Correspondence Between Messaging and CPA Parameters

My comments are in Blue – Cliff

My comments are highlighted - Hima
Message Header Element/Attribute
Corresponding CPP/A Element/Attribute

PartyId element
PartyId element

Role element
Role element

CPAId element
cpaid attribute in CollaborationProtocolAgreement element

ConversationId element
No equivalent; should be generated above the MSI.

Service element
Service element

Action element
action attribute in ActionBinding element

TimeToLive
Computed as the sum of Timestamp (in message header) + PersistDuration (under DocExchange/ebXMLBinding/ReliableMessaging)

MessageId
No equivalent; generated by the MSH per message

Timestamp
No equivalent; generated by the MSH per message

RefToMessageId
No equivalent; passed in by the application in most cases where applicable

SyncReply
syncReplyMode attribute in BusinessProcessCharacteristics element; the SyncReply element is included if and only if the syncReplyMode attribute is not “none”

DuplicateElimination attribute in QualityOfServiceInfo element
duplicateElimination attribute in MessagingCharacteristics element; the QualityOfServiceInfo element is included if the duplicateElimination attribute under MessagingCharacteristics is set to “true”, or if it is set to “perMessage” and the application indicates to the MSH that duplicate elimination is desired

Manifest element
Packaging element; each Reference element under Manifest should correspond to a SimplePart that is referenced from one of the CompositeList elements under Packaging

xlink:role attribute in Reference element
No equivalent; either this has to be passed in by the application or the SimplePart element may have to be extended with an xlink:role attribute

AckRequested element
ackRequested attribute in MessagingCharacteristics element; an AckRequested element is included in the SOAP Header if the ackRequested attribute is set to “always”; if it is set to “perMessage”, input passed to the MSI must be used to determine if an AckRequested element needs to be included; likewise, the signed attribute under AckRequested will be appropriately set based on the ackSignatureRequested attribute and possibly determined by input passed to the MSI

MessageOrder element
messageOrderSemantics attribute in ReliableMessaging element; the MessageOrder element will be present if the AckRequested element is present, and if the messageOrderSemantics attibute in the ReliableMessaging element is set to “Guaranteed”

ds:Signature element
ds:Signature will be present in the SOAP Header if the nonRepudiationOfOrigin attribute in the BusinessProcessCharacterisitcs element is set to “true”. The relevant parameters for constructing the signature can be obtained from the NonRepudiation element.

Other Implicit Parameters
Corresponding CPP/A Element/Attribute

Retries (not in Message Header) but used to govern Reliable Messaging behavior in sender
Retries element (under ReliableMessaging element)

RetryInterval (not in Message Header) but used to govern Reliable Messaging behavior in sender
RetryInterval element (under ReliableMessaging element)

PersistDuration (not in Message Header) but used to govern Reliable Messaging behavior in receiver
PersistDuration element (under ReliableMessaging element)

Endpoint (not in Message Header) but used for sending SOAP message
Endpoint element (under Transport); the type of message being sent must be passed in to the MSI; an appropriate endpoint can then be selected from among the Endpoints included under the Transport element

Use Service & Action to determine the corresponding DeliveryChannel
DeliveryChannel

Use DigitalEnvelope to determine the encryption algorithm and key
DigitalEnvelope

Use NonRepudiation to determine signing certificate(s) for request and optionally for response when syncReplyMode is specified
NonRepudiation

Use Packaging to determine how payload containers ought to be encapsulated. Also use Packaging to determine how an individual SimplePart ought to be extracted and validated against its schema.
Packaging

Use TransportSecurity to determine certificates to be used by server and client for authentication purposes.
TransportSecurity

Use the DeliveryChannel identified by defaultMshChannelId for standalone MSH level messages like Acknowledgment, Error, StatusRequest, StatusResponse, Ping, Pong, unless overridden by OverrideMshActionBinding

I like this but it needs to be flushed out more for Acknowledgements. Since Acks are used for Nonrepudiation of receipt, they will be tied to the reply of a message and the reply cert (responderCerificateRef ?) to be used for signing.
defaultMshChannelId attribute in PartyInfo element, and OverrideMshActionBinding

Approach For Packaging An Outbound ebXML Message (Not Normative)

1. Assume the From Party, From Party Role, To Party, To Party Role, CPAId, ConversationId, RefToMessageId (if applicable), Service, Action parameters are passed in by the middleware above the Message Service Interface (MSI). The “per message” characteristics for the message, i.e., whether Acknowledgement should be requested, whether the Acknowledgment has to be signed or unsigned, whether duplicate elimination is desired, must also be passed in through the MSI, if these characteristics are identified as being “perMessage” in the CPA. Also assume that this message is not a response to a synchronous request message which has to be treated slightly differently.

