
Overview of Reliable Messaging

(commented by Jacques Durand: look for “Jacques>>>”)

(replies by Marty Sachs, labelled MWS:

Martin W. Sachs

1 General Concepts

· Sent message is guaranteed to be delivered all the way to a persistent store at the receiving application.

· Storage of the message in the persistent store constitutes delivery to the application for this purpose.

· Message in persistent store must survive events such as software failures and system crashes and must be able to be processed when recovery from the event has taken place.

· Reliable recovery from major system failures, including natural disasters, is well-understood technology.

· The application is relieved of the responsibility to deal with timeouts and retries.

· Semantics

· OnceAndOnlyOnce

· exactlyOnce

· onceAndOnlyOnce semantics

· onceAndOnlyOnce: Message will never be delivered more than once

Jacques>>> We know that guaranteeing “at least once” in a finite time is not possible. But I believe from a practical point of view, it is also hard to *really* guarantee “never more than once”… The

quality of this test will depend on how long received messages are kept (or their ID) in the receiver persistence store (when ID-based duplicate check is used). This “at most once” is probably yet another concept that needs to be refined in a more quantitative way, subject to QoS and MSH configuration.

MWS: In practice, the time to keep the message IDs for the duplicate check can be bounded by the time to complete the defined maximum number of retries. The number of retries and retry interval are provided in the CPA, so both parties know it. There are some open issues with the MSG team regarding definition of the start of the retry interval and the need to expose the timeout for receipt of the ACK.

Jacques2>>> that indeed is sufficient when the cause of duplicates is the sender retry mechanism. I was thinking of odd cases where a message would be stuck in some intermediate router out there, and suddenly released (for the second time) 2 weeks later…

· Delivery failures are permitted

· The receiving message service must send an acknowledgment to the sending message service after it persists the message.

· Receiving message service must not make the message available to the application if it determines that it is unable to send the acknowledgment (e.g. it detects network failure). The reason is that the sending message service will probably declare delivery failure (see below). Instead, the receiving message service should delete the message from the persistent store.

Jacques>>> isn’t this behavior too extreme? It is in fact impossible for the receiver to always be sure the sender got the ack … unless we use in turn RM for acks… So it might just be simpler to rely on the standard resend+eliminate behavior you concede in your NOTE below. In fact, the application may want to get the message even if the sender MSH never gets the ack: we can well imagine scenarios where the receiver app will send later an app-level “receipt” (e.g. RosettaNet Receipt), that will be well received by the original sender app, and allows business to proceed, even so the original sender MSH believes one of its message was never delivered…

MWS: Your point directly above is an argument for not using reliable messaging at all. It is true that in many case, best effort is sufficient. Reliable messaging reduces the frequency of cases in which the message sender cannot tell whether the recipient received the message.

MWS: The point that I was making is that if the recipient of the message KNOWS that it is unable to send the acknowledgment, it should not turn the message over to the application because the sender believes that the message was not received. If the sender has not exhausted the maximum number of retries, it will re-send the message. The issue is not whether the receiving application wants to receive the message anyway. The issue is that the main promise of reliable messaging is that the sender and recipient will always have the same understanding of whether the recipient did or did not receive the message.

Jacques2>>> I see two nuances of RM shaping up here (both trying to redefine RM based on the ugly truth that “exactly once” is never always possible)… mine is that RM is merely another QoS level that increases the delivery quality: a protocol that allows the percentage of “exactly once” deliveries to be significantly higher (hopefully close to 100%) than what would be observed using the underlying transport layer alone. Yours is about a common understanding of the delivery status between sender and receiver (it is then a contract between message transport/MSH on one side, and the apps on the other side).

I still believe the only way to guarantee yours, is actually to ack the acks!

So it would go like that:

Sender MSH:”I have sent a message, let me know if you got it”

Receiver MSH: “I got it, but I won’t pass it to my app until you tell me you know that, so you will not notify a delivery failure to yours”

Sender MSH: “Got your ack, here is mine. You can pass the message to your app.”

Receiver MSH (to itself): “done.”

Note that this only guarantees that the scenario: < “message passed to receiver app, yet delivery failure passed to sender”>, never occurs. It may still allow for: <” message NOT passed to receiver app, yet delivery failure NOT passed to sender”>, as the ack of ack may be lost!

