means of encryption and authentication either in the document-exchange layer or in the transport layer such as [S/MIME].

NOTE: SMTP is an asynchronous protocol that does not guarantee a particular quality of service. A transport-layer acknowledgment (i.e. an SMTP acknowledgment) to the receipt of a mail Message constitutes an assertion on the part of the SMTP server that it knows how to deliver the mail Message and will attempt to do so at some point in the future. However, the Message is not hardened and might never be delivered to the recipient. Furthermore, the sender will see a transport-layer acknowledgment only from the nearest node. If the Message passes through intermediate nodes, SMTP does not provide an end-to-end acknowledgment. Therefore receipt of an SMTP acknowledgement does not guarantee that the Message will be delivered to the application and failure to receive an SMTP acknowledgment is not evidence that the Message was not delivered. It is RECOMMENDED that the reliable-messaging protocol in the ebXML Message Service be used with SMTP.

8.3.38.3 FTP

FTP is File Transfer Protocol[RFC959].

Each Party sends a Message using FTP PUT. The endpoint specifies the user id and input directory path (for PUTs to this Party). An example of an FTP endpoint is:

<tp:Endpoint uri="ftp://userid@server.foo.com"

 tp:type="request"/>
Since FTP needs to be compatible across all implementations, the FTP for ebXML will use the minimum sets of commands and parameters available for FTP as specified in [RFC959], Section 5.1, and modified in [RFC1123], Section 4.1.2.13. The mode SHALL be stream only and the type MUST be ASCII Non-print (AN), Image (I) (binary), or Local 8 (L 8) (binary between 8-bit machines and machines with 36 bit words – for an 8-bit machine Local 8 is the same as Image).

Stream mode closes the data connection upon end of file. The server side FTP MUST set control to "PASV" before each transfer command to obtain a unique port pair if there are multiple third party sessions.

NOTE: [RFC 959] states that User-FTP SHOULD send a PORT command to assign a non-default data port before each transfer command is issued to allow multiple transfers during a single FTP because of the long delay after a TCP connection is closed until its socket pair can be reused.

NOTE: The format of the 227 reply to a PASV command is not well standardized and an FTP client might assume that the parentheses indicated in [RFC959] will be present when in some cases they are not. If the User-FTP program doesn’t scan the reply for the first digit of host and port numbers, the result will be that the User-FTP might point at the wrong host. In the response, the h1, h2, h3, h4 is the IP address of the server host and the p1, p2 is a non-default data transfer port that PASV has assigned.

NOTE: As a recommendation for firewall transparency, [RFC1579] proposes that the client sends a PASV command, allowing the server to do a passive TCP open on some random port, and inform the client of the port number. The client can then do an active open to establish the connection.

NOTE: Since STREAM mode closes the data connection upon end of file, the receiving FTP might assume abnormal disconnect if a 226 or 250 control code hasn’t been received from the sending machine.

NOTE: [RFC1579] also makes the observation that it might be worthwhile to enhance the FTP protocol to have the client send a new command APSV (all passive) at startup that would allow a server that implements this option to always perform a passive open. A new reply code 151 would be issued in response to all file transfer requests not preceded by a PORT or PASV command; this Message would contain the port number to use for that transfer. A PORT command could still be sent to a server that had previously received APSV; that would override the default behavior for the next transfer operation, thus permitting third-party transfers.

8.3.39 DocExchange Element

The DocExchange element provides information that the Parties MUST agree on regarding exchange of documents between them. This information includes the messaging service properties (e.g. ebXML Message Service[ebMS]).

Following is the structure of the DocExchange element of the CPP. Subsequent sections describe each child element in greater detail.

<tp:DocExchange tp:docExchangeId="docExchangeB1">

 <tp:ebXMLSenderBinding tp:version="2.0">
<!-- 0 or 1 -->

 <tp:ReliableMessaging>

<!-- 0 or 1 -->

 . . .

 </tp:ReliableMessaging>

 <tp:PersistDuration> <!-- 0 or 1 -->

 . . .

 </tp:PersistDuration>

 <tp:SenderNonRepudiation>

<!-- 0 or 1 -->

 . . .

 </tp:SenderNonRepudiation>

 <tp:SenderDigitalEnvelope>

<!-- 0 or 1 -->

 . . .

 </tp:SenderDigitalEnvelope>

 <tp:NamespaceSupported>

<!-- 0 or more -->

 . . .

 </tp:NamespaceSupported>

 </tp:ebXMLSenderBinding>

 <tp:ebXMLReceiverBinding tp:version="2.0">
<!-- 0 or 1 -->

 <tp:ReliableMessaging>

<!-- 0 or 1 -->

 . . .

 </tp:ReliableMessaging>

 <tp:PersistDuration> <!-- 0 or 1 -->

 . . .

 </tp:PersistDuration>

 <tp:ReceiverNonRepudiation>

<!-- 0 or 1 -->

 . . .

 </tp:ReceiverNonRepudiation>

 <tp:ReceiverDigitalEnvelope>

<!-- 0 or 1 -->

 . . .

 </tp:ReceiverDigitalEnvelope>

 <tp:NamespaceSupported>

<!-- 0 or more -->

 . . .

 </tp:NamespaceSupported>

 </tp:ebXMLReceiverBinding>

</tp:DocExchange>

The DocExchange element is comprised of zero or one ebXMLSenderBinding child element and zero or one ebXMLReceiverBinding child element. It MUST have at least one child element. CPP and CPA composition tools and CPA deployment tools SHALL verify the presence of a child element.
NOTE: The document-exchange section can be extended to messaging services other than the ebXML Message service by adding additional xxxSenderBinding and xxxReceiverBinding elements and their child elements that describe the other services, where xxx is replaced by the name of the additional binding. An example is XMLPSenderBinding/XMLPReceiverBinding, which might define support for the future XML Protocol specification.

8.3.39.1 docExchangeId attribute

The DocExchange element has a single REQUIRED docExchangeId attribute that is an [XML] ID that provides a unique identifier that can be referenced from elsewhere within the CPP document.
8.3.40 ebXMLSenderBinding element

The ebXMLSenderBinding element describes properties related to sending messages with the ebXML Message Service[ebMS]. The ebXMLSenderBinding element is comprised of the following child elements:

· zero or one ReliableMessaging element which specifies the characteristics of reliable messaging,

· zero or one PersistDuration element which specifies the duration for which certain messages have to be stored persistently for the purpose of duplicate elimination,

· zero or one SenderNonRepudiation element which specifies the sender’s requirements and certificate for message signing,

· zero or one SenderDigitalEnvelope element which specifies the sender’s requirements for encryption by the digital-envelope[DIGENV] method,

· zero or more NamespaceSupported elements that identify any namespace extensions supported by the messaging service implementation.

The ebXMLSenderBinding element has one attribute:

· a REQUIRED version attribute.

8.3.40.1 version attribute

The REQUIRED version attribute identifies the version of the ebXML Message Service specification being used.

8.3.41 ReliableMessaging element

The ReliableMessaging element specifies the properties of reliable ebXML Message exchange. The default that applies if the ReliableMessaging element is omitted is "BestEffort". The following is the element structure:

<tp:ReliableMessaging>

 <tp:Retries>5</tp:Retries>

 <tp:RetryInterval>PT2H</tp:RetryInterval>

 <tp:MessageOrderSemantics>Guaranteed</tp:MessageOrderSemantics>

</tp:ReliableMessaging>

Semantics of reliable messaging are explained in the ebXML Message Service specification[ebMS] chapter on Reliable Messaging Combinations.

The ReliableMessaging element is comprised of the following child elements.

· zero or one Retries element,

· zero or one RetryInterval element,

· a REQUIRED MessageOrderSemantics element.

8.3.41.1 Retries and RetryInterval elements

The Retries and RetryInterval elements specify the permitted number of retries and the interval, expressed as an XML Schema[XMLSCHEMA-2] duration, between retries of sending a reliably delivered Message following a timeout waiting for the Acknowledgment. The purpose of the RetryInterval element is to improve the likelihood of success on retry by deferring the retry until any temporary conditions that caused the error might be corrected. The RetryInterval applies to the time between sending of the original message and the first retry, as well as the time between all subsequent retries.
The Retries and RetryInterval elements MUST either be included together or be omitted together. If they are omitted, the values of the corresponding quantities (number of retries and retry interval) are a local matter at each Party.

8.3.41.2 MessageOrderSemantics element

The MessageOrderSemantics element is an enumeration comprised of the following possible values:

· "Guaranteed"

· "NotGuaranteed"

The presence of a MessageOrderSemantics element in the SOAP Header for ebXML messages determines if the ordering of messages sent from the From Party needs to be preserved so that the To Party receives those messages in the order in which they were sent. If the MessageOrderSemantics element is set to "Guaranteed", then the ebXML message MUST contain a MessageOrder element in the SOAP Header. If the MessageOrderSemantics element is set to "NotGuaranteed", then the ebXML message MUST NOT contain a MessageOrder element in the SOAP Header. Guaranteed message ordering implies the use of duplicate elimination. Therefore, the PersistDuration element MUST also appear if MessageOrderSemantics is set to "Guaranteed".

8.3.42 PersistDuration element

The value of the PersistDuration element is the minimum length of time, expressed as an XML Schema[XMLSCHEMA-2] duration, that data from a Message that is sent reliably is kept in Persistent Storage by an ebXML Message-Service implementation that receives that Message to facilitate the elimination of duplicates. This duration also applies to response messages that are kept persistently to allow automatic replies to duplicate messages without their repeated processing by the application. For rules that govern the PersistDuration element, refer to Sections 8.3.23.4 and 8.3.41.2.

8.3.43 SenderNonRepudiation element

The SenderNonRepudiation element conveys the message sender’s requirements and certificate for non-repudiation. Non-repudiation both proves who sent a Message and prevents later repudiation of the contents of the Message. Non-repudiation is based on signing the Message using XML Digital Signature[XMLDSIG]. The element structure is as follows:

<tp:SenderNonRepudiation>

 <tp:NonRepudiationProtocol>

 http://www.w3.org/2000/09/xmldsig#

 </tp:NonRepudiationProtocol>

 <tp:HashFunction>

 http://www.w3.org/2000/09/xmldsig#sha1

 </tp:HashFunction>

 <tp:SignatureAlgorithm>

 http://www.w3.org/2000/09/xmldsig#dsa-sha1

 </tp:SignatureAlgorithm>

 <tp:SigningCertificateRef tp:certId="CompanyA_SigningCert"/>

</tp:SenderNonRepudiation>

If the SenderNonRepudiation element is omitted, the Messages are not digitally signed.

The SenderNonRepudiation element is comprised of the following child elements:

· a REQUIRED NonRepudiationProtocol element,

· a REQUIRED HashFunction (e.g. SHA1, MD5) element,

· a REQUIRED SignatureAlgorithm element,

· a REQUIRED SigningCertificateRef element

8.3.44 NonRepudiationProtocol element

The REQUIRED NonRepudiationProtocol element identifies the technology that will be used to digitally sign a Message. It has a single IMPLIED version attribute whose value is a string that identifies the version of the specified technology.

8.3.45 HashFunction element

The REQUIRED HashFunction element identifies the algorithm that is used to compute the digest of the Message being signed.

8.3.46 SignatureAlgorithm element

The REQUIRED SignatureAlgorithm element identifies the algorithm that is used to compute the value of the digital signature. Expected values include: RSA-MD5, RSA-SHA1, DSA-MD5, DSA-SHA1, SHA1withRSA, MD5withRSA, and so on.

NOTE: Implementations should be prepared for values in upper and/or lower case and with varying usage of hyphens and conjunctions.

The SignatureAlgorithm element has three attributes:

· an IMPLIED oid attribute,

· an IMPLIED w3c attribute,

· an IMPLIED enumeratedType attribute.

