[image: image15.jpg]
OASIS ebXML IIC Technical Committee

March 14, 2003

ebXML Messaging (2.0) Basic Interoperability Profile Test Suite

Version 0.9

OASIS ebXML Implementation, Interoperability and Conformance Technical Committee

March 14, 2003

	4Status of this Document

4ebXML Participants

5Introduction

51
Summary of Contents of this Document

51.1.1
Document Conventions

51.1.2
Audience

61.1.3
Caveats and Assumptions

61.1.4
Related Documents

61.2
Objectives and Methodology

61.2.1
Interoperability Profiles

771.2.2
A Basic Interoperability Profile

71.2.3
Related Initiatives and Contributing Parties

81.3
Concept of Operation

81.3.1
Driving the Tests

81.3.2
Interoperability vs. Conformance

91.3.3
Asymmetric Testing

91.3.4
Application Contract

10101.4
Minimal Requirements for Conformance to this Specification

102
Harness for MS Interoperability Testing

102.1
Architecture

13132.2
The Test Service and its Actions

13132.2.1
Test Service Actions

13133
Test Cases for MS Basic Interoperability Profile

14143.1
The Basic Interoperability Profile

16153.2
MS-BIP Test Cases Specification

16153.2.1
Test Case 1.1: No payload basic exchange

17163.2.2
Test Case 1.2: Basic exchange with one payload

19173.2.3
Test Case 1.3: Basic exchange with three payloads

20183.2.4
Test Case 1.4: Basic exchange with Error message

21193.2.5
Test Case 1.5: Simple Signed Exchange Using Certificate

22203.2.6
Test Case 1.6: Synchronous Basic Exchange with one payload

23213.2.7
Test Case 1.7: Acknowledgment exchange: Unsigned Data, Unsigned Ack

25233.2.8
Test Case 1.8: Acknowledgment exchange: Signed Data, Signed Ack

26243.2.9
Test Case 1.9: Synchronous Unsigned Acknowledgment exchange

28263.3
The two Basic Interoperability Profiles Variants and Test Suites

28263.3.1
The HTTP Basic Interoperability Profile

28263.3.2
The SMTP Basic Interoperability Profile

28264
Details of Test Material

29274.1
Configuration of the Test Harness and MSH Implementation

29274.1.1
MSH Config

31274.1.2
CPA Data

36304.1.3
Default Message Headers

39334.1.4
Message Payloads

40344.2
BIP Test Suite Script

53465
Appendix A – Implementations of the Test Harness

53465.1
The “Point-to-point” Test Harness Implementation:

53465.2
The “Hub Driver” Test Harness Implementation:

54476
Appendix B – Test Suite XML Script

5548References

5548Non-Normative References

5649Contact Information

5649Acknowledgments

5649The OASIS ebXML-MS Technical Committee would like to thank …

5649Disclaimer

5649Copyright Statement

5649Intellectual Property Rights Statement

Status of this Document

This document specifies ebXML interoperability testing specification for the eBusiness community. Distribution of this document is limited to OASIS ebXML Technical Committee (TC) members only.

The document formatting is based on the Internet Society’s Standard RFC format converted to Microsoft Word 2000 format.

Note: Implementers of this specification should consult the OASIS ebXML Implementation, Interoperability and Conformance Technical Committee (ebXML IIC TC) web site for current status and revisions to the specification
(http://www.oasis-open.org/committees/ebxml-iic/).

This version

V1.0
This specification addresses conformance of the MS specification in:

V2.0 – http://www.oasis-open.org/committees/ebxml-msg/documents/ebMS_v2_0.pdf
Errata to this version

None

Previous version

None
ebXML Participants

The authors wish to acknowledge the support of the members of the OASIS ebXML IIC TC who contributed ideas, comments and text to this specification by the group’s discussion eMail list, on conference calls and during face-to-face meetings.

Co-authors and editors:

	Steve Yung
	Sun Microsystems

	Sinha Prakash
	IONA

	Matt MacKenzie
	XML Global

	Hatem El-Sebaaly
	IPNetSolutions

	Monica Martin
	DrakeCertivo

	Jacques Durand
	Fujitsu Software

	Michael Kass
	NIST

Contributors/reviewers:

	Rik Drummond
	DGI

	Eric VanLydegraf
	Kinzan

	Christopher Frank
	SEEBURGER

The OASIS ebXML IIC TC would like to especially thank the Drummond Group for their contribution to the test cases.

Introduction

1 Summary of Contents of this Document

This specification defines a test suite for ebXML Messaging basic interoperability. The testing procedure design and naming conventions follow the format specified in the Standard for Software Test Documentation IEEE Std 829-1998.

This specification is organized around the following topics:

· Interoperability testing architecture

· Test cases for basic interoperability

· Test data materials

1.1.1 Document Conventions

Terms in Italics are defined in the ebXML Glossary of Terms in the TestFramework specification [ebXMLTestFramework]. Terms listed in Bold Italics represent the element and/or attribute content. Terms listed in Courier font relate to test data. Notes are listed in Times New Roman font and are informative (non-normative). Attribute names begin with lowercase. Element names begin with Uppercase.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY and OPTIONAL, when they appear in this document, are to be interpreted as described in [RFC2119] as quoted here:

· MUST: This word, or the terms "REQUIRED" or "SHALL", means that the definition is an absolute requirement of the specification.

· MUST NOT: This phrase, or the phrase "SHALL NOT", means that the definition is an absolute prohibition of the specification.

· SHOULD: This word, or the adjective "RECOMMENDED", means that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications MUST be understood and carefully weighed before choosing a different course.

· SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that there may exist valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this label.

· MAY: This word, or the adjective "OPTIONAL", mean that an item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because the vendor feels that it enhances the product while another vendor may omit the same item. An implementation which does not include a particular option MUST be prepared to interoperate with another implementation which does include the option, though perhaps with reduced functionality. In the same vein an implementation which does include a particular option MUST be prepared to interoperate with another implementation which does not include the option (except, of course, for the feature the option provides).

1.1.2 Audience

The target audience for this specification is:

· The community of software developers who implement and/or deploy the ebXML Messaging Service (ebMS),

· The testing or verification authority, which will implement and deploy conformance or interoperability testing for ebXML Messaging implementations.

1.1.3 Caveats and Assumptions

It is assumed the reader has an understanding of communications protocols, MIME, XML, SOAP, SOAP Messages with Attachments and security technologies.

1.1.4 Related Documents

The following set of related specifications are developed independent of this specification as part of the ebXML initiative, they can be found on the OASIS web site (http://www.oasis-open.org).

· ebXML Collaboration Protocol Profile and Agreement Specification [ebCPP] – CPP defines one business partner's technical capabilities to engage in electronic business collaborations with other partners by exchanging electronic messages. A CPA documents the technical agreement between two (or more) partners to engage in electronic business collaboration. The MS Test Requirements and Test Cases will refer to CPA documents or data as part of their material, or context of verification.

· ebXML Messaging Service Specification [ebMS] – defines the messaging protocol and service for ebXML, which provide a secure and reliable method for exchanging electronic business transactions using the Internet.

· ebXML Test Framework [ebTestFramework]– describes the test architecture, procedures and material that are used to implement the MS Interoperability Test Suite, as well as the test harness for this suite.

· ebXML MS Conformance Test Suite [ebMSConfTestSuite]– describes the Conformance test suite and material for Messaging Services.

1.2 Objectives and Methodology

1.2.1 Interoperability Profiles

It is in impractical to test all combinations of messaging features and configuration features for interoperability between two message handler implementations: there is generally a large number of combinations – and possible failure scenarios. As two or more message handlers are involved, these combinations are even greater than for conformance testing, which typically focuses on a single message handler.

When testing interoperability, a small set of significant test cases must be selected. One way to do this selection is to observe the interoperability requirements of a user community, and to address them. Because of the “combinatorial” problem of features and scenarios, and also because it involves several business partners, interoperability testing usually must be restricted to reflect the particular needs of a business community. This is in contrast with conformance testing, which mostly focuses on verifying adherence to the standard.

Interoperability tests should then focus on the kind of usage that is most meaningful for a business community. These forms – or modes - of interoperability are called profiles. An interoperability profile should be verified by an appropriate test suite.

1.2.2 A Basic Interoperability Profile

This document specifies the Basic Interoperability Profile (BIP) for ebXML messaging. The primary objective of this profile is to define the baseline of business interoperability (it exercises basic ebXML MS core services, secure and reliable messaging). This profile may not be sufficient to address all the business requirements of a user community: Specific requirements – for example, using very large messages, or security features such as encryption - will be addressed by additional, more specific profiles that expand on basic functions or combinations of functions relevant to user communities.

Users or industry groups will design these additional interoperability profiles, if these are not already specified in the test suites produced by the ebXML IIC Technical Committee. In order to be conforming to the IIC testing guidelines, any new messaging interoperability profile definition MUST:

· Include the Basic Interoperability Profile (i.e. extend it)

· Be described using the test material (test case scripting, test architecture) specified in the ebXML IIC Test Framework.

The number of requirements test requirements
for the Messaging BIP is relatively small (as compare to the number of test requirementsrequirements for the conformance test suite.) This is intentional, to enable interoperability and lower the cost of entry of testing. The reason for keeping an interoperability test suite small are: theinteroperability test suite small are:
· Interoperability testing requires more efforts in logistics than conformance testing, as coordination between parties is required.

· Interoperability may be affected by several factors such as operating environment, third-party software or utilities, testing should be done under normal operating conditions. This creates constraints and disturbance for business.

1.2.3 Related Initiatives and Contributing Parties

In accordance with the notion that interoperability testing should be aligned with business requirements –more than conformance testing, the IIC TC has consulted some user communities in order to establish a minimal, yet universal set of messaging interoperability requirements.

· In US, UCC (Uniform Code Council) and DGI (Drummond Group, Inc.) have been conducting ebXML interoperability test rounds between several ebXML vendors. The requirements of UCC-DGI tests have been studied, and after investigation, a subset of test requirements defined by UCC-DGI have been used as an input for the Basic Interoperability profile test requirements.

· In Asia, ECOM (E-Commerce consortium of major Asian IT vendors and government agencies) has also organized ebXML interoperability testing rounds. The requirements of this community of users have also proved valuable and have been taken into account for the Basic Interoperability profile.

· In Europe, eBES is a forum for IT vendors and users, operating under CEN/ISSS, and focusing on business-to-business and interoperability testing. The group is also organizing ebXML testing, and has provided useful feedback to IIC, in particular about their implementation plan and test harness requirements.

The Basic Interoperability Profile (BIP) is the result of this consulting, and is addressing a common set of interoperability requirements. This common set may not cover every interoperability feature that each community requires, but it addresses the most essential ones, and is reasonably complete.
We noticed that the test plans in m aboveindustry initiatives included both [MIKE2] – I’m following Serm’s lead, and using the term “test requirements” in lieu of “test cases” interoperability tests and (some) conformance tests. The IIC approach is to clearly separate test suites for conformance, and test suites for interoperability. One reason the BIP has a smaller number of test requirements is that only the requirements relevant to interoperability have been kept. Other requirements relevant to conformance have been moved to the MS conformance test requirements. By doing so, the cost of operating an interoperability test suite is reduced, as conformance should normally be verified prior to interoperability, by a testing procedure that does not require coordination with other parties.
1.3 Concept of Operation

1.3.1 Driving the Tests

The MS interoperability test harness described in this document is based on the ebXML Test Framework [ebTestFramework], described in another document. This test harness is assumed for testing the Basic Interoperability Profile, and has been designed to achieve the following objectives:

· The MS Interoperability Test Suite can be run entirely and validated from one component of the framework, called the Test Driver. This means that all test outputs will be generated - and test conditions verified - by the Test Driver, even if the test harness involves several – possibly remote – components of the framework. Significant events occurring in such components are communicated backto the Test Driver.

· The verification of each Test Requirement can be done at run-time by the Test Driver itself, as soon as the test case is completed. The report of the verification can be generated immediately as the Test Suite has been completed..

1.3.2 Interoperability vs. Conformance

Interoperability in no way guarantees conformance (conformance being defined as the adherence of a software implementation to a specification). Two implementations can be made to interoperate well with each other without necessarily adhering to the specification. It is expected that some level of conformance testing be done prior to interoperability testing. For example, the interoperability test does not verify or diagnose the following:<serm: should we state specifically here that BIP does not verify any negative test or is it to specific? I also think that an interoperability test suite that is an extension from conformance test suite should guarantee conformance, i.e., if test requirements in the conformance profile are subset of test requirements in the interoperability profile.>
[MIKE] – Test requiremenets in a conformance profile would not be a “superset” of interop test requirements, since they are really quite different in their origin (conformance is spec derived, interop is not).

I’ve never seen conformance and interoperability requirements or tests merged as one, or treated as the same thing.
<JD2> Well, you have a point, but I would not make this affect the design of the test suite itself: rather, I’d say that :

in order to claim to be interoperable according to the BIP(<transport>, <canonic-algo>, <sig-algo>),
a pair of MSH implementations:
(1) MUST pass the [level 1 of] MS Conformance tests, as defined in [ebMSConformance],
(2) MUST pass the test suite specified here for BIP(<transport>, <canonic-algo>, <sig-algo>).
So I would still keep the test suites totally disjoint. Also, who knows how many profiles we’ll have in the conformance test suite: we don’t want to surface these conformance profiles in the interop test suite itself.

So the bottom line, is that we still need a small section that defines what it takes to claim interoperability to the BIP (i.e. what would be the criteria for a certification authority), and it could say just that above.
· Invalid SOAP header and message

· Invalid ebXML information in SOAP header and message

· CPA Error and Resolution

· Unrecognized service

· Duplicate messages

· Simple error handling

All the tests above are defined in the ebXML Messaging conformance test suite, and are to be passed prior to undergoing interoperability tests. If only from a logistic perspective, it is preferable to do as many verifications as possible during conformance testing, which typically involves a single message service handler (MSH), and is much easier to set-up than interoperability testing.