Bottom line: either way we need to refine the definition of RM in more sophisticated QoS terms…

· NOTE: The presence of multiple hops complicates this issue since the sending and receiving message services may not always both see network failure. However, if the receiving message service is unable to send the acknowledgment but the sending message service does not detect the network failure, it will simply retry until the number of retries is exhausted.

· Sending message service retries (preferably a defined number of times) on failure to receive ACK within a specified time.

· Retries lead to possible duplicates, which must be detected and eliminated by the receiving message service. When a duplicate is detected, it is acknowledged.

· Delivery failure is declared if

· Sending message service fails to receives an acknowledgment after exhausting the permitted number of retries

· Sending message service detects a network failure.

Jacques>>> probably subsumed by the first case? (as the retries are governed by timing, the ultimate criterion is reception of an ack or not within that time)

MWS: If the network is physically down, the sending MSH knows it. There is no reason not to make use of this information rather than fruitlessly retrying when the sending MSH cannot send the message and knows it.

Jacques2>>> makes sense. Yet the retries could be used precisely to test the availability of network (unless we know somehow it is down for beyond the retries)

· If a reasonable number of retries is defined, delivery failure should be a rare event, the result of a serious failure rather than the usual causes of message losses in the network.

· Sending message service notifies of sending application of delivery failure

· Keeping delivery failure notification within the sending system assures that it is reliable

· The combination of acknowledgments and delivery failure notification assures that the sending application is never in doubt about the status of the message at the recipient. Delivery failure notification permits the sending application to take corrective application-level action and later re-send the message without concern that it is sending a duplicate at the application level.

Jacques>>> still, there is always the possible scenario where delivery failure is notified to sender app and yet the message has reached the receiver app, while the receiver MSH could not detect the ack failure to reach the sender (especially possible in case of multi-hop).

MWS: I agree. I mentioned this point below.

Elimination of the in-doubt situation is the most important benefit of reliable messaging.

Jacques>>> In many cases a strong “reduction” of the in-doubt situation is probably the best we can guarantee... The “degree of reduction” of doubt may actually depend on the transport topology and protocols, and may be 100% in some configurations. This may sound pessimistic, but RM looks more and more like a quantitative QoS concept to me.

MWS: I agree.

· There may be pathological cases, however, where the message was delivered although the sending application is assured that it was not delivered. After receiving a delivery failure notification the sending application may wish to confirm the status of the message at the recipient outband (e.g. phone call).

· exactlyOnce semantics

· The message will always be delivered to the persistent store at the receiving application

· Duplicates cannot occur

· No acknowledgments or retries are necessary

· The message will be "eventually" delivered. No maximum time is guaranteed

· Under the covers, there are aspects of onceAndOnlyOnce since messages may be lost any time the path traverses a network link.

· Under the covers, an implementation may deal with pathological cases

· Example: network failure persists for an unreasonable length of time (e.g. natural disaster)

· Treatment of the pathological cases is implementation-dependent.

2 Timeout issues

· The timeout used by the sending message service must take into account the number of hops since multiple hops extend the time to allow for an ACK to return (both network delays and the delays through the intermediaries).

· This means that the timeout must be a configuration parameter, not a matter internal to the message service implementation. The message service implementation does not know how many hops will be traversed.

· If reliable messaging is strictly hop by hop, with no end to end issues, then the sending message service may always use a timeout that includes only the round trip network delay.

· If the sending message service receives an acknowledgment after its timeout expires, it may have already retried the message. This does not seem to be a problem. However, the design of the message service must take into account that it might receive more than one acknowledgment to the same message.

· The maximum time before the sending message service declares a delivery failure depends on its timeout, the number of retries, and the defined retry interval. This time is currently ambiguous because the timeout is not defined and because the specification does not say whether the retry interval begins when the message is sent or when the timeout expires. It is not clear whether this ambiguity matters but it would matter if the other party needs to know what it is. It may also be a problem if the relationship between this time and persistDuration needs to be understood by both message services.

Jacques>>> The role of persistDuration as defined in the MS spec (10.2.8) seems unclear, as it is before all a receiver concept, and yet is mentioned as used by the sender too, but in vague terms. Yet seems unrelated to timeouts.

MWS: I agree that more definition work is needed for persistDuration.

· If the maximum time before declaring a delivery failure is not well defined, the sending application does not know how long to wait for success or delivery failure notification. This may not be a problem since the MSH API can (should?) define a message status query that the application can issue.

rel.msg.overview

10/02/01 3:15 PM
65
2
TPAstd.doc

10/3/01 11:46 AM