8.3.46.1 oid attribute

The oid attribute serves as a way to supply an object identifier for the signature algorithm. The formal definition of OIDs comes from ITU-T recommendation X.208 (ASN.1), chapter 28; the assignment of the "top of the tree" is given in Appendix B, Appendix C and Appendix D of X.208 (http://www.itu.int/POD/). Commonly used values (in the IETF dotted integer format) for signature algorithms include:

· 1.2.840.113549.1.1.4 - MD5 with RSA encryption,

· 1.2.840.113549.1.1.5 - SHA-1 with RSA Encryption.

8.3.46.2 w3c attribute

The w3c attribute serves as a way to supply an object identifier for the signature algorithm. The definitions of these values are found in the [XMLDSIG] or [XMLENC] specifications. Expected values for signature algorithms include:

· http://www.w3.org/2000/09/xmldsig#dsa-sha1,

· http://www.w3.org/2000/09/xmldsig#rsa-sha1.

8.3.46.3 enumeratedType attribute

The enumeratedType attribute specifies a different way of interpreting the text value of the SignatureAlgorithm element. This attribute is for identifying future signature algorithm identification schemes and formats.

8.3.47 SigningCertificateRef element

The REQUIRED SigningCertificateRef element identifies the certificate the sender uses for signing messages. Its REQUIRED IDREF attribute, certId refers to the Certificate element (under PartyInfo) that has the matching ID attribute value.

8.3.48 SenderDigitalEnvelope element

The SenderDigitalEnvelope element provides the sender’s requirements for message encryption using the [DIGENV] digital-envelope method. Digital-envelope is a procedure in which the Message is encrypted by symmetric encryption (shared secret key) and the secret key is sent to the Message recipient encrypted with the recipient's public key. The element structure is:

<tp:SenderDigitalEnvelope>

 <tp:DigitalEnvelopeProtocol tp:version="2.0">

 S/MIME

 </tp:DigitalEnvelopeProtocol>

 <tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

 <tp:EncryptionSecurityDetailsRef

 tp:securityId="CompanyA_MessageSecurity"/>

</tp:SenderDigitalEnvelope>
The SenderDigitalEnvelope element contains

· a REQUIRED DigitalEnvelopeProtocol element,

· a REQUIRED EncryptionAlgorithm element

· zero or one EncryptionSecurityDetailsRef element.

8.3.49 DigitalEnvelopeProtocol element

The REQUIRED DigitalEnvelopeProtocol element identifies the message encryption protocol to be used. The REQUIRED version attribute identifies the version of the protocol.

8.3.50 EncryptionAlgorithm element

The REQUIRED EncryptionAlgorithm element identifies the encryption algorithm to be used. See also Section 8.3.32.

The EncryptionAlgorithm element has four attributes:

· an IMPLIED minimumStrength attribute,

· an IMPLIED oid attribute,

· an IMPLIED w3c attribute,

· an IMPLIED enumeratedType attribute.

8.3.50.1 minimumStrength attribute

The minimumStrength attribute describes the effective strength the encryption algorithm MUST provide in terms of “effective” or random bits. This value is less than the key length in bits when check bits are used in the key. So, for example, the 8 check bits of a 64-bit DES key would not be included in the count, and to require a minimum strength the same as that supplied by DES would be reported by setting minimumStrength to 56.

8.3.50.2 oid attribute

The oid attribute serves as a way to supply an object identifier for the encryption algorithm. The formal definition of OIDs comes from ITU-T recommendation X.208 (ASN.1), chapter 28; the assignment of the "top of the tree" is given in Appendix B, Appendix C and Appendix D of X.208 (http://www.itu.int/POD/). Commonly used values (in the IETF dotted integer format) for encryption algorithms include:

· 1.2.840.113549.3.2 (RC2-CBC),1.2.840.113549.3.4 (RC4 Encryption Algorithm),

· 1.2.840.113549.3.7 (DES-EDE3-CBC), 1.2.840.113549.3.9 (RC5 CBC Pad),

· 1.2.840.113549.3.10 (DES CDMF), 1.2.840, 1.3.14.3.2.7 (DES-CBC).

8.3.50.3 w3c attribute

The w3c attribute serves as a way to supply an object identifier for the encryption algorithm. The definitions of these values are in the [XMLENC] specification. Expected values include:

· http://www.w3.org/2001/04/xmlenc#3des-cbc,

· http://www.w3.org/2001/04/xmlenc#aes128-cbc,

· http://www.w3.org/2001/04/xmlenc#aes256-cbc.

8.3.50.4 enumeratedTypeAttribute

The enumeratedType attribute specifies a way of interpreting the text value of the EncryptionAlgorithm element. This attribute is for identifying future algorithm identification schemes and formats.

8.3.51 EncryptionSecurityDetailsRef element

The EncryptionSecurityDetailsRef element identifies the trust anchors and security policy that this (sending) Party will apply to the other (receiving) Party’s encryption certificate. Its REQUIRED IDREF attribute, securityId, refers to the SecurityDetails element (under PartyInfo) that has the matching ID attribute value.

8.3.52 NamespaceSupported element

The NamespaceSupported element may be included zero or more times. Each occurrence of the NamespaceSupported element identifies one namespace supported by the messaging service implementation. It has a REQUIRED location attribute and an IMPLIED version attribute. The location attribute supplies a URI for retrieval of the schema associated with the namespace. The version attribute provides a version value, when one exists, for the namespace. While the NamespaceSupported element can be used to list the namespaces that could be expected to be used during document exchange, the motivation is primarily for extensions, version variants, and other enhancements that might not be expected, or have only recently emerged into use.

For example, support for Security Assertion Markup Language[SAML] would be defined as follows:

<tp:NamespaceSupported
tp:location="http://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-27.xsd" tp:version="1.0">
http://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-27.xsd</tp:NamespaceSupported>

In addition, the NamespaceSupported element can be used to identify the namespaces associated with the message body parts (see Section 8.4), and especially when these namespaces are not implicitly indicated through parts of the ProcessSpecification or when they indicate extensions of namespaces for payload body parts.

8.3.53 ebXMLReceiverBinding element

The ebXMLReceiverBinding element describes properties related to receiving messages with the ebXML Message Service[ebMS]. The ebXMLReceiverBinding element is comprised of the following child elements:

· zero or one ReliableMessaging element (see Section 8.3.41),

· zero or one ReceiverNonRepudiation element which specifies the receiver’s requirements for message signing,

· zero or one ReceiverDigitalEnvelope element which specifies the receiver’s requirements and certificate for encryption by the digital-envelope[DIGENV] method,

· zero or more NamespaceSupported elements (see Section 8.3.52).

The ebXMLReceiverBinding element has one attribute:

· a REQUIRED version attribute (see Section 8.3.40.1)

8.3.54 ReceiverNonRepudiation element

The ReceiverNonRepudiation element conveys the message receiver’s requirements for non-repudiation. Non-repudiation both proves who sent a Message and prevents later repudiation of the contents of the Message. Non-repudiation is based on signing the Message using XML Digital Signature[XMLDSIG]. The element structure is as follows:

<tp:ReceiverNonRepudiation>

 <tp:NonRepudiationProtocol>

 http://www.w3.org/2000/09/xmldsig#

 </tp:NonRepudiationProtocol>

 <tp:HashFunction>

 http://www.w3.org/2000/09/xmldsig#sha1

 </tp:HashFunction>

 <tp:SignatureAlgorithm>

 http://www.w3.org/2000/09/xmldsig#dsa-sha1

 </tp:SignatureAlgorithm>

 <tp:SigningSecurityDetailsRef tp:certId="CompanyA_MessageSecurity"/>

</tp:ReceiverNonRepudiation>

If the ReceiverNonRepudiation element is omitted, the Messages are not digitally signed.

The ReceiverNonRepudiation element is comprised of the following child elements:

· a REQUIRED NonRepudiationProtocol element (see Section 8.3.44),

· a REQUIRED HashFunction (e.g. SHA1, MD5) element (see Section 8.3.45),

· a REQUIRED SignatureAlgorithm element (see Section 8.3.46),

· zero or one SigningSecurityDetailsRef element

8.3.55 SigningSecurityDetailsRef element

The SigningSecurityDetailsRef element identifies the trust anchors and security policy that this (receiving) Party will apply to the other (sending) Party’s signing certificate. Its REQUIRED IDREF attribute, securityId, refers to the SecurityDetails element (under PartyInfo) that has the matching ID attribute value.

8.3.56 ReceiverDigitalEnvelope element

The ReceiverDigitalEnvelope element provides the receiver’s requirements for message encryption using the [DIGENV] digital-envelope method. Digital-envelope is a procedure in which the Message is encrypted by symmetric encryption (shared secret key) and the secret key is sent to the Message recipient encrypted with the recipient's public key. The element structure is:

<tp:ReceiverDigitalEnvelope>

 <tp:DigitalEnvelopeProtocol tp:version="2.0">

 S/MIME

 </tp:DigitalEnvelopeProtocol>

 <tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

 <tp:EncryptionCertificateRef

 tp:certId="CompanyA_EncryptionCert"/>

</tp:ReceiverDigitalEnvelope>
The ReceiverDigitalEnvelope element contains

· a REQUIRED DigitalEnvelopeProtocol element (see Section 8.3.49),

· a REQUIRED EncryptionAlgorithm element (see Section 8.3.50),

· a REQUIRED EncryptionCertificateRef element.

8.3.57 EncryptionCertificateRef element

The REQUIRED EncryptionCertificateRef element identifies the certificate the sender uses for encrypting messages. Its REQUIRED IDREF attribute, certId refers to the Certificate element (under PartyInfo) that has the matching ID attribute value.

.

8.3.58 OverrideMshActionBinding element

The OverrideMshActionBinding element can occur zero or more times. It has two REQUIRED attributes. The action attribute identifies the Message Service Handler level action whose delivery is not to use the default DeliveryChannel for Message Service Handler actions. The channelId attribute specifies the DeliveryChannel to be used instead.

8.4 SimplePart element

The SimplePart element provides a repeatable list of the constituent parts, primarily identified by the MIME content-type value. The SimplePart element has two REQUIRED attributes: id and mimetype. The id attribute, of type ID, provides the value that will be used later to reference this Message part when specifying how the parts are packaged into composites, if composite packaging is present. The mimetype attribute can provide actual values of content-type for the simple Message part being specified. The attribute’s values may also make use of an asterisk wildcard, “*”, to indicate either an arbitrary top-level type, an arbitrary sub-type, or a completely arbitrary type, “*/*”. SimpleParts with wildcards in types can be used in indicating more open packaging processing capabilities.

SimplePart has an IMPLIED mimparameters attribute, whose use is described in section 8.5.2. SimplePart also has an IMPLIED xlink:role attribute which identifies some resource that describes the mime part or its purpose; see [] for a discussion of the use of this value within [ebMS]. If present, then it SHALL have a value that is a valid URI in accordance with the [XLINK] specification.

The following are examples of SimplePart elements:

<tp:SimplePart tp:id="I001" tp:mimetype="text/xml"/>
<tp:SimplePart tp:id="I002" tp:mimetype="application/xml"/>
<tp:SimplePart tp:id="I002" tp:mimetype="*/xml"/>
The SimplePart element can have zero or more NamespaceSupported elements. Each of these identifies any namespace supported for the XML that is packaged in the parent simple body part.

The context of Packaging can very easily render it pointless to list all the namespaces used in a SimplePart. For example, when defining the SimplePart for a SOAP envelope, as part of an ebXML Message, it is not necessary to list all the namespaces. If, however, any unusual extensions, new versions, or unusual security extensions are present, it is useful to announce these departures explicitly in the packaging. It is not, however, incorrect to list all namespaces used in a SimplePart, even where these namespaces have been mandated by a given messaging protocol. By convention, when a full listing of namespaces is supplied within a SimplePart element, the first NamespaceSupported element identifies the schema for the SimplePart while subsequent NamespaceSupported elements represent namespaces that are imported by that schema. Any additional NamespaceSupported elements indicate extensions.