In other words, any MSH behavior that can be verified in a test harness that includes a single MSH (plus a test driver simulating another MSH) is relevant to conformance.
In other words, onlyMSH behavior s, in which for robustness purpose necessitate exchange sbetween two MSH’s for verification , should be testedin interoperabilitymode. Because organizing interoperability tests (administration and logistics) is usually costly, only those tests that are essential to interoperability are considered here.

1.3.3 Interoperability and Testing

Having passed a round of interoperability testing only ensures interoperability with other software implementations that have participated in that specific round of testing. There are two major reasons for this:

· Specific implementation options defined by a testing body or the participants may affect interoperability. For example, there are different ways to implement digital signatures, this can cause a MSH to reject a message as invalid. Where possible, this documents makes recommendations on these implementation options.

· Interoperability is not transferable. In other words, if MSH A interoperates with MSH B, and MSH B interoperates with MSH C, this does not guarantee that MSH A interoperates with MSH C (although there is a high probability that it will).
An implementation that has passed an interoperability testing only ensures its interoperation with other software implementations that have participated in that specific round of testing. There are two major reasons for this:

· Specific implementation options defined by a testing body or the participants may affect interoperability. For example, there are different ways to implement digital signatures causing an MSH to reject a message as invalid. Where possible, this documents makes recommendations on these implementation options.

· Interoperability is not a transitive property. In other words, if MSH A interoperates with MSH B, and MSH B interoperates with MSH C, this does not guarantee that MSH A interoperates with MSH C (although there is a high probability that it will).
1.3.4 Asymmetric Testing

The basic interoperability test suite defined here, is intended to be driven from one party (or node) of the network, called the “driver party” (this is the party that communicates with the Test Driver). As it involves two parties, it is called a “binary” test suite.

The test suite is asymmetric. This means, when run between two parties A and B, the same test suite may produce different results when driven from A (driver party = A) than when driven from B (driver party = B). For example, a test case that requires a party to sign a message, and the other party to validate the signature, may succeed from A to B, and fail from B to A. This is because the test cases in this suite do not verify exactly the same capability on each side.

In order to achieve a well-rounded interoperability testing, a binary, asymmetric interoperability test suite is supposed to be run twice. At each run, a different party acts as the driver party.

1.3.5 Application Contract

The test suites described here – in their current version - are interoperability testing at the application level only, not at “wire” level. This means that the combination:

{ MSH1 + communication medium(transport) + MSH2 }

is treated as a black box. The test cases only verify that the contract Application1 – Application2 is satisfied. For example, no “sniffing” on the wire is needed in order to process these test cases, as everything related to the internal behavior of an MSH, or message conformance at transport level, is supposed to have been verified by conformance testing.

For example, when verifying that a digital signature is:

(a) well inserted by the sender, when the CPA requires so, and

(b) that the recipient is able to validate it, should not require monitoring the wire or the internal behavior of an MSH, during interoperability tests.

Testing for (a) should occurduring conformance tests, which involve monitoring the “wire” for conformance of message elements such as a well-formed signature. As for recipient validation (b), only the effect of the “Service” behavior (application contract) will be checked: i.e. the received signed message is passed to the application, and no error is generated.

The other aspect of recipient validation (b), which consists of verifying the ability of the receiver to detect bad signatures and to act appropriately, should beverified during conformance testing.
However, because there is an interoperability element in this aspect, it should also be verified in an interoperability test. In that case, the external behavior (i.e. the expected “service”) will be checked: a message will be sent signed with the wrong key. On the receiver side, the effect should be that the message is not passed to the application, and an error isgenerated.

1.4 Minimal Requirements for Conformance to this Specification

In order to be considered a conforming implementation, a<JD2> (I propose to add the following, which I think addresses Serm’s concern at the end of this section)
This test suite can be implemented with or without reliance on the ebXML Test Framework [ebTestFramework], although it is RECOMMENDED that it uses the Test Framework for implementing the test harness, and for coding and interpreting the test cases. An implementation ofthis test suite can be generally defined as a test harness that includes:

(1) Code to drive an MSH (application level), so that the message exchanges of each test case can be initiated, and driven under the conditions described in this document.

(2) Code to process messages received from an MSH (application level), according tothe semantics of each test case as described in this document.

(3) Code to decide of the test case outcome, in compliance with the test case semantics described in this document.

(4) A representation of the Message and configuration material described in this specification.

(5) An executable representation (e.g. script or code) of each test case, similar or equivalent to the one described in this document.

In order to conform to this specification, an implementation of the BIP test suite:

· MUSTexecute alltest cases with same semantics and outcome as the ebXML Test Framework would produce on the same test cases,as described in this specification (script material, message choreography) and in [ebTestFramework].
 :
· MUST support all the mandatory syntax, features and behavior (as identified by the [RFC2119] key words MUST, MUST NOT, REQUIRED, SHALL and SHALL NOT) defined in Part 1.1.1 – Document Conventions.

· MUST be able to run execute and pass all the test cases of the suite, for at least one set of parameter values, as defined in 3.2.
In order for a test implementation test to conform to the interoperability test suite described in this document and be considered interoperable, it is RECOMMENDED that it use a test harness or test-bed that is conforming to the ebXML Test Framework [ebTestFramework]. A test implementation will be conforming to this specification even if it does not implement the Test Framework, provided that the successful execution and passing of the test cases will be suite, for at least one set of parametersemantically equivalent to the interpretation of the test case scripts described in the Test Framework, and uses the specified message and configuration material.
· [MIKE] – I have questions about this “conformance clause”, and have asked Lynne Rosenthal to look at it. I am not sure how a conformance clause for an Interop or Conformance Test Suite should be worded.values, as defined in 3.2.
· [MIKE2] _ I added Lynnes’ suggestion… mainly adding the additional requirement of “passing” interop tests.. not just successful execution. ALSO, Lynne suggests removing the executable Test Suite from this specification.. as dynamic changes to test suites is common, and having to “vote” on every change to a normative Test Suite would be very time consuming.
<JD2> I propose to remove the ambiguous paragraph below, as now replaced by the updated section above:

[In order for a candidate implementation to conform to the interoperability test suite described in this document, it is RECOMMENDED to use a test harness or test-bed that is conforming to the ebXML Test Framework [ebTestFramework]. A candidate implementation will be conforming to this specification
 even if it does not implement the Test Framework, provided that the execution of the test cases will be semantically equivalent to the interpretation of the test case scripts described in the Test Framework, and uses the specified message and configuration material. <serm: I am not sure what you are trying to say in this last sentence. >]
2 Harness for MS Interoperability Testing

2.1 Architecture

This section describes how to configure the Test Framework elements for interoperability testing between two implementations of the ebXML Messaging Service specification (2.0), identified here as party A and party B.
As mentioned above, interoperability testing will be asymmetric: one party – called the driver party – will drive the test cases, the other party – called the responder – will respond to messages initiated by the driver party. Two options for the interoperability test harness are described in Appendix A. This section will focus on the “point-to-point” test harness. With this test harness, the Test Suite will be controlled from the “driver” party, and does not necessarily verify the same capabilities on both sides i.e. is asymmetric). In order to get a full interoperability test between Party A and Party B, the test suite should be repeated after both parties have swapped the (driver/responder) roles.

The components of the framework that are involved in interoperability testing are:

On the driver party:

· An instance of the Test Driver component, coupled with an instance of a Test Service. This coupling consists of: (1) the ability for the Test Driver to trigger an action of the Test Service (typically, the Initiator action), (2) the ability for the Test Driver to be notified of actions triggered in the Test Service by received messages. In this configuration, the Test Driver is said to be used in “service” mode (see [ebTestFramework]). The driver party will process and initiate all test cases from the Test Driver.

· An instance of the Test Service component, which will directly interact with the driver party’s MSH Service Interface. Note that the Test Driver does not need to interact directly with the MSH. In this configuration, the Test Service will operate in “reporting” mode. When installed on the same host, as suggested here, the reporting will be local: notifying the test driver of received messages is done via the “Receive” interface.
On the responder party:

· An instance of the Test Service component (same as in the driver party), which will support test actions invoked by messages received by the responder MSH. This Test Service instance will operate in “loop” mode.
Figure 1 illustrates a point-to-point test harness for MS interoperability testing.

[image: image1.png]
The typical Interoperability test case procedure will consists of a sequence of test steps. The Test Driver will control each of these steps. These steps willbe:

· Sending messages – the content of which is specified in the test case – to some action of the responder’s Test Service.

· Receiving messages from the responder’s Test Service.

· Analyzing the content of received messages, possibly in correlation with other message data, received or sent during the same test case, in order to validate the requirement of the test case.

· Reporting on the test case outcome.

· Optionally (and prior to executing a test case), configure the MSH(s) for the message conversation(s) that will be generated by the Test Case(s), with CPA data. Normally, the installation of CPAs to be used for a test suite is supposed to be done prior to executing the test suite. However, the Configurator action of a Test Service may be invoked – either locally by the Test Driver on driver party, or remotely by a message , with new CPA data. The expected effect is the dynamic creation and installation of a new CPA, on the MSH associated with this Test Service.

Appendix A illustrates how this test harness can be implemented.

2.2 The Test Service and its Actions

The Test Service name is: urn:ebXML:iic:test

A Test Case is described as a sequence of Test Steps. These Test Steps will consist of atomic operations executed by the components of the test Framework, e.g. sending a message, verifying a condition on a received message, etc. Most operations about messages are supported by the Test Service component, described in the Test Framework specification.

<JD2> we can remove this sentence: this is deprecated terminology in test framework:

2.2.1 Test Service Actions

The standard test actions are more completely described in the ebXML Test Framework specification. They are:

· Mute action

· Dummy action

· Reflector action

· Initiator action

· PayloadVerify action

· ErrorAppNotify action
· ErrorURLNotify action
· Configurator action
3 The MS Basic Interoperability Profile Test Suite
3.1 Overview

In a nutshell, the MS-BIP is verifying:

· Various types of messages are exchanged: no payloads, multiple payloads, different types of payloads.

· Asynchronous responses,as well as Synchronous if the transport protocol allows for this, e.g. HTTP.

· All signals normally expected from an MSH (Acks and Errors) are tested for interoperability, i.e. making sure the other MSH will “understand” them properly. (the “conformance” semantics of these signals has already been tested during conformance testing, e.g. they manifest as well-formed envelope elements, or they are generated when they should.)

When digital signatures are used, they must be properly understood and validated on each side, especially with various combinations and options that may affect interoperability (about key info, about signature of signals such Ack.)verifies:

· Various types of messages exchanged: no payloads, multiple payloads, different types of payloads.

· Asynchronous responses,as well as Synchronous if the transport protocol allows for this, e.g. HTTP.

· All signals normally expected from an MSH (Acks and Errors). This ensures that other MSH will “understand” them properly. (the “conformance” semantics of these signals has already been tested during conformance testing, e.g. they manifest as well-formed envelope elements, or they are generated when they should.)

When digital signatures are used, they must be properly understood and validated on each side, especially with various combinations and options that may affect interoperability (about key info, about signature of signals such Ack.)
3.2 Parameters of the Test Suite

The ebXML MS basic interoperability profile (ebXML-MS-BIP) provides users with options relevant to test execution. When testing for such a profile, these options must be decided. A primary set of options must be selected when testing such a profile. As an example, These options are:

The transport protocol. The two RE
· COMMENDED values are: HTTP/1.1 and SMTP.

·
· The canonizationmethod (for digital signatures).The recommended value is: “http://www.w3.org/TR/2001/REC-xml-c14n-20010315”
· Thesignature algorithm. The recommended value is: "http://www.w3.org/2000/09/xmldsig#dsa-sha1"
The recommended values in the table below above only reflect the most popular reflect the most common - or expected - options, or those recommended by the Messaging specification [ebMS]. The table also reflects the recommended minimum set of parameters used for test execution. This representative set includes a subset of options that apply to ebMS implementation execution and the use of a Collaboration Protocol Agreement (CPA) between the partners or endpoints. In addition, some parameters fall outside the scope of a CPA, but are nevertheless critical messaging features that must be set to correctly run a test or a test suite. The table contains a column with an XPath reference to the location within a CPA that a parameter refers (if it is defined in a CPA). This basic interoperability profile assumes symmetric configurations between partners, and therefore a symmetrically configured CPA. As a non-normative reference, an example of a CPA is provided at:

Placeholder for reference
In addition to functionally defining how an MSH will be configured for a test execution, this table content represents a “snapshot” of the MSH configuration at the time of test suite execution. Therefore, certain parameters in particular, such as Transport Protocol and Signature Algorithm provide a unique “context” and meaning for test configuration and test results. This is important for interoperability reasons, as these parameters define an interoperability space: if a set U1 of users passes the MS-BIP with a combination of parameter values, and another set U2 of users passes the MS-BIP with a different combination of parameter values, it is highly likely that users from U1 and U2 will not be able to interoperate – unless they undergo MS-BIP again with a common set of parameters.
[MIKE] – Reworded to above

BIP Testing Parameter Table
	Name
	Commonly Used Values
	Equivalent CPA field(s) (using XPath notation)

	Transport Protocol
	HTTP 1.1 | SMTP
	CPA/PartyInfo/Transport//TransportProtocol

	Canonicalization Algorithm
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	N/A – explicitly defined in individual message declaration

	Signature Algorithm
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	 CPA/PartyInfo/DocExchange//SenderNonRepudiation/SignatureAlgorithm

	Signed Message
	true|false
	CPA/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isNonRepudiationRequired

	Signed Acknowledgment
	true|false
	CPA/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isNonRepudiationReceiptRequired

