OASIS ebXML CPP/A Technical Committee

12/14/2001

[image: image1.wmf]Figure 2: Overview of Collaboration-Protocol Profiles (CPP)

What

Business

capabilities

it can perform

when conducting a

Business

Collaboration

 with

other parties

Party

 A

Party’s

 information

-

Party

 name

- contact info

Transport Protocol

Transport Security Protocol

Messaging Protocol

Link to Process-

Specification document

Time out/Retry

-etc.

CPP

Describe

Build

Collaboration-Protocol Profile and Agreement Specification

Version 1.01
OASIS ebXML Collaboration Protocol Profile and Agreement Technical Committee
24 December 2001

1 Status of this Document

This document specifies an ebXML SPECIFICATION for the eBusiness community.

Distribution of this document is unlimited.

The document formatting is based on the Internet Society’s Standard RFC format.

This version:

http://www.oasis-open.org/committees/ebxml-cppa/ebCPP-1_01.pdf
Previous version:

http://www.ebxml.org/specs/ebCCP.pdf

2 ebXML Participants

The authors wish to recognize the following for their significant participation to the development of this document.

David Burdett, CommerceOne

Tim Chiou, United World Chinese Commercial Bank
Chris Ferris, Sun

Scott Hinkelman, IBM

Maryann Hondo, IBM

Sam Hunting, ECOM XML

John Ibbotson, IBM

Kenji Itoh, JASTPRO
Ravi Kacker, eXcelon Corp.

Thomas Limanek, iPlanet

Daniel Ling, VCHEQ

Henry Lowe, OMG

Dale Moberg, Cyclone Commerce

Duane Nickull, XMLGlobal Technologies

Stefano Pogliani, Sun

Rebecca Reed, Mercator

Karsten Riemer, Sun

Marty Sachs, IBM

Yukinori Saito, ECOM

Tony Weida, Edifecs

3 Table of Contents

11
Status of this Document

22
ebXML Participants

33
Table of Contents

74
Introduction

74.1 Summary of Contents of Document

74.2 Document Conventions

84.3 Version of the Specification

84.4 Definitions

84.5 Audience

94.6 Assumptions

94.7 Related Documents

105
Design Objectives

116
System Overview

116.1 What This Specification Does

126.2 Forming a CPA from Two CPPs

156.3 How the CPA Works

166.4 Where the CPA May Be Implemented

166.5 Definition and Scope

177
CPP Definition

187.1 Globally-Unique Identifier of CPP Instance Document

187.2 SchemaLocation Attribute

197.3 CPP Structure

197.4 CollaborationProtocolProfile element

207.5 PartyInfo Element

227.5.1 PartyId element

227.5.2 PartyRef element

237.5.3 CollaborationRole element

267.5.4 ProcessSpecification element

307.5.5 Role element

317.5.6 ApplicationCertificateRef element

317.5.7 ServiceBinding element

327.5.8 Service element

32ActionBinding element

347.5.10 Certificate element

347.5.11 DeliveryChannel element

367.5.12 BusinessProcessCharacteristics element

397.5.13 MessagingCharacteristics element

407.5.14 Transport element

417.5.15 Transport protocol

467.5.16 DocExchange Element

527.5.17 OverrideMshActionBinding element

527.5.18 NamespaceSupported element

527.6 SimplePart element

537.7 Packaging element

547.7.1 ProcessingCapabilities element

547.7.2 SimplePart element

557.7.3 CompositeList element

567.8 ds:Signature element

577.9 Comment Element

588
CPA Definition

588.1 CPA Structure

598.2 CollaborationProtocolAgreement Element

608.3 Status Element

608.4 CPA Lifetime

608.4.1 Start element

608.4.2 End element

618.5 ConversationConstraints Element

618.5.1 invocationLimit attribute

628.5.2 concurrentConversations attribute

628.6 PartyInfo Element

628.6.1 ProcessSpecification element

628.7 ds:Signature Element

638.7.1 Persistent Digital Signature

658.8 Comment element

658.9 Composing a CPA from Two CPPs

658.9.1 ID Attribute Duplication

658.10 Modifying Parameters of the Process-Specification Document Based on Information in the CPA

679
References

6910
Conformance

7011
Disclaimer

7112
Contact Information

72Notices

74Copyright Statement

75Appendix A
Example of CPP Document (Non-Normative)

85Appendix B
Example of CPA Document (Non-Normative)

95Business Process Specification Corresponding to Complete CPP/CPA Definition (Non-Normative)

100Appendix D
XML Schema Document Corresponding to Complete CPP and CPA Definition (Normative)

119Appendix E
Formats of Information in the CPP and CPA (Normative)

120Appendix F
Composing a CPA from Two CPPs (Non-Normative)

4 Introduction

4.1 Summary of Contents of Document

As defined in the ebXML Business Process Specification Schema[ebBPSS], a Business Partner is an entity that engages in Business Transactions with another Business Partner(s). Each Partner's capabilities (both commercial/Business and technical) to engage in electronic Message exchanges with other Partners MAY be described by a document called a Trading-Partner Profile (TPP). The agreed interactions between two Partners MAY be documented in a document called a Trading-Partner Agreement (TPA). A TPA MAY be created by computing the intersection of the two Partners' TPPs.

The Message-exchange capabilities of a Party MAY be described by a Collaboration-Protocol Profile (CPP) within the TPP. The Message-exchange agreement between two Parties MAY be described by a Collaboration-Protocol Agreement (CPA) within the TPA. Included in the CPP and CPA are details of transport, messaging, security constraints, and bindings to a Business-Process-Specification (or, for short, Process-Specification) document that contains the definition of the interactions between the two Parties while engaging in a specified electronic Business Collaboration.

This specification contains the detailed definitions of the Collaboration-Protocol Profile (CPP) and the Collaboration-Protocol Agreement (CPA).

This specification is a component of the suite of ebXML specifications. An overview of the ebXML specifications and their interrelations can be found in the ebXML Technical Architecture Specification[ebTA].

This specification is organized as follows
:

· Section 5 defines the objectives of this specification.

· Section 6 provides a system overview.

· Section 7 contains the definition of the CPP, identifying the structure and all necessary fields.

· Section 8 contains the definition of the CPA.

· The appendices include examples of an XML Business Process Specification (non-normative), CPP and CPA documents (non-normative), an XML Schema document (normative), formats of information in the CPP and CPA (normative), and composing a CPA from two CPPs (non-normative).

4.2 Document Conventions

Terms in Italics are defined in the ebXML Glossary of Terms[ebGLOSS]. Terms listed in Bold Italics represent the element and/or attribute content of the XML CPP or CPA definitions.

In this specification, indented paragraphs beginning with "NOTE:" provide non-normative explanations or suggestions that are not required by the specification.

References to external documents are represented with BLOCK text enclosed in brackets, e.g. [RFC2396]. The references are listed in Section 9, "References".

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as described in [RFC 2119].

NOTE: Vendors should carefully consider support of elements with cardinalities (0 or 1) or (0 or more). Support of such an element means that the element is processed appropriately for its defined function and not just recognized and ignored. A given Party might use these elements in some CPPs or CPAs and not in others. Some of these elements define parameters or operating modes and should be implemented by all vendors. It might be appropriate to implement optional elements that represent major run-time functions, such as various alternative communication protocols or security functions, by means of plug-ins so that a given Party MAY acquire only the needed functions rather than having to install all of them.

4.3

4.4 Version of the Specification

Whenever this specification is modified, it SHALL be given a new version number. The value of the version attribute of the Schema element of the XML Schema document SHALL be equal to the version of the specification.

4.5 Definitions

Technical terms in this specification are defined in the ebXML Glossary[ebGLOSS].

4.6 Audience

One target audience for this specification is implementers of ebXML services and other designers and developers of middleware and application software that is to be used for conducting electronic Business. Another target audience is the people in each enterprise who are responsible for creating CPPs and CPAs.

4.7 Assumptions

It is expected that the reader has an understanding of [XML] and is familiar with the concepts of electronic Business (eBusiness).

4.8 Related Documents

Related documents include ebXML Specifications on the following topics:

· ebXML Technical Architecture Specification[ebTA]

· ebXML Message Service Specification[ebMS]

· ebXML Business Process Specification Schema[ebBPSS]

· ebXML Glossary [ebGLOSS]

· ebXML Core Component and Business Document Overview[ccOVER]

· ebXML Registry Services Specification[ebRS]

See Section 9 for the complete list of references.

5 Design Objectives

The objective of this specification is to ensure interoperability between two Parties even though they MAY procure application software and run-time support software from different vendors. The CPP defines a Party's Message-exchange capabilities and the Business Collaborations that it supports. The CPA defines the way two Parties will interact in performing the chosen Business Collaboration. Both Parties SHALL use identical copies of the CPA to configure their run-time systems. This assures that they are compatibly configured to exchange Messages whether or not they have obtained their run-time systems from the same vendor. The configuration process MAY be automated by means of a suitable tool that reads the CPA and performs the configuration process.

In addition to supporting direct interaction between two Parties, this specification MAY also be used to support interaction between two Parties through an intermediary such as a portal or broker. In this initial version of this specification, this MAY be accomplished by creating a CPA between each Party and the intermediary in addition to the CPA between the two Parties. The functionality needed for the interaction between a Party and the intermediary is described in the CPA between the Party and the intermediary. The functionality needed for the interaction between the two Parties is described in the CPA between the two Parties.