NOTE: The explicit identification of imported namespaces is discretionary. Thus, the CPP and CPA examples in Appendix A and Appendix B explicitly identify the ebXML Messaging Service namespace but omit the SOAP envelope and XML Digital Signature namespaces that are imported into the schema for the ebXML Messaging Service namespace.

The same SimplePart element can be referenced from (i.e., reused in) multiple Packaging elements.

8.5 Packaging element
The subtree of the Packaging element provides specific information about how the Message Header and payload constituent(s) are packaged for transmittal over the transport, including the crucial information about what document-level security packaging is used and the way in which security features have been applied. Typically the subtree under the Packaging element indicates the specific way in which constituent parts of the Message are organized. MIME processing capabilities are typically the capabilities or agreements described in this subtree. The Packaging element provides information about MIME content types, XML namespaces, security parameters, and MIME structure of the data that is exchanged between Parties.

The following is an example of a Packaging element which references the example SimplePart elements given in Section 8.4:

<!-- Simple ebXML S/MIME Packaging for application-based payload

 encryption -->

<tp:Packaging>

 <tp:ProcessingCapabilities tp:generate="true" tp:parse="true"/>

 <tp:CompositeList>

 <tp:Encapsulation

 <!-- I002 is the payload being encrypted -->

 tp:id="I003"

 tp:mimetype="application/pkcs7-mime"

 tp:mimeparameters="smime-type="enveloped-data"">

 <Constituent tp:idref="I002"/>

 </tp:Encapsulation>

 <tp:Composite tp:id="I004"

 <!-- I001 is the SOAP envelope. The ebXML message is made

 up of the SOAP envelope and the encrypted payload. -->

 tp:mimetype="multipart/related"

 tp:mimeparameters="type="text/xml" version="1.0"">

 <tp:Constituent tp:idref="I001"/>

 <tp:Constituent tp:idref="I003"/>

 </tp:Composite>

 </tp:CompositeList>

</tp:Packaging>

The Packaging element has one attribute; the REQUIRED id attribute, with type ID. It is referred to in the ThisPartyActionBinding element, by using the IDREF attribute, packageId.
The child elements of the Packaging element are ProcessingCapabilities and CompositeList. This set of elements can appear one or more times as a child of each Packaging element.
8.5.1 ProcessingCapabilities element

The ProcessingCapabilities element has two REQUIRED attributes with Boolean values of either "true" or "false". The attributes are parse and generate. Normally, these attributes will both have values of "true" to indicate that the packaging constructs specified in the other child elements can be both produced as well as processed at the software Message service layer.

At least one of the generate or parse attributes MUST be true.

8.5.2 CompositeList element

The final child element of Packaging is CompositeList, which is a container for the specific way in which the simple parts are combined into groups (MIME multiparts) or encapsulated within security-related MIME content-types. The CompositeList element SHALL be omitted from Packaging when no security encapsulations or composite multiparts are used. When the CompositeList element is present, the content model for the CompositeList element is a repeatable sequence of choices of Composite or Encapsulation elements. The Composite and Encapsulation elements can appear intermixed as desired. The sequence in which the choices are presented is important because, given the recursive character of MIME packaging, composites or encapsulations can include previously mentioned composites (or rarely, encapsulations) in addition to the Message parts characterized within the SimplePart subtree. Therefore, the "top-level" packaging will be described last in the sequence.

The Composite element has the following attributes:

· a REQUIRED mimetype attribute,

· a REQUIRED id attribute,

· an IMPLIED mimeparameters attribute.

The mimetype attribute provides the value of the MIME content-type for this Message part, and this will be some MIME composite type, such as "multipart/related" or "multipart/signed". The id attribute, type ID, provides a way to refer to this composite if it needs to be mentioned as a constituent of some later element in the sequence. The mimeparameters attribute provides the values of any significant MIME parameter (such as "type=application/xml") that is needed to understand the processing demands of the content-type.

The Composite element has one child element, Constituent.
The Constituent element has one REQUIRED attribute, idref of type IDREF, an IMPLIED boolean attribute excludeFromSignature, and two IMPLIED nonNegativeInteger attributes, minOccurs and maxOccurs.

The idref attribute has as its value the value of the id attribute of a previous Composite, Encapsulation, or SimplePart element. The purpose of this sequence of Constituents is to indicate both the contents and the order of what is packaged within the current Composite or Encapsulation.

The excludeFromSignature attribute indicates that this Constituent is not to be included as part of the ebXML message [XMLDSIG] signature. In other words, the signature generated by the Message Service Handler should not include a ds:Reference element to provide a digest for this Constituent of the Message. This attribute is applicable only if the Constituent is part of the top-level Composite that corresponds to the entire ebXML Message.

The minOccurs and maxOccurs attributes serve to specify the value or range of values that the referred to item may occur within Composite. When unused, it is understood that the item is used exactly once.

The Encapsulation element is typically employed to indicate the use of MIME security mechanisms, such as [S/MIME] or Open-PGP[RFC2015]. A security body part can encapsulate a MIME part that has been previously characterized. For convenience, all such security structures are under the Encapsulation element, even when technically speaking the data is not "inside" the body part. (In other words, the so-called clear-signed or detached signature structures possible with MIME multipart/signed are for simplicity found under the Encapsulation element.)

Another possible use of the Encapsulation element is to represent the application of a compression algorithm such as gzip [ZLIB] to some part of the payload, prior to its being encrypted and or signed.

The Encapsulation element has the following attributes:

· a REQUIRED mimetype attribute,

· a REQUIRED id attribute,

· an IMPLIED mimeparameters attribute.

The mimetype attribute provides the value of the MIME content-type for this Message part, such as "application/pkcs7-mime". The id attribute, type ID, provides a way to refer to this encapsulation if it needs to be mentioned as a constituent of some later element in the sequence. The mimeparameters attribute provides the values of any significant MIME parameter(s) needed to understand the processing demands of the content-type.

Both the Encapsulation element and the Composite element have child elements consisting of a Constituent element or of a repeatable sequence of Constituent elements, respectively.

The Constituent element also has zero or one SignatureTransform child element and zero or one EncryptionTransform child element. The SignatureTransform element is intended for use with XML Digital Signature [XMLDSIG]. When present, it identifies the transforms that must be applied to the source data before a digest is computed. The EncryptionTransform element is intended for use with XML Encryption [XMLENC]. When present, it identifies the transforms that must be applied to a CipherReference before decryption can be performed. The SignatureTransforms element and the EncryptionTransforms element each contains one or more ds:Transform [XMLDSIG] elements.

8.6 Signature element

The Signature element (cardinality zero or one) enables the CPA to be digitally signed using technology that conforms with the XML Digital Signature specification[XMLDSIG]. The Signature element is the root of a subtree of elements used for signing the CPP. The syntax is:

<tp:Signature>...</tp:Signature>

The Signature element contains one or more ds:Signature elements. The content of the ds:Signature element and any sub-elements are defined by the XML Digital Signature specification. See Section 9.9 for a detailed discussion.

NOTE: It is necessary to wrap the ds:Signature elements with a Signature element in the target namespace to allow for the possibility of having wildcard elements (with namespace="##other") within the CollaborationProtocolProfile and CollaborationProtocolAgreement elements. The content model would be ambiguous without the wrapping.

The following additional constraints on ds:Signature are imposed:

· A CPP MUST be considered invalid if any ds:Signature element fails core validation as defined by the XML Digital Signature specification[XMLDSIG].

· Whenever a CPP is signed, each ds:Reference element within a ProcessSpecification element MUST pass reference validation and each ds:Signature element MUST pass core validation.

NOTE: In case a CPP is unsigned, software might nonetheless validate the ds:Reference elements within ProcessSpecification elements and report any exceptions.

NOTE: Software for creation of CPPs and CPAs MAY recognize ds:Signature and automatically insert the element structure necessary to define signing of the CPP and CPA. Signature generation is outlined in Section 9.9.1.1; details of the cryptographic process are outside the scope of this specification.

NOTE: See non-normative note in Section 8.3.4.5 for a discussion of times at which validity tests MAY be made.

8.7 Comment element

The CollaborationProtocolProfile element contains zero or more Comment elements. The Comment element is a textual note that can be added to serve any purpose the author desires. The language of the Comment is identified by a REQUIRED xml:lang attribute. The xml:lang attribute MUST comply with the rules for identifying languages specified in [XML]. If multiple Comment elements are present, each can have a different xml:lang attribute value. An example of a Comment element follows:

<tp:Comment xml:lang="en-US">This is a CPA between A and B</tp:Comment>

When a CPA is composed from two CPPs, all Comment elements from both CPPs SHALL be included in the CPA unless the two Parties agree otherwise.

9 CPA Definition

A Collaboration-Protocol Agreement (CPA) defines the capabilities that two Parties need to agree upon to enable them to engage in electronic Business for the purposes of the particular CPA. This section defines and discusses the details of the CPA. The discussion is illustrated with some XML fragments.

Most of the XML elements in this section are described in detail in Section 8, "CPP Definition". In general, this section does not repeat that information. The discussions in this section are limited to those elements that are not in the CPP or for which additional discussion is needed in the CPA context. See also Appendix D for the XML Schema, and Appendix B for an example of a CPA document.

The TransactionManagement_BTP_CPA_Ext element of the CPA describes the Transaction management capabilities available through the use of the Business Transaction Protocol.

9.1 CPA Structure

Following is the overall structure of the CPA with the BTP transaction management extension included:

<CollaborationProtocolAgreement

 xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 tp:cpaid="YoursAndMyCPA"

 tp:version="2.0c">

 <tp:Status tp:value="proposed"/>

 <tp:Start>1988-04-07T18:39:09</Start>

 <tp:End>1990-04-07T18:40:00</End>

 <!-- ConversationConstraints MAY appear 0 or 1 time -->

 <tp:ConversationConstraints

 tp:invocationLimit="100"

 tp:concurrentConversations="4"/>

 <tp:PartyInfo> <!-- one only for one party -->

 ...

 </tp:PartyInfo>

 <tp:PartyInfo><!-- one only for the other party -->

 ...

 </tp:PartyInfo>

 <tp:SimplePart tp:id="..."> <!-- one or more -->

 ...

 </tp:SimplePart>

 <tp:Packaging tp:id="..."> <!-- one or more -->

 ...

 </tp:Packaging>

 <tp:Signature> <!-- zero or one -->

 ...

 </tp:Signature>

<btpext:TransactionManagement_BTP_CPA_Ext btpext:BTP_CPPA_ext_version="1.0">

 <!-- zero or one -->
<!—Common agreed properties -->

 <btpext:BTP_Version> <!-- zero or one -->
 ...

 </btpext:BTP_Version>

 <btpext:Standard_Bindings> <!-- one only of Standard or Non_Standard -->
 ...

 </btpext:Standard_Bindings>

<btpext:Non_Standard_Bindings>

 ...

 </btpext:Non_Standard_Bindings>

<btpext:Transaction_Time_Limit_Range> <!-- zero or one -->
...

</btpext:Transaction_Time_Limit_Range>

 <btpext:Inferior_Timeout_Range> <!-- zero or one -->
 ...

</btpext:Inferior_Timeout_Range>

 <btpext:Min_Inferior_Timeout_Range> <!-- zero or one -->

 ...

 </btpext:Min_Inferior_Timeout_Range>

<btpext:PartyA_Properties"> <!-- one only -->
 <btpext:Actor-Role> <!-- one only -->
 ...

</btpext:Actor-Role>

<btpext:Message_Timeout_Range> <!-- zero or one -->

 ...

</btpext:Message_Timeout_Range>

 <btpext:Standard_Qualifiers_supported> <!-- zero or more -->
 ...

 </btpext:Standard_Qualifiers_supported>
 <btpext:Recovery_Capable>

 ...

 <btpext:Recovery_Capable>

</btpext:PartyA_Properties">

<btpext:PartyB_Properties"> <!-- one only -->
 <btpext:Actor-Role> <!-- one only -->
 ...