	Retries
	An integer value
	CPA/PartyInfo/DocExchange //ReliableMessaging/Retries

	RetryInterval
	PT30S (a typical value)
	CPA/PartyInfo/DocExchange// ReliableMessaging/RetryInterval

	AckRequested
	always | never | perMessage
	CPA/PartyInfo/DeliveryChannel/AckRequested

	PersistDuration

	P10D (a typical value)

	CPA/PartyInfo/DocExchange// ReliableMessaging/ReliableMessaging/PersistDuration

	duplicateElimination
	always | never | perMessage
	CPA/PartyInfo/DeliveryChannel/MessagingCharacteristics/@duplicateElimination

	MessageOrder Semantics
	Guaranteed|NotGuaranteed
	CPA/PartyInfo/DocExchange// ReliableMessaging/MessageOrderSemantics

	HTTP Timeouts

	PT5M (a typical value)
	N/A – explicitly defined in Test Suite ConfigurationGroup XML

	SyncReply (used to globally define all messages are sent witih a SyncReply element)
	true|false
	N/A – explicitly defined in Test Suite ConfigurationGroup XML

	syncReplyMode

	mshSignalsOnly | responseOnly | signalsAndResponse | signalsOnly | none
	CPA/PartyInfo/DeliveryChannel/syncReplyMode

[MIKE] – Removed Confidentiality and Authentication parameters, since they were flagged as “not needed for BIP testing” in Jacques March 14 Table distribution

[MIKE] – The above sounds like a Test Framework requirement. not a Test Suite requirement. Such a requirement will force a re-evaluation of the current Test Suite schema for possible inclusion of metadata describing each test so that a Test Driver could “filter” tests to determine if it can run them. I suggest removing this from the spec, and moving it in the Test Framework Specification, if we want to evaluate tests before execution (using Metadata “tags”) to determine if they are should be run based upon current interoperability parameters. Comments?
[MIKE2] – Already reworded the paragraph below

·
·

·
·
·
·
3.3 MS-BIP Test Cases Specification

The following test cases are specified using test material described in the ebXML Test Framework specification. The test data used by these test cases (MSH settings, generated message headers, payloads, configuration) are described in section 4.
Some of the MSH settings can be set using a Collaboration Protocol Agreement (CPA). While this document does not provide specific CPA values, it does provide information on what these values should be. It is recommended that a full CPA be used to configure the MSH.

Each message in the test cases includes a Conversation ID, it is recommended that each test case have a unique Conversation ID (i.e. a new conversation be started for each test case execution). This will help test reporting, and also avoid possible run-time problems if messages of a test case get intertwined with messages of another test case, as message correlation within a test case is done based on the conversation ID.
3.3.1 Test Case 1.1: No payload basic exchange

Rationale:

The test case verifies that an incoming message is well received and triggers the correct action on Responder side. There is no check of the integrity of the received message, except its ability to trigger the Dummy action of the responder Test Service. A predefined response message (no payload) is generated by the Test Service of responder. There is no check on this message, except its ability to trigger the Mute action of the driver Test Service, which will record the reception.

Test Data Material:

·
· MSH-settings: basic

· MSH-configuration: mshc_1

· Message Payloads: none

· Message Header default: mhdr_0

·
Test Steps:

1. Test Driver (driver party) sends a sample message M1 to the Dummy action of the Test Service of the responder party. This is done by invoking the Initiator action of the driver party Test Service.

2. Test Driver (driver party) receives within time limit a response message M2 via the Mute action of its local Test Service (<JD2> M2 is generated by the Dummy action of Responder). Correlation: (M2.RefToMessageID = M1.MessageId) and (same conversation ID).

3. Verification. Test Case succeeds if: (Step 2 successful within time limit)

[image: image2.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify

Verification condition:

•

M2 received before timeout, correlates with M1

•

No error message generated

Step 1

Step 2

Step 3

M1

(no payload)

M2

Fig 2. Diagram for Test Case 1.1

3.3.2 Test Case 1.2: Basic exchange with one payload

Rationale:

The test case verifies that an incoming message is well received, triggers the right action on Responder side, and passes its payload to application (Reflector
action of Test Service). A response message is generated by the Test Service of responder (Reflector action), sending back the same message - except for expected changes in header - with same payload. The received message triggers the Mute action of the driver Test Service, which will record the reception. The received payload is compared with the payload initially sent.

Test Data Material:

·
· MSH-settings: basic
· MSH-configuration: mshc_1

· Message Payloads: payload_1

· Message Header default: mhdr_1

·
Test Steps:
1. Test Driver (driver party) sends a sample message M1 to the Reflector action of the Test Service of the responder party.

2. Test Driver (driver party) receives within time limit a response message M2 via the Mute action of its local Test Service (<JD2> M2 is generated from the Reflector action of Responder). Correlation: (M2.RefToMessageID = M1.MessageId) and (same conversation ID).

3. Verification. Test Case succeeds if: (Step 2 successful) AND (M2.payload = M1.payload)

[image: image3.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

M2 received before timeout, correlates with M1

•

same payloads in M1, M2

•

No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Fig 3. Diagram for Test Case 1.2

M2

(one payload)

3.3.3 Test Case 1.3: Basic exchange with three payloads

Rationale:

The test case verifies that an incoming message with multiple payloads of different types (two XML, one binary) is well received, triggers the correct action on Responder side, and passes its payload to the application (Reflector action of Test Service). A response message is generated by the <JD2> Reflector action of theresponderTest Service , sending back the same message - except for expected changes in the header - with same payloads. The received message triggers the Mute action of the driver Test Service, which will record the reception. The received payloads are compared with the initially sent payloads
.

Test Data Material:

·
· MSH-settings: basic

· MSH-configuration: mshc_1

· Message Header default: mhdr_3

· Message Payloads: payload_1, payload_2, payload_3

·
Test Steps:

1. Test Driver (driver party) sends a sample message M1 to the Reflector action of the Test Service of the responder party.

2. Test Driver (driver party) receives within time limit a response message M2 via the Mute action of its local Test Service (<JD2> generated from the Reflector action of the Responder). Correlation: (M2.RefToMessageID = M1.MessageId) and (same conversation ID).

3. Verification. Test Case succeeds if: (Step 2 successful) AND (M2.payload1 = M1.payload1) AND (M2.payload2 = M1.payload2) AND (M2.payload3 = M1.payload3)

[image: image4.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

M2 received before timeout, correlates with M1

•

same payloads in M1, M2

•

No error message generated

Step 1

Step 2

Step 3

Fig 4. Diagram for Test Case 1.3

M1

(three payload)

M2

(three payload)

3.3.4 Test Case 1.4: Basic exchange with Error message

Rationale:

The test case verifies that error messages are well received by the driver party. The driver party should provide its URL as ErrorURL, as mandated by the CPA “basic_A1”. The test does not cover that errors are generated with the right code: that is done by conformance tests. A “bad” message is sent to <JD2> an inexisting action of the responder Test Service. The responder MSH will send back an Error, which should be notified to the sender (driver party) via its ErrorURLNotify action, which will record the reception.

Test Data Material: <where is bad message, these materials have been used earlier and they are not bad.> (JD2: right, corrected above)
·
· MSH-settings: basic

· <serm: above says “basic_A1” ><JD2> these references to CPA sets (or tables) need be synchronized with what will be in 4.1
· MSH-configuration: mshc_1

· Message Header default: mhdr_1

· Message Payloads: payload_1

·
Test Steps:
1. Test Driver (driver party) sends a sample message M1 to the wrong action of the Test Service of the responder party. In the message header, the Service/Action fields are set to inexisting Service/Action values.

· Header modified: mhdr_1’ <here, introduce the error by modifying header Service/Action in default mhdr_1>. <JD2> “It is recommended to use the erroneous Action value: “non-existing-action”, with the correct Service value for the Test Service.”
2. Test Driver (driver party) receives within time limit an error message M2 via the ErrorURLNotify action of its local Test Service. Correlation: (M2.RefToMessageID = M1.MessageId).

3. Verification. Test Case succeeds if: (Step 2 successful)

[image: image5.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

wrong

action

ErrorURL

Notify

Action

invoked

Notify Error

Verification condition:

•

Error received before timeout

•

correlates with M1

Step 1

Step 2

Step 3

Fig 5. Diagram for Test Case 1.4

M1

(one payload)

Error

3.3.5 Test Case 1.5: Simple Signed Exchange Using Certificate

Rationale:

The test case verifies message exchange with digital signature (without key info). The key info is NOT embedded in the message, it is available on recipient side from a certificate. This case exercises the ability to resolve the key info based on the right certificate. It is not essential for the response to be signed, although the CPA setting will require so for the convenience of having similar configurations on each party (the ability to sign messages from the other party, will be tested when running the same test case from the other party, as the test suite is asymmetric, see Section 1).

Test Data Material:

·
· MSH-settings: signed
· MSH-configuration: mshc_6
· Message Payloads: payload_1

· Message Header default: mhdr_1

·
Test Steps:
1. “Initiator” on driver side sends signed message to Reflector action of recipient. The entire message is signed.

2. “Mute” action on driver side receives (unsigned) notification message from Reflector, with same payload.

3. Verification: (payloads are same) and (no error message received)

[image: image6.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

M2 received before timeout correlates with M1

•

same payloads in M1, M2

•

No error message generated

Step 1

Step 2

Step 3

Signed M1

(one payload)

Fig 6. Diagram for Test Case 1.5

M2

(one payload)

Unsign

Using

Cert.

3.3.6 Test Case 1.6: Synchronous Basic Exchange with one payload

Rationale:

This is the synchronized version of Test Case 1.2 (SyncReply element is present in sent message). This test case is for synchronous transport only (test suite parameter: < transport-protocol >).
Test Data Material:

·
· MSH-settings: syncresponse

· MSH-configuration: mshc_4
· Message Payloads: payload_1

· Message Header default: mhdr_1

·
Test Steps:

1. Test Driver (driver party) sends a sample message M1 to the Reflector action of the Test Service of the responder party.

2. Test Driver (driver party) receives within time limit a response message M2 via the Mute action of its local Test Service (from the Reflector action of Responder). Correlation: (M2.RefToMessageID = M1.MessageId) and (same conversation ID).

3. Verification. Test Case succeeds if: (Step 2 successful) AND (M2.payload = M1.payload)

[image: image7.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

M2 received before timeout, correlates with M1

•

same payloads in M1, M2

•

No error message generated

Step 1

Step 2

Step 3

Signed M1

(one payload)

Fig 7. Diagram for Test Case 1.6

M2

(one payload)

Synchronized

3.3.7 Test Case 1.7: Acknowledgment exchange: Unsigned Data, Unsigned Ack

Rationale:

Test the ability of two MSHs to exchange and understand each other’s ack signals.

Test Data Material:

·
· MSH-settings: reliable

· MSH-configuration: mshc_1

· Message Payloads: payload_1

· Message Header default: mhdr_1 (add Acknowledge element)

·
Test Steps:

1. “Initiator” on driver side sends unsigned message to Dummy action of recipient, with AckRequested element.

2. “Mute” action on driver side receives a single (unsigned) response message from Dummy. NOTE: in case Ack is not received or understood, driver MSH will resend message of step 1, and several responses from Dummy will be observed.

3. Verification: within a time period equal or greater than (Retries + 1) * RetryInterval from (step 1): (exactly ONE response message from Dummy is received in Step 2)and (no error message received)

[image: image8.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

Only one correlating M2 received before timeout

•

correlates with M1

•

No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Fig 8. Diagram for Test Case 1.7 (pass)

M2

(one payload)

Ack

Because Acknowledgements are MSH-level signals, it is not possible to observe them from the application side. However, the objective of this test is not to verify the proper generation of well-formed Ack signals: this must have previously been verified using conformance tests.

The objective of this test only consists of verifying that Acks generated by an MSH are well interpreted by the other MSH implementation. Two failure cases may be observed by the test driver
· Two or more response messages (M2), (with different message Ids), are received by the test driver, within a time period equal or greater than (Retries + 1) * RetryInterval. This means that the receiver party (Test Service, “Dummy” action) has responded several times to as many incoming messages (M1). The reason why M1 was resent several times, is that the Ack from the receiver party has either not been received, or not been understood by the driver party. This situation is illustrated in figure 9 below.
· No response (M2) is received, within the time period equal or greater than (Retries + 1) * RetryInterval. This however does not imply anything on the interoperability of Ack messages. Rather, it reveals another type of failure, e.g. the initial message (M1) has not been received by the receiver party, or (2) the response message (M2) has not been received by the driver party.

However, even if one and only one response message M2 is received by the sender, it is not possible to infer that the test case successfully demonstrated Ack interoperability, only by observing the events occurring in the test driver. The following failures will still result in a single response message to the test driver:
· The sender retry mechanism is not working properly, so no multiple invocations of the Dummy action on receiver side will occur – only the initial invocation (message M1). In that case, a single response will be observed on sender side, which is also the observed effect in case of successful verification. Therefore, the only way to detect such a failure, is to “manually” access the log of the MSH to ensure the Ack was well received by the driver party. It must be noted that this case should be considered as exceptional, since the ability to resend is supposed to have been checked by conformance testing.

· The Ack was not well received by the driver party, but in addition, the retry mechanism did not work well, so no resending occurred. Consequently, a single response M2 was received by the test driver.

In order to confirm a successful outcome of this test case, a “manual” check of the message log in the driver party MSH is required I order to reveal the presence of a received Ack.

[image: image9.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Notify M2

Verification condition (failure):

•

More than one M2 received before timeout, correlating with M1

OR: no

Ack

logged by MSH1 (manual check)

OR: error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Fig 9. Diagram for Test Case 1.7 (failure)

M2

(one payload)

Ack

M1 (resend)

Dummy

Action

invoked

Message to

Mute

action

M2

(one payload)

Mute

invoked

Mute

invoked

Notify M2

3.3.8 Test Case 1.8: Acknowledgment exchange: Signed Data, Signed Ack

Rationale:

Test the ability of two MSHs to exchange and understand each other’s signed ack signals (for non-repudiation), while the business messages are signed.