2. Use the CPAId to look up the CPA.

3. Verify that the identified CPA is between the From Party and the To Party.

4. Use the Service and Action parameters to determine the DeliveryChannel
.

5. Look up the Transport and DocExchange associated with the DeliveryChannel.

6. Populate the MessageHeader with the From Party, From Party Role, To Party, To Party Role, CPAId, ConversationId, Service, Action parameters.

7. Fill in the RefToMessageId within MessageData, if applicable.

8. Generate a MessageId and Timestamp for MessageData.

9. Look for the (optional) ReliableMessaging element under ebXMLBinding under DocExchange
. If Reliable Messaging is enabled (i.e., if the element is present), compute a TimeToLive for the message using the Timestamp generated in #8 above, plus Retries and RetryInterval (under ReliableMessaging). That is, TimeToLive = Timestamp + (Retries + 1) * RetryInterval. If Reliable Messaging is not being used, leave TimeToLive as unspecified.

10. From the MessagingCharacteristics of the DeliveryChannel, determine if a QualityOfServiceInfo element needs to be included. That is, if duplicateElimination in MessagingCharacteristics is “always”, or if duplicateElimination in MessagingCharacterisitcs is “perMessage” and information passed to the MSI indicates that the application desires duplicate elmination, then include the QualityOfServiceInfo element with the duplicateElimination attribute set to “true”. Otherwise, do not include the QualityOfServiceInfo element.

It should be noted that Reliable messaging must always have duplicate elimination and acks. They can’t be per message. The signing of the ack can be per message.

11. From the BusinessProcessCharacteristics of the DeliveryChannel, determine if a SyncReply module should be created in the SOAP Header, i.e., if syncReplyMode is not set to “none”, and if the Transport protocol is HTTP.

12. From the MessagingCharacterisitcs of the DeliveryChannel, deterime if an AckRequested module should be created in the SOAP header. If the ackRequested attribute is set to “perMessage”, use the information passed in through the MSI to make this determination. If the ackSignatureRequested attribute is set to “perMessage”, use the information passed in throught the MSI to determine if the requested signature should be signed. Otherwise, set the signed attribute in the AckRequested element according to the value of ackSignatureRequested (i.e., “true” for “always”, “false” for “never”).

13. From the ReliableMessaging element under ebXMLBinding under DocExchange, determine if a MessageOrder module should be created (i.e., if the messageOrderSemantics attribute is set to “Guaranteed”).

14. Use Service and Action to determine the corresponding Packaging. Identify all of the expected SimpleParts and verify that these have been passed in through the MSI. Assign a Content-ID for each of the payload containers for the ebXML message. Create a Manifest for the SOAP Body, including a Reference element to correspond to each of the payload containers.
Note: If multiple SimpleParts are composed to form a multipart, the actual number of payload containers in the ebXML message may be less than the number of SimpleParts. The actual number of payload containers can be determined by the number of constituents used within the last Composite element within the CompositeList associated with the Packaging. In that case, the Schema element under the Reference that corresponds to the composite payload can be omitted. Alternatively, it is possible to include one Schema element for each of the SimplePart that is used as a direct or indirect constituent of the composite payload. If the Packaging calls for encryption and/or compression (logically above the MSH level), then the corresponding composition/encapsulation must be performed prior to the application of XML digital signature at the MSH level. The DigitalEnvelope element within the ebXMLBinding element can be used to determine the encryption algorithm and encryption (public) key.

15. Create a SOAP message with attachments multipart structure using the SOAP envelope, the payloads passed in through the MSI, plus the Content-Ids assigned in #14.

16. If nonRepudiationOfOrigin (under BusinessProcessCharacteristics) is set to “true”, look up the certificate to be used for creating the digital signature (using initiatorCertificateRef under NonRepudiation). Create a digital signature that covers each of the References identified in the Manifest and make it part of the SOAP Header.

17. Use the Transport associated with the DeliveryChannel to determine the SOAP binding (HTTP vs SMTP) and the associated endpoint. Determine if secure transport is required from BusinessProcessCharacteristics (if secureTransport is set to true). If so, use the TransportSecurity element under Transport to determine the server certificate and optional client certificate for server/mutual authentication.

Approach For Unpackaging An Inbound ebXML Message (Not Normative)

#1 really has to happen after getting the delivery channel. Since XMLDSIG doesn’t require the passing of KeyInfo, you don’t know what key is used for validating the signature. Instead you must look up the delivery channel for the received message and get the NonRepudiation cert. How is #1 different from #8?