</btpext:Actor-Role>

<btpext:Message_Timeout_Range> <!-- zero or one -->

 ...

</btpext:Message_Timeout_Range>

 <btpext:Standard_Qualifiers_supported> <!-- zero or more -->
 ...

 </btpext:Standard_Qualifiers_supported>
 <btpext:Recovery_Capable>

 ...

 <btpext:Recovery_Capable>

</btpext:PartyB_Properties">

 <tp:Comment xml:lang="aa-AA">

 </tp:Comment>

</btpext:TransactionManagement_BTP_CPA_Ext>

 <tp:Comment xml:lang="en-GB">any text</Comment> <!-- zero or more -->

</tp:CollaborationProtocolAgreement>
9.2 CollaborationProtocolAgreement element

The CollaborationProtocolAgreement element is the root element of a CPA. It has a REQUIRED cpaid attribute that supplies a unique identifier for the document. The value of the cpaid attribute SHALL be assigned by one Party and used by both. It is RECOMMENDED that the value of the cpaid attribute be a URI. The value of the cpaid attribute SHALL be used as the value of the CPAId element in the ebXML Message Header[ebMS] or of a similar element in a Message Header of an alternative messaging service.

NOTE: Each Party might associate a local identifier with the cpaid attribute.
In addition, the CollaborationProtocolAgreement element has a REQUIRED version attribute. This attribute indicates the version of the schema to which the CPA conforms. The value of the version attribute SHOULD be a string such as "2_0a", "2_0b", etc.

NOTE: The method of assigning unique cpaid values is left to the implementation.

The CollaborationProtocolAgreement element has REQUIRED [XML] Namespace[XMLNS] declarations that are defined in Section 8, "CPP Definition".

The CollaborationProtocolAgreement element is comprised of the following child elements, most of which are described in greater detail in subsequent sections:

· a REQUIRED Status element that identifies the state of the process that creates the CPA,
· a REQUIRED Start element that records the date and time that the CPA goes into effect,

· a REQUIRED End element that records the date and time after which the CPA MUST be renegotiated by the Parties,
· zero or one ConversationConstraints element that documents certain agreements about conversation processing,

· two REQUIRED PartyInfo elements, one for each Party to the CPA,
· one or more SimplePart elements,
· one or more Packaging elements,
· zero or one Signature element that provides for signing of the CPA using the XML Digital Signature[XMLDSIG] standard,

· zero or more Comment elements.

9.3 Status Element

The Status element records the state of the composition/negotiation process that creates the CPA. An example of the Status element follows:

<tp:Status tp:value="proposed"/>

The Status element has a REQUIRED value attribute that records the current state of composition of the CPA. This attribute is an enumeration comprised of the following possible values:

· "proposed", meaning that the CPA is still being negotiated by the Parties,
· "agreed", meaning that the contents of the CPA have been agreed to by both Parties,
· "signed", meaning that the CPA has been "signed" by one or more of the Parties. This "signing" takes the form of a digital signature that is described in Section 9.7 below.

NOTE: The Status element MAY be used by a CPA composition and negotiation tool to assist it in the process of building a CPA.

NOTE: The value of the Status element’s value attribute is set to “signed” before the first Party signs. Even though excluding value attribute from a signature might be technically feasible, it is preferable to change the attribute’s value to “signed” prior to the first signature, and maintain it as “signed” for any subsequent signatures.

9.4 CPA Lifetime

The lifetime of the CPA is given by the Start and End elements. The syntax is:

<tp:Start>1988-04-07T18:39:09Z</tp:Start>

<tp:End>1990-04-07T18:40:00Z</tp:End>

9.4.1 Start element

The Start element specifies the starting date and time of the CPA. The Start element SHALL be a string value that conforms to the content model of a canonical dateTime type as defined in the XML Schema Datatypes Specification[XMLSCHEMA-2]. For example, to indicate 1:20 pm UTC (Coordinated Universal Time) on May 31, 1999, a Start element would have the following value:

1999-05-31T13:20:00Z

The Start element SHALL be represented as Coordinated Universal Time (UTC).

9.4.2 End element

The End element specifies the ending date and time of the CPA. The End element SHALL be a string value that conforms to the content model of a canonical dateTime type as defined in the XML Schema Datatypes Specification[XMLSCHEMA-2]. For example, to indicate 1:20 pm UTC (Coordinated Universal Time) on May 31, 1999, an End element would have the following value:

1999-05-31T13:20:00Z

The End element SHALL be represented as Coordinated Universal Time (UTC).

When the end of the CPA's lifetime is reached, any Business Transactions that are still in progress SHALL be allowed to complete and no new Business Transactions SHALL be started. When all in-progress Business Transactions on each conversation are completed, the Conversation SHALL be terminated whether or not it was completed.

When a CPA is signed, software for signing the agreements SHALL warn if any signing certificate’s validity expires prior to the proposed time for ending the CPA. The opportunity to renegotiate a CPA End value or to in some other way align certificate validity periods with CPA validity periods SHALL be made available. (Other ways to align these validity periods would include reissuing the signing certificates for a longer period or obtaining new certificates for this purpose.)

Signing software SHOULD also attempt to align the validity periods of certificates referred to within the CPA that perform security functions so as to not expire before the CPA expires. This alignment can occur in several ways including making use of ds:KeyInfo’s content model ds:RetrievalMethod so that a new certificate can be installed and still be retrieved in accordance with the information in ds:RetrievalMethod. If no alignment can be attained, signing software MUST warn the user of the situation that the CPA validity exceeds the validity of some of the certificates referred to within the CPA.
NOTE: If a Business application defines a conversation as consisting of multiple Business Transactions, such a conversation MAY be terminated with no error indication when the end of the lifetime is reached. The run-time system could provide an error indication to the application.

NOTE: It might not be feasible to wait for outstanding conversations to terminate before ending the CPA since there is no limit on how long a conversation can last.

NOTE: The run-time system SHOULD return an error indication to both Parties when a new Business Transaction is started under this CPA after the date and time specified in the End element.

9.5 ConversationConstraints Element

The ConversationConstraints element places limits on the number of conversations under the CPA. An example of this element follows:

<tp:ConversationConstraints tp:invocationLimit="100"

 tp:concurrentConversations="4"/>

The ConversationConstraints element has the following attributes:

· an IMPLIED invocationLimit attribute,

· an IMPLIED concurrentConversations attribute.

9.5.1 invocationLimit attribute

The invocationLimit attribute defines the maximum number of conversations that can be processed under the CPA. When this number has been reached, the CPA is terminated and MUST be renegotiated. If no value is specified, there is no upper limit on the number of conversations and the lifetime of the CPA is controlled solely by the End element.

NOTE: The invocationLimit attribute sets a limit on the number of units of Business that can be performed under the CPA. It is a Business parameter, not a performance parameter. A CPA expires whichever terminating condition (End or invocationLimit) is first reached.

9.5.2 concurrentConversations attribute

The concurrentConversations attribute defines the maximum number of conversations that can be in process under this CPA at the same time. If no value is specified, processing of concurrent conversations is strictly a local matter.

NOTE: The concurrentConversations attribute provides a parameter for the Parties to use when it is necessary to limit the number of conversations that can be concurrently processed under a particular CPA. For example, the back-end process might only support a limited number of concurrent conversations. If a request for a new conversation is received when the maximum number of conversations allowed under this CPA is already in process, an implementation MAY reject the new conversation or MAY enqueue the request until an existing conversation ends. If no value is given for concurrentConversations, how to handle a request for a new conversation for which there is no capacity is a local implementation matter.

9.6 PartyInfo Element

The general characteristics of the PartyInfo element are discussed in Section 8.3.

The CPA SHALL have one PartyInfo element for each Party to the CPA. The PartyInfo element specifies the Parties' agreed terms for engaging in the Business Collaborations defined by the Process-Specification documents referenced by the CPA. If a CPP has more than one PartyInfo element, the appropriate PartyInfo element SHALL be selected from each CPP when composing a CPA.

In the CPA, there SHALL be one or more PartyId elements under each PartyInfo element. The values of these elements are the same as the values of the PartyId elements in the ebXML Message Service specification[ebMS] or similar messaging service specification. These PartyId elements SHALL be used within a To or From Header element of an ebXML Message.

9.6.1 ProcessSpecification element

The ProcessSpecification element identifies the Business Collaboration that the two Parties have agreed to perform. There can be one or more ProcessSpecification elements in a CPA. Each SHALL be a child element of a separate CollaborationRole element. See the discussion in Section 8.3.3.

9.7 SimplePart element

The CollaborationProtocolAgreement element SHALL contain one or more SimplePart elements. See Section 8.4 for details of the syntax of the SimplePart element.

9.8 Packaging element

The CollaborationProtocolAgreement element SHALL contain one or more Packaging elements. See Section 8.5 for details of the syntax of the Packaging element.

9.9 Signature element

A CPA document can be digitally signed by one or more of the Parties as a means of ensuring its integrity as well as a means of expressing the agreement just as a corporate officer's signature would do for a paper document. If signatures are being used to digitally sign an ebXML CPA or CPP document, then [XMLDSIG] SHALL be used to digitally sign the document.

The Signature element, if present, is made up of one to three ds:Signature elementsThe CPA can be signed by one or both Parties. It is RECOMMENDED that both Parties sign the CPA. For signing by both Parties, one Party initially signs. The other Party then signs over the first Party’s signature. The resulting CPA MAY then be signed by a notary.

The ds:Signature element is the root of a subtree of elements used for signing the CPP.
The content of this element and any sub-elements are defined by the XML Digital Signature specification[XMLDSIG]. The following additional constraints on ds:Signature are imposed:

· A CPA MUST be considered invalid if any ds:Signature fails core validation as defined by the XML Digital Signature specification.

· Whenever a CPA is signed, each ds:Reference within a ProcessSpecification MUST pass reference validation and each ds:Signature MUST pass core validation.

NOTE: In case a CPA is unsigned, software MAY nonetheless validate the ds:Reference elements within ProcessSpecification elements and report any exceptions.

Software for creation of CPPs and CPAs SHALL recognize ds:Signature and automatically insert the element structure necessary to define signing of the CPP and CPA. Signature creation itself is a cryptographic process that is outside the scope of this specification.

NOTE: See non-normative note in Section 8.3.4.5 for a discussion of times at which a CPA MAY be validated.

9.9.1 Persistent Digital Signature

If [XMLDSIG] is used to sign an ebXML CPP or CPA, the process defined in this section of the specification SHALL be used.

9.9.1.1 Signature Generation

Following are the steps to create a digital signature:

1. Create a SignedInfo element, a child element of ds:Signature. SignedInfo SHALL have child elements SignatureMethod, CanonicalizationMethod, and Reference as prescribed by [XMLDSIG].

2. Canonicalize and then calculate the SignatureValue over SignedInfo based on algorithms specified in SignedInfo as specified in [XMLDSIG].

3. Construct the Signature element that includes the SignedInfo, KeyInfo (RECOMMENDED), and SignatureValue elements as specified in [XMLDSIG].

4. Include the namespace qualified Signature element in the document just signed, following the last PartyInfo element.

9.9.1.2 ds:SignedInfo element

The ds:SignedInfo element SHALL be comprised of zero or one ds:CanonicalizationMethod element, the ds:SignatureMethod element, and one or more ds:Reference elements.

9.9.1.3 ds:CanonicalizationMethod element

The ds:CanonicalizationMethod element as defined in [XMLDSIG], can occur zero or one time, meaning that the element need not appear in an instance of a ds:SignedInfo element. The default canonicalization method that is applied to the data to be signed is [XMLC14N] in the absence of a ds:CanonicalizationMethod element that specifies otherwise. This default SHALL also serve as the default canonicalization method for the ebXML CPP and CPA documents.
9.9.1.4 ds:SignatureMethod element

The ds:SignatureMethod element SHALL be present and SHALL have an Algorithm attribute. The RECOMMENDED value for the Algorithm attribute is:

"http://www.w3.org/2000/09/xmldsig#sha1"

This RECOMMENDED value SHALL be supported by all compliant ebXML CPP or CPA software implementations.