It is an objective of this specification that a CPA SHALL be capable of being composed by intersecting the respective CPPs of the Parties involved. The resulting CPA SHALL contain only those elements that are in common, or compatible, between the two Parties. Variable quantities, such as number of retries of errors, are then negotiated between the two Parties.. The design of the CPP and CPA schemata facilitates this composition/negotiation process. However, the composition and negotiation processes themselves are outside the scope of this specification. Appendix F contains a non-normative discussion of this subject.

It is a further objective of this specification to facilitate migration of both traditional EDI-based applications and other legacy applications to platforms based on the ebXML specifications. In particular, the CPP and CPA are components of the migration of applications based on the X12 838 Trading-Partner Profile to more automated means of setting up Business relationships and doing Business under them.

6 System Overview

6.1 What This Specification Does

The exchange of information between two Parties requires each Party to know the other Party's supported Business Collaborations, the other Party's role in the Business Collaboration, and the technology details about how the other Party sends and receives Messages. In some cases, it is necessary for the two Parties to reach agreement on some of the details.

The way each Party can exchange information, in the context of a Business Collaboration, can be described by a Collaboration-Protocol Profile (CPP). The agreement between the Parties can be expressed as a Collaboration-Protocol Agreement (CPA)

A Party MAY describe itself in a single CPP. A Party MAY create multiple CPPs that describe, for example, different Business Collaborations that it supports, its operations in different regions of the world, or different parts of its organization.

To enable Parties wishing to do Business to find other Parties that are suitable Business Partners, CPPs MAY be stored in a repository such as is provided by the ebXML Registry[ebRS]. Using a discovery process provided as part of the specifications of a repository, a Party MAY then use the facilities of the repository to find Business Partners.

The document that defines the interactions between two Parties is a Process-Specification document that MAY conform to the ebXML Business Process Specification Schema[ebBPSS]. The CPP and CPA include references to this Process-Specification document. The Process-Specification document MAY be stored in a repository such as the ebXML Registry. See NOTE about alternative Business-Collaboration descriptions in section 7.5.4.

Figure 1 illustrates the relationships between a CPP and two Process-Specification documents, A1 and A2, in an ebXML Registry. On the left is a CPP, A, which includes information about two parts of an enterprise that are represented as different Parties. On the right are shown two Process-Specification documents. Each of the PartyInfo elements in the CPP contains a reference to one of the Process-Specification documents. This identifies the Business Collaboration that the Party can perform.

This specification defines the markup language vocabulary for creating electronic CPPs and CPAs. CPPs and CPAs are [XML] documents. In the appendices of this specification are two sample CPPs, a sample CPA formed from the CPPs, a sample Process-Specification referenced by the CPPs and the CPA, and the XML Schema governing the structures of CPPs and CPAs.

The CPP describes the capabilities of an individual Party. A CPA describes the capabilites that two Parties have agreed to use to perform a particular Business Collaboration. These CPAs define the "information technology terms and conditions" that enable Business documents to be electronically interchanged between Parties. The information content of a CPA is similar to the information-technology specifications sometimes included in Electronic Data Interchange (EDI) Trading Partner Agreements (TPAs). However, these CPAs are not paper documents. Rather, they are electronic documents that can be processed by computers at the Parties' sites in order to set up and then execute the desired Business information exchanges. The "legal" terms and conditions of a Business agreement are outside the scope of this specification and therefore are not included in the CPP and CPA.

[image: image2.wmf]Figure 3: Overview of

Collaboration-Protocol Agreements

 (

CPA

)

CPA

 ID

Party’s

 information

-

 Party

 A

-

Party

 B

Transport Protocol

Transport Security

DocExchange

 Protocol

Link to Process-

Specification Doc.

Retry

-etc.

CPP

For

Party

 A

CPP

For

Party

 B

CPA

Agreed

CPA

Agreed

CPA

1

negotiate

2

negotiate

3

Agree-

ment

 on

CPA

 has

arrived.

3

Agree-

ment

 on

CPA

 has

arrived.

4 Start Business activities with each other

An enterprise MAY choose to represent itself as multiple Parties. For example, it might represent a central office supply procurement organization and a manufacturing supplies procurement organization as separate Parties. The enterprise MAY then construct a CPP that includes all of its units that are represented as separate Parties. In the CPP, each of those units would be represented by a separate PartyInfo element.

In general, the Parties to a CPA can have both client and server characteristics. A client requests services and a server provides services to the Party requesting services. In some applications, one Party only requests services and one Party only provides services. These applications have some resemblance to traditional client-server applications. In other applications, each Party MAY request services of the other. In that case, the relationship between the two Parties can be described as a peer-peer relationship rather than a client-server relationship.

6.2 Forming a CPA from Two CPPs

This section summarizes the process of discovering a Party to do Business with and forming a CPA from the two Parties' CPPs. In general, this section is an overview of a possible procedure and is not to be considered a normative specification. See Appendix F "Composing a CPA from Two CPPs (Non-Normative)" for more information.

Figure 2 illustrates forming a CPP. Party A tabulates the information to be placed in a repository for the discovery process, constructs a CPP that contains this information, and enters it into an ebXML Registry or similar repository along with additional information about the Party. The additional information might include a description of the Businesses that the Party engages in. Once Party A's information is in the repository, other Parties can discover Party A by using the repository's discovery services.

[image: image3.wmf]Figure 4: Overview of Working Architecture of CPP/CPA with

ebXML

 Registry

Registry

 Party

 B

(Buyer,Server)

 Party

 A

(Seller,Server)

CPP(A)

CPP

(B)

CPP

(X)

CPP

(Y)

CPP

(Z)

CPP

(A)

CPA

(A,B)

CPA

(A,B)

(Document)

(Exe. Code)

CPA

(A,B)

CPA

(A,B)

(Document)

(Exe. Code)

1. Any

Party

 may register its

CPPs

to an

ebXML

 Registry.

2.

Party

 B discovers trading partner

A (Seller) by searching in the

Registry and downloads

CPP

(A) to

Party

B’s server.

3.

Party

 B creates

CPA

(A,B) and

sends

CPA

(A,B) to

Party

 A.

4.

Parties

 A and B negotiate and

store identical copies of the

completed

CPA

 as a document in

both servers. This process is done

manually or automatically.

5.

Parties

 A and B configure their

run-time systems with the

information in the

CPA

.

6.

Parties

A and B

do business under

the new

CPA.

2.

6.

5.

5.

3.

4.

1.

1.

In figure 3, Party A and Party B use their CPPs to jointly construct a single copy of a CPA by calculating the intersection of the information in their CPPs. The resulting CPA defines how the two Parties will behave in performing their Business Collaboration.

[image: image4.wmf]Delivery Channel

DC1

Transport

T1

Doc.

Exch

.

X1

Delivery Channel

DC2

Transport

T2

Doc.

Exch

.

X2

Delivery Channel

DC3

Transport

T2

Doc.

Exch

.

X1

Figure 5: Three Delivery Channels

[image: image5.wmf]Figure 1: Structure of CPP & Business Process Specification in

an

ebXML

Registry

Repository

Business

Collaboration

<PartyInfo PartyId=“N01”>

 <

ProcessSpecification xlink

:href=“http://

<

PartyInfo

 PartyId=“N02”>

 <

ProcessSpecification xlink

:href=“http://

CPP(A)

Process Specification(A1)

Process Specification(A2)

Business

Collaboration

Figure 4 illustrates the entire process. The steps are listed at the left. The end of the process is that the two Parties configure their systems from identical copies of the agreed CPA and they are then ready to do Business.

NOTE: This specification makes the assumption that a CPP that has been registered in an ebXML or other Registry will be referenced by some Registry-assigned globally-unique identifier that MAY be used to distinguish among multiple CPPs belonging to the same Party. See section 7.1 for more information.

6.3 How the CPA Works

A CPA describes all the valid visible, and hence enforceable, interactions between the Parties and the way these interactions are carried out. It is independent of the internal processes executed at each Party. Each Party executes its own internal processes and interfaces them with the Business Collaboration described by the CPA and Process-Specification document. The CPA does not expose details of a Party's internal processes to the other Party. The intent of the CPA is to provide a high-level specification that can be easily comprehended by humans and yet is precise enough for enforcement by computers.

The information in the CPA is used to configure the Parties' systems to enable exchange of Messages in the course of performing the selected Business Collaboration. Typically, the software that performs the Messages exchanges and otherwise supports the interactions between the Parties is middleware that can support any selected Business Collaboration. One component of this middleware MAY be the ebXML Message Service Handler[ebMS]. In this specification, the term "run-time system" or "run-time software" is used to denote such middleware.

The CPA and the Process-Specification document that it references define a conversation between the two Parties. The conversation represents a single unit of Business as defined by the Binary-Collaboration component of the Process-Specification document. The conversation consists of one or more Business Transactions, each of which is a request Message from one Party and zero or one response Message from the other Party. The Process-Specification document defines, among other things, the request and response Messages for each Business Transaction and the order in which the Business Transactions are REQUIRED to occur. See [ebBPSS] for a detailed explanation.

The CPA MAY actually reference more than one Process-Specification document. When a CPA references more than one Process-Specification document, each Process-Specification document defines a distinct type of conversation. Any one conversation involves only a single Process-Specification document.
A new conversation is started each time a new unit of Business is started. The Business Collaboration also determines when the conversation ends. From the viewpoint of a CPA between Party A and Party B, the conversation starts at Party A when Party A sends the first request Message to Party B. At Party B, the conversation starts when it receives the first request of the unit of Business from Party A. A conversation ends when the Parties have completed the unit of Business.