Test Data Material:
[MIKE] – This seems to indicate that nothing extraordinary is needed in CPA to support signed data and ack..just a basic CPA.. is this true? Seems that we would need our “SignedMessage” and “SignedAcknowledgment” parameters set in the MSH config…… i.e. using mshc_2.. not mshc_1
·
· MSH-settings: reliable

· MSH-configuration: mshc_2
· Message Payloads: payload_1

· Message Header default: mhdr_1 (add Acknowledge element)

·
Test Steps:

1. “Initiator” on driver side sends a signed message to Dummy action of recipient, with AckRequested element.

2. “Mute” action on driver side receives a single (unsigned) response message from Dummy. NOTE: in case Ack is not received or understood, driver MSH will resend message of step 1, and several responses from Dummy will be observed.

3. Verification: within a time period equal or greater than (Retries + 1) * RetryInterval, from (step 1): (exactly ONE response message from Dummy is received in Step 2) and (no error message received)

[image: image10.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

Only one correlating M2 received before timeout

•

correlates with M1

•

No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Fig 10. Diagram for Test Case 1.8

M2

(one payload)

Ack

3.3.9 Test Case 1.9: Synchronous Unsigned Acknowledgment exchange
Rationale:

Test the ability of two MSHs to exchange and understand each other’s ack signals, in a synchronous set-up. The CPA will have SyncReplyMode set to “signals only”, so there is not overlap with Test Case 1.7. This is a fairly common case where the HTTP connection is not kept open for business messages (for which response time may be long), but is kept open for MSH signals, for efficiency purpose. So the Ack is immediately sent back on the same connection as the message.
Notes:
· The actual ability of <JD2> eachpartyto send Acks (e.g. on a same HTTP connection), based on CPA requirement, is assumed to be to be previously tested by conformance tests. Only the interoperability aspect of it is tested here.
· This test case is only to be used with a synchronous transport protocol (test suite parameter: < transport-protocol >).<JD2> specified as test suite parameter: < transport-protocol >).
Test Data Material:

·
· MSH-settings: reliable

· MSH-configuration: mshc_5
· Message Payloads: payload_1

· Message Header default: mhdr_1 (add Acknowledge element)

·
Test Steps:

1. “Initiator” on driver side sends unsigned message to Dummy action of recipient, with AckRequested element.

2. “Mute” action on driver side receives a single (unsigned) response message from Dummy. NOTE: in case Ack is not received or understood, driver MSH will resend message of step 1, and several responses from Dummy will be observed.

3. Verification: (exactly ONE response message from Dummy is received in Step 2) and (no error message received)

[image: image11.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

Only one correlating M2 received before timeout

•

correlates with M1

•

No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Fig 11. Diagram for Test Case 1.9

M2

(one payload)

Ack

Synchronized

[MIKE] – Wasn’t there a 10th interop test???

3.4 Two Instances of the Basic Interoperability Profiles and related Test Suites

3.4.1 The HTTP/1.1 Basic Interoperability Profile

The test suite , MS-BIP(“HTTP/1.1”), verifies the Basic Interoperability Profile for messaging over HTTP/1.1. It includes synchronous and asynchronous test cases (a total of 9) which exercise the capabilities of HTTP/1.1. The Test Cases are:

· Test Case 1.1: No payload basic exchange over HTTP/1.1.

· Test Case 1.2: Basic exchange with one payload over HTTP/1.1.

· Test Case 1.3: Basic exchange with three payloads over HTTP/1.1.

· Test Case 1.4: Basic exchange with Error message over HTTP/1.1.

· Test Case 1.5: Signed Message Without Embedded Key Info over HTTP/1.1.

· Test Case 1.6: Synchronous Basic Exchange with one payload over HTTP/1.1.

· Test Case 1.7: Acknowledgment exchange: Unsigned Data, Unsigned Ack over HTTP/1.1.

· Test Case 1.8: Acknowledgment exchange: Signed Data, Signed Ack over HTTP/1.1.

· Test Case 1.9: Synchronous Unsigned Acknowledgment exchange over HTTP/1.1.

3.4.2 The SMTP Basic Interoperability Profile

The test suite , MS-BIP(“SMTP”) , verifies the Basic Interoperability Profile for messaging over SMTP. It includes only asynchronous test cases (a total of 7) which exercise the capabilities of SMTP. The Test Cases are:

· Test Case 1.1: No payload basic exchange over SMTP.

· Test Case 1.2: Basic exchange with one payload over SMTP.

· Test Case 1.3: Basic exchange with three payloads over SMTP.

· Test Case 1.4: Basic exchange with Error message over SMTP.

· Test Case 1.5: Signed Message Without Embedded Key Info over SMTP.

· Test Case 1.7: Acknowledgment exchange: Unsigned Data, Unsigned Ack over SMTP.

· Test Case 1.8: Acknowledgment exchange: Signed Data, Signed Ack over SMTP.

4 Details of Test Material

4.1 Configuration of the Test Harness and MSH Implementation

4.1.1 Test Harness and MSH Settings
As described in [ebTestFramework], Test Harness and MSH settings are defined through either:
· Explicit declaration of MSH parameters in a Test Suite ConfigurationGroup declaration

· MSH configuration through CPA (or CPA-like) methods

· Explicit declaration of message content value in message declarations
Below are four tables reflecting the MSH configurations required by the BIP test suite:
4.1.2 Test-specific MSH Configuration Data
4.1.2.1 mshc_1 (Recommended Settings)

	Name
	Suggested Values
	Equivalent CPA field(s) – assumes a symmetric partner configuration

	Transport Protocol
	HTTP 1.1 or SMTP
	CPA/PartyInfo/Transport//TransportProtocol

	Canonicalization Algorithm
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315”
	N/A – explicitly defined in individual message declaration

	Signature Algorithm
	http://www.w3.org/2000/09/xmldsig#dsa-sha1
	 CPA/PartyInfo/DocExchange//SenderNonRepudiation/SignatureAlgorithm

	Signed Message
	false
	CPA/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isNonRepudiationRequired

	Signed Acknowledgment
	false
	CPA/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isNonRepudiationReceiptRequired

	Retries
	3
	CPA/PartyInfo/DocExchange //ReliableMessaging/Retries

	RetryInterval
	PT30S
	CPA/PartyInfo/DocExchange// ReliableMessaging/RetryInterval

	AckRequested
	perMessage
	CPA/PartyInfo/DeliveryChannel/AckRequested

	PersistDuration

	P10D

	CPA/PartyInfo/DocExchange// ReliableMessaging/ReliableMessaging/PersistDuration

	duplicateElimination
	perMessage
	CPA/PartyInfo/DeliveryChannel/MessagingCharacteristics/@duplicateElimination

	MessageOrder Semantics
	NotGuaranteed
	CPA/PartyInfo/DocExchange// ReliableMessaging/MessageOrderSemantics

	HTTP Timeouts

	PT5M (if HTTP Protocol is used)
	N/A – explicitly defined in Test Suite ConfigurationGroup XML

	SyncReply (indicates all messages are sent with a SyncReply element)
	false (if HTTP Protocol is used)
	N/A – explicitly defined in Test Suite ConfigurationGroup XML

	syncReplyMode

	none (if SMTP Protocol is used)
	CPA/PartyInfo/DeliveryChannel/syncReplyMode

4.1.2.2 mshc_2 Required (highlighted) and Suggested Values

	Name
	Suggested/Required Value
	Equivalent CPA field(s) – assumes a symmetric partner configuration

	Transport Protocol
	HTTP 1.1 or SMTP
	CPA/PartyInfo/Transport//TransportProtocol

	Canonicalization Algorithm
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315”
	N/A – defined in individual message declaration

	Signature Algorithm
	http://www.w3.org/2000/09/xmldsig#dsa-sha1
	 CPA/PartyInfo/DocExchange//SenderNonRepudiation/SignatureAlgorithm

	Signed Message
	true
	CPA/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isNonRepudiationRequired

	Signed Acknowledgment
	true
	CPA/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isNonRepudiationReceiptRequired

	Retries
	3
	CPA/PartyInfo/DocExchange //ReliableMessaging/Retries

	RetryInterval
	PT30S
	CPA/PartyInfo/DocExchange// ReliableMessaging/RetryInterval

	AckRequested
	perMessage
	CPA/PartyInfo/DeliveryChannel/AckRequested

	PersistDuration

	P10D

	CPA/PartyInfo/DocExchange// ReliableMessaging/ReliableMessaging/PersistDuration

	duplicateElimination
	perMessage
	CPA/PartyInfo/DeliveryChannel/MessagingCharacteristics/@duplicateElimination

	MessageOrder Semantics
	NotGuaranteed
	CPA/PartyInfo/DocExchange// ReliableMessaging/MessageOrderSemantics

	HTTP Timeouts

	PT5M (if HTTP Protocol is used)
	N/A – explicitly defined in Test Suite ConfigurationGroup XML

	SyncReply (indicates all messages are sent with a SyncReply element)
	false (if HTTP Protocol is used)
	N/A – explicitly defined in Test Suite ConfigurationGroup XML

	syncReplyMode

	none (if SMTP Protocol is used)
	CPA/PartyInfo/DeliveryChannel/syncReplyMode

4.1.3
4.1.2.3 mshc_3 Required (highlighted) and Recommended Settings

	Name
	Suggested/Required Values
	Equivalent CPA field(s) – assumes a symmetric partner configuration

	Transport Protocol
	HTTP 1.1 or SMTP
	CPA/PartyInfo/Transport//TransportProtocol

	Canonicalization Algorithm
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315”
	N/A – defined in individual message declaration

	Signature Algorithm
	http://www.w3.org/2000/09/xmldsig#dsa-sha1
	 CPA/PartyInfo/DocExchange//SenderNonRepudiation/SignatureAlgorithm

	Signed Message
	true
	CPA/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isNonRepudiationRequired

	Signed Acknowledgment
	true
	CPA/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isNonRepudiationReceiptRequired

	Confidentiality
	none
	CPA/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isConfidential

	Authentication
	none
	CPA/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isAuthenticated

	Retries
	3
	CPA/PartyInfo/DocExchange //ReliableMessaging/Retries

	RetryInterval
	PT30S
	CPA/PartyInfo/DocExchange// ReliableMessaging/RetryInterval

	AckRequested
	perMessage
	CPA/PartyInfo/DeliveryChannel/AckRequested

	PersistDuration

	P10D

	CPA/PartyInfo/DocExchange// ReliableMessaging/ReliableMessaging/PersistDuration

	duplicateElimination
	perMessage
	CPA/PartyInfo/DeliveryChannel/MessagingCharacteristics/@duplicateElimination

	MessageOrder Semantics
	NotGuaranteed
	CPA/PartyInfo/DocExchange// ReliableMessaging/MessageOrderSemantics

	HTTP Timeouts

	PT5M (if HTTP Protocol is used)
	N/A – explicitly defined in Test Suite ConfigurationGroup XML

	SyncReply (indicates all messages are sent with a SyncReply element)
	false (if HTTP Protocol is used)
	N/A – explicitly defined in Test Suite ConfigurationGroup XML

	syncReplyMode

	responseOnly (if HTTP Protocol is used)
	CPA/PartyInfo/DeliveryChannel/syncReplyMode

4.1.2.4 mshc_4 Required (highlighted) and Suggested Values
	Name
	Suggested/Required Values
	Equivalent CPA field(s) – assumes a symmetric partner configuration

	Transport Protocol
	HTTP 1.1 or SMTP
	CPA/PartyInfo/Transport//TransportProtocol

	Canonicalization Algorithm
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315”
	N/A – defined in individual message declaration

	Signature Algorithm
	http://www.w3.org/2000/09/xmldsig#dsa-sha1
	 CPA/PartyInfo/DocExchange//SenderNonRepudiation/SignatureAlgorithm

	Signed Message
	true
	CPA/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isNonRepudiationRequired

	Signed Acknowledgment
	true
	CPA/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isNonRepudiationReceiptRequired

	Confidentiality
	none
	CPA/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isConfidential

	Authentication
	none
	CPA/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isAuthenticated

	Retries
	3
	CPA/PartyInfo/DocExchange //ReliableMessaging/Retries

	RetryInterval
	PT30S
	CPA/PartyInfo/DocExchange// ReliableMessaging/RetryInterval

	AckRequested
	perMessage
	CPA/PartyInfo/DeliveryChannel/AckRequested

	PersistDuration

	P10D

	CPA/PartyInfo/DocExchange// ReliableMessaging/ReliableMessaging/PersistDuration

	duplicateElimination
	perMessage
	CPA/PartyInfo/DeliveryChannel/MessagingCharacteristics/@duplicateElimination

	MessageOrder Semantics
	NotGuaranteed
	CPA/PartyInfo/DocExchange// ReliableMessaging/MessageOrderSemantics

	HTTP Timeouts

	PT5M (if HTTP Protocol is used)
	N/A – explicitly defined in Test Suite ConfigurationGroup XML

	SyncReply (indicates all messages are sent with a SyncReply element)
	false (if HTTP Protocol is used)
	N/A – explicitly defined in Test Suite ConfigurationGroup XML

	syncReplyMode

	signalsOnly (if HTTP Protocol is used)
	CPA/PartyInfo/DeliveryChannel/syncReplyMode

4.1.2.5 mshc_5 Required (highlighted) and Suggested Values
4.1.2.6 mshc_6 Required (highlighted) and Suggested Values

	Name
	Suggested/Required Value
	Equivalent CPA field(s) – assumes a symmetric partner configuration