9.9.1.5 ds:Reference element

The ds:Reference element for the CPP or CPA document SHALL have a REQUIRED URI attribute value of "" to provide for the signature to be applied to the document that contains the ds:Signature element (the CPA or CPP document). The ds:Reference element for the CPP or CPA document can include an IMPLIED type attribute that has a value of:

"http://www.w3.org/2000/09/xmldsig#Object"

in accordance with [XMLDSIG]. This attribute is purely informative. It MAY be omitted. Implementations of software designed to author or process an ebXML CPA or CPP document SHALL be prepared to handle either case. The ds:Reference element can include the id attribute, type ID, by which this ds:Reference element is referenced from a ds:Signature element.

9.9.1.6 ds:Transform element

The ds:Reference element for the CPA or CPP document SHALL include a descendant ds:Transform element that excludes the containing ds:Signature element and all its descendants. This exclusion is achieved by means of specifying the ds:Algorithm attribute of the Transform element as

"http://www.w3.org/2000/09/xmldsig#enveloped-signature"

For example:

<ds:Reference ds:URI="">

 <ds:Transforms>

 <ds:Transform

ds:Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

 </ds:Transforms>

 <ds:DigestMethod

 ds:Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>...</ds:DigestValue>

</ds:Reference>

9.9.1.7 ds:Algorithm attribute

The ds:Transform element SHALL include a ds:Algorithm attribute that has a value of:

 http://www.w3.org/2000/09/xmldsig#enveloped-signature

NOTE: When digitally signing a CPA, it is RECOMMENDED that each Party sign the document in accordance with the process described above.

When the two Parties sign the CPA, the first Party that signs the CPA SHALL sign only the CPA contents, excluding their own signature. The second Party SHALL sign over the contents of the CPA as well as the ds:Signature element that contains the first Party's signature. If necessary, a notary can then sign over both signatures.
9.10 Comment element

The CollaborationProtocolAgreement element contains zero or more Comment elements. See Section 8.7 for details of the syntax of the Comment element.

9.11 Composing a CPA from Two CPPs

This section discusses normative issues in composing a CPA from two CPPs. See also Appendix E, "CPA Composition (Non-Normative)".

9.11.1 ID Attribute Duplication

In composing a CPA from two CPPs, there is a hazard that ID attributes from the two CPPs might have duplicate values. When a CPA is composed from two CPPs, duplicate ID attribute values SHALL be tested for. If a duplicate ID attribute value is present, one of the duplicates SHALL be given a new value and the corresponding IDREF attribute values from the corresponding CPP SHALL be corrected.

NOTE: A party can seek to prevent ID/IDREF reassignment in the CPA by choosing ID and IDREF values which are likely to be unique among its trading partners. For example, the following Certificate element found in a CPP has a certId attribute that is generic enough that it might clash with a certId attribute found in a collaborating party's CPP:

<tp:Certificate tp:certId="EncryptionCert"><ds:KeyInfo/></tp:Certificate>
To prevent reassignment of this ID (and its associated IDREFs) in a CPA, a better choice of certId in Company A's CPP would be:

<tp:Certificate tp:certId="CompanyA_EncryptionCert"><ds:KeyInfo/></tp:Certificate>

9.12 Modifying Parameters of the Process-Specification Document Based on Information in the CPA
A Process-Specification document contains a number of parameters, expressed as XML attributes. An example is the security attributes that are counterparts of the attributes of the CPA BusinessTransactionCharacteristics element. The values of these attributes can be considered to be default values or recommendations. When a CPA is created, the Parties might decide to accept the recommendations in the Process-Specification or they MAY agree on values of these parameters that better reflect their needs.

When a CPA is used to configure a run-time system, choices specified in the CPA MUST always assume precedence over choices specified in the referenced Process-Specification document. In particular, all choices expressed in a CPA’s BusinessTransactionCharacteristics and Packaging elements MUST be implemented as agreed to by the Parties. These choices SHALL override the default values expressed in the Process-Specification document. The process of installing the information from the CPA and Process-Specification document MUST verify that all of the resulting choices are mutually consistent and MUST signal an error if they are not.

NOTE: There are several ways of overriding the information in the Process-Specification document by information from the CPA. For example:

· The CPA composition tool can create a separate copy of the Process-Specification document. The tool can then directly modify the Process-Specification document with information from the CPA. An advantage of this method is that the override process is performed entirely by the CPA composition tool.

· A CPA installation tool can dynamically override parameters in the Process-Specification document using information from the corresponding parameters in the CPA at the time the CPA and Process-Specification document are installed in the Parties' systems. This eliminates the need to create a separate copy of the Process-Specification document.
· Other possible methods might be based on XSLT transformations of the parameter information in the CPA and/or the Process-Specification document.

10 References

Some references listed below specify functions for which specific XML definitions are provided in the CPP and CPA. Other specifications are referred to in this specification in the sense that they are represented by keywords for which the Parties to the CPA MAY obtain plug-ins or write custom support software but do not require specific XML element sets in the CPP and CPA.

In a few cases, the only available specification for a function is a proprietary specification. These are indicated by notes within the citations below.

[BTP] Business Transcation Protocol, OASIS Technical Committee Specification, version 1.0, June 2002, http://www.oasis-open.org/committees/business-transactions/.

[ebBPSS] ebXML Business Process Specification Schema, http://www.ebxml.org/specs/ebBPSS.pdf.

[ebCPPA] ebXML Collaboration-Protocol Profile and Agreement, version 2.0, OASIS Standard, http://www.oasis-open.org/committees/ebxml-cppa.

[RFC2119] Key Words for use in RFCs to Indicate Requirement Levels, Internet Engineering Task Force RFC 2119, http://www.ietf.org/rfc/rfc2119.txt.

[RFC2396] Uniform Resource Identifiers (URI): Generic Syntax, Internet Engineering Task Force RFC 2396, http://www.ietf.org/rfc/rfc2396.txt.

[SMTP] Simple Mail Transfer Protocol, Internet Engineering Task Force RFC 2821, http://www.faqs.org/rfcs/rfc2821.html.

[SSL] Secure Sockets Layer, Netscape Communications Corp., http://www.netscape.com/eng/ssl3/
NOTE: At this time, it appears that the Netscape specification is the only available specification of SSL.

[XML] Extensible Markup Language (XML), World Wide Web Consortium,

http://www.w3.org/XML.

[XMLNS] Namespaces in XML, Worldwide Web Consortium, http://www.w3.org/TR/REC-xml-names/.

[XMLSCHEMA-1] XML Schema Part 1: Structures, Worldwide Web Consortium, http://www.w3.org/TR/xmlschema-1/.

[XMLSCHEMA-2] XML Schema Part 2: Datatypes, Worldwide Web Consortium,

http://www.w3.org/TR/xmlschema-2/.

11 Conformance
In order to conform to this specification, an implementation:

a) SHALL support all the functional and interface requirements defined in this specification,

b) SHALL NOT specify any requirements that would contradict or cause non-conformance to this specification.

A conforming implementation SHALL satisfy the conformance requirements of the applicable parts of this specification.

An implementation of a tool or service that creates or maintains ebXML CPP or CPA instance documents SHALL be determined to be conformant by validation of the CPP or CPA instance documents, created or modified by said tool or service, against the XML Schema[XMLSCHEMA-1] definition of the CPP or CPA in Appendix D and available from

http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd
by using two or more validating XML Schema parsers that conform to the W3C XML Schema specifications[XMLSCHEMA-1, XMLSCHEMA-2].

The objective of conformance testing is to determine whether an implementation being tested conforms to the requirements stated in this specification. Conformance testing enables vendors to implement compatible and interoperable systems. Implementations and applications SHALL be tested using available test suites to verify their conformance to this specification.

Publicly available test suites from vendor neutral organizations such as OASIS and the U.S.A. National Institute of Science and Technology (NIST) SHOULD be used to verify the conformance of implementations, applications, and components claiming conformance to this specification. Open-source reference implementations might be available to allow vendors to test their products for interface compatibility, conformance, and interoperability.

12 Disclaimer

The views and specification expressed in this document are those of the authors and are not necessarily those of their employers. The authors and their employers specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this design.

13 Contact Information
 Tony Fletcher (Author)

 TIBCO Software

 3303 Hillview Avenue

 Palo Alto, CA 94304

 USA

 Phone: 650-846-5046

 email: mailto:arvola@tibco.com
 Dale W. Moberg (Author)

 Cyclone Commerce

 8388 E. Hartford Drive

 Scottsdale, AZ 85255

 USA

 Phone: 480-627-2648

 email: mailto:dmoberg@cyclonecommerce.com
 Himagiri Mukkamala (Author)

 Sybase Inc.

 5000 Hacienda Dr

 Dublin, CA, 84568

 USA

 Phone: 925-236-5477

 email: mailto:himagiri@sybase.com
 Peter M. Ogden (Author)

 Cyclone Commerce, Inc.

 8388 East Hartford Drive

 Scottsdale, AZ 85255

 USA

 Phone: 480-627-1800

 email: mailto:pogden@cyclonecommerce.com
 Martin W. Sachs (Author)

 IBM T. J. Watson Research Center

 P.O.B. 704

 Yorktown Hts, NY 10598

 USA

 Phone: 914-784-7287

 email: mailto:mwsachs@us.ibm.com
 Tony Weida (Coordinating Editor)

 535 West 110th St., #4J

 New York, NY 10025

 USA

 Phone: 212-678-5265

 email: mailto:rweida@hotmail.com
 Jean Zheng

 Vitria
 945 Stewart Drive
 Sunnyvale, CA 94086
 USA
 Phone: 408-212-2468
 email: mailto:jzheng@vitria.com
Notices

Portions of this document are copyright (c) 2001 OASIS and UN/CEFACT.

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS] 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

OASIS has been notified of intellectual property rights claimed in regard to some or all of the contents of this specification. For more information consult the online list of claimed rights.
Appendix A Example of CPP Document (Non-Normative)

This example includes the outline of two CPPs that are used to form the CPA in Appendix B. The full example CPPs without the Transaction Management extension added are to be found in Appendix A of the base specification [ebCPPA]. They are available as ASCII files at

http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-example-companyA-2_0b.xml
http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-example-companyB-2_0b.xml
The examples below include the outline of the two CPPs that are used to form the CPA in Appendix B with missing items indicated by 3 vertical dots. The transaction management extension (BTP) element is shown in full. The full example CPPs including the Transaction Management extension are available as ASCII files at

cpp-example-companyA-2_0b.xml:

<?xml version="1.0"?>

<!-- Copyright UN/CEFACT and OASIS, 2001. All Rights Reserved. -->

<tp:CollaborationProtocolProfile

 xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd

 cpp-cpa-2_0.xsd"

 tp:cppid="uri:companyA-cpp" tp:version="2_0b">

 <!-- Party info for CompanyA-->

 <tp:PartyInfo

 tp:partyName="CompanyA"

 tp:defaultMshChannelId="asyncChannelA1"

 tp:defaultMshPackageId="CompanyA_MshSignalPackage">

 <tp:PartyId tp:type="urn:oasis:names:tc:ebxml-cppa:partyid-type:duns">123456789</tp:PartyId>

 <tp:PartyRef xlink:href="http://CompanyA.com/about.html"/>

 <tp:CollaborationRole>

 .

 .

 .

 </tp:CollaborationRole>

 <!-- Certificates used by the "Buyer" company -->

 <tp:Certificate tp:certId="CompanyA_AppCert">

 .

 .

 .

 </tp:Certificate>

 .

 .

 .

 <tp:SecurityDetails tp:securityId="CompanyA_TransportSecurity">

 .

 .

 .