NOTE: The run-time system SHOULD provide an interface by which the Business application can request initiation and ending of conversations.

6.4 Where the CPA May Be Implemented

Conceptually, a Business-to-Business (B2B) server at each Party's site implements the CPA and Process-Specification document. The B2B server includes the run-time software, i.e. the middleware that supports communication with the other Party, execution of the functions specified in the CPA, interfacing to each Party's back-end processes, and logging the interactions between the Parties for purposes such as audit and recovery. The middleware might support the concept of a long-running conversation as the embodiment of a single unit of Business between the Parties. To configure the two Parties' systems for Business to Business operations, the information in the copy of the CPA and Process-Specification documents at each Party's site is installed in the run-time system. The static information MAY be recorded in a local database and other information in the CPA and Process-Specification document MAY be used in generating or customizing the necessary code to support the CPA.

NOTE: It is possible to provide a graphic CPP/CPA-authoring tool that understands both the semantics of the CPP/CPA and the XML syntax. Equally important, the definitions in this specification make it feasible to automatically generate, at each Party's site, the code needed to execute the CPA, enforce its rules, and interface with the Party's back-end processes.

6.5 Definition and Scope

This specification defines and explains the contents of the CPP and CPA XML documents. Its scope is limited to these definitions. It does not define how to compose a CPA from two CPPs nor does it define anything related to run-time support for the CPP and CPA. It does include some non-normative suggestions and recommendations regarding run-time support where these notes serve to clarify the CPP and CPA definitions. See section 10 for a discussion of conformance to this specification.

NOTE: This specification is limited to defining the contents of the CPP and CPA, and it is possible to be conformant with it merely by producing a CPP or CPA document that conforms to the XML Schema document defined herein. It is, however, important to understand that the value of this specification lies in its enabling a run-time system that supports electronic commerce between two Parties under the guidance of the information in the CPA.
7 CPP Definition

A CPP defines the capabilities of a Party to engage in electronic Business with other Parties. These capabilities include both technology capabilities, such as supported communication and messaging protocols, and Business capabilities in terms of what Business Collaborations it supports.

This section defines and discusses the details in the CPP in terms of the individual XML elements. The discussion is illustrated with some XML fragments. See Appendix D for the XML Schema, and Appendix A for a sample CPP document.

The ProcessSpecification, DeliveryChannel, DocExchange, and Transport elements of the CPP describe the processing of a unit of Business (conversation). These elements form a layered structure somewhat analogous to a layered communication model. The remainder of this section describes both the above-mentioned elements and the corresponding run-time processing.

Process-Specification layer - The Process-Specification layer defines the heart of the Business agreement between the Parties: the services (Business Transactions) which Parties to the CPA can request of each other and transition rules that determine the order of requests. This layer is defined by the separate Process-Specification document that is referenced by the CPP and CPA.

Delivery Channels - A delivery channel describes a Party's Message-receiving characteristics. It consists of one document-exchange definition and one transport definition. Several delivery channels MAY be defined in one CPP.

Document-Exchange layer - The document-exchange layer accepts a Business document from the Process-Specification layer at one Party, encrypts it if specified, adds a digital signature for non repudiation if specified, and passes it to the transport layer for transmission to the other Party. It performs the inverse steps for received Messages. The options selected for the document-exchange layer are complementary to those selected for the transport layer. For example, if Message security is desired and the selected transport protocol does not provide Message encryption, then it must be specified at the document-exchange layer. The protocol for exchanging Messages between two Parties is defined by the ebXML Message Service Specification[ebMS] or other similar messaging service.

Transport layer - The transport layer is responsible for Message delivery using the selected transport protocol. The selected protocol affects the choices selected for the document-exchange layer. For example, some transport-layer protocols might provide encryption and authentication while others have no such facility.

It should be understood that the functional layers encompassed by the CPP have no understanding of the contents of the payload of the Business documents.

7.1 Globally-Unique Identifier of CPP Instance Document

When a CPP is placed in an ebXML or other Registry, the Registry assigns it a globally-unique identifier (GUID) that is part of its metadata. That GUID MAY be used to distinguish among CPPs belonging to the same Party.

NOTE: A Registry cannot insert the GUID into the CPP. In general, a Registry does not alter the content of documents submitted to it. Furthermore, a CPP MAY be signed and alteration of a signed CPP would invalidate the signature.

7.2 SchemaLocation Attribute

Implementations of CPP and CPA authoring tools are STRONGLY RECOMMENDED to include the XMLSchema-instance namespace-qualified schemaLocation attribute in the document's root element to indicate to validating parsers the location URI of the schema document that should be used to validate the document. Failure to include the schemaLocation attribute MAY result in interoperability issues with other tools that need to be able to validate these documents.

An example of the use of the schemaLocation attribute follows:

<tp:CollaborationProtocolAgreement

 xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-1_1.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-1_1.xsd http
://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-1_1.xsd">

...

</tp:CollaborationProtocolAgreement>

7.3 CPP Structure

Following is the overall structure of the CPP. Unless otherwise noted, CPP elements MUST be in the order shown here. Subsequent sections describe each of the elements in greater detail.

<tp:CollaborationProtocolProfile

 xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-1_1.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-1_1.xsd http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-1_1.xsd"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 tp:version="1.1">

 <tp:PartyInfo> <!-- one or more -->

 ...

 </tp:PartyInfo>
 <tp:SimplePart> <!-- one or more -->

 ...

 </tp:SimplePart>
 <tp:Packaging id="ID"> <!-- one or more -->

 ...

 <tp:Packaging>

 <ds:Signature> <!--zero or one-->

 ...

 </ds:Signature>

 <tp:Comment>text</tp:Comment> <!--zero or more-->

</tp:CollaborationProtocolProfile>

7.4 CollaborationProtocolProfile element

The CollaborationProtocolProfile element is the root element of the CPP XML document.

The REQUIRED XML [XML] Namespace[XMLNS] declarations for the basic document are as follows:

· The CPP/CPA namespace: xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-1_1.xsd",

· XML Digital Signature namespace: xmlns:ds="http://www.w3.org/2000/09/xmldsig#",

· and the XLink namespace: xmlns:xlink="http://www.w3.org/1999/xlink".

In addition, the CollaborationProtocolProfile element contains an IMPLIED version attribute that indicates the version of the CPP. Its purpose is to provide versioning capabilities for instances of an enterprise's CPP. The value of the version attribute SHOULD be a string representation of a numeric value such as "1.0" or "2.3". The value of the version string SHOULD be changed with each change made to the CPP document after it has been published.

NOTE: The method of assigning the version-identifier value is left to the implementation.

The CollaborationProtocolProfile element SHALL consist of the following child elements:

· One or more REQUIRED PartyInfo elements that identify the organization (or parts of the organization) whose capabilities are described by the CPP,

· One or more REQUIRED SimplePart elements that describe the constituents used to make up composite Messages.
· One or more REQUIRED Packaging elements that describe how the Message Header and payload constituents are packaged for transmittal,

· Zero or one ds:Signature element that contains the digital signature that signs the CPP document,
· Zero or more Comment elements.
A CPP document MAY be digitally signed so as to provide for a means of ensuring that the document has not been altered (integrity) and to provide for a means of authenticating the author of the document. A digitally signed CPP SHALL be signed using technology that conforms to the joint W3C/IETF XML Digital Signature specification[XMLDSIG].

7.5 PartyInfo Element

The PartyInfo element identifies the organization whose capabilities are described in this CPP and includes all the details about this Party. More than one PartyInfo element MAY be provided in a CPP if the organization chooses to represent itself as subdivisions with different characteristics. Each of the subelements of PartyInfo is discussed later. The overall structure of the PartyInfo element is as follows:

<tp:PartyInfo

 tp:partyName="..." tp:defaultMshChannelId="...">

 <tp:PartyId tp:type="..."> <!-- one or more -->

 ...

 </tp:PartyId>

 <tp:PartyRef xlink:type="..." xlink:href="..."/>

 <tp:CollaborationRole> <!-- one or more -->

 ...

 </tp:CollaborationRole>

 <tp:Certificate> <!-- one or more -->

 ...

 </tp:Certificate>

 <tp:DeliveryChannel> <!-- one or more -->

 ...

 </tp:DeliveryChannel>

 <tp:Transport> <!-- one or more -->

 ...

 </tp:Transport>

 <tp:DocExchange> <!-- one or more -->

 ...

 </tp:DocExchange>
 ...

 </tp:OverrideMshActionBinding> <!-- zero or more -->
 ...

 </tp:OverrideMshActionBinding>
</tp:PartyInfo>

The PartyInfo element contains a REQUIRED partyName attribute that indicates the common, human readable name of the organization. Unlike PartyID, partyName might not be unique; however, the value of each partyName SHALL be meaningful enough to directly identify the organization or the subdivision of an organization described in each PartyInfo element.

The following example illustrates two possible party names.

<tp:PartyInfo tp:partyName="Example, Inc."...</tp:PartyInfo>

<tp:PartyInfo tp:partyName="Example, Inc. US Western Division">

...

</tp:PartyInfo>
The PartyInfo element also contains a REQUIRED defaultMshChannelId attribute. It identifies the default DeliveryChannel that should be used for sending standalone Message Service Handler level messages (i.e., Acknowledgment, Error, StatusRequest, StatusResponse, Ping, Pong) that are to be delivered asynchronously. When synchronous reply mode is in use, Message Service Handler level messages are returned synchronously. The default can be overridden through the use of OverrideMshActionBinding elements.
The PartyInfo element consists of the following child elements:

· One or more REQUIRED PartyId elements that provide a logical identifier for the organization.

