
 Report

IST 2001-28548 openXchange 27

The algorithm starts with type definitions (1) which lead to the types STS and ActivityDiagram. In block
(2), an empty STS is created and an activity diagram is read as input. The algorithm will eventually add
nodes and edges to the empty STS thereby creating a different representation of the input activity
diagram. The first step is to create a start node in the STS. This start node is processed by calling the
recursive procedure process (3). If a node is processed, the procedure first checks what states are
reachable in the activity diagram from the node it processes by calling the procedure successor.
Dependent on the outcome of this procedure, the algorithm chooses one out of three options (3A, 3B or
3C)

If the successor function returns an and-value or a join-value (block 3A and 3B), the algorithm creates one
new node that is to be added to the STS. In case of an or-value, the algorithm creates several nodes that
are potentially added to the STS. Each node represents a state of the system represented by the activity
diagram. If a new node is created, the function addAndProcess is called (4). This function first checks if
the new node already exists and, if so, if there is exists a transition between the node it is currently
processing and the newly created node.

If both the node and the transition exist, the algorithm does nothing with the new node and does not call
itself recursively (4A). If the new node already exists, but there is no transition between the currently
processed node and the new node, this transition is added. As in the previous case, the algorithm does not
call itself (4B). If both the transition and the node do not exist in the STS, they are both added and the
algorithm continues by processing the new node (4C)

The result if algorithm 1 is a non-deterministic STS. Algorithm 2 can be used to transform a non-
deterministic STS into a deterministic STS. Algorithm 2 uses the following functions in addition to the
functions used in algorithm 1:

• getOutgoingLabels(GR,N) returns the set of labels labeling outgoing transitions of node N in
graph GR

• getDestWithLabel(GR,N,L) returns a set of nodes of graph GR that is reached by taking a
transition from node N with an edge labeled L. Note that in a deterministic graph the set of nodes
always contains one node.

• createOrNode(S) creates a node containing an or-statement and a set of nodes. This new node
represents a “merge” of multiple nodes used to make the STS deterministic. A valid value for the
node could be: OR({CD},{D}).

• hasNode(GR,N) returns True if graph GR has node N. Otherwise returns False
• copyEdgesWithSource(GR,S,N) adds an edge to graph GR with source N and destination D for

every edge of GR with source S and destination D
• removeEdge(GR,S,D,L) removes the edge with source S, destination D and label L from graph

GR
• sourceOf(GR,S) returns those edges of graph GR that have a source S
• destOf(GR,D) returns those edges of graph GR that have a destination D
• removeNode(GR,N) removes node N from graph GR
• removeAllEdgesOfNode(GR,N) removes all edges in graph GR that have N either as a source

or a destination

In algorithm 2, a number of blocks can be identified. These blocks are numbered an treated after the
algorithm is given.

 Report

IST 2001-28548 openXchange 28

UITLEG BLOKKEN

Algorithm 2
GRN :: {activity}+ | or({{activity}+})
GRE :: (source :: GRN,dest :: GRN,label::string)
STS :: ({GRN},{GRE})
DONE :: True | False

graph = read(STS)

DONE = False

WHILE NOT DONE DO
 DONE = true
 FOR EACH n ∈ graph.GRN DO
 labels = getLabels(n)
 FOR EACH l ∈ labels DO
 dest = destWithLabel(n,l)
 IF #(dest) = 1 THEN
 ELSE
 tempnode = createOrNode(dest)
 IF hasNode(graph,tempnode) THEN
 ELSE
 addNode(graph,tempnode)
 END IF
 addEgde(graph,n,tempnode,l)
 FOR EACH d ∈ dest DO
 copyEdgesWithSource(graph,d,tempnode)
 removeEdge(graph,n,d,l)
 END FOR
 DONE = False
 END IF
 END FOR
 END FOR
END WHILE

DONE = False
WHILE NOT DONE DO
 DONE = True
 FOR EACH n ∈ graph.GRN DO
 IF (#(sourceOf(graph,n)) = 0 AND n != End) OR (#(destOf(graph,n))=0 AND n != Start) THEN
 removeNode(graph,n)
 removeAllEgdes(graph,n)
 DONE = False
 ELSE
 END IF

 Report

IST 2001-28548 openXchange 29

Once both original Activity Diagrams have been converted to two deterministic STS diagrams, the
intersection can be calculated. This is done by “walking” through the two deterministic graphs and creating
a new graph representing the paths that can be taken in both input STS diagrams.

In addition to the functions used in algorithm 1 and algorithm 2, algorithm 3 uses the following functions:

• createNode(S) creates a node containing S, where S represents a set of nodes from an activity
diagram (or GRN)

• getNode(GR,S) returns the node of graph GR containing set S

Algorithm 3 is presented below. The blocks identified in the algorithm are treated after the algorithm is
given.

Algorithm 3
GRN :: {activity}+ | or({{activity}+})
GRE :: (source :: GRN,dest :: GRN,label::string)
STS :: ({GRN},{GRE})
DONE :: True | False

graphA = read(STS)
graphB = read(STS)
graphC = new(STS)

tempnode = createNode(Start)
addnode(graphC, tempNode)
currA = destWithLabel(graphA,Start,’’)
currB = destWithLabel(graphB,Start,’’)
currC = getNode(graphC, Start)

intersect(currA, currB, currC, ‘’)

