Security CPPA/MSH coordination issues

21.
Joint issues

21.1.
Combined schedules

21.2.
Feature lists for v1.1

31.
MSH Issues

31.1.
Define how (transport) encryption works

31.2.
Support multiple digital signatures

41.3.
Support for Large Messages using HTTP compress function

41.4.
Provide MultiCast support

41.5.
Clarification of use of Message Ack (signed/unsigned)

62.
CPP/A Issues

62.1.
Processing rules(v1.1)

62.2.
SOAP-SEC extensions and signatures in ebXML messages(v1.1)

62.3.
Mutual authentication (v1.1)

62.4.
Key management (v1.1)

62.5.
Intermediaries (v2.0)

62.6.
Transport compression (v2.0)

62.7.
Signing message parts (v2.0)

62.8.
Nonrepudiation (v??)

72.9.
Meaning of signals (v1.1)

1. Joint issues

1.1. Combined schedules

1.2. Feature lists for v1.1

1. MSH Issues

1.1. Define how (transport) encryption works
IssueID 1 Request Date 7/16/2001

Request Source Face to Face Source Reference

Change Type MinorTechnical Disposition Disposition Date

Requested By Iwasa Email

Source Reference:

Issue- Define how encryption works
Current Message Service specification does not define how to apply encryption function

The CPP/CPA specification enforces to use SSL as transport level’s security function with HTTP, but it doesn’t define neither SSL version nor

algorithm.

This might causes security problem, because SSL security level will be the lowest level when the negotiation was failed Proposal

For HTTP binding, define detailed conditions of SSL such as:

SSL 3.0 or TLS 1.0 ?

Certification Requirement

Both sender side and receiver side? Or only receiver side?

What algorithms are used for key, encryption and hash?

For SMTP binding, some other definition would be required

*Should these definitions be done by CPP/CPA?

Notes

Line Number: Start End Section

0 0 TBD

Friday, August 24, 2001 Page 1 of 38

1.2. Support multiple digital signatures
IssueID 2 Request Date 7/16/2001

Request Source Face to Face Source Reference

Change Type MinorTechnical Disposition Disposition Date

Requested By Iwasa Email

Source Reference:

Issue Support multiple digital signatures

In the current Message Service specification, a Message Service Handler is required to support only one digital signature

However real business systems require multiple digital signatures

Independent signatures for header (SOAP Env.) and payload

Independent signatures for each payload in multiple payloads

Proposal

Spec should describe that multiple digital signatures should be supported

Notes

Line Number: Start End Section

0 0 TBD

Friday, August 24, 2001 Page 2 of 38

1.3. Support for Large Messages using HTTP compress function
IssueID 5 Request Date 7/16/2001

Request Source Face to Face Source Reference

Change Type MajorTechnical Disposition Disposition Date

Requested By Iwasa Email

Source Reference:

Issue Support for Large Messages using HTTP compress function

Current Message Service specification lacks consideration for large messages

ebXML application can compress its payload before message transfer, but this causes interoperability problem

Proposal

HTTP has compress function (Content-encoding header). So define how to use the HTTP’s compress function

Some other consideration is required for SMTP

Notes

Line Number: Start End Section

0 0 TBD

Friday, August 24, 2001 Page 5 of 38

1.4. Provide MultiCast support

IssueID 8 Request Date 7/16/2001

Request Source Face to Face Source Reference

Change Type MajorTechnical Disposition Disposition Date

Requested By Iwasa Email

Source Reference:

Issue Provide MultiCast support

Multicast is useful function to distribute same message to many destinations

Standard MOM specifications (ex. JMS, OMG Notification) has the multicast function (publish/subscribe)

But current Message Service lacks this function

Solution

Define MSH API with multicast message function

Notes

Line Number: Start End Section

0 0 TBD

Friday, August 24, 2001 Page 8 of 38

1.5. Clarification of use of Message Ack (signed/unsigned)

IssueID 14 Request Date 7/30/2001

Request Source e-mail Source Reference

Change Type Editorial Disposition Disposition Date

Requested By Arvola Chan Email

Source Reference:

Issue Clarification of use of Message Ack

Arvola -

Section 8.7 does not clearly indicate the circumstances under which the ackRequested attribute should be set (to Signed or Unsigned). Is this

governed by the ReliableMessaging and NonRepudiation element for the DocExchange associated with the DeliveryChannel that is being used? In

particular, when an error is encountered in processing a message, what should be the strategy for setting the ackRequested attribute in the error

message? In other words, under what circumstances, if any, are error messages to be sent reliably? Thanks,-Arvola

David Burdett:

Setting the ackRequested to Signed or Unsigned is a decision that the designer (and/or implementer) of the business process makes when they design

or build a business process collaboration or business process transaction. Factors that need to be considere include (IMO):

The natuure of the business process/transaction - e.g. payments probably need to be secure

The require ments of the individual trading partners

I think what would be really useful is to have a guide that describes how to design a business process/transaction using ebXML Messaging. Do you

agree? If so hould it be in the 1.1 spec or something separate.I think that if an error is dicovered then including the ackRequested set to true on the

error message runs the risk of a never ending series of messages. The only use cases to consider are where a message is being sent reliably in which

case ...

If the message that was in error has ackRequested set to Signed/Unsigned and the error message sent in return is lost, then the sender of the original

message will resend it which will cause the error message to be resent - see example 1 below

If the message that was in error has ackRequested set to None (e.g. it is a synchronous resposne) then sending the error message with Ack Requested

set to Signed/Unsigned makes sense otherwise the sender of the error message will not know if the message was delivered - see example 2 below

EXAMPLE 1Message (with error)(AckRequested=S/U)----------------------><---------------ErrorMessage (Includes Acknowledgment

element)EXAMPLE 2Message (no errors)(AckRequested=S/U)------------------------><-------Message (with error) (Includes Acknowledgment

element)Error Message (AckRequested=S/U)-----------------------------><---------------Message (Includes Acknowledgment element only)A general

rule (it's somewhere in the spec but I can't immediately find where) says that if you find an error in an error message then you don't respond with

another error message and sort out the problem by some other means.

Michael Wang

Take you example further by taking 'deliverySemantics=OnceAndOnlyOnce'

Friday, August 24, 2001 Page 14 of 38

for both examples, then should the Initiator finally respond with a plain

acknowledgement message to the Responder?

EXAMPLE 1

Message (with error)(AckRequested=S/U)---------------------->

<---------------ErrorMessage (Includes Acknowledgment element)

Acknowledgement message (without Acknowledgement element) -------->

EXAMPLE 2

Message (no errors)(AckRequested=S/U)------------------------>

<-------Message (with error) (Includes Acknowledgment element)

Error Message (AckRequested=S/U)----------------------------->

<---------------Message (Includes Acknowledgment element only)

Acknowledgement message (without Acknowledgement element) -------->

According to the spec (section 10.3.3 line 1811-1813) that acknowledgement

message MUST be generated when 'deliverySemantics=OnceAndOnlyOnce'.

If this is the case then as you have also pointed out that one runs the risk

of a never ending series of messages (or unnecessary ack messages).

Now, if the final round of ack messages are not required then I think

it would help by clarifing what kind of messages need to be explicitly

acked when 'deliverySemantics=OnceAndOnlyOnce'. e.g. only Request

and Response messages require acks and errors, signals and acks

themselves do not require to be acknowledged.

Notes

David ...

2. CPP/A Issues

2.1. Processing rules(v1.1)

2.2. SOAP-SEC extensions and signatures in ebXML messages(v1.1)

2.3. Mutual authentication (v1.1)

2.4. Key management (v1.1)

2.5. Intermediaries (v2.0)

2.6. Transport compression (v2.0)

2.7. Signing message parts (v2.0)

2.8. Nonrepudiation (v??)

2.8.1. Nonrepudiaiton of parts?

2.8.2. By whom (application, msh)?

2.8.3. non-repudiation of receipt (NRR)

2.9. Meaning of signals (v1.1)