Avoid #16 and saying how encryption works. It should not even be mentioned how a MSH would do decryption on payloads since it is unclear if the sending MSH did the encrypting.

1. Perform signature verification to ensure that the message has not been corrupted in transit, if a ds:Signature element is present in the the SOAP Header.

2. Extract the From Party, From Party Role, To Party, To Party Role, CPAId, ConversationId, RefToMessageId, Service, Action information from the SOAP Header.

3. Look up the CPA using the CPAId.

4. Verify that the identified CPA is between the From Party and the To Party.

5. Use the Service and Action parameters to determine the DeliveryChannel.

6. Look up the Transport and DocExchange associated with the DeliveryChannel.

7. Determine the communication protocol and endpoint specified in the Transport.

8. Verify that the message has been signed with the expected signing certificate.

9. Verify that the message has arrived on the expected channel.

10. Verify that SyncReply (if present) is consistent with the CPA.

11. Verify that duplicateElimination under QualityOfServiceInfo (if present) is consistent with the CPA.

12. Verify that AckRequested (if present) is consistent with the CPA. If a signed Acknowledgment is requested, make sure that it is consistent with the CPA too.

13. Verify that TimeToLive (if present) is less than Timestamp + PersistDuration and that TimeToLive has not expired.

14. Verify that MessageOrder is consistent with the CPA.

15. Verify the Manifest (if present). Make sure that all of the body parts identified in the Manifest are present in the payload container(s).

16. Look up the Packaging associated with the DeliveryChannel. Reverse the application level composition/encryption on the SimpleParts done by the prior to the application of the XML digital signature. Whereas the public key used by the sender for encryption can be determined from the appropriate DigitalEnvelope element, the corresponding private key must somehow be located. How this is done is implementation dependent and outside the scope of this specification
.

17. Do further processing depending on whether the incoming message is:

· A Stand-alone MSH-level message (Acknowledgment, Error, StatusRequest, StatusResponse, Ping, Pong).

· A reliably delivered message requiring synchronous response. (Duplicate detection and retransmission of persisted “first response”, withholding to guarantee message order, and the return of an Acknowledgment message may have to be performed.)

· A reliably delivered message that requires asynchronous response. (Duplicate detection and retransmission of persisted “first response”, withholding to guarantee message order, and the return of an Acknowledgment message may have to be performed.)

· A Best-Effort message that requires synchronous response.

· A Best-Effort message that requires asynchronous response.

18. Use the ConversationId, Service, Action (perhaps include the corresponding ActionContext element also) to dispatch the received message to the application, if this is an application level message (as opposed to a MSH level message).

General comments:

I noticed that there is a “responderCerificateRef” for reply messages but this is only for signing. What about encrypting the reply?

There needs to be some clarity on what delivery channel to use for:

1. sync message returned with an ack. Use the reply signature in the delivery channel but what encryption cert (if any).

2. sync ack reply without a reply message, what delivery channel, the default or use the responderCerificateRef? What about encryption?

3. Async ack, uses the default and not the responderCerificateRef?

Schema questions:

Some of the things that where missing in the 1.0 that we made up in our implementation was the “type” of ssl provided in the connection. Level of encryption (strong/weak) , mutual authentication? Etc.

PersistDuration really needs to be outside of the ReliableMessaging element since it also applies for non RM messages that use Duplicate elimination. How long should a receiving MSH handle (persist) the duplicates.

That’s all let me know if any don’t make sense.

Cliff

�PAGE \# "'Page: '#'�'" ��We need to clarify here, what parameters to use in the ActionBinding and/or ActionContext.

�PAGE \# "'Page: '#'�'" �

�PAGE \# "'Page: '#'�'" ��Want to mention that if looking up a certificate to be used for non-repudation, certificate-ref would

point to a certificate in senders own PartyId element. So if sending to a Party A using non-repudiation and the initiatorCertificateRef says “PartyBNRCert”, this Certificate would exist in PartyB’s PartyInfo

Same would go for ClientCertificate to be used in SSL for mutual authentication

�PAGE \# "'Page: '#'�'" ��We are missing the security parameters for SSL

�PAGE \# "'Page: '#'�'" ��If Signature element does not have the KeyInfo, we don’t have a way of finding out the certificate to be used for Valiation. I see that NonRepudiation element has initiatorCertificate and responderCertificate. My assumption is initiatorCertificate is for letting MSH to know which certificate to use to sign and responderCertificate is the one used in case reponse needs to be signed. In this case, do we need an option to say, “include the keyinfo” in the generated signature under non-repudiation.

�PAGE \# "'Page: '#'�'" �� This is with the assumption that encryption is only done on the payloads. Is that the right assumption?