	Transport Protocol
	HTTP 1.1 or SMTP
	CPA/PartyInfo/Transport//TransportProtocol

	Canonicalization Algorithm
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315”
	N/A – defined in individual message declaration

	Signature Algorithm
	http://www.w3.org/2000/09/xmldsig#dsa-sha1
	 CPA/PartyInfo/DocExchange//SenderNonRepudiation/SignatureAlgorithm

	Signed Message
	true
	CPA/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isNonRepudiationRequired

	Signed Acknowledgment
	false
	CPA/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isNonRepudiationReceiptRequired

	Retries
	3
	CPA/PartyInfo/DocExchange //ReliableMessaging/Retries

	RetryInterval
	PT30S
	CPA/PartyInfo/DocExchange// ReliableMessaging/RetryInterval

	AckRequested
	perMessage
	CPA/PartyInfo/DeliveryChannel/AckRequested

	PersistDuration

	P10D

	CPA/PartyInfo/DocExchange// ReliableMessaging/ReliableMessaging/PersistDuration

	duplicateElimination
	perMessage
	CPA/PartyInfo/DeliveryChannel/MessagingCharacteristics/@duplicateElimination

	MessageOrder Semantics
	NotGuaranteed
	CPA/PartyInfo/DocExchange// ReliableMessaging/MessageOrderSemantics

	HTTP Timeouts

	PT5M (if HTTP Protocol is used)
	N/A – explicitly defined in Test Suite ConfigurationGroup XML

	SyncReply (indicates all messages are sent with a SyncReply element)
	false (if HTTP Protocol is used)
	N/A – explicitly defined in Test Suite ConfigurationGroup XML

	syncReplyMode

	none (if SMTP Protocol is used)
	CPA/PartyInfo/DeliveryChannel/syncReplyMode

4.1.2.7

4.1.2.8

4.1.2.9

4.1.2.10

4.1.2.11

4.1.2.12

4.1.3 Generated Message Headers

The ebXML Message Headers below are dynamically generated by the Test Harness, using the declarative message syntax described in [ebTestFramework]. Key message content value is supplied by the Test Harness, either through configuration parameters or through interpretation of the values provided in the message declaration itself.
4.1.3.3 Key Message Parameters

The default values for these run-timeparameters should be set in the test suite ConfigurationGroup element when the test suite XML file is deployed:

· $SenderParty (set to the Test Driver MSH host)

· $ReceiverParty (set to the remote MSH host)

The values of the parameters below must be set (either by the Test Harness or through explicit declaration in a message) for each test case:

· $CPA

· $ConversationId

The value of this parameter may vary (in the MessageDeclaration element) for each test step:

· $Action

The value of these parameters is not under control of the Test Driver, and will be set by the MSH implementation at run-time:

· $MessageId

· $TimeStamp

4.1.3.4 mhdr_0

This sample header is constructed for messages with no payload. The parameters will be instantiated by the Test Driver or the MSH implementation.

<SOAP:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<SOAP:Header>

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId> $SenderParty</eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>$ReceiverParty </eb:PartyId>

</eb:To>

<eb:CPAId>$CPA </eb:CPAId>

<eb:ConversationId> $ConversationId</eb:ConversationId>

<eb:Service> urn:ebXML:iic:test </eb:Service>

<eb:Action>$Action </eb:Action>

<eb:MessageData>

<eb:MessageId>$MessageId </eb:MessageId>

<eb:Timestamp>$Timestamp </eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

</SOAP:Body>

</SOAP:Envelope>

4.1.3.5 mhdr_1

This sample header is constructed for messages with one payload, after instantiation of parameters.

<SOAP:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<SOAP:Header>

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId>$SenderParty </eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>$ReceiverParty </eb:PartyId>

</eb:To>

<eb:CPAId>$CPA </eb:CPAId>

<eb:ConversationId>$ConversationId </eb:ConversationId>

<eb:Service>ebXML_IIC_Testing</eb:Service>

<eb:Action>$Action </eb:Action>

<eb:MessageData>

<eb:MessageId>$MessageId </eb:MessageId>

<eb:Timestamp>$Timestamp </eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

<eb:Manifest eb:version="2.0">

<eb:Reference xlink:href="cid: payload_1"

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 1</eb:Description>

</eb:Reference>

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

4.1.3.6 mhdr_2

This sample header is constructed for messages with two payloads, after instantiation of parameters.

<SOAP:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<SOAP:Header>

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId>$SenderParty </eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>$ReceiverParty </eb:PartyId>

</eb:To>

<eb:CPAId>$CPA </eb:CPAId>

<eb:ConversationId>$ConversationId </eb:ConversationId>

<eb:Service>ebXML_IIC_Testing</eb:Service>

<eb:Action>$Action </eb:Action>

<eb:MessageData>

<eb:MessageId>$MessageId </eb:MessageId>

<eb:Timestamp>$Timestamp </eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

<eb:Manifest eb:version="2.0">

<eb:Reference xlink:href="cid:payload_1 "

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 1</eb:Description>

</eb:Reference>

<eb:Reference xlink:href="cid:payload_2 "

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 2</eb:Description>

</eb:Reference>

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

.

4.1.3.7 mhdr_3

This sample header is constructed for messages with three payloads, after instantiation of parameters.

<SOAP:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<SOAP:Header>

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId>$SenderParty </eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>$ReceiverParty </eb:PartyId>

</eb:To>

<eb:CPAId>$CPA </eb:CPAId>

<eb:ConversationId>$ConversationId </eb:ConversationId>

<eb:Service>ebXML_IIC_Testing</eb:Service>

<eb:Action>$Action </eb:Action>

<eb:MessageData>

<eb:MessageId>$MessageId </eb:MessageId>

<eb:Timestamp>$Timestamp </eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

<eb:Manifest eb:version="2.0">

<eb:Reference xlink:href="cid:payload_1 "

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 1</eb:Description>

</eb:Reference>

<eb:Reference xlink:href="cid:payload_2 2"

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 2</eb:Description>

</eb:Reference>

<eb:Reference xlink:href="cid:payload_3 "

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 3</eb:Description>

</eb:Reference>

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

4.1.4 Message Payloads

Message payloads for the BIP Test Suite are supplied in the normative BIP Test Suite located in . Appendix B. There are three payloads used for testing in this test suite. They include:
4.1.4.3 Payload_1

 Payload_1 is representative of a “small XML payload”. This payload is

 embedded in the Test Suite and is included in the message using an ID reference. The code for this payload is:

<purchase_order>

<po_number>1</po_number>

<part_number>123</part_number>

<price_currency=”USD”>500.00</price>

</purchase_order>
4.1.4.4 Payload_2

This payload represents an “average size” (22KB) XML business document. This payload is

included in the test message through a file reference. The XML code used for this payload is the OASIS ebXML CPP/A example 2.0b on the OASIS CPPA Technical Committee web page.
4.1.4.5 Payload_3

This payload represents a “large” (1.236MB)
MS Word document payload. This Test Suite uses the OASIS/ebXML Messaging Services Specification V2.0 document, available on the OASIS ebXML MS Technical Committee web page.
4.2 BIP Test Suite Script

 The following non-normative table shows the detail of each test case and its test steps, described using the notation specified in the Test Framework specification document.
4.2 Master Requirements File: ebXML Messaging Services 2.0
5 Appendix A – Implementations of the Test Harness

Two variants of the test harness described in Section 2 are described below.

5.1 The “Point-to-point” Test Harness Implementation:

This configuration (Figure 12) is appropriate when two parties engage in interoperability testing without any third-party assistance, Each party will in turn play the driver party, and operate the Test Driver (install test cases, drive the executions, generate the reports.)

[image: image12.png]
In this configuration, the Test Driver invokes directly the Initiator action of the associated Test Service in order to trigger an exchange. The Test Driver is in service mode, and the associated Test Service is in local reporting mode, as it directly notifies the Test Driver. There is no need to generate messages on the wire for doing this, as both components reside on the same host.

5.2 The “Hub Driver” Test Harness Implementation:

This configuration (Figure 13) is appropriate when two parties engage in interoperability testing with the help of a third-party, which facilitates the testing. Each party will still in turn play the driver party (due to the asymmetric character of the BIP test suite), but the third party will operate the Test Driver (install test cases, drive the executions, generate the reports.) The two candidate parties would only make sure their MSH and Test Service are up and running, and that the CPAs associated with the test suite are accessible.

[image: image13.png]
In this configuration, the Test Driver invokes remotely the Initiator action of the Test Service of the driver party, in order to trigger an exchange. The Test Driver, in connection mode, interfaces directly at transport level, generating message material as done in conformance testing. The notification from the actions of the Test Service (driver party side), will be done by messages sent to the Test Driver (Hub URL), which is proper to a Test Service in remote reporting mode.Once an exchange is triggered, both end-points can send messages to each other, directly or through the Hub node, used as a simple route.

6 Appendix B – Non-normative Interoperability Test Suite XML Script

	Test Object
	ID
	Description
	Mode
	Operation
	Configuration
	Message Expression

	Test Suite
	
	
	
	
	Mode = service
CPAId = urn:config:urn:config:mshc_1
Service = urn:ebxml:iic:test
Action = Dummy
SenderParty = TestService1
ReceiverParty = TestService2
cid:Payload_1=5200a7e8c1a0b68958c27266fb9ea9b0
cid:Payload_2=c6fe703f9076361c9419b4c75e0f3084
cid:Payload_3=fa93b5c51f1622f4319ac0eb51a27b5e
	

	Test Case
	urn:TestCase:id:1.1
	Basic exchange, no payload
	
	
	
	

	TestStep
	1
	
	service
	
	
	

	
	
	Send basic message header
	
	PutMessage
	
	<mime:Message>

<mime:MessageContainer>

<soap:Envelope>

<soap:Header>

<eb:MessageHeader>

<eb:CPAId>urn:config:mshc_1</eb:CPAId>

<eb:Action>Dummy</eb:Action>

</eb:MessageHeader>

</soap:Header>

</soap:Envelope>

</mime:MessageContainer>

</mime:Message>

	TestStep
	2
	
	service
	
	
	

	
	
	Correlate returned message
	
	GetMessage
	
	/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=$CPAId and eb:Conversationid=$ConversationId and eb:Action='Mute']]

	Assertion
	
	Verify that an ebXML message is returned
	
	VerifyContent
	
	/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader]

	Test Case
	urn:TestCase:id:1.2
	Basic asyncronous exchange with one payload
	
	
	
	

	TestStep
	1
	
	service
	
	
	

	
	
	Send basic message header
	
	PutMessage
	
	<mime:Message>

<mime:MessageContainer>

<soap:Envelope>

<soap:Header>

<eb:MessageHeader>

<eb:CPAId>urn:config:mshc_1</eb:CPAId>

<eb:Action>Reflector</eb:Action>

</eb:MessageHeader>

</soap:Header>

<soap:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

</eb:Manifest>

</soap:Body>

</soap:Envelope>

</mime:MessageContainer>

</mime:Message>

	
	
	Add content-id and payload to mime message
	
	SetPayload Content-Id = 'cid:payload_1' payloadRef=" payload_1"
	
	

	TestStep
	2
	
	service
	
	
	

	
	
	Correlate returned messages
	
	GetMessage
	
	/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='cpa_basic' and eb:Conversationid=$ConversationId and eb:Action='Mute']]

	Assertion
	
	Check for returned payload
	
	VerifyContent
	
	/mime:Message[mime:MessageContainer[1]/soap:Body/eb:Manifest/eb:Reference[@xlink:href='cid:payload_1']]

	
	
	Find payload in message
	
	GetPayload Content-Id = 'cid:payload_1'
	
	

	Assertion
	
	Verify returned payload contents
	
	VerifyContent
	
	

	Test Case
	urn:TestCase:id:1.3
	Basic exchange with three payloads
	
	
	
	

	TestStep
	1
	
	service
	
	
	

	
	
	Send basic message header
	
	PutMessage
	
	<mime:Message>

<mime:MessageContainer>

<soap:Envelope>

<soap:Header>

<eb:MessageHeader>

<eb:CPAId>urn:config:mshc_1</eb:CPAId>

<eb:Action>Reflector</eb:Action>

</eb:MessageHeader>

</soap:Header>

<soap:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

<eb:Reference xlink:href="cid:payload_2" />

<eb:Reference xlink:href="cid:payload_3" />

</eb:Manifest>

</soap:Body>

</soap:Envelope>

</mime:MessageContainer>

</mime:Message>

	
	
	Add content-id and payload to mime message
	
	SetPayload Content-Id = 'cid:payload_1' payloadRef=" payload_1"
	
	

	
	
	Add content-id and payload to mime message
	
	SetPayload Content-Id = 'cid:payload_2' payloadRef=" payload_2"
	
	

	
	
	Add content-id and payload to mime message
	
	SetPayload Content-Id = 'payload_3' payloadRef=" payload_3"
	
	

	TestStep
	2
	
	service
	
	
	

	
	
	Correlate returned messages
	
	GetMessage
	
	/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='cpa_basic' and eb:Conversationid=$ConversationId and eb:Action='Mute']]

	Assertion
	
	Check for returned payload
	
	VerifyContent
	
	/mime:Message[mime:MessageContainer[1]/soap:Body/eb:Manifest/eb:Reference[@xlink:href='cid:payload_1']]

	
	
	Find payload in message
	
	GetPayload Content-Id = 'cid:payload_1'
	
	

	Assertion
	
	Verify returned payload contents
	
	VerifyContent
	
	

	
	
	Find payload in message
	
	GetPayload Content-Id = 'cid:payload_2'
	
	

	Assertion
	
	Verify returned payload contents
	
	VerifyContent
	
	

	
	
	Find payload in message
	
	GetPayload Content-Id = 'cid:payload_3'
	
	