· A REQUIRED PartyRef element that provides a pointer to more information about the Party.

· One or more REQUIRED CollaborationRole elements that identify the roles that this Party can play in the context of a Process Specification.

· One or more REQUIRED Certificate elements that identify the certificates used by this Party in security functions.

· One or more REQUIRED DeliveryChannel elements that define the characteristics of each delivery channel that the Party can use to receive Messages. It includes both the transport level (e.g. HTTP) and the messaging protocol (e.g. ebXML Message Service).

· One or more REQUIRED Transport elements that define the characteristics of the transport protocol(s) that the Party can support to receive Messages.

· One or more REQUIRED DocExchange elements that define the Message-exchange characteristics, such as the Message-exchange protocol, that the Party can support.

· Zero or more OverrideMshActionBinding elements that specify the DeliveryChannel to use for asynchronously delivered Message Service Handler level messages.
7.5.1 PartyId element

The REQUIRED PartyId element provides a logical identifier that MAY be used to logically identify the Party. Additional PartyId elements MAY be present under the same PartyInfo element so as to provide for alternative logical identifiers for the Party. If the Party has preferences as to which logical identifier is used, the PartyId elements SHOULD be listed in order of preference starting with the most-preferred identifier.

In a CPP that contains multiple PartyInfo elements, different PartyInfo elements MAY contain PartyId elements that define different logical identifiers. This permits a large organization, for example, to have different identifiers for different purposes.

The value of the PartyId element is any string that provides a unique identifier. The identifier MAY be any identifier that is understood by both Parties to a CPA. Typically, the identifier would be listed in a well-known directory such as DUNS or in any naming system specified by [ISO6523].

The PartyId element has a single IMPLIED attribute: type that has a string value.

If the type attribute is present, then it provides a scope or namespace for the content of the PartyId element.

If the type attribute is not present, the content of the PartyId element MUST be a URI that conforms to [RFC2396]. It is RECOMMENDED that the value of the type attribute be a URN that defines a namespace for the value of the PartyId element. Typically, the URN would be registered as a well-known directory of organization identifiers.
The following example illustrates two URI references.

 <tp:PartyId tp:type="anyURI">urn:duns:123456789</tp:PartyId>
 <tp:PartyId tp:type="anyURI">urn:www.example.com</tp:PartyId>

The first example is the URN for the Party's DUNS number, assuming that Dun and Bradstreet has registered a URN for DUNS numbers with the Internet Assigned Numbers Authority (IANA). The last field is the DUNS number of the organization.

The second example shows an arbitrary URN. This might be a URN that the Party has registered with IANA to identify itself directly.

7.5.2 PartyRef element

The PartyRef element provides a link, in the form of a URI, to additional information about the Party. Typically, this would be the URL from which the information can be obtained. The information might be at the Party's web site or in a publicly accessible repository such as an ebXML Registry, a UDDI repository, or an LDAP directory. Information available at that URI MAY include contact names, addresses, and phone numbers, and perhaps more information about the Business Collaborations that the Party supports. This information MAY be in the form of an ebXML Core Component[ccOVER]. It is not within the scope of this specification to define the content or format of the information at that URI.

The PartyRef element is an [XLINK] simple link. It has the following attributes:

· a REQUIRED xlink:type attribute,

· a REQUIRED xlink:href attribute,

· an IMPLIED type attribute.

The contents of the document referenced by the partyRef element are subject to change at any time. Therefore, it SHOULD NOT be cached for a long period of time. Rather, the value of xlink:href SHOULD be dereferenced only when needed.
7.5.2.1 xlink:type attribute

The REQUIRED xlink:type attribute SHALL have a FIXED value of "simple". This identifies the element as being an [XLINK] simple link.

7.5.2.2 xlink:href attribute

The REQUIRED xlink:href attribute SHALL have a value that is a URI that conforms to [RFC2396] and identifies the location of the external information about the Party.

7.5.2.3 type attribute

The value of the IMPLIED type attribute identifies the document type of the external information about the Party. It MUST be a URI that defines the namespace associated with the information about the Party. If the type attribute is omitted, the external information about the Party MUST be an HTML web page.

An example of the PartyRef element is:

<tp:PartyRef xlink:type="simple"

 xlink:href="http://example2.com/ourInfo.xml"

 tp:type="anyURI"/>
7.5.3 CollaborationRole element

The CollaborationRole element associates a Party with a specific role in the Business Collaboration that is defined in the Process-Specification document[ebBPSS]. Generally, the Process-Specification is defined in terms of roles such as "buyer" and "seller". The association between a specific Party and the role(s) it is capable of fulfilling within the context of a Process-Specification is defined in both the CPP and CPA documents. In a CPP, the CollaborationRole element identifies which role the Party is capable of playing in each Process Specification documents referenced by the CPP. An example of the CollaborationRole element is:

<tp:CollaborationRole tp:id="BuyerId">

 <tp:ProcessSpecification

 tp:version="2.0"

 tp:name="PIP3A4RequestPurchaseOrder"

 xlink:type="simple"

 xlink:href="http://www.rosettanet.org/processes/3A4.xml"/>

 <tp:Role

 tp:name="Buyer"

 xlink:type="simple"

 xlink:href="http://www.rosettanet.org/processes/3A4.xml#Buyer"/>

 <tp:ApplicationCertificateRef

 tp:certId="company1SigningCertificate"/>

 <!-- This service binding uses an asynchronous delivery channel to

 receive the signals and response -->

 <tp:ServiceBinding>

 <tp:Service tp:type="anyURI">bpid:RosettaNet:PIP3A4RequestPurchaseOrder$2.0</tp:Service>

 <tp:ActionBinding

 tp:action="Purchase Order Confirmation Action"

 tp:channelId="channel1"

 tp:packageId="ResponsePackage">

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Confirmation Action"/>

 </tp:ActionBinding>

 <!-- Receipt Acknowledgment and Exception signals are delivered

 using the designated delivery channels -->

 <tp:ActionBinding

 tp:action="ReceiptAcknowledgment"

 tp:channelId="channel1"

 tp:packageId="ReceiptAcknowledgmentPackage"/>

 <tp:ActionBinding

 tp:action="Exception"

 tp:channelId="channel1"

 tp:packageId="ExceptionPackage"/>

 </tp:ServiceBinding>

</tp:CollaborationRole>
To indicate that the Party can play roles in more than one Business Collaboration or more than one role in a given Business Collaboration, the PartyInfo element SHALL contain more than one CollaborationRole element. Each CollaborationRole element SHALL contain the appropriate combination of ProcessSpecification element and Role element.

The CollaborationRole element SHALL consist of the following child elements: a REQUIRED ProcessSpecification element, a REQUIRED Role element, zero or one ApplicationCertificateRef element, and one or more ServiceBinding elements. The ProcessSpecification element identifies the Process-Specification document that defines such role. The Role element identifies which role the Party is capable of supporting. The ApplicationCertificateRef element identifies the certificate to be used for application level signature and encryption. Each ServiceBinding element provides a binding of the role to a default DeliveryChannel (through the defaultSignalChannelId attribute) for sending business signal messages like Receipt Acknowledgment and Exception. The ActionBinding elements identify the DeliveryChannel elements that are relevant for delivering business action messages received by the Role in question. They may also be used for specifying DeliveryChannels for business signal messages.
When there are more than one ServiceBinding child elements of a CollaborationRole, then the order of the ServiceBinding elements SHALL be treated as signifying the Party's preference starting with highest and working towards lowest.
NOTE: When a CPA is composed, the ServiceBinding preferences are applied in choosing the highest-preference delivery channels that are compatible between the two Parties.

When a CPA is composed, only ServiceBinding elements that are compatible between the two Parties SHALL be retained. Each Party SHALL have a default delivery channel for the delivery of standalone Message Service Handler level signals like (Reliable Messaging) Acknowledgments, Errors, StatusRequest, StatusResponse, etc.
NOTE: An implementation MAY provide the capability of dynamically assigning delivery channels on a per Message basis during performance of the Business Collaboration. The delivery channel selected would be chosen, based on present conditions, from those identified by ServiceBinding elements that refer to the Business Collaboration that is sending the Message. If more than one delivery channel is applicable, the one referred to by the highest-preference ServiceBinding element is used.

The CollaborationRole element has the following attribute:

· a REQUIRED id attribute.

7.5.3.1 id attribute

The REQUIRED id attribute is an [XML] ID attribute by which this CollaborationRole element can be referenced from elsewhere in the CPP document.

7.5.3.2 ApplicationCertificateRef element

The EMPTY ApplicationCertificateRef element contains an IMPLIED IDREF attribute, certId, which identifies the signing certificate to be used by referring to the Certificate element (under PartyInfo) that has the matching ID attribute value.
7.5.3.3 certId attribute

The IMPLIED certId attribute is an [XML] IDREF that associates the CollaborationRole with a Certificate with a matching ID attribute.

NOTE: This certId attribute relates to the authorizing role in the Process-Specification while the certificates identified in the delivery channel description relate to Message exchanges.

7.5.4 ProcessSpecification element

The ProcessSpecification element provides the link to the Process-Specification document that defines the interactions between the two Parties. It is RECOMMENDED that this Business-Collaboration description be prepared in accordance with the ebXML Business Process Specification Schema[ebBPSS]. The Process-Specification document MAY be kept in an ebXML Registry.