 </tp:SecurityDetails>

 .

 .

 .

 <tp:DeliveryChannel

 tp:channelId="asyncChannelA1"

 tp:transportId="transportA2"

 tp:docExchangeId="docExchangeA1">

 .

 .

 .

 </tp:DeliveryChannel>

 .

 .

 .

 <tp:Transport tp:transportId="transportA1">

 .

 .

 .

 </tp:Transport>

 .

 .

 .

 <tp:DocExchange tp:docExchangeId="docExchangeA1">

 .

 .

 .

 </tp:DocExchange>

 </tp:PartyInfo>

 <!-- SimplePart corresponding to the SOAP Envelope -->

 <tp:SimplePart

 tp:id="CompanyA_MsgHdr"

 tp:mimetype="text/xml">

 .

 .

 .

 </tp:SimplePart>

 .

 .

 .

 <!-- An ebXML message with a SOAP Envelope only -->

 <tp:Packaging tp:id="CompanyA_MshSignalPackage">

 .

 .

 .

 </tp:Packaging>

 .

 .

 .

<btpext:TransactionManagement_BTP_CPP_Ext btpext:BTP_CPPA_ext_version="1.0">

 <btpext:BTP_Version> 1.0 </btpext:BTP_Version>

 <btpext:Standard_Bindings>XML_SOAP1_1_HTTP1_1</btpext:Standard_Bindings>

 <btpext:Standard_Bindings>XML_SOAP1_1_Attach_HTTP1_1</btpext:Standard_Bindings>

 <btpext:Non_Standarised_Bindings>Java_RMI</btpext:Non_Standarised_Bindings>

 <btpext:Transaction_Time_Limit_Range>

 <btpext:Min_Time_Limit>100</btpext:Min_Time_Limit>

 <btpext:Max_Time_Limit>1000</btpext:Max_Time_Limit>

 </btpext:Transaction_Time_Limit_Range>

 <btpext:Inferior_Timeout_Range>

 <btpext:Min_Time_Limit>10</btpext:Min_Time_Limit>

 <btpext:Max_Time_Limit>100</btpext:Max_Time_Limit>

 </btpext:Inferior_Timeout_Range>

 <btpext:Min_Inferior_Timeout_Range>

 <btpext:Min_Time_Limit>5</btpext:Min_Time_Limit>

 <btpext:Max_Time_Limit>20</btpext:Max_Time_Limit>

 </btpext:Min_Inferior_Timeout_Range>

 <btpext:Actor-Role>Composer/Superior</btpext:Actor-Role>

 <btpext:Actor-Role>Coordinator/Superior</btpext:Actor-Role>

 <btpext:Factory_default_address>

 <btp:binding-name>Fine Factory 1</btp:binding-name>

 <btp:binding-address>200.34.5.1</btp:binding-address>

 <btp:additional-information>Alternative addresses available</btp:additional-information>
 </btpext:Factory_default_address>

 <btpext:Message_Timeout_Range>

 <btpext:Min_Time_Limit>5</btpext:Min_Time_Limit>

 <btpext:Max_Time_Limit>50</btpext:Max_Time_Limit>

 </btpext:Message_Timeout_Range>

 <btpext:Standard_Qualifiers_supported>Transaction_Time_Limit

 </btpext:Standard_Qualifiers_supported>
 <btpext:Standard_Qualifiers_supported>Inferior_Timeout

 </btpext:Standard_Qualifiers_supported>
 <btpext:Standard_Qualifiers_supported>Minium_Inferior_Timeout

 </btpext:Standard_Qualifiers_supported>
 <btpext:Standard_Qualifiers_supported>Inferior_Name</btpext:Standard_Qualifiers_supported>
 <btpext:Recovery_Capable>TRUE<btpext:Recovery_Capable>

 <tp:Comment xml:lang="en-GB">Please e-mail if these values are not suitable. Use email; address BTP_Support@oasis-open.co.uk </tp:Comment>

</btpext:TransactionManagement_BTP_CPP_Ext>

 <tp:Comment xml:lang="en-GB">Buyer's Collaboration Protocol Profile with BTP Transaction Management extension</tp:Comment>

</tp:CollaborationProtocolProfile>
cpp-example-companyB-2_0b.xml:

<?xml version="1.0"?>

<!-- Copyright UN/CEFACT and OASIS, 2001. All Rights Reserved. -->

<tp:CollaborationProtocolProfile

 xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd

 cpp-cpa-2_0.xsd"

 tp:cppid="uri:companyB-cpp"

 tp:version="2_0b">

 <!-- Party info for CompanyB-->

 <tp:PartyInfo

 tp:partyName="CompanyB"

 tp:defaultMshChannelId="asyncChannelB1"

 tp:defaultMshPackageId="CompanyB_MshSignalPackage">

 <tp:PartyId tp:type="urn:oasis:names:tc:ebxml-cppa:partyid-type:duns">987654321</tp:PartyId>

 <tp:PartyRef xlink:type="simple" xlink:href="http://CompanyB.com/about.html"/>

 <tp:CollaborationRole>

 .

 .

 .

 </tp:CollaborationRole>

 <!-- Certificates used by the "Seller" company -->

 <tp:Certificate tp:certId="CompanyB_AppCert">

 .

 .

 .

 </tp:Certificate>

 .

 .

 .

 <tp:SecurityDetails tp:securityId="CompanyB_TransportSecurity">

 .

 .

 .

 </tp:SecurityDetails>

 .

 .

 .

 <tp:DeliveryChannel

 tp:channelId="asyncChannelB1"

 tp:transportId="transportB1"

 tp:docExchangeId="docExchangeB1">

 .

 .

 .

 </tp:DeliveryChannel>

 .

 .

 .

 <tp:Transport tp:transportId="transportB1">

 .

 .

 .

 </tp:Transport>

 .

 .

 .

 <tp:DocExchange tp:docExchangeId="docExchangeB1">

 .

 .

 .

 </tp:DocExchange>

 </tp:PartyInfo>

 <!-- SimplePart corresponding to the SOAP Envelope -->

 <tp:SimplePart

 tp:id="CompanyB_MsgHdr"

 tp:mimetype="text/xml">

 .

 .

 .

 </tp:SimplePart>

 .

 .

 .

 <!-- An ebXML message with a SOAP Envelope only -->

 <tp:Packaging tp:id="CompanyB_MshSignalPackage">

 .

 .

 .

 </tp:Packaging>

 .

 .

 .

<btpext:TransactionManagement_BTP_CPP_Ext btpext:BTP_CPPA_ext_version="1.0">

 <btpext:BTP_Version> 1.0 </btpext:BTP_Version>

 <btpext:Standard_Bindings>XML_SOAP1_1_HTTP1_1</btpext:Standard_Bindings>

 <btpext:Standard_Bindings>XML_SOAP1_1_Attach_HTTP1_1</btpext:Standard_Bindings>

<btpext:Transaction_Time_Limit_Range>

 <btpext:Min_Time_Limit>200</btpext:Min_Time_Limit>

 <btpext:Max_Time_Limit>2000</btpext:Max_Time_Limit>

 </btpext:Transaction_Time_Limit_Range>

 <btpext:Inferior_Timeout_Range>

 <btpext:Min_Time_Limit>20</btpext:Min_Time_Limit>

 <btpext:Max_Time_Limit>50</btpext:Max_Time_Limit>

 </btpext:Inferior_Timeout_Range>

 <btpext:Min_Inferior_Timeout_Range>

 <btpext:Min_Time_Limit>10</btpext:Min_Time_Limit>

 <btpext:Max_Time_Limit>20</btpext:Max_Time_Limit>

 </btpext:Min_Inferior_Timeout_Range>

 <btpext:Actor-Role>Participant/Inferior+Enroller</btpext:Actor-Role>

<btpext:Factory_default_address>

 <btp:binding-name>Fine Factory 2</btp:binding-name>

 <btp:binding-address>220.12.50.11</btp:binding-address>

 <btp:additional-information>Alternative addresses available</btp:additional-information>
 </btpext:Factory_default_address>

 <btpext:Message_Timeout_Range>

 <btpext:Min_Time_Limit>5</btpext:Min_Time_Limit>

 <btpext:Max_Time_Limit>50</btpext:Max_Time_Limit>

 </btpext:Message_Timeout_Range>

 <btpext:Standard_Qualifiers_supported>Transaction_Time_Limit

 </btpext:Standard_Qualifiers_supported>
 <btpext:Standard_Qualifiers_supported>Inferior_Timeout

 </btpext:Standard_Qualifiers_supported>
 <btpext:Standard_Qualifiers_supported>Minium_Inferior_Timeout

 </btpext:Standard_Qualifiers_supported>
<btpext:Recovery_Capable>FALSE<btpext:Recovery_Capable>

 <tp:Comment xml:lang="en-US">Please e-mail if these values are not suitable. Use email; address BTP_Support@oasis-open.com </tp:Comment>

</btpext:TransactionManagement_BTP_CPP_Ext>

 <tp:Comment xml:lang="en-US">Seller's Collaboration Protocol Profile with BTP Transaction Management extension </tp:Comment>

</tp:CollaborationProtocolProfile>
Appendix B Example of CPA Document (Non-Normative)

The example in this appendix is to be parsed with an XML Schema parser. The schema is available as an ASCII file at

 URL

The example that can be parsed with the XSD is available at

http://www.oasis-open.org/committees/ebxml-cppa/schema/cpa-example-2_0b.xml
This example is the outline of one possibility for a CPA formed from the two CPPs in Appendix A. The full example CPA without the Transaction Management extension added are to be found in Appendix B of the base specification [ebCPPA]. It is are available as ASCII files at

http://www.oasis-open.org/committees/ebxml-cppa/schema/cpa-example-2_0b.xml
The example below includes the outline of the CPA with missing items indicated by 3 vertical dots. The transaction management extension (BTP) element is shown in full. The full example CPA including the Transaction Management extension are available as an ASCII file at:

<?xml version="1.0"?>

<!-- Copyright UN/CEFACT and OASIS, 2001. All Rights Reserved. -->

<tp:CollaborationProtocolAgreement

 xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd

 cpp-cpa-2_0.xsd"

 tp:cpaid="uri:companyA-and-companyB-cpa" tp:version="2_0b">

 <tp:Status tp:value="proposed"/>

 <tp:Start>2001-05-20T07:21:00Z</tp:Start>

 <tp:End>2002-05-20T07:21:00Z</tp:End>

 <tp:ConversationConstraints tp:invocationLimit="100" tp:concurrentConversations="10"/>

 <!-- Party info for CompanyA -->

 <tp:PartyInfo

 tp:partyName="CompanyA"

 tp:defaultMshChannelId="asyncChannelA1"

 tp:defaultMshPackageId="CompanyA_MshSignalPackage">

 <tp:PartyId tp:type="urn:oasis:names:tc:ebxml-cppa:partyid-type:duns">123456789</tp:PartyId>

 <tp:PartyRef xlink:href="http://CompanyA.com/about.html"/>

 <tp:CollaborationRole>

 .

 .

 .

 </tp:CollaborationRole>

 <!-- Certificates used by the "Buyer" company -->

 <tp:Certificate tp:certId="CompanyA_AppCert">

 .

 .

 .

 </tp:Certificate>

 .

 .

 .

 <tp:SecurityDetails tp:securityId="CompanyA_TransportSecurity">

 .

 .

 .

 </tp:SecurityDetails>

 .

 .

 .

 <tp:DeliveryChannel

 tp:channelId="asyncChannelA1"

 tp:transportId="transportA1"

 tp:docExchangeId="docExchangeA1">

 .

 .

 .

 </tp:DeliveryChannel>

 .

 .

 .

 <tp:Transport tp:transportId="transportA1">

 .

 .

 .

 </tp:Transport>

 .

 .

 .

 <tp:DocExchange tp:docExchangeId="docExchangeA1">

 .

 .

 .