	Assertion
	
	Verify returned payload contents
	
	VerifyContent
	
	

	Test Case
	urn:TestCase:id:1.4
	Basic exchange with Error Message
	
	
	
	

	TestStep
	1
	
	service
	
	
	

	
	
	MessageHeader mustUnderstand set to 'true'
	
	PutMessage
	
	<mime:Message>

<mime:MessageContainer>

<soap:Envelope>

<soap:Header>

<eb:MessageHeader>

<eb:CPAId>urn:config:mshc_1</eb:CPAId>

<eb:Action>Dummy</eb:Action>

<eb:ExtensionLement soap:mustUnderstand="true" />

</eb:MessageHeader>

</soap:Header>

</soap:Envelope>

</mime:MessageContainer>

</mime:Message>

	TestStep
	2
	
	service
	
	
	

	
	
	Correlate returned messages
	
	GetMessage
	
	/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='cpa_basic' and eb:Conversationid=$ConversationId and eb:ErrorList]]

	Assertion
	
	Test if Error is generated
	
	VerifyContent
	
	mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Body/soap:Fault/soap:Code[soap:Value='MustUnderstand']]

	Test Case
	urn:TestCase:id:1.5
	Signed message without key info
	
	
	
	

	TestStep
	1
	
	service
	
	
	

	
	
	Send basic message header
	
	PutMessage
	
	<mime:Message>

<mime:MessageContainer>

<soap:Envelope>

<soap:Header>

<eb:MessageHeader>

<eb:CPAId>urn:config:mshc_6</eb:CPAId>

<eb:Action>Reflector</eb:Action>

</eb:MessageHeader>

</soap:Header>

<soap:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

</eb:Manifest>

</soap:Body>

</soap:Envelope>

</mime:MessageContainer>

</mime:Message>

	
	
	Add content-id and payload to mime message
	
	SetPayload Content-ID="cid:payload_1 " Content-Id = 'cid:payload_1' payloadRef=" payload_1"
	
	

	
	
	
	
	DSign
	
	<ds:Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<ds:SignedInfo>

<ds:CanonicalizationMethod ds:Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />

<ds:SignatureMethod ds:Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1" />

<ds:Reference ds:URI="">

<ds:DigestMethod ds:Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<ds:DigestValue>abc</ds:DigestValue>

</ds:Reference>

<ds:Reference ds:URI="cid://blahblahblah/">

<ds:DigestMethod ds:Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<ds:DigestValue>def</ds:DigestValue>

</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>ghi</ds:SignatureValue>

</ds:Signature>

	TestStep
	2
	
	service
	
	
	

	
	
	Correlate returned messages
	
	GetMessage
	
	/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='cpa_basic' and eb:Conversationid=$ConversationId and eb:Action='Mute']]

	Assertion
	
	Find payload in message
	
	VerifyContent
	
	/mime:Message[mime:MessageContainer[1]/soap:Body/eb:Manifest/eb:Reference[@xlink:href='cid:payload_1']]

	
	
	Find payload in message
	
	GetPayload Content-Id = 'cid:payload_1'
	
	

	Assertion
	
	
	
	VerifyContent
	
	

	Test Case
	urn:TestCase:id:1.6
	Basic syncronous exchange with one payload
	
	
	
	

	TestStep
	1
	
	service
	
	
	

	
	
	Send basic message header with SyncReply
	
	PutMessage
	
	<mime:Message>

<mime:MessageContainer>

<soap:Envelope>

<soap:Header>

<eb:MessageHeader>

<eb:CPAId>urn:config:mshc_4</eb:CPAId>

<eb:Action>Reflector</eb:Action>

</eb:MessageHeader>

<eb:SyncReply />

</soap:Header>

<soap:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

</eb:Manifest>

</soap:Body>

</soap:Envelope>

</mime:MessageContainer>

</mime:Message>

	
	
	Add content-id and payload to mime message
	
	SetPayload Content-ID="cid:payload_1 " Content-Id = 'cid:payload_1' payloadRef=" payload_1"
	
	

	TestStep
	2
	
	service
	
	
	

	
	
	Correlate returned messages
	
	GetMessage asycronous="false"
	
	/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='cpa_basic' and eb:Conversationid=$ConversationId andeb:Action='Mute']]

	Assertion
	
	Find payload in message
	
	VerifyContent
	
	/mime:Message[mime:MessageContainer[1]/soap:Body/eb:Manifest/eb:Reference[@xlink:href='cid:payload_1']]

	
	
	Find payload in message
	
	GetPayload Content-Id = 'cid:payload_1'
	
	

	Assertion
	
	
	
	VerifyContent
	
	

	Test Case
	urn:TestCase:id:1.7
	Test unsigned AckRequested message with unsigned Acknowledgment
	
	
	
	

	TestStep
	1
	
	service
	
	
	

	
	
	Send basic message with AckRequested element
	
	PutMessage
	
	<mime:Message>

<mime:MessageContainer>

<soap:Envelope>

<soap:Header>

<eb:MessageHeader>

<eb:CPAId>urn:config:mshc_1</eb:CPAId>

<eb:Action>Dummy</eb:Action>

</eb:MessageHeader>

<eb:AckRequested />

</soap:Header>

<soap:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

</eb:Manifest>

</soap:Body>

</soap:Envelope>

</mime:MessageContainer>

</mime:Message>

	TestStep
	2
	
	service
	
	
	

	
	
	Correlate returned messages
	
	GetMessage
	
	/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='cpa_basic' and eb:Conversationid=$ConversationId and ../eb:Acknowledgment]]

	Assertion
	
	
	
	VerifyContent
	
	/mime:Message[not mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList]

	Assertion
	
	
	
	VerifyContent
	
	/mime:Message[not mime:MessageContainer[1]/soap:Envelope/soap:Body[not soap:Fault]]

	Assertion
	
	
	
	VerifyContent
	
	/mime:Message[[mime:MessageContainer[1]/soap:Envelope/eb:MessageHeader/eb:Acknowledgment]count()=1]

	Test Case
	urn:TestCase:id:1.8
	Test signed AckRequested message with signed Acknowledgment
	
	
	
	

	TestStep
	1
	
	service
	
	
	

	
	
	Send basic message with AckRequested (signed = 'true') element, and signed payload
	
	PutMessage
	
	<mime:Message>

<mime:MessageContainer>

<soap:Envelope>

<soap:Header>

<eb:MessageHeader>

<eb:CPAId>urn:config:mshc_2</eb:CPAId>

<eb:Action>Dummy</eb:Action>

</eb:MessageHeader>

<eb:AckRequested eb:signed="true" />

</soap:Header>

<soap:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

</eb:Manifest>

</soap:Body>

</soap:Envelope>

</mime:MessageContainer>

</mime:Message>

	
	
	Add content-id and payload to mime message
	
	SetPayload Content-ID="cid:payload_1 " Content-Id = 'cid:payload_1' payloadRef=" payload_1"
	
	

	
	
	
	
	DSign
	
	<ds:Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<ds:SignedInfo>

<ds:CanonicalizationMethod ds:Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />

<ds:SignatureMethod ds:Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1" />

<ds:Reference ds:URI="">

<ds:DigestMethod ds:Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

</ds:Reference>

</ds:SignedInfo>

</ds:Signature>

	TestStep
	2
	
	service
	
	
	

	
	
	Correlate returned messages
	
	GetMessage
	
	/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='cpa_basic' and eb:Conversationid=$ConversationId and eb:Action='Mute' and ../eb:Acknowledgment]]

	Assertion
	
	
	
	VerifyContent
	
	/mime:Message[not mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList]

	Assertion
	
	
	
	VerifyContent
	
	/mime:Message[not mime:MessageContainer[1]/soap:Envelope/soap:Body[not soap:Fault]]

	Assertion
	
	
	
	VerifyContent
	
	/mime:Message[[mime:MessageContainer[1]/soap:Envelope/eb:MessageHeader/eb:Acknowledgment]count()=1]

	Assertion
	
	
	
	ValidateContent contentType=signedAck
	
	/mime:Messag/[mime:MessageContainer[1]/soap:Envelope/eb:MessageHeader/eb:Acknowledgment

	Test Case
	urn:TestCase:id:1.9
	Test unsigned AckRequested message with unsigned Acknowledgment
	
	
	
	

	TestStep
	1
	
	service
	
	
	

	
	
	Send basic message with AckRequested element
	
	PutMessage
	
	<mime:Message>

<mime:MessageContainer>

<soap:Envelope>

<soap:Header>

<eb:MessageHeader>

<eb:CPAId>urn:config:mshc_5</eb:CPAId>

<eb:Action>Dummy</eb:Action>

</eb:MessageHeader>

<eb:AckRequested />

</soap:Header>

<soap:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

</eb:Manifest>

</soap:Body>

</soap:Envelope>

</mime:MessageContainer>

</mime:Message>

	TestStep
	2
	
	service
	
	
	

	
	
	Correlate returned messages
	
	GetMessage asycronous="false"
	
	/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='cpa_basic' and eb:Conversationid=$ConversationId and eb:Acknowledgment]]

	Assertion
	
	
	
	VerifyContent
	
	/mime:Message[not mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList]

	Assertion
	
	
	
	VerifyContent
	
	/mime:Message[not mime:MessageContainer[1]/soap:Envelope/soap:Body[not soap:Fault]]

	Assertion
	
	
	
	VerifyContent
	
	/mime:Message[[mime:MessageContainer[1]/soap:Envelope/eb:MessageHeader/eb:Acknowledgment]count()=1]

7
Appendix B – Normative Interoperability Test Suite XML Script

 <?xml version="1.0" encoding="UTF-8" ?>
- <!--
 EbXML Messaging v2 Interop Test SuiteSample Instance File.

 Michael Kass <michael.kass@nist.gov>.

 Date: 12/15/02

 This file was provided by the National Institute of Standards and Technology.

 This software can be redistributed and/or modified freely provided that any derivative works bear some notice that they are derived from it, and any modified versions bear some notice that they have been modified.

 --> [image: image14.png]
- <ebTest:TestSuite xmlns:ebTest="http://www.oasis-open.org/tc/ebxml-iic/tests" xmlns:xpath="http://www.oasis-open.org/tc/ebxml-iic/xpath" xmlns:mime="http://www.oasis-open.org/tc/ebxml-iic/tests/mime" xmlns:soap="http://www.oasis-open.org/tc/ebxml-iic/tests/soap" xmlns:eb="http://www.oasis-open.org/tc/ebxml-iic/tests/eb" xmlns:tns="http://www.oasis-open.org/tc/ebxml-iic/tests/tns" xmlns:xlink="http://www.oasis-open.org/tc/ebxml-iic/tests/xlink" xmlns:cfg="http://www.oasis-open.org/tc/ebxml-iic/tests/config" xmlns:ds="http://www.oasis-open.org/tc/ebxml-iic/tests/xmldsig" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.oasis-open.org/tc/ebxml-iic/tests ebXMLTestSuite.xsd" ebTest:configurationGroupRef="basic">
- <ebTest:MetaData>
 <ebTest:Description>Interoperability Test Suite: ebXML Messaging Services 2.0</ebTest:Description>

 <ebTest:Version>1.0</ebTest:Version>

 <ebTest:Maintainer>Matthew MacKenzie <matt@xmlglobal.com></ebTest:Maintainer>

 <ebTest:Location>http://www.oasis-open.org/commitees/ebxml-iic/ebmsg/requirements1.0.xml</ebTest:Location>

 <ebTest:PublishDate>20 July 2002</ebTest:PublishDate>

 <ebTest:Status>DRAFT</ebTest:Status>

 </ebTest:MetaData>
- <ebTest:ConfigurationGroup ebTest:id="basic">
 <ebTest:TransportProtocol>HTTP 1.1</ebTest:TransportProtocol>

 <ebTest:CPAId>urn:config:urn:config:mshc_1</ebTest:CPAId>

 <ebTest:Mode>service</ebTest:Mode>

 <ebTest:SenderParty>TestService1</ebTest:SenderParty>

 <ebTest:ReceiverParty>TestService2</ebTest:ReceiverParty>

 <ebTest:Service>urn:ebxml:iic:test</ebTest:Service>

 <ebTest:Action>Dummy</ebTest:Action>

 <ebTest:StepDelay />

- <ebTest:PayloadDigests>
- <ebTest:Payload>
 <ebTest:Href>cid:Payload_1</ebTest:Href>

 <ebTest:Digest>5200a7e8c1a0b68958c27266fb9ea9b0</ebTest:Digest>

 </ebTest:Payload>
- <ebTest:Payload>
 <ebTest:Href>cid:Payload_2</ebTest:Href>

 <ebTest:Digest>c6fe703f9076361c9419b4c75e0f3084</ebTest:Digest>

 </ebTest:Payload>
- <ebTest:Payload>
 <ebTest:Href>cid:Payload_3</ebTest:Href>

 <ebTest:Digest>fa93b5c51f1622f4319ac0eb51a27b5e</ebTest:Digest>

 </ebTest:Payload>
 </ebTest:PayloadDigests>
 </ebTest:ConfigurationGroup>
- <ebTest:MessagePayload id="payload_1">
 <Payload name="payload_1" />

 </ebTest:MessagePayload>
- <ebTest:TestCase ebTest:requirementReferenceId="semreq_id_1.1" ebTest:id="urn:TestCase:id:1.1" ebTest:description="Basic exchange, no payload">
- <ebTest:TestStep ebTest:mode="service">
- <ebTest:PutMessage ebTest:description="Send basic message header">
- <ebTest:MessageDeclaration>
- <mime:Message>
- <mime:MessageContainer>
- <soap:Envelope>
- <soap:Header>
- <eb:MessageHeader>
 <eb:CPAId>urn:config:mshc_1</eb:CPAId>