NOTE: A Party MAY describe the Business Collaboration using any desired alternative to the ebXML Business Process Specification Schema. When an alternative Business-Collaboration description is used, the Parties to a CPA MUST agree on how to interpret the Business-Collaboration description and how to interpret the elements in the CPA that reference information in the Business-Collaboration description. The affected elements in the CPA are the Role element, the ActionBinding element, and some attributes of the BusinessProcessCharacteristics element.
The syntax of the ProcessSpecification element is:

<tp:ProcessSpecification

 tp:version="2.0"

 tp:name="PIP3A4RequestPurchaseOrder"

 xlink:type="simple"

 xlink:href="http://www.rosettanet.org/processes/3A4.xml"

 <ds:Reference ds:URI="http://www.rosettanet.org/processes/3A4.xml">

 <ds:Transforms>

 <ds:Transform

ds:Algorithm="http://www.w3.org/TR/20002001/REC-xml-c14n-20010315"/>

 </ds:Transforms>

 <ds:DigestMethod

 ds:Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>

 <ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:DigestValue>

 </ds:Reference>

</tp:ProcessSpecification>
The ProcessSpecification element has a single REQUIRED child element, ds:Reference, and the following attributes:

· a REQUIRED name attribute,
· a REQUIRED version attribute,

· a FIXED xlink:type attribute,

· a REQUIRED xlink:href attribute.

The ds:Reference element relates to the xlink:type and xlink:href attributes as follows. Each ProcessSpecification element SHALL contain one xlink:href attribute and one xlink:type attribute with a value of "simple", and MAY contain one ds:Reference element formulated according to the XML Digital Signature specification[XMLDSIG]. In case the document is signed, it MUST use the ds:Reference element. When the ds:Reference element is present, it MUST include a ds:URI attribute whose value is identical to that of the xlink:href attribute in the enclosing ProcessSpecification element.

7.5.4.1 name attribute

The ProcessSpecification element MUST include a REQUIRED name attribute: a string attribute that identifies the Business Process-Specification being performed.

7.5.4.2 version attribute

The ProcessSpecification element includes a REQUIRED version attribute to identify the version of the Process-Specification document identified by the xlink:href attribute (and also identified by the ds:Reference element, if any).

7.5.4.3 xlink:type attribute

The xlink:type attribute has a FIXED value of "simple". This identifies the element as being an [XLINK] simple link.

7.5.4.4 xlink:href attribute

The REQUIRED xlink:href attribute SHALL have a value that identifies the Process-Specification document and is a URI that conforms to [RFC2396].

7.5.4.5 ds:Reference element

The ds:Reference element identifies the same Process-Specification document as the enclosing ProcessSpecification element's xlink:href attribute and additionally provides for verification that the Process-Specification document has not changed since the CPP was created.

NOTE: Parties MAY test the validity of the CPP or CPA at any time. The following validity tests MAY be of particular interest:

· test of the validity of a CPP and the referenced Process-Specification documents at the time composition of a CPA begins in case they have changed since they were created,

· test of the validity of a CPA and the referenced Process-Specification documents at the time a CPA is installed into a Party's system,

· test of the validity of a CPA at intervals after the CPA has been installed into a Party's system. The CPA and the referenced Process-Specification documents MAY be processed by an installation tool into a form suited to the particular middleware. Therefore, alterations to the CPA and the referenced Process-Specification documents do not necessarily affect ongoing run-time operations. Such alterations might not be detected until it becomes necessary to reinstall the CPA and the referenced Process-Specification documents.
The syntax and semantics of the ds:Reference element and its child elements are defined in the XML Digital Signature specification[XMLDSIG].
According to [XMLDSIG], a ds:Reference element can have a ds:Transforms child element, which in turn has an ordered list of one or more ds:Transform child elements to specify a sequence of transforms. However, this specification currently REQUIRES the Canonical XML[XMLC14N] transform and forbids other transforms. Therefore, the following additional requirements apply to a ds:Reference element within a ProcessSpecification element:

· The ds:Reference element MUST have a ds:Transforms child element.

· That ds:Transforms element MUST have exactly one ds:Transform child element.

· That ds:Transform element MUST specify the Canonical XML[XMLC14N] transform via the following REQUIRED value for its REQUIRED ds:Algorithm attribute: http://www.w3.org/TR/2001/Rec-xml-c14n-20010315
Note that implementation of Canonical XML is REQUIRED by the XML Digital Signature specification[XMLDSIG].

A ds:Reference element in a ProcessSpecification element has implications for CPP validity:

· A CPP MUST be considered invalid if any ds:Reference element within a ProcessSpecification element fails reference validation as defined by the XML Digital Signature specification[XMLDSIG].

· A CPP MUST be considered invalid if any ds:Reference within it cannot be dereferenced.
Other validity implications of such ds:Reference elements are specified in the description of the ds:Signature element.
NOTE: The XML Digital Signature specification[XMLDSIG] states "The signature application MAY rely upon the identification (URI) and Transforms provided by the signer in the Reference element, or it MAY obtain the content through other means such as a local cache" (emphases on MAY added). However, it is RECOMMENDED that ebXML CPP/CPA implementations not make use such cached results when signing or validating.

NOTE: It is recognized that the XML Digital Signature specification[XMLDSIG] provides for signing an XML document together with externally referenced documents. In cases where a CPP or CPA document is in fact suitably signed, that facility could also be used to ensure that the referenced Process-Specification documents are unchanged. However, this specification does not currently mandate that a CPP or CPA be signed.

NOTE: If the Parties to a CPA wish to customize a previously existing Process-Specification document, they MAY copy the existing document, modify it, and cause their CPA to reference the modified copy. It is recognized that for reasons of clarity, brevity, or historical record, the parties might prefer to reference a previously existing Process-Specification document in its original form and accompany that reference with a specification of the agreed modifications. Therefore, CPP usage of the ds:Reference element's ds:Transforms subelement within a ProcessSpecification element might be expanded in the future to allow other transforms as specified in the XML Digital Signature specification[XMLDSIG]. For example, modifications to the original document could then be expressed as XSLT transforms. After applying any transforms, it would be necessary to validate the transformed document against the ebXML Business Process Specification Schema[ebBPSS].

7.5.5 Role element

The REQUIRED Role element identifies which role in the Process Specification the Party is capable of supporting via the ServiceBinding element(s) siblings within this CollaborationRole element.

The Role element has the following attributes:

· a REQUIRED name attribute,

· a FIXED xlink:type attribute,

· a REQUIRED xlink:href attribute.

7.5.5.1 name attribute

The REQUIRED name attribute is a string that gives a name to the Role. Its value is taken from one of the following sources in the Process Specification[ebBPSS] that is referenced by the ProcessSpecification element depending upon which element is the "root" (highest order) of the process referenced:

· name attribute of a BinaryCollaboration/initiatingRole element,

· name attribute of a BinaryCollaboration/respondingRole element,

· fromAuthorizedRole attribute of a BusinessTransactionActivity element,

· toAuthorizedRole attribute of a BusinessTransactionActivity element,

· fromAuthorizedRole attribute of a CollaborationActivity element,

· toAuthorizedRole attribute of a CollaborationActivity element,

· name attribute of the business-partner-role element.

See NOTE in section 7.5.4 regarding alternative Business-Collaboration descriptions.

7.5.5.2 xlink:type attribute

The xlink:type attribute has a FIXED value of "simple". This identifies the element as being an [XLINK] simple link.

7.5.5.3 xlink:href attribute

The REQUIRED xlink:href attribute SHALL have a value that is a URI that conforms to [RFC2396]. It identifies the location of the element or attribute within the Process-Specification document that defines the role in the context of the Business Collaboration. An example is:

xlink:href="http://www.rosettanet.org/processes/3A4.xml#Buyer"
Where "Buyer" is the value of the ID attribute of the element in the Process-Specification document that defines the role name.

7.5.6 ApplicationCertificateRef element

<To be provided by Peter Ogden>
7.5.7 ServiceBinding element

The ServiceBinding element identifies a default DeliveryChannel element for all of the Message Service Handler level traffic that is to be sent to the Party within the context of the identified Process-Specification document. An example of the ServiceBinding element is:

<tp:ServiceBinding>

 <tp:Service tp:type="anyURI">bpid:RosettaNet:PIP3A4RequestPurchaseOrder$2.0</tp:Service>

 <tp:ActionBinding

 tp:action="Purchase Order Confirmation Action"

 tp:channelId="channel1"

 tp:packageId="ResponsePackage">

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Confirmation Action"/>

 </tp:ActionBinding>

 <!-- Receipt Acknowledgment and Exception signals are delivered using

 the designated delivery channels -->

 <tp:ActionBinding

 tp:action="ReceiptAcknowledgment"

 tp:channelId="channel1"

 tp:packageId="ReceiptAcknowledgmentPackage"/>

 <tp:ActionBinding

 tp:action="Exception"

 tp:channelId="channel1"

 tp:packageId="ExceptionPackage"/>

</tp:ServiceBinding>
The ServiceBinding element SHALL have one child Service element and one or more ActionBinding child elements.

The ServiceBinding element also has:

· A REQUIRED defaultSignalChannelId attribute

·
·
7.5.7.1 defaultSignalChannelId attribute

The REQUIRED defaultSignalChannelId attribute is an [XML] IDREF that identifies the DeliveryChannel that SHALL provide a default technical binding for the business signal message traffic that is received for the Process Specification that is referenced by the ProcessSpecification element.
7.5.7.2

7.5.8 Service element

The value of the Service element is a string that SHALL be used as the value of the Service element in the ebXML Message Header[ebMS] or a similar element in the Message Header of an alternative message service. The Service element has an IMPLIED type attribute.