 </tp:DocExchange>

 </tp:PartyInfo>

 <!-- Party info for CompanyB -->

 <tp:PartyInfo

 tp:partyName="CompanyB"

 tp:defaultMshChannelId="asyncChannelB1"

 tp:defaultMshPackageId="CompanyB_MshSignalPackage">

 <tp:PartyId tp:type="urn:oasis:names:tc:ebxml-cppa:partyid-type:duns">987654321</tp:PartyId>

 <tp:PartyRef xlink:type="simple" xlink:href="http://CompanyB.com/about.html"/>

 <tp:CollaborationRole>

 .

 .

 .

 </tp:CollaborationRole>

 <!-- Certificates used by the "Seller" company -->

 <tp:Certificate tp:certId="CompanyB_AppCert">

 .

 .

 .

 </tp:Certificate>

 .

 .

 .

 <tp:SecurityDetails tp:securityId="CompanyB_TransportSecurity">

 .

 .

 .

 </tp:SecurityDetails>

 .

 .

 .

 <tp:DeliveryChannel

 tp:channelId="asyncChannelB1"

 tp:transportId="transportB1"

 tp:docExchangeId="docExchangeB1">

 .

 .

 .

 </tp:DeliveryChannel>

 .

 .

 .

 <tp:Transport tp:transportId="transportB1">

 .

 .

 .

 </tp:Transport>

 .

 .

 .

 <tp:DocExchange tp:docExchangeId="docExchangeB1">

 .

 .

 .

 </tp:DocExchange>

 </tp:PartyInfo>

 <!-- SimplePart corresponding to the SOAP Envelope -->

 <tp:SimplePart

 tp:id="CompanyA_MsgHdr"

 tp:mimetype="text/xml">

 .

 .

 .

 </tp:SimplePart>

 .

 .

 .

 <!-- An ebXML message with a SOAP Envelope only -->

 <tp:Packaging

 tp:id="CompanyA_MshSignalPackage">

 .

 .

 .

 </tp:Packaging>

 <tp:Packaging

 tp:id="CompanyB_MshSignalPackage">

 .

 .

 .

 </tp:Packaging>

 .

 .

 .

<btpext:TransactionManagement_BTP_CPA_Ext btpext:BTP_CPPA_ext_version="1.0">

<!—Common agreed properties -->

 <btpext:BTP_Version> 1.0 </btpext:BTP_Version>

 <btpext:Standard_Bindings>XML_SOAP1_1_HTTP1_1</btpext:Standard_Bindings>

<btpext:Transaction_Time_Limit_Range>

 <btpext:Min_Time_Limit>200</btpext:Min_Time_Limit>

 <btpext:Max_Time_Limit>1000</btpext:Max_Time_Limit>

 </btpext:Transaction_Time_Limit_Range>

 <btpext:Inferior_Timeout_Range>

 <btpext:Min_Time_Limit>20</btpext:Min_Time_Limit>

 <btpext:Max_Time_Limit>50</btpext:Max_Time_Limit>

 </btpext:Inferior_Timeout_Range>

 <btpext:Min_Inferior_Timeout_Range>

 <btpext:Min_Time_Limit>10</btpext:Min_Time_Limit>

 <btpext:Max_Time_Limit>20</btpext:Max_Time_Limit>

 </btpext:Min_Inferior_Timeout_Range>

<btpext:PartyA_Properties">

 <btpext:Actor-Role>Composer/Superior</btpext:Actor-Role>

 <btpext:Actor-Role>Coordinator/Superior</btpext:Actor-Role>

<btpext:Message_Timeout_Range>

 <btpext:Min_Time_Limit>5</btpext:Min_Time_Limit>

 <btpext:Max_Time_Limit>50</btpext:Max_Time_Limit>

 </btpext:Message_Timeout_Range>

 <btpext:Standard_Qualifiers_supported>Transaction_Time_Limit

 </btpext:Standard_Qualifiers_supported>
 <btpext:Standard_Qualifiers_supported>Inferior_Timeout

 </btpext:Standard_Qualifiers_supported>
 <btpext:Standard_Qualifiers_supported>Minium_Inferior_Timeout

 </btpext:Standard_Qualifiers_supported>
 <btpext:Standard_Qualifiers_supported>Inferior_Name</btpext:Standard_Qualifiers_supported>
 <btpext:Recovery_Capable>TRUE<btpext:Recovery_Capable>

</btpext:PartyA_Properties">

<btpext:PartyB_Properties">

<btpext:Transaction_Time_Limit_Range>

 <btpext:Min_Time_Limit>100</btpext:Min_Time_Limit>

 <btpext:Max_Time_Limit>1000</btpext:Max_Time_Limit>

 </btpext:Transaction_Time_Limit_Range>

 <btpext:Inferior_Timeout_Range>

 <btpext:Min_Time_Limit>10</btpext:Min_Time_Limit>

 <btpext:Max_Time_Limit>100</btpext:Max_Time_Limit>

 </btpext:Inferior_Timeout_Range>

 <btpext:Min_Inferior_Timeout_Range>

 <btpext:Min_Time_Limit>5</btpext:Min_Time_Limit>

 <btpext:Max_Time_Limit>20</btpext:Max_Time_Limit>

 </btpext:Min_Inferior_Timeout_Range>

 <btpext:Actor-Role>Participant/Inferior+Enroller</btpext:Actor-Role>

<btpext:Message_Timeout_Range>

 <btpext:Min_Time_Limit>5</btpext:Min_Time_Limit>

 <btpext:Max_Time_Limit>50</btpext:Max_Time_Limit>

 </btpext:Message_Timeout_Range>

 <btpext:Standard_Qualifiers_supported>Transaction_Time_Limit

 </btpext:Standard_Qualifiers_supported>
 <btpext:Standard_Qualifiers_supported>Inferior_Timeout

 </btpext:Standard_Qualifiers_supported>
 <btpext:Standard_Qualifiers_supported>Minium_Inferior_Timeout

 </btpext:Standard_Qualifiers_supported>
<btpext:Recovery_Capable>FALSE<btpext:Recovery_Capable>

</btpext:PartyB_Properties">

 <tp:Comment xml:lang="en-GB">This extension has been agreed for use </tp:Comment>

</btpext:TransactionManagement_BTP_CPA_Ext>

 <tp:Comment xml:lang="en-US">buy/sell agreement between CompanyA.com and CompanyB.com with BTP Transaction Management extension </tp:Comment>

</tp:CollaborationProtocolAgreement>
Appendix C Requirements on this BTP Transdaction Management extension

1)
Use BTP, or not.

2)
Editions of BTP supported (for CPP), edition of BTP agreed to be used.

3)
Actors / roles that can be assumed (for CPP) – single actor/role for CPA
Values: Composer/Superior, Composer/Decider, Coordinator/Superior, Coordinator/Decider, Participant/Inferior+Enroller, Sub-Composer/Superior, Sub-Composer/Inferior, Sub-Coordinator/Superior, Sub-Coordinator/Inferior, Initator+Terminator, Factory.

4)
Address of default Factory.

5)
Bindings offered for CPP – binding to be used for CPA.

Values:

In BTP standard:
XML/SOAP1.1(messages)/HTTP1.1;
XML/SOAP1.1 with attachments (messages)/HTTP1.1;
 (only two for the present, more may be added later)

Not in BTP standard:
For example Java RMI; (others to be added as companies provide)

6)
Default timeout / time limit value ranges acceptable.

Value ranges for:
transaction time limit

Inferior timeout

Minimum inferior timeout

(Note: default value to apply if none given in the business process / collaboration. The normal value used should come from the Business process specification.)

7)
Standard Qualifiers supported:

Values:
Transaction time limit

Inferior timeout

Minimum inferior timeout

Inferior name

(more may be added in future editions of the BTP specification)

8)
Proprietary Qualifiers supported (if any).

9)
Timeout before resending a message when the expected response message is received and the number of times the message is resent before taking alternative action.

10)
Failure recovery capability (separate CPP/A for failure recovery interactions?)

Note: Security for the BTP interactions has not been specified yet.

Issue 1:
Have CPP/A that covers business application and BTP interactions, or separate ones for business application (just stating BTP to be used and pointing to separate CPP/A for BTP interactions) and BTP interactions?

Issue 2:
Have a separate CPP/A that covers failure recovery interactions?

14 Scenarios

[image: image1.wmf]Initiating

application

BTP

engine

System A

Internal

API

Responding

application

BTP

engine

System B

Internal

API

Application protocol

+ some BTP

BT Outcome protocol

CPP_A1

CPP_A2

CPP_B1

CPP_B2

CPA_1

CPA_2

Figure 1
Minimal BTP enabled distributed application - two systems

[image: image2.wmf]Initiating

application

BTP

engine

System A

Internal

API

Responding

application

BTP

engine

System B

Internal

API

Application protocol

+ BTP

CPP

CPP

CPA

Figure 2
Minimal BTP enabled distributed application
 - two systems with ‘one-wire’ optimisation

[image: image3.wmf]Initiating

application

BTP

engine

application

BTP

engine

application

BTP

engine

application

BTP

engine

. . . .

CPP

CPP

CPP

CPP

CPP

CPP

CPA

(BTP)

CPA (App + BTP)

CPP

CPP

CPP

CPP

CPP

CPP

CPA

(BTP)

CPA

(BTP)

CPA (App + BTP)

CPA

(App

+ BTP)

BTP Control

or Outcome

protocol

BTP Outcome

protocol

Application

protocol

Figure 3
Example tree structure BTP enabled distributed application - many systems

[image: image4.wmf]Initiating

application

BTP

engine

BTP

engine

application

BTP

engine

CPP

CPP

CPP

CPA

(BTP)

CPA

CPP

CPP

CPP

CPA

(App + BTP)

BTP Outcome

protocol

BTP Control

or Outcome

protocol

Application

protocol

Figure 4
Example of the use of a (sub-) coordinator or (sub-) composer

Appendix D W3C XML Schema Document Corresponding to Complete CPP and CPA Transaction Management (BTP) extension Definition (Normative)

This XML Schema document is available as an ASCII file at:

 URL

Add to the CPP - CPPA base schema the abstract element type ‘cppa-extensions’ as a top level element.

 <!— CPP and CPPA Extensions -->

 <complexType name="cppa-extension-type">

 <complexContent mixed="true">

 <restriction base="anyType">

 <sequence>

 <any processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="must-be-understood" type="boolean" default="true"/>

 </restriction>

 </complexContent>

 </complexType>

 <element name="cppa-extension" type="cppa:cppa-extension-type" abstract="true"/>

 <element name="cppa-extensions">

 <complexType>

 <choice>

 <element ref="cppa:cppa-extension" minOccurs="0" maxOccurs="unbounded"/>

 <any processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </choice>

 </complexType>

 </element>

 <!-- example CPP / CPA extension definition:

 <element name="some-extension" type="cppa:cppa-extension-type" substitutionGroup="cppa:cppa-extension"/>

 -->

<?xml version="1.0" encoding="UTF-8"?>

<!-- This is the schema that corresponds to the version 1.0 Transaction Management (BTP) CPP/A extension -->

<!-- Some parsers may require explicit declaration of 'xmlns:xml="http://www.w3.org/XML/1998/namespace"'.