 <eb:Action>Dummy</eb:Action>

 </eb:MessageHeader>
 </soap:Header>
 </soap:Envelope>
 </mime:MessageContainer>
 </mime:Message>
 </ebTest:MessageDeclaration>
 </ebTest:PutMessage>
 </ebTest:TestStep>
- <ebTest:TestStep ebTest:mode="service">
- <ebTest:GetMessage ebTest:description="Correlate returned message">
 <ebTest:Filter>eb:CPAId=$CPAId and eb:Conversationid=$ConversationId and eb:Action='Mute'</ebTest:Filter>

- <ebTest:TestAssertion ebTest:description="Verify that an ebXML message is returned">
 <ebTest:VerifyContent>/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader]</ebTest:VerifyContent>

 </ebTest:TestAssertion>
 </ebTest:GetMessage>
 </ebTest:TestStep>
 </ebTest:TestCase>
- <ebTest:TestCase ebTest:requirementReferenceId="semreq_id_1.2" ebTest:id="urn:TestCase:id:1.2" ebTest:description="Basic asyncronous exchange with one payload">
- <ebTest:TestStep ebTest:mode="service">
- <ebTest:PutMessage ebTest:description="Send basic message header">
- <ebTest:MessageDeclaration>
- <mime:Message>
- <mime:MessageContainer>
- <soap:Envelope>
- <soap:Header>
- <eb:MessageHeader>
 <eb:CPAId>urn:config:mshc_1</eb:CPAId>

 <eb:Action>Reflector</eb:Action>

 </eb:MessageHeader>
 </soap:Header>
- <soap:Body>
- <eb:Manifest>
 <eb:Reference xlink:href="cid:payload_1" />

 </eb:Manifest>
 </soap:Body>
 </soap:Envelope>
 </mime:MessageContainer>
 </mime:Message>
 </ebTest:MessageDeclaration>
- <ebTest:SetPayload ebTest:description="Add content-id and payload to mime message" ebTest:contentId="cid:payload_1">
 <ebTest:Content-ID>cid:payload_1</ebTest:Content-ID>

 <ebTest:PayloadRef>payload_1</ebTest:PayloadRef>

 </ebTest:SetPayload>
 </ebTest:PutMessage>
 </ebTest:TestStep>
- <ebTest:TestStep ebTest:mode="service">
- <ebTest:GetMessage ebTest:description="Correlate returned messages">
 <ebTest:Filter>eb:CPAId='cpa_basic' and eb:Conversationid=$ConversationId and eb:Action='Mute'</ebTest:Filter>

- <ebTest:TestAssertion ebTest:description="Check for returned payload">
 <ebTest:VerifyContent>/mime:Message[mime:MessageContainer[1]/soap:Body/eb:Manifest/eb:Reference[@xlink:href='cid:payload_1']]</ebTest:VerifyContent>

 </ebTest:TestAssertion>
- <ebTest:GetPayload ebTest:description="Find payload in message">
 <ebTest:Content-ID>cid:payload_1</ebTest:Content-ID>

- <ebTest:TestAssertion ebTest:description="Verify returned payload contents">
 <ebTest:VerifyContent />

 </ebTest:TestAssertion>
 </ebTest:GetPayload>
 </ebTest:GetMessage>
 </ebTest:TestStep>
 </ebTest:TestCase>
- <ebTest:TestCase ebTest:requirementReferenceId="semreq_id_1.3" ebTest:id="urn:TestCase:id:1.3" ebTest:description="Basic exchange with three payloads">
- <ebTest:TestStep ebTest:mode="service">
- <ebTest:PutMessage ebTest:description="Send basic message header">
- <ebTest:MessageDeclaration>
- <mime:Message>
- <mime:MessageContainer>
- <soap:Envelope>
- <soap:Header>
- <eb:MessageHeader>
 <eb:CPAId>urn:config:mshc_1</eb:CPAId>

 <eb:Action>Reflector</eb:Action>

 </eb:MessageHeader>
 </soap:Header>
- <soap:Body>
- <eb:Manifest>
 <eb:Reference xlink:href="cid:payload_1" />

 <eb:Reference xlink:href="cid:payload_2" />

 <eb:Reference xlink:href="cid:payload_3" />

 </eb:Manifest>
 </soap:Body>
 </soap:Envelope>
 </mime:MessageContainer>
 </mime:Message>
 </ebTest:MessageDeclaration>
- <ebTest:SetPayload ebTest:description="Add content-id and payload to mime message" ebTest:contentId="cid:payload_1">
 <ebTest:Content-ID>cid:payload_1</ebTest:Content-ID>

 <ebTest:PayloadRef>payload_1</ebTest:PayloadRef>

 </ebTest:SetPayload>
- <ebTest:SetPayload ebTest:description="Add content-id and payload to mime message" ebTest:contentId="cid:payload_2">
 <ebTest:Content-ID>cid:payload_2</ebTest:Content-ID>

 <ebTest:PayloadRef>payload_2</ebTest:PayloadRef>

 </ebTest:SetPayload>
- <ebTest:SetPayload ebTest:description="Add content-id and payload to mime message" ebTest:contentId="cid:payload_3">
 <ebTest:Content-ID>payload_3</ebTest:Content-ID>

 <ebTest:PayloadRef>payload_3</ebTest:PayloadRef>

 </ebTest:SetPayload>
 </ebTest:PutMessage>
 </ebTest:TestStep>
- <ebTest:TestStep ebTest:mode="service">
- <ebTest:GetMessage ebTest:description="Correlate returned messages">
 <ebTest:Filter>eb:CPAId='cpa_basic' and eb:Conversationid=$ConversationId and eb:Action='Mute'</ebTest:Filter>

- <ebTest:TestAssertion ebTest:description="Check for returned payload">
 <ebTest:VerifyContent>/mime:Message[mime:MessageContainer[1]/soap:Body/eb:Manifest/eb:Reference[@xlink:href='cid:payload_1']]</ebTest:VerifyContent>

 </ebTest:TestAssertion>
- <ebTest:GetPayload ebTest:description="Find payload in message">
 <ebTest:Content-ID>cid:payload_1</ebTest:Content-ID>

- <ebTest:TestAssertion ebTest:description="Verify returned payload contents">
 <ebTest:VerifyContent />

 </ebTest:TestAssertion>
 </ebTest:GetPayload>
- <ebTest:GetPayload ebTest:description="Find payload in message">
 <ebTest:Content-ID>cid:payload_2</ebTest:Content-ID>

- <ebTest:TestAssertion ebTest:description="Verify returned payload contents">
 <ebTest:VerifyContent />

 </ebTest:TestAssertion>
 </ebTest:GetPayload>
- <ebTest:GetPayload ebTest:description="Find payload in message">
 <ebTest:Content-ID>cid:payload_3</ebTest:Content-ID>

- <ebTest:TestAssertion ebTest:description="Verify returned payload contents">
 <ebTest:VerifyContent />

 </ebTest:TestAssertion>
 </ebTest:GetPayload>
 </ebTest:GetMessage>
 </ebTest:TestStep>
 </ebTest:TestCase>
- <ebTest:TestCase ebTest:requirementReferenceId="semreq_id_1.4" ebTest:id="urn:TestCase:id:1.4" ebTest:description="Basic exchange with Error Message">
- <ebTest:TestStep ebTest:mode="service">
- <ebTest:PutMessage ebTest:description="MessageHeader mustUnderstand set to 'true'">
- <ebTest:MessageDeclaration>
- <mime:Message>
- <mime:MessageContainer>
- <soap:Envelope>
- <soap:Header>
- <eb:MessageHeader>
 <eb:CPAId>urn:config:mshc_1</eb:CPAId>

 <eb:Action>Dummy</eb:Action>

 <eb:ExtensionLement soap:mustUnderstand="true" />

 </eb:MessageHeader>
 </soap:Header>
 </soap:Envelope>
 </mime:MessageContainer>
 </mime:Message>
 </ebTest:MessageDeclaration>
 </ebTest:PutMessage>
 </ebTest:TestStep>
- <ebTest:TestStep ebTest:mode="service">
- <ebTest:GetMessage ebTest:getMultiple="true" ebTest:description="Correlate returned messages">
 <ebTest:Filter>eb:CPAId='cpa_basic' and eb:Conversationid=$ConversationId and eb:ErrorList</ebTest:Filter>

- <ebTest:TestAssertion ebTest:description="Test if Error is generated">
 <ebTest:VerifyContent>mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Body/soap:Fault/soap:Code[soap:Value='MustUnderstand']]</ebTest:VerifyContent>

 </ebTest:TestAssertion>
 </ebTest:GetMessage>
 </ebTest:TestStep>
 </ebTest:TestCase>
- <ebTest:TestCase ebTest:requirementReferenceId="semreq_id_1.5" ebTest:id="urn:TestCase:id:1.5" ebTest:description="Signed message without key info" ebTest:configurationGroupRef="urn:config:cpa_basic_no_key_info">
- <ebTest:TestStep ebTest:mode="service">
- <ebTest:PutMessage ebTest:description="Send basic message header">
- <ebTest:MessageDeclaration>
- <mime:Message>
- <mime:MessageContainer>
- <soap:Envelope>
- <soap:Header>
- <eb:MessageHeader>
 <eb:CPAId>urn:config:mshc_6</eb:CPAId>

 <eb:Action>Reflector</eb:Action>

 </eb:MessageHeader>
 </soap:Header>
- <soap:Body>
- <eb:Manifest>
 <eb:Reference xlink:href="cid:payload_1" />

 </eb:Manifest>
 </soap:Body>
 </soap:Envelope>
 </mime:MessageContainer>
 </mime:Message>
 </ebTest:MessageDeclaration>
- <ebTest:SetPayload ebTest:description="Add content-id and payload to mime message" contentId="cid:payload_1">
 <ebTest:Content-ID>cid:payload_1</ebTest:Content-ID>

 <ebTest:PayloadRef>payload_1</ebTest:PayloadRef>

 </ebTest:SetPayload>
- <ebTest:DSign>
- <ds:Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
- <ds:SignedInfo>
 <ds:CanonicalizationMethod ds:Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />

 <ds:SignatureMethod ds:Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1" />

- <ds:Reference ds:URI="">
 <ds:DigestMethod ds:Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

 <ds:DigestValue>abc</ds:DigestValue>

 </ds:Reference>
- <ds:Reference ds:URI="cid://blahblahblah/">
 <ds:DigestMethod ds:Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

 <ds:DigestValue>def</ds:DigestValue>

 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>ghi</ds:SignatureValue>

 </ds:Signature>
 </ebTest:DSign>
 </ebTest:PutMessage>
 </ebTest:TestStep>
- <ebTest:TestStep ebTest:mode="service">
- <ebTest:GetMessage ebTest:description="Correlate returned messages">
 <ebTest:Filter>eb:CPAId='cpa_basic' and eb:Conversationid=$ConversationId and eb:Action='Mute'</ebTest:Filter>

- <ebTest:TestAssertion>
 <ebTest:VerifyContent ebTest:description="Check for returned payload">/mime:Message[mime:MessageContainer[1]/soap:Body/eb:Manifest/eb:Reference[@xlink:href='cid:payload_1']]</ebTest:VerifyContent>

 </ebTest:TestAssertion>
- <ebTest:GetPayload ebTest:description="Find payload in message">
 <ebTest:Content-ID>cid:payload_1</ebTest:Content-ID>

- <ebTest:TestAssertion>
 <ebTest:VerifyContent ebTest:description="Verify returned payload contents" />

 </ebTest:TestAssertion>
 </ebTest:GetPayload>
 </ebTest:GetMessage>
 </ebTest:TestStep>
 </ebTest:TestCase>
- <ebTest:TestCase ebTest:requirementReferenceId="semreq_id_1.6" ebTest:id="urn:TestCase:id:1.6" ebTest:description="Basic syncronous exchange with one payload">
- <ebTest:TestStep ebTest:mode="service">
- <ebTest:PutMessage ebTest:description="Send basic message header with SyncReply">
- <ebTest:MessageDeclaration>
- <mime:Message>
- <mime:MessageContainer>
- <soap:Envelope>
- <soap:Header>
- <eb:MessageHeader>
 <eb:CPAId>urn:config:mshc_4</eb:CPAId>

 <eb:Action>Reflector</eb:Action>

 </eb:MessageHeader>
 <eb:SyncReply />

 </soap:Header>
- <soap:Body>
- <eb:Manifest>
 <eb:Reference xlink:href="cid:payload_1" />

 </eb:Manifest>
 </soap:Body>
 </soap:Envelope>
 </mime:MessageContainer>
 </mime:Message>
 </ebTest:MessageDeclaration>
- <ebTest:SetPayload ebTest:description="Add content-id and payload to mime message" contentId="cid:payload_1">
 <ebTest:Content-ID>cid:payload_1</ebTest:Content-ID>

 <ebTest:PayloadRef>payload_1</ebTest:PayloadRef>

 </ebTest:SetPayload>
 </ebTest:PutMessage>
 </ebTest:TestStep>
- <ebTest:TestStep ebTest:mode="service">
- <ebTest:GetMessage ebTest:description="Correlate returned messages" ebTest:asyncronous="false">
 <ebTest:Filter>eb:CPAId='cpa_basic' and eb:Conversationid=$ConversationId andeb:Action='Mute'</ebTest:Filter>

- <ebTest:TestAssertion>
 <ebTest:VerifyContent ebTest:description="Check for returned payload">/mime:Message[mime:MessageContainer[1]/soap:Body/eb:Manifest/eb:Reference[@xlink:href='cid:payload_1']]</ebTest:VerifyContent>

 </ebTest:TestAssertion>
- <ebTest:GetPayload ebTest:description="Find payload in message">
 <ebTest:Content-ID>cid:payload_1</ebTest:Content-ID>

- <ebTest:TestAssertion>
 <ebTest:VerifyContent ebTest:description="Verify returned payload contents" />