If the Process-Specification document is defined by the ebXML Business Process Specification Schema[ebBPSS], then the value of the Service element is an overall identifier for the set of Business Transactions associated with the authorized role corresponding to the role identified in the parent CollaborationRole element.

NOTE: The purpose of the Service element is only to provide routing information for the ebXML Message Header. The CollaborationRole element and its child elements identify the information in the ProcessSpecification document that is relevant to the CPP or CPA.

7.5.8.1 type attribute

If the type attribute is present, it indicates that the Parties sending and receiving the Message know, by some other means, how to interpret the value of the Service element. The two Parties MAY use the value of the type attribute to assist the interpretation.

If the type attribute is not present, the value of the Service element MUST be a URI[RFC2396].

7.5.9 ActionBinding element

The ActionBinding element provides a Party with the ability to map, or bind, a specific DeliveryChannel to Messages of a selected Business Transaction that are to be received by the Party within the context of the parent ServiceBinding element.

Each ActionBinding element specifies a DeliveryChannel for selected Messages and the Packaging for those messages that are to be received by the Party in the context of the Process Specification that is associated with the parent ServiceBinding element. The ActionBinding element has the following attributes:

· a REQUIRED action attribute,

· a REQUIRED channelId attribute,

· a REQUIRED packageId attribute,

· an IMPLIED syncReplyPackageId attribute,

· an IMPLIED xlink:href attribute,

· a FIXED xlink:type attribute.

Under a given ServiceBinding element, there SHALL be only one ActionBinding element whose action attribute has a given value.

NOTE: It is possible that when a CPA is composed from two CPPs, a delivery channel in one CPP might have an ActionBinding element that will not be compatible with the other Party. This incompatibility MUST be resolved either by negotiation or by reverting to a compatible default delivery channel.

7.5.9.1 action attribute

The value of the REQUIRED action attribute is a string that identifies the Business Transaction that is to be associated with the DeliveryChannel that is identified by the channelId attribute. If the Process-Specification document is defined by the ebXML Business Process Specification Schema[ebBPSS], the value of the action attribute MUST match the value of the name attribute of the desired BusinessTransaction element in the Process-Specification document that is referenced by the ProcessSpecification element.

See NOTE in section 7.5.4 regarding alternative Business-Collaboration descriptions.

7.5.9.2 channelId attribute

The REQUIRED channelId attribute is an [XML] IDREF that identifies the DeliveryChannel element that is to be associated with the Message that is identified by the action attribute.

7.5.9.3 packageId attribute

The REQUIRED packageId attribute is an [XML] IDREF that identifies the Packaging element that is to be associated with the Message that is identified by the action attribute.

7.5.9.4 syncReplyPackageId attribute

The IMPLIED syncReplyPackageId attribute is an [XML] IDREF that identifies the Packaging element that is to be associated with the Message that is being returned synchronously in response to the Message identified by the action attribute.
7.5.9.5 xlink:href attribute

The IMPLIED xlink:href attribute MAY be present. If present, it SHALL provide an absolute [XPOINTER] URI expression that specifically identifies the RequestingBusinessActivity or RespondingBusinessActivity element within the associated Process-Specification document[ebBPSS] that is identified by the ProcessSpecification element.

7.5.9.6 xlink:type attribute

The IMPLIED xlink:type attribute has a FIXED value of "simple". This identifies the element as being an [XLINK] simple link.

7.5.10 Certificate element

The Certificate element defines certificate information for use in this CPP. One or more Certificate elements MAY be provided for use in the various security functions in the CPP. An example of the Certificate element is:

<tp:Certificate tp:certId="N03">

 <ds:KeyInfo>. . .</ds:KeyInfo>

</tp:Certificate>
The Certificate element has a single REQUIRED attribute: certId. The Certificate element has a single child element: ds:KeyInfo.

7.5.10.1 certId attribute

The REQUIRED certId attribute is an ID attribute. Its is referred to in a CertificateRef element, using an IDREF attribute, where a certificate is specified elsewhere in the CPP. For example:

<tp:CertificateRef tp:certId="N03"/>

7.5.10.2 ds:KeyInfo element

The ds:KeyInfo element defines the certificate information. The content of this element and any subelements are defined by the XML Digital Signature specification[XMLDSIG].

NOTE: Software for creation of CPPs and CPAs MAY recognize the ds:KeyInfo element and insert the subelement structure necessary to define the certificate.

7.5.11 DeliveryChannel element

A delivery channel is a combination of a Transport element and a DocExchange element that describes the Party's Message-receiving characteristics. The CPP SHALL contain one or more DeliveryChannel elements, one or more Transport elements, and one or more DocExchange elements. Each delivery channel MAY refer to any combination of a DocExchange element and a Transport element. The same DocExchange element or the same Transport element MAY be referred to by more than one delivery channel. Two delivery channels MAY use the same transport protocol and the same document-exchange protocol and differ only in details such as communication addresses or security definitions. Figure 5 illustrates three delivery channels.

[image: image6.wmf]Packaging

matches

Packaging

Transport

Transport

Role

Role

matches

matches

Figure 6: Basic Tasks in Forming a CPA

The delivery channels have ID attributes with values "DC1", "DC2", and "DC3". Each delivery channel contains one transport definition and one document-exchange definition. Each transport definition and each document-exchange definition also has a name as shown in the figure. Note that delivery channel DC3 illustrates that a delivery channel MAY refer to the same transport definition and document-exchange definition used by other delivery channels but a different combination. In this case delivery channel DC3 is a combination of transport definition T2 (also referred to by delivery channel DC2) and document-exchange definition X1 (also referred to by delivery channel DC1).

A specific delivery channel SHALL be associated with each PartyInfo element, OverrideMshActionBinding element, ServiceBinding element, or ActionBinding element (action attribute). Following is the delivery-channel syntax.

<tp:DeliveryChannel

 tp:channelId="channel1"

 tp:transportId="transport1"

 tp:docExchangeId="docExchange1"

 <tp:BusinessProcessCharacteristics

 tp:syncReplyMode="none"

 tp:nonRepudiationOfOrigin="true"

 tp:nonRepudiationOfReceipt="false"

 tp:secureTransport="true"

 tp:confidentiality="true"

 tp:authenticated="true"

 tp:authorized="false"/>

 <tp:MessagingCharacteristics

 tp:ackRequested="always"

 tp:ackSignatureRequested="always"

 tp:duplicateElimination="always"
 tp:actor="urn:oasis:names:tc:ebxml-msg:actor:nextMSH"/>

</tp:DeliveryChannel>
Each DeliveryChannel element identifies one Transport element and one DocExchange element that make up a single delivery channel definition.

The DeliveryChannel element has the following attributes:

· a REQUIRED channelId attribute,

· a REQUIRED transportId attribute,

· a REQUIRED docExchangeId attribute.

The DeliveryChannel element has two REQUIRED child elements, BusinessProcessCharacteristics and MessagingCharacteristics.

7.5.11.1 channelId attribute

The channelId attribute is an [XML] ID attribute that uniquely identifies the DeliveryChannel element for reference, using IDREF attributes, from other parts of the CPP or CPA.

7.5.11.2 transportId attribute

The transportId attribute is an [XML] IDREF that identifies the Transport element that defines the transport characteristics of the delivery channel. It MUST have a value that is equal to the value of a transportId attribute of a Transport element elsewhere within the CPP document.

7.5.11.3 docExchangeId attribute

The docExchangeId attribute is an [XML] IDREF that identifies the DocExchange element that defines the document-exchange characteristics of the delivery channel. It MUST have a value that is equal to the value of a docExchangeId attribute of a DocExchange element elsewhere within the CPP document.

7.5.12 BusinessProcessCharacteristics element

The BusinessProcessCharacteristics element describes the security characteristics and other attributes of the delivery channel, as derived from the ProcessSpecification(s) whose messages are transported using the delivery channel. The attributes of the BusinessProcessCharacteristics element, except syncReplyMode, MAY be used to override the values of the corresponding attributes in the Process-Specification document.

See NOTE in section 7.5.4 regarding alternative Business-Collaboration descriptions.

The BusinessProcessCharacteristics element has the following attributes:

· An IMPLIED syncReplyMode attribute,

· an IMPLIED nonRepudiationOfOrigin attribute,

· an IMPLIED nonRepudiationOfReceipt attribute,

· an IMPLIED secureTransport attribute,

· an IMPLIED confidentiality attribute,

· an IMPLIED authenticated attribute,

· an IMPLIED authorized attribute.

7.5.12.1 syncReplyMode attribute

The syncReplyMode attribute is an enumeration comprised of the following possible values:

· "mshSignalsOnly"

· "signalsOnly"

· "responseOnly"

· "signalsAndResponse"

· "none"

This attribute, when present, indicates what the sending application expects in a synchronous response when bound to a synchronous communication protocol such as HTTP. The value of "mshSignalsOnly" indicates that the response returned (on the HTTP 200 response in the case of HTTP) will only contain standalone Message Service Handler (MSH) level messages like Acknowledgment (for Reliable Messaging) and Error messages. All other application level responses are to be returned asynchronously (using a DeliveryChannel determined by the Service and Action in question). The value of "signalsOnly" indicates that the response returned (on the HTTP 200 response in the case of HTTP) will only include one or more Business signals as defined in the Process-Specification document[ebBPSS], plus any piggybacked MSH level signals, but not a Business-response Message. If the Process-Specification calls for the use of a Business-response Message, then the latter MUST be returned asynchronously. The value of "responseOnly" indicates that any Business signals indicated in the Process Specification are to be omitted and only the Business-response Message will be returned synchronously, plus any piggybacked MSH level signals. The value of "signalsAndResponse" indicates that the application will synchronously return the Business-response Message in addition to one or more Business signals, plus any piggybacked MSH level signals. The value of "none", which is the implied default value in the absence of the syncReplyMode attribute, indicates that neither the Business-response Message nor any Business signal(s) will be returned synchronously. In this case, the Business-response Message and any Business signals will be returned as separate asynchronous responses.