 In that case, a copy of this schema augmented with the above declaration should be cached and used for the purpose of schema validation for CPPs and CPAs. -->

<schema

 targetNamespace="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-btp-ext-1_0.xsd"

 xmlns:btpext="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-btp-ext-1_0.xsd"

 xmlns:cppa=http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd

 xmlns:btp="urn:oasis:names:tc:BTP:1.0:core"

 xmlns="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="qualified" version="1_0">

 <import

 namespace="http://www.w3.org/1999/xlink"

 schemaLocation="http://www.oasis-open.org/committees/ebxml-msg/schema/xlink.xsd"/>

 <import

 namespace="http://www.w3.org/XML/1998/namespace"

 schemaLocation="http://www.w3.org/2001/03/xml.xsd"/>

 <!— BTP Extension element definition -->

 <element name="TransactionManagement_BTP_CPP_Ext" type="cppa:cppa-extension-type" substitutionGroup="cppa:cppa-extension">

 <complexType>

 <sequence>

 <element ref="btpext:BTP_Version" maxOccurs="unbounded"/>

 <element ref="btpext:Standard_Bindings" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="btpext:Non_Standarised_Bindings" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="btpext:Transaction_Time_Limit_Range" minOccurs="0"/>

 <element ref="btpext:Inferior_Timeout_Range" minOccurs="0"/>

 <element ref="btpext:Min_Inferior_Timeout_Range" minOccurs="0"/>

 <element ref="btpext:Actor-Role" maxOccurs="unbounded"/>

 <element ref="btpext:Factory_default_address" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="btpext:Message_Timeout_Range" minOccurs="0"/>

 <element ref="btpext:Standard_Qualifiers_supported" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="btpext:Other_qualifiers_supported" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="btpext:Recovery_Capable"/>

 <element ref="cppa:Comment" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute ref="btpext:BTP_CPPA_ext_version" use="required"/>

 </complexType>

 </element>

 <element name="TransactionManagement_BTP_CPA_Ext" type="cppa:cppa-extension-type" substitutionGroup="cppa:cppa-extension">

 <complexType>

 <sequence>

 <!— Parameters common to both parties -->

 <element ref="btpext:BTP_Version"/>

 <choice>

 <element ref="btpext:Standard_Bindings"/>

 <element ref="btpext:Non_Standarised_Bindings"/>

 </choice>

 <element ref="btpext:Transaction_Time_Limit_Range" minOccurs="0"/>

 <element ref="btpext:Inferior_Timeout_Range" minOccurs="0"/>

 <element ref="btpext:Min_Inferior_Timeout_Range" minOccurs="0"/>

 <!— Parameters for Party A -->

 <element name="PartyA_Properties">

 <sequence>

 <element ref="btpext:Actor-Role"/>

 <element ref="btpext:Message_Timeout_Range" minOccurs="0"/>

 <element ref="btpext:Standard_Qualifiers_supported" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="btpext:Other_qualifiers_supported" minOccurs="0" " maxOccurs="unbounded"/>

 <element ref="btpext:Recovery_Capable"/>

 </sequence>

 </element>

 <!— Parameters for Party B -->

 <element name="PartyB_Properties">

 <sequence>

 <element ref="btpext:Actor-Role"/>

 <element ref="btpext:Message_Timeout_Range" minOccurs="0"/>

 <element ref="btpext:Standard_Qualifiers_supported" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="btpext:Other_qualifiers_supported" minOccurs="0" " maxOccurs="unbounded"/>

 <element ref="btpext:Recovery_Capable"/>

 </sequence>

 </element>

 <!— Common comment for the BTP CPA extension -->

 <element ref="cppa:Comment" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute ref="btpext:BTP_CPPA_ext_version" use="required"/>

 </complexType>

 </element>

 <!— BTP Extension element attributes -->

 <attribute name="BTP_CPPA_ext_version" type="btpext:non-empty-string"/>

 <!— Element definitions -->

 <element name="BTP_version" type="btpext:non-empty-string"/>

 <element name="Actor-Role">

 <simpleType>

 <restriction base="string">

 <enumeration value="Composer/Superior"/>

 <enumeration value="Composer/Decider"/>

 <enumeration value="Coordinator/Superior"/>

 <enumeration value="Coordinator/Decider"/>

 <enumeration value="Participant/Inferior+Enroller"/>

 <enumeration value="Sub-Composer/Superior"/>

 <enumeration value="Sub-Composer/Inferior"/>

 <enumeration value="Sub-Coordinator/Superior"/>

 <enumeration value="Sub-Coordinator/Inferior"/>

 <enumeration value="Initator+Terminator"/>

 <enumeration value="Factory"/>

 </restriction>

 </simpleType>

 </element>

<element name="Factory_default_address" type="btp:address"/>

<element name="Standard_Bindings">

 <simpleType>

 <restriction base="string">

 <enumeration value="XML_SOAP1_1_HTTP1_1"/>

 <enumeration value="XML_SOAP1_1_Attach_HTTP1_1"/>

 </restriction>

 </simpleType>

</element>

<element name="Non_Standarised_Bindings" type="btpext:non-empty-string"/>

 <element name="Transaction_Time_Limit_Range" type="Time_Range">

 <element name="Inferior_Timeout_Range" type="Time_Range"/>

 <element name="Min_Inferior_Timeout_Range" type="Time_Range"/>

 <element name="Message_Timeout_Range" type="Time_Range"/>

 <element name="Min_Time_Limit" type="nonNegativeInteger"/>
 <!— Time expressed in integer seconds -->

 <element name="Max_Time_Limit" type="nonNegativeInteger"/>

 <!— Time expressed in integer seconds -->

<element name="Standard_Qualifiers_supported">
 <simpleType>
 <restriction base="string">
 <enumeration value="Transaction_Time_Limit"/>
 <enumeration value="Inferior_Timeout"/>
 <enumeration value="Minium_Inferior_Timeout"/>
 <enumeration value="Inferior_Name"/>
 </restriction>
 </simpleType>
</element>
 <element name="Other_qualifiers_supported" type="btp:qualifiers"/>

 <element name="Recovery_Capable" type="boolean"/>

 <!— Complex Type definitions -->

 <complexType name="Time_Range">

 <sequence>

 <element ref="Min_Time_Limit">

 <element ref="Max_Time_Limit">

 <!— Time expressed in integer seconds -->

 </sequence>

 </complexType>

 <!— Common Simple Type definitions -->

 <simpleType name="non-empty-string">

 <restriction base="string">

 <minLength value="1"/>

 </restriction>

 </simpleType>

</schema>

Appendix E CPA Composition (Non-Normative)

For techniques for composing a CPA please refer to the main CPP/CPA specification [ebCPPA] and the CPA Negotiation [ebCPPANeg] specification.
Appendix F Glossary of Terms

General terms applicable to CPPs and CPAs are to be found in the base specification [ebCPPA]. This appendix list those terms specific to this extension specification.

	Term
	Definition

	
	

	
	

	
	

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED Word.Picture.8 ���

87
Transaction Management Extension -
Page 63 of 102
Collaboration-Protocol Profile and Agreement Specification

Copyright © OASIS, 2002. All Rights Reserved

[image: image11.wmf]Figure 1: Structure of CPP & Business Process Specification in

an

ebXML

Registry

Repository

Business

Collaboration

<PartyInfo PartyId=“N01”>

 <

ProcessSpecification xlink

:href=“http://

<

PartyInfo

 PartyId=“N02”>

 <

ProcessSpecification xlink

:href=“http://

CPP(A)

Process Specification(A1)

Process Specification(A2)

Business

Collaboration

[image: image12.wmf]Figure 3: Overview of

Collaboration-Protocol Agreements

 (

CPA

)

CPA

 ID

Party’s

 information

-

 Party

 A

-

Party

 B

Transport Protocol

Transport Security

DocExchange

 Protocol

Link to Process-

Specification Doc.

Retry

-etc.

CPP

For

Party

 A

CPP

For

Party

 B

CPA

Agreed

CPA

Agreed

CPA

1

negotiate

2

negotiate

3

Agree-

ment

 on

CPA

 has

arrived.

3

Agree-

ment

 on

CPA

 has

arrived.

4 Start Business activities with each other

[image: image13.wmf]Delivery Channel

DC1

Transport

T1

Doc.

Exch

.

X1

Delivery Channel

DC2

Transport

T2

Doc.

Exch

.

X2

Delivery Channel

DC3

Transport

T2

Doc.

Exch

.

X1

Figure 5: Three Delivery Channels

[image: image14.wmf]Figure 2: Overview of Collaboration-Protocol Profiles (CPP)

What

Business

capabilities

it can perform

when conducting a

Business

Collaboration

 with

other parties

Party

 A

Party’s

 information

-

Party

 name

- contact info

Transport Protocol

Transport Security Protocol

Messaging Protocol

Link to Process-

Specification document

Time out/Retry

-etc.

CPP

Describe

Build

[image: image15.wmf]Figure 4: Overview of Working Architecture of CPP/CPA with

ebXML

 Registry

Registry

 Party

 B

(Buyer,Server)

 Party

 A

(Seller,Server)

CPP(A)

CPP

(B)

CPP

(X)

CPP

(Y)

CPP

(Z)

CPP

(A)

CPA

(A,B)

CPA

(A,B)

(Document)

(Exe. Code)

CPA

(A,B)

CPA

(A,B)

(Document)

(Exe. Code)

1. Any

Party

 may register its

CPPs

to an

ebXML

 Registry.

2.

Party

 B discovers trading partner

A (Seller) by searching in the

Registry and downloads

CPP

(A) to

Party

B’s server.

3.

Party

 B creates

CPA

(A,B) and

sends

CPA

(A,B) to

Party

 A.

4.

Parties

 A and B negotiate and

store identical copies of the

completed

CPA

 as a document in

both servers. This process is done

manually or automatically.

5.

Parties

 A and B configure their

run-time systems with the

information in the

CPA

.

6.

Parties

A and B

do business under

the new

CPA.

2.

6.

5.

5.

3.

4.

1.

1.

[image: image16.wmf]

_1049141757.ppt

Figure 2: Overview of Collaboration-Protocol Profiles (CPP)

What Business capabilities

it can perform

when conducting a Business Collaboration with other parties

Party A

Party’s information

- Party name

- contact info

Transport Protocol

Transport Security Protocol

Messaging Protocol

Link to Process- Specification document

Time out/Retry

-etc.

CPP

Describe

Build

_1050907418.ppt

Figure 4: Overview of Working Architecture of CPP/CPA with ebXML Registry

Registry

 Party B

(Buyer,Server)

 Party A

(Seller,Server)

CPP(A)

CPP(B)

CPP(X)

CPP(Y)

CPP(Z)

CPP(A)

CPA(A,B)

CPA(A,B)

(Document)

(Exe. Code)

CPA(A,B)

CPA(A,B)

(Document)

(Exe. Code)

1. Any Party may register its CPPs to an ebXML Registry.

2. Party B discovers trading partner A (Seller) by searching in the Registry and downloads CPP(A) to Party B’s server.

3. Party B creates CPA(A,B) and sends CPA(A,B) to Party A.

4. Parties A and B negotiate and store identical copies of the completed CPA as a document in both servers. This process is done manually or automatically.

5. Parties A and B configure their run-time systems with the information in the CPA.

6. Parties A and B do business under the new CPA.

2.

6.

5.

5.

3.

4.

1.

1.

_1080652599.doc
[image: image1.png]

_1049203152.ppt

Figure 1: Structure of CPP & Business Process Specification in an ebXML Registry

Repository

Business Collaboration

<PartyInfo PartyId=“N01”>

 <ProcessSpecification xlink:href=“http://

<PartyInfo PartyId=“N02”>

 <ProcessSpecification xlink:href=“http://

CPP(A)

Process Specification(A1)

Process Specification(A2)

Business Collaboration

_1047740132.ppt

Figure 3: Overview of Collaboration-Protocol Agreements (CPA)

CPA ID

Party’s information

- Party A

- Party B

Transport Protocol

Transport Security DocExchange Protocol

Link to Process- Specification Doc.

Retry

-etc.

CPP

For

Party A

CPP

For

Party B

CPA

Agreed

CPA

Agreed

CPA

1

negotiate

2

negotiate

3

Agree-ment on CPA has arrived.

3

Agree-ment on CPA has arrived.

4 Start Business activities with each other

_1046370057.ppt

Delivery Channel

DC1

Delivery Channel

DC2

Delivery Channel

DC3

Figure 5: Three Delivery Channels

Transport

T1

Doc.Exch.

X1

Transport

T2

Doc.Exch.

X2

Transport

T2

Doc.Exch.

X1