 </ebTest:TestAssertion>
 </ebTest:GetPayload>
 </ebTest:GetMessage>
 </ebTest:TestStep>
 </ebTest:TestCase>
- <ebTest:TestCase ebTest:requirementReferenceId="semreq_id_1.7" ebTest:id="urn:TestCase:id:1.7" ebTest:description="Test unsigned AckRequested message with unsigned Acknowledgment">
- <ebTest:TestStep ebTest:mode="service">
- <ebTest:PutMessage ebTest:description="Send basic message with AckRequested element">
- <ebTest:MessageDeclaration>
- <mime:Message>
- <mime:MessageContainer>
- <soap:Envelope>
- <soap:Header>
- <eb:MessageHeader>
 <eb:CPAId>urn:config:mshc_1</eb:CPAId>

 <eb:Action>Dummy</eb:Action>

 </eb:MessageHeader>
 <eb:AckRequested />

 </soap:Header>
- <soap:Body>
- <eb:Manifest>
 <eb:Reference xlink:href="cid:payload_1" />

 </eb:Manifest>
 </soap:Body>
 </soap:Envelope>
 </mime:MessageContainer>
 </mime:Message>
 </ebTest:MessageDeclaration>
 </ebTest:PutMessage>
 </ebTest:TestStep>
- <ebTest:TestStep ebTest:mode="service">
- <ebTest:GetMessage ebTest:description="Correlate returned messages">
 <ebTest:Filter>eb:CPAId='cpa_basic' and eb:Conversationid=$ConversationId and ../eb:Acknowledgment</ebTest:Filter>

- <ebTest:TestAssertion>
 <ebTest:VerifyContent ebTest:description="Verify that no Error is returned">/mime:Message[not mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList]</ebTest:VerifyContent>

 </ebTest:TestAssertion>
- <ebTest:TestAssertion>
 <ebTest:VerifyContent ebTest:description="Verify that no soap fault is generated for warnings">/mime:Message[not mime:MessageContainer[1]/soap:Envelope/soap:Body[not soap:Fault]]</ebTest:VerifyContent>

 </ebTest:TestAssertion>
- <ebTest:TestAssertion>
 <ebTest:VerifyContent ebTest:description="Verify that only one Acknowledgment was returned">/mime:Message[[mime:MessageContainer[1]/soap:Envelope/eb:MessageHeader/eb:Acknowledgment]count()=1]</ebTest:VerifyContent>

 </ebTest:TestAssertion>
 </ebTest:GetMessage>
 </ebTest:TestStep>
 </ebTest:TestCase>
- <ebTest:TestCase ebTest:requirementReferenceId="semreq_id_1.8" ebTest:id="urn:TestCase:id:1.8" ebTest:description="Test signed AckRequested message with signed Acknowledgment">
- <ebTest:TestStep ebTest:mode="service">
- <ebTest:PutMessage ebTest:description="Send basic message with AckRequested (signed = 'true') element, and signed payload">
- <ebTest:MessageDeclaration>
- <mime:Message>
- <mime:MessageContainer>
- <soap:Envelope>
- <soap:Header>
- <eb:MessageHeader>
 <eb:CPAId>urn:config:mshc_2</eb:CPAId>

 <eb:Action>Dummy</eb:Action>

 </eb:MessageHeader>
 <eb:AckRequested eb:signed="true" />

 </soap:Header>
- <soap:Body>
- <eb:Manifest>
 <eb:Reference xlink:href="cid:payload_1" />

 </eb:Manifest>
 </soap:Body>
 </soap:Envelope>
 </mime:MessageContainer>
 </mime:Message>
 </ebTest:MessageDeclaration>
- <ebTest:SetPayload ebTest:description="Add content-id and payload to mime message" contentId="cid:payload_1">
 <ebTest:Content-ID>cid:payload_1</ebTest:Content-ID>

 <ebTest:PayloadRef>payload_1</ebTest:PayloadRef>

 </ebTest:SetPayload>
- <ebTest:DSign>
- <ds:Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
- <ds:SignedInfo>
 <ds:CanonicalizationMethod ds:Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />

 <ds:SignatureMethod ds:Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1" />

- <ds:Reference ds:URI="">
 <ds:DigestMethod ds:Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

 </ds:Reference>
 </ds:SignedInfo>
 </ds:Signature>
 </ebTest:DSign>
 </ebTest:PutMessage>
 </ebTest:TestStep>
- <ebTest:TestStep ebTest:mode="service">
- <ebTest:GetMessage ebTest:description="Correlate returned messages">
 <ebTest:Filter>eb:CPAId='cpa_basic' and eb:Conversationid=$ConversationId and eb:Action='Mute' and ../eb:Acknowledgment</ebTest:Filter>

- <ebTest:TestAssertion>
 <ebTest:VerifyContent ebTest:description="Verify that no Error is returned">/mime:Message[not mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList]</ebTest:VerifyContent>

 </ebTest:TestAssertion>
- <ebTest:TestAssertion>
 <ebTest:VerifyContent ebTest:description="Verify that no soap fault is generated for warnings">/mime:Message[not mime:MessageContainer[1]/soap:Envelope/soap:Body[not soap:Fault]]</ebTest:VerifyContent>

 </ebTest:TestAssertion>
- <ebTest:TestAssertion>
 <ebTest:VerifyContent ebTest:description="Verify that only one Acknowledgment was returned">/mime:Message[[mime:MessageContainer[1]/soap:Envelope/eb:MessageHeader/eb:Acknowledgment]count()=1]</ebTest:VerifyContent>

 </ebTest:TestAssertion>
- <ebTest:TestAssertion>
 <ebTest:ValidateContent ebTest:contentType="signedAck" ebTest:description="Validate Acknowledgment Signature">/mime:Messag/[mime:MessageContainer[1]/soap:Envelope/eb:MessageHeader/eb:Acknowledgment</ebTest:ValidateContent>

 </ebTest:TestAssertion>
 </ebTest:GetMessage>
 </ebTest:TestStep>
 </ebTest:TestCase>
- <ebTest:TestCase ebTest:requirementReferenceId="semreq_id_1.9" ebTest:id="urn:TestCase:id:1.9" ebTest:description="Test unsigned AckRequested message with unsigned Acknowledgment">
- <ebTest:TestStep ebTest:mode="service">
- <ebTest:PutMessage ebTest:description="Send basic message with AckRequested element">
- <ebTest:MessageDeclaration>
- <mime:Message>
- <mime:MessageContainer>
- <soap:Envelope>
- <soap:Header>
- <eb:MessageHeader>
 <eb:CPAId>urn:config:mshc_5</eb:CPAId>

 <eb:Action>Dummy</eb:Action>

 </eb:MessageHeader>
 <eb:AckRequested />

 </soap:Header>
- <soap:Body>
- <eb:Manifest>
 <eb:Reference xlink:href="cid:payload_1" />

 </eb:Manifest>
 </soap:Body>
 </soap:Envelope>
 </mime:MessageContainer>
 </mime:Message>
 </ebTest:MessageDeclaration>
 </ebTest:PutMessage>
 </ebTest:TestStep>
- <ebTest:TestStep ebTest:mode="service">
- <ebTest:GetMessage ebTest:description="Correlate returned messages" ebTest:asyncronous="false">
 <ebTest:Filter>eb:CPAId='cpa_basic' and eb:Conversationid=$ConversationId and eb:Acknowledgment</ebTest:Filter>

- <ebTest:TestAssertion>
 <ebTest:VerifyContent ebTest:description="Verify that no Error is returned">/mime:Message[not mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList]</ebTest:VerifyContent>

 </ebTest:TestAssertion>
- <ebTest:TestAssertion>
 <ebTest:VerifyContent ebTest:description="Verify that no soap fault is generated for warnings">/mime:Message[not mime:MessageContainer[1]/soap:Envelope/soap:Body[not soap:Fault]]</ebTest:VerifyContent>

 </ebTest:TestAssertion>
- <ebTest:TestAssertion>
 <ebTest:VerifyContent ebTest:description="Verify that only one Acknowledgment was returned">/mime:Message[[mime:MessageContainer[1]/soap:Envelope/eb:MessageHeader/eb:Acknowledgment]count()=1]</ebTest:VerifyContent>

 </ebTest:TestAssertion>
 </ebTest:GetMessage>
 </ebTest:TestStep>
 </ebTest:TestCase>
 </ebTest:TestSuite>
References

Non-Normative References
[ebTestFramework

]
ebXML Test Framework specification, Version 1.0, Technical Committee specification, March 4, 2003, (OASIS IIC Web site)

[ebMS] ebXML Messaging Service Specification, Version 2.0 http://ebxml.org/project_teams/transport/private/ebXML_Messaging_Service_Specification_v0-21.pdf
[ebMSCOnfTestSuite]
ebXML Messaging Conformance Test Suite, (draft). See: “http://www.oasis-open.org/committees/ebxml-iic/”

[XMLSchema]
W3C XML Schema Recommendation,
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
[ebCPP]
ebXML Collaboration Protocol Profile and Agreement specification, Version 1.0, published 10 May, 2001, http://www.ebxml.org/specs/ebCCP.doc
[ebBPSS]
ebXML Business Process Specification Schema, version 1.0, published 27 April 2001, http://www.ebxml.org/specs/ebBPSS.pdf.

Contact Information

Team Editor

	Name
	Steve Yung (Sun)

	
	Michael Kass (NIST)

	
	

	
	

	
	

	
	

Acknowledgments

The OASIS ebXML-MS Technical Committee would like to thank …

Disclaimer

The views and specification expressed in this document are those of the authors and are not necessarily those of their employers. The authors and their employers specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this design.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

Copyright Statement

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]
January 2002. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document MUST be followed, or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

Intellectual Property Rights Statement

"OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director."
"OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director."
"OASIS has been notified of intellectual property rights claimed in regard to some or all of the contents of this specification. For more information consult the online list of claimed rights."

� By PayloadVerify correct?

�PAGE \# "'Page: '#'�'" �� I think the profile first points to requirements right?

�PAGE \# "'Page: '#'�'" �� I don’t think you need to restate this as it is said already on the top where I highlighted in purple. In addition “the most essential ones” has conflicting sense with “baseline” – “minimum need for business collaboration”. In other words, encryption is also essential but it is not a baseline.

�PAGE \# "'Page: '#'�'" �� I think this sentence is not very meaningful b/c one wants to do test in conformance mode as much as possible b/c it is less costly.

�PAGE \# "'Page: '#'�'" �� What Specification, do you mean the BIP or any Specification or ebMS specification?

�PAGE \# "'Page: '#'�'" �� Same as above comment.

�PAGE \# "'Page: '#'�'" �� Same as above comment.

�PAGE \# "'Page: '#'�'" �� I think this may create difficulty to test driver to be able to handle this kind of semantics exception. Wouldn’t it more appropriate to create different test profile for each of the combination. I think that the association of options to test profile is sort of invalidate test profile concept as well. Normally test profile represents single set of requirements – no more options configurations.

�PAGE \# "'Page: '#'�'" �� Does this suppose to be initiator action (with reflector action inside).

�PAGE \# "'Page: '#'�'" �� If it is PayloadVerifiy, how do you embed that action? I think it is just verify content in the getMessage.

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]
March 2003. All Rights Reserved.
ebXML MS (2.0) Basic Interoperability Profile Test Suite V0.9
Page 4 of 59
Copyright (C) OASIS, 2003. All Rights Reserved.

_1107701187.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

wrong

action

ErrorURL

Notify

Action

invoked

Notify Error

Verification condition:

		Error received before timeout

		correlates with M1

Step 1

Step 2

Step 3

Fig 5. Diagram for Test Case 1.4

M1

(one payload)

Error

_1107701217.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		M2 received before timeout, correlates with M1

		 same payloads in M1, M2

		 No error message generated

Step 1

Step 2

Step 3

Signed M1

(one payload)

Fig 7. Diagram for Test Case 1.6

M2

(one payload)

Synchronized

_1107701249.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Notify M2

Verification condition (failure):

		 More than one M2 received before timeout, correlating with M1

OR: no Ack logged by MSH1 (manual check)

OR: error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Fig 9. Diagram for Test Case 1.7 (failure)

M2

(one payload)

Ack

M1 (resend)

Dummy

Action

invoked

Message to

Mute

action

M2

(one payload)

Mute

invoked

Mute

invoked

Notify M2

_1107701269.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		 Only one correlating M2 received before timeout

		 correlates with M1

		 No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Fig 10. Diagram for Test Case 1.8

M2

(one payload)

Ack

_1107701285.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		 Only one correlating M2 received before timeout

		 correlates with M1

		 No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Fig 11. Diagram for Test Case 1.9

M2

(one payload)

Ack

Synchronized

_1107701231.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		 Only one correlating M2 received before timeout

		 correlates with M1

		 No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Fig 8. Diagram for Test Case 1.7 (pass)

M2

(one payload)

Ack

_1107701202.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		M2 received before timeout correlates with M1

		 same payloads in M1, M2

		No error message generated

Step 1

Step 2

Step 3

Signed M1

(one payload)

Fig 6. Diagram for Test Case 1.5

M2

(one payload)

Unsign

Using

Cert.

_1107701156.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		M2 received before timeout, correlates with M1

		 same payloads in M1, M2

		No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Fig 3. Diagram for Test Case 1.2

M2

(one payload)

_1107701170.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		M2 received before timeout, correlates with M1

		 same payloads in M1, M2

		No error message generated

Step 1

Step 2

Step 3

Fig 4. Diagram for Test Case 1.3

M1

(three payload)

M2

(three payload)

_1107701142.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify

Verification condition:

		M2 received before timeout, correlates with M1

		No error message generated

Step 1

Step 2

Step 3

M1

(no payload)

M2

Fig 2. Diagram for Test Case 1.1