The ebXML Message Service's SyncReply element is included in the SOAP Header whenever the syncReplyMode attribute has a value other than "none".

NOTE: It is assumed that a synchronous DeliveryChannel is used to exchange all messages necessary for conducting a business transaction. If the Process Specification calls for the use of non repudiation of receipt for the response message, then the initiator is expected to return a signed Receipt Acknowledgment signal for the responder’s response message. However, this is incompatible with the syncReplyMode values "signalsAndResponsd" and "responseOnly", which make no provision for the return for such a signal.

If the delivery channel identifies a transport protocol that has no synchronous capabilities (such as SMTP) and the Characteristics element has a syncReplyMode attribute with a value other than "none", a response SHALL contain the same content as if the transport protocol did support synchronous responses.

7.5.12.2 nonRepudiationOfOrigin attribute

The nonRepudiationOfOrigin attribute is a Boolean with possible values of "true" and "false". If the value is "true" then the delivery channel REQUIRES the Message to be digitally signed by the certificate of the Party that sent the Message.

7.5.12.3 nonRepudiationOfReceipt attribute

The nonRepudiationOfReceipt attribute is a Boolean with possible values of "true" and "false". If the value is "true" then the delivery channel REQUIRES that the Message be acknowledged by a digitally signed Message, signed by the certificate of the Party that received the Message, that includes the digest of the Message being acknowledged.

7.5.12.4 secureTransport attribute

The secureTransport attribute is a Boolean with possible values of "true" and "false". If the value is "true" then it indicates that the delivery channel uses a secure transport protocol such as [SSL] or [IPSEC].

7.5.12.5 confidentiality attribute

The confidentiality attribute is a Boolean with possible values of "true" and "false". If the value is "true" then it indicates that the delivery channel REQUIRES that the Message be encrypted in a persistent manner. It MUST be encrypted above the level of the transport and delivered, encrypted, to the application
.

7.5.12.6 authenticated attribute

The authenticated attribute is a Boolean with possible values of "true" and "false". If the value is "true" then it indicates that the delivery channel REQUIRES that the sender of the Message be authenticated before delivery to the application.
7.5.12.7 authorized attribute

The authorized attribute is a Boolean with possible of values of "true" and "false". If the value is "true" then it indicates that the delivery channel REQUIRES that the sender of the Message be authorized before delivery to the application.

7.5.13 MessagingCharacteristics element

The MessagingProcessCharacteristics element describes the quality of service attributes associated with messages delivered over a given delivery channel. The collaborating parties MAY stipulate that these attributes be fixed for all messages sent through the delivery channel, or they MAY agree that these attributes may be variable on a “per message” basis.
The MessagingProcessCharacteristics element has the following attributes:

· An IMPLIED ackRequested attribute,

· an IMPLIED ackSignatureRequested attribute,

· an IMPLIED duplicateElimination attribute,

· an IMPLIED actor attribute.

7.5.13.1 ackRequested attribute

The IMPLIED ackRequested attribute is an enumeration comprised of the following possible values:

· "always"

· "never"

· "perMessage"

This attribute has the default value "perMessage" meaning that the AckRequested element in the SOAP Header MAY be present or absent on a "per message" basis. If this attribute is set to "always", then every message sent over the delivery channel MUST have an AckRequested element in the SOAP Header. If this attribute is set to "never", then every message sent over the delivery channel MUST NOT have an AckRequested element in the SOAP Header.
7.5.13.2 ackSignatureRequested attribute

The IMPLIED ackSignatureRequested attribute is an enumeration comprised of the following values:

· "always"

· "never"

· "perMessage"

This attribute determines how the signed attribute within the AckRequested element in the SOAP Header should be set. It has the default value "perMessage" meaning that the signed attribute in the AckRequested element within the SOAP Header MAY be set to "true" or "false" on a "per message" basis. If this attribute is set to "always", then every message sent over the delivery channel that has an AckRequested element in the SOAP Header MUST have its signed attribute set to "true". If this attribute is set to "never", then every message sent over the delivery channel that has an AckRequested element in the SOAP Header MUST have its signed attribute set to "false".
7.5.13.3 duplicateElimination attribute

The IMPLIED duplicateElimination attribute is an enumeration comprised of the following values:

· "always"

· "never"

· "perMessage"

This attribute determines whether the DuplicateElimination element within the MessageHeader element in the SOAP Header should be present. It has the default value "perMessage" meaning that the DuplicateElimination element within the SOAP Header MAY be present or absent on a "per message" basis. If this attribute is set to "always", then every message sent over the delivery channel MUST have a DuplicateElimination element in the SOAP Header. If this attribute is set to "never", then every message sent over the delivery channel MUST NOT have a DuplicateElimination element in the SOAP Header.

7.5.13.4 actor attribute
The IMPLIED actor attribute is an enumeration of the following values:

· "urn:oasis:names:tc:ebxml-msg:actor:nextMSH"

· "urn:oasis:names:tc:ebxml-msg:actor:toPartyMSH"

This is an URI that will be used as the value for the actor attribute in the AckRequested element should the latter be present in the SOAP Header, as governed by the ackRequested attribute within the MessagingCharacteristics element in the CPA.
7.5.14 Transport element

The Transport element of the CPP defines the Party's capabilities with regard to communication protocol, encoding, and transport security information.

The overall structure of the Transport element is as follows:

<tp:Transport transportId="N05">

 <!-- protocols are HTTP, SMTP, and FTP -->

 <tp:SendingProtocol tp:version="1.1">HTTP</tp:SendingProtocol>

 <!-- one or more SendingProtocol elements -->

 <tp:ReceivingProtocol tp:version="1.1">HTTP</tp:ReceivingProtocol>

 <!-- one or more endpoints -->

 <tp:Endpoint tp:uri="http://example.com/servlet/ebxmlhandler"

 tp:type="request"/>

 <tp:TransportSecurity> <!-- 0 or 1 times -->

 <tp:Protocol tp:version="3.0">SSL</tp:Protocol>

 <tp:CertificateRef tp:certId="N03"/>

 </tp:TransportSecurity>

</tp:Transport>

7.5.14.1 transportId attribute

The Transport element has a single REQUIRED transportId attribute, of type [XML] ID, that provides a unique identifier for each Transport element, which SHALL be referred to by the transportId IDREF attribute in a DeliveryChannel element elsewhere within the CPP or CPA document.
7.5.14.2 Synchronous Responses

One distinguishing characteristic of transport protocols is whether a given transport protocol supports synchronous replies. See section 7.5.12.1 for a discussion of synchronous replies.

7.5.15 Transport protocol

Supported communication protocols are HTTP, SMTP, and FTP. The CPP MAY specify as many protocols as the Party is capable of supporting.

NOTE: It is the aim of this specification to enable support for any transport capable of carrying MIME content using the vocabulary defined herein.

7.5.15.1 SendingProtocol element

The SendingProtocol element identifies the protocol that a Party can, or will, use to send Business data to its intended collaborator. The IMPLIED version attribute identifies the specific version of the protocol. For example, suppose that within a CPP, a Transport element, containing SendingProtocol elements whose values are SMTP and HTTP, is referenced within a DeliveryChannel element. Suppose, further, that this DeliveryChannel element is referenced for the role of Seller within a purchase-ordering process. Then the party is asserting that it can send purchase orders by either SMTP or HTTP. In a CPP, the SendingProtocol element MAY appear one or more times under each Transport element. In a CPA, the SendingProtocol element SHALL appear once.

7.5.15.2 ReceivingProtocol element

The ReceivingProtocol element identifies the protocol by which a Party can receive its Business data from the other Party. The IMPLIED version attribute identifies the specific version of the protocol. For example, suppose that within a CPP, a Transport element is referenced within a DeliveryChannel element containing a ReceivingProtocol element whose value is HTTP. Suppose further that this DeliveryChannel element is referenced for the role of seller within a purchase ordering Business Collaboration. Then the party is asserting that it can receive Business requests to purchase orders over HTTP.

Within a CPA, the SendingProtocol and ReceivingProtocol elements serve to indicate the actual agreement upon what transports will be used for the complementary roles of the collaborators. For example, continuing the earlier examples, the seller in a purchase-order Business Collaboration could specify its receiving protocol to be SMTP and its sending protocol to be HTTP. These collaborator capabilities would match the buyer capabilities indicated in the CPP. These matches support an interoperable transport agreement where the buyer would send purchase orders by SMTP and where the responses to purchase orders (acknowledgements, cancellations, or change requests, for example) would be sent by the seller to the buyer using HTTP.

To fully describe receiving transport capabilities, the receiving-protocol information needs to be combined with URLs that provide the endpoints (see below).