FUNCTION intersect (A :: GRN, B :: GRN, C :: GRN, l :: Label)
outA = getOutgoingLabels(graphA, A)
outB = getOutgoingLabels(graphB, B)
outC = outA ∩ B
IF out C = ∅ THEN (* do nothing *)
ELSE
 tempnode = createNode(outC)
 IF hasNode(graphC, tempnode) THEN
 addEdge(graphC, C, tempnode, l)
 ELSE
 addNode(graphC, tempnode)
 addEdge(graphC, C, tempnode, l)
 FOR EACH o ∈ outC DO
 currA = destWithLabel(graphA,currA,o)
 currB = destWithLabel(graphB,currB,o)
 currC = getNode(graphC,outC)
 intersect(currA, currB, currC, o)
 END FOR
 END IF
END intersect

 Report

IST 2001-28548 openXchange 30

UITLEG BLOKKEN

The result of algorithm 3 is a deterministic STS that represents the match of the original two activity
diagrams. If the resulting STS contains an End-node, the match is successful. The final step is to convert
the newly created STS into an activity diagram. This can be done in a straightforward way by creating an
activity for every node of the STS that represents one activity node (e.g. A and B in the next example)
and creating multiple activities and a choice node for every node in the STS that represent multiple
activities (e.g. CD).

It is also possible to create an algorithm that detects if there are dependencies between each pair of
activities and reintroduce parallelism if possible. Creating such an algorithm is not part of this thesis.

4.4.4 Example
In the following example, two activity diagrams, A and B are being compared. This comparison will
eventually lead to a third activity diagram C that represents the matching of A and B. Both diagrams are
shown in figure 4.8 and contain the same activities (or nodes), but have a different choreography. All
activities in both A and B are atomic. The first step is to translate the activity diagrams into STS,
according to algorithm 1. The result of the transformation is shown as STS A and B in figure 4.9.
Removing the wait states results in STS A’ and STS B’.

A

B

C D

E

F

Activity diagram A

Wait_2Wait_1

A

B

C

D

E

F

Activity diagram B

Wait_2Wait_1

Figure 4.8: Example activity diagram

 Report

IST 2001-28548 openXchange 31

[d]

Start

Wait_1D

CD

B

A

[a]

[b]

CWait_2

CE

Wait_1E

F

Wait_1Wait_2

End

[d][c]

[e]

[e] [c]

[f]

[e]

[e]

[c]

Start

FE

CE

B

A

[a]

FWait2

C

Wait_1E

D

Wait_1Wait_2

End

[e][c]

[f] [c]

[e] [f]

[b]

[d]

[e]

Start

D

CD

B

A

[a]

[b]

C

CE

E

F

End

[d][c]

[d] [e]

[e] [c]

[f]

[e]

[e]

[c]

Start

FE

CE

B

A

[a]

F

C

E

D

End

[e][c]

[f] [c]

[e] [f]

[b]

[d]

[e]

STS A STS B STS A* STS B*

Figure 4.9: Non-deterministic STS

The newly created STS diagrams A’ and B’ can be non-deterministic. In fact, STS A’ is non-
deterministic (e.g. node CE has two outgoing transitions labelled e). Using algorithm 2, the STS diagrams
are transformed into STS A’’ and STS B’’, shown in figure 4.10 that are both deterministic.

Start

FE

CE

B

A

[a]

C

E

D

[e][c]

[f] [c]

[e] [f]

[d]

STS B'’

[b]

F

End

[e]

Start

D

CD

B

A

[a]

[b]

CE

E

[d][c]

[e]

[e] [c]

OR(CD,C)

OR(DF)

[d] [c]

[d]

[d]

End

[f]

STS A'’
Figure 4.10: Deterministic STS

Using STS A’’ and STS B’’ as input, algorithm 3 creates the intersection of these diagrams, represented
as STS C in figure 4.11. STS C can be transformed back into an activity diagram. Using the
“straightforward” method, the result is activity diagram C. If a better algorithm is used that can detect
parallelism, STS C can be transformed into activity diagram C’

 Report

IST 2001-28548 openXchange 32

Start

E

CE

B

A

[a]

F

C

D

End

[e][c]

[c]

[f]

[b]

[d]

[e]

STS C

E

B

A

F

C

D

Activity diagram C’

E

B

A

F

C

D

Activity diagram C

EC

Figure 4.11: Result of matching

4.4.5 Transformation to ebXML
In ebXML, binary collaborations expressed in UML activity diagrams. The algorithm designed for
matching activity diagrams can therefore be used to match binary collaboration. The solution described in
this chapter can be used to match to structure of collaborations, but in order to come to an useful match,
more has to be taken into consideration.

In ebXML, activities in a Binary collaboration are either nested collaborations or Business Transaction
Activities. Neither of these two are atomic, so in order to use the algorithm, the following conversions
have to be done:

• For each activity A that contains a nested collaboration, the nesting must be removed. This is
done by connection the all incoming transitions of A to the first normal node in the nested
diagram. Each transition in the nested diagram that leads to an end state should be connected to
all outgoing transitions of A.

• If a Business Transaction Activity (BTA) consists of the exchange of more than one document,
that BTA must be replace by a sequence of BTA’s, each consisting of the exchange of exactly
one document. If the replace BTA contains pre conditions, these pre conditions are added to the
first BTA in the sequence. If the BTA contains post conditions, these post conditions are added
to the last BTA in the sequence.

Besides the matching of structure, also content has to be matched. The following chapter treats the
matching of content in ebXML.

monica.martin
For each activity A that contains a nested collaboration, the nesting must be removed. This is
done by connection the all incoming transitions of A to the first normal node in the nested
diagram. Each transition in the nested diagram that leads to an end state should be connected to
all outgoing transitions of A.
· If a Business Transaction Activity (BTA) consists of the exchange of more than one document,
that BTA must be replace by a sequence of BTA’s, each consisting of the exchange of exactly
one document. If the replace BTA contains pre conditions, these pre conditions are added to the
first BTA in the sequence. If the BTA contains post conditions, these post conditions are added
to the last BTA in the sequence.