NOTE: Though the URL scheme gives information about the protocol used, an explicit ReceivingProtocol element remains useful for future extensibility to protocols all of whose endpoints are identified by the same URL schemes, such as distinct transport protocols that all make use of HTTP endpoints. Likewise, both URL schemes of HTTP:// and HTTPS:// can be regarded as the same receiving protocol since HTTPS is HTTP with [SSL] for the transport-security protocol. Therefore, the ReceivingProtocol element is separated from the endpoints, which are, themselves, needed to provide essential information needed for connections.

7.5.15.3 Endpoint element

The REQUIRED uri attribute of the Endpoint element specifies the Party's communication addressing information associated with the ReceiveProtocol element. One or more Endpoint elements SHALL be provided for each Transport element in order to provide different addresses for different purposes. The value of the uri attribute is a URI that contains the electronic address of the Party in the form REQUIRED for the selected protocol. The value of the uri attribute SHALL conform to the syntax for expressing URIs as defined in [RFC2396].

The type attribute identifies the purpose of this endpoint. The value of type is an enumeration; permissible values are "login", "request", "response", "error", and "allPurpose". There can be, at most, one of each. The type attribute MAY be omitted. If it is omitted, its value defaults to "allPurpose". The "login" endpoint MAY be used for the address for the initial Message between the two Parties. The "request" and "response" endpoints are used for request and response Messages, respectively. The "error" endpoint MAY be used as the address for error Messages issued by the messaging service. If no "error" endpoint is defined, these error Messages SHALL be sent to the "response" address, if defined, or to the "allPurpose" endpoint. To enable error Messages to be received, each Transport element SHALL contain at least one endpoint of type "error", "response", or "allPurpose".

7.5.15.4 Transport protocols

In the following sections, we discuss the specific details of each supported transport protocol.

7.5.15.4.1 HTTP

HTTP is Hypertext Transfer Protocol[HTTP]. For HTTP, the address is a URI that SHALL conform to [RFC2396]. Depending on the application, there MAY be one or more endpoints, whose use is determined by the application.

Following is an example of an HTTP endpoint:

<tp:Endpoint tp:uri="http://example.com/servlet/ebxmlhandler"

 tp:type="request"/>

The "request" and "response" endpoints MAY be dynamically overridden for a particular request or asynchronous response by application-specified URIs exchanged in Business documents exchanged under the CPA.

For a synchronous response, the "response" endpoint is ignored if present. A synchronous response is always returned on the existing connection, i.e. to the URI that is identified as the source of the connection.

7.5.15.4.2 SMTP

SMTP is Simple Mail Transfer Protocol[SMTP]. For use with this standard, Multipurpose Internet Mail Extensions[MIME] MUST be supported. The MIME media type used by the SMTP transport layer is "Application" with a sub-type of "octet-stream".

For SMTP, the communication address is the fully qualified mail address of the destination Party as defined by [RFC822]. Following is an example of an SMTP endpoint:

<tp:Endpoint tp:uri="mailto:ebxmlhandler@example.com"

 tp:type="request"/>
SMTP with MIME automatically encodes or decodes the document as required, on each link in the path, and presents the decoded document to the destination document-exchange function.

NOTE: The SMTP mail transfer agent encodes binary data (i.e. data that are not 7-bit ASCII) unless it is aware that the upper level (mail user agent) has already encoded the data.

NOTE: SMTP by itself (without any authentication or encryption) is subject to denial of service and masquerading by unknown Parties. It is strongly suggested that those Parties who choose SMTP as their transport layer also choose a suitable means of encryption and authentication either in the document-exchange layer or in the transport layer such as [S/MIME].

NOTE: SMTP is an asynchronous protocol that does not guarantee a particular quality of service. A transport-layer acknowledgment (i.e. an SMTP acknowledgment) to the receipt of a mail Message constitutes an assertion on the part of the SMTP server that it knows how to deliver the mail Message and will attempt to do so at some point in the future. However, the Message is not hardened and might never be delivered to the recipient. Furthermore, the sender will see a transport-layer acknowledgment only from the nearest node. If the Message passes through intermediate nodes, SMTP does not provide an end-to-end acknowledgment. Therefore receipt of an SMTP acknowledgement does not guarantee that the Message will be delivered to the application and failure to receive an SMTP acknowledgment is not evidence that the Message was not delivered. It is recommended that the reliable-messaging protocol in the ebXML Message Service be used with SMTP.

7.5.15.4.3 FTP

FTP is File Transfer Protocol[RFC959].

Since a delivery channel specifies receive characteristics, each Party sends a Message using FTP PUT. The endpoint specifies the user id and input directory path (for PUTs to this Party). An example of an FTP endpoint is:

<tp:Endpoint uri="ftp://userid@server.foo.com"

 tp:type="request"/>
Since FTP must be compatible across all implementations, the FTP for ebXML will use the minimum sets of commands and parameters available for FTP as specified in [RFC959], section 5.1, and modified in [RFC1123], section 4.1.2.13. The mode SHALL be stream only and the type MUST be either ASCII Non-print (AN), Image (I) (binary), or Local 8 (L 8) (binary between 8-bit machines and machines with 36 bit words – for an 8-bit machine Local 8 is the same as Image).

Stream mode closes the data connection upon end of file. The server side FTP MUST set control to "PASV" before each transfer command to obtain a unique port pair if there are multiple third party sessions.

NOTE: [RFC 959] states that User-FTP SHOULD send a PORT command to assign a non-default data port before each transfer command is issued to allow multiple transfers during a single FTP because of the long delay after a TCP connection is closed until its socket pair can be reused.

NOTE: The format of the 227 reply to a PASV command is not well-standardized and an FTP client may assume that the parentheses indicated in [RFC959] will be present when in some cases they are not. If the User-FTP program doesn’t scan the reply for the first digit of host and port numbers, the result will be that the User-FTP might point at the wrong host. In the response, the h1, h2, h3, h4 is the IP address of the server host and the p1, p2 is a non-default data transfer port that PASV has assigned.

NOTE: As a recommendation for firewall transparency, [RFC1579] proposes that the client sends a PASV command, allowing the server to do a passive TCP open on some random port, and inform the client of the port number. The client can then do an active open to establish the connection.

NOTE: Since STREAM mode closes the data connection upon end of file, the receiving FTP may assume abnormal disconnect if a 226 or 250 control code hasn’t been received from the sending machine.

NOTE: [RFC1579] also makes the observation that it might be worthwhile to enhance the FTP protocol to have the client send a new command APSV (all passive) at startup that would allow a server that implements this option to always perform a passive open. A new reply code 151 would be issued in response to all file transfer requests not preceded by a PORT or PASV command; this Message would contain the port number to use for that transfer. A PORT command could still be sent to a server that had previously received APSV; that would override the default behavior for the next transfer operation, thus permitting third-party transfers.

7.5.15.5 Transport security

The TransportSecurity element provides the Party's security specifications, associated with the ReceivingProtocol element, for the transport layer of the CPP. It MAY be omitted if transport security will not be used for any CPAs composed from this CPP. Unless otherwise specified below, transport security applies to Messages in both directions.

Following is the syntax:

<tp:TransportSecurity>

 <tp:Protocol tp:version="3.0">SSL</Protocol>

 <tp:ServerCertificateRef tp:certId="N03"/> <!-- zero or one -->
 <tp:ClientCertificateRef tp:certId="N04"/> <!-- zero or one -->
</tp:TransportSecurity>

The TransportSecurity element contains two REQUIRED child elements, Protocol and CertificateRef.

7.5.15.5.1 Protocol element

The value of the Protocol element can identify any transport security protocol that the Party is prepared to support. The IMPLIED version attribute identifies the version of the specified protocol.

The specific security properties depend on the services provided by the identified protocol. For example, SSL performs certificate-based encryption and certificate-based authentication.

Whether authentication is bidirectional or just from Message sender to Message recipient depends on the selected transport-security protocol.
7.5.15.5.2 ServerCertificateRef element

The EMPTY ServerCertificateRef element contains an IMPLIED IDREF attribute, certId that identifies the certificate to be used by referring to the Certificate element (under PartyInfo) that has the matching ID attribute value. The ServerCertificateRef element MUST be present if the transport-security protocol uses certificates. It MAY be omitted otherwise (e.g. if authentication is by password).

7.5.15.5.3 ClientCertificateRef element

The EMPTY ClientCertificateRef element contains an IMPLIED IDREF attribute, certId that identifies the certificate to be used by referring to the Certificate element (under PartyInfo) that has the matching ID attribute value. The ClientCertificateRef element, if present, indicates that mutual authentication between client and server (i.e., initiator and responder of the HTTP connection) MUST be performed.
7.5.15.5.4 Specifics for HTTP

For encryption with HTTP, the protocol is SSL[SSL] (Secure Socket Layer) Version 3.0, which uses public-key encryption.

7.5.16 DocExchange Element

The DocExchange element provides information that the Parties must agree on regarding exchange of documents between them. This information includes the messaging service properties (e.g. ebXML Message Service[ebMS]).

Following is the structure of the DocExchange element of the CPP. Subsequent sections describe each child element in greater detail.

<tp:DocExchange tp:docExchangeId="N06">

 <tp:ebXMLBinding tp:version="1.1">

 <tp:ReliableMessaging> <!-- 0 or 1 -->

 ...

 </tp:ReliableMessaging>

 <tp:NonRepudiation> <!-- 0 or 1 -->

 ...

 </tp:NonRepudiation>

 <tp:DigitalEnvelope> <!-- 0 or 1 -->

 ...

 </tp:DigitalEnvelope>

 <tp:NamespaceSupported> <!-- 1 or more -->

 ...

 </tp:NamespaceSupported>

 </tp:ebXMLBinding>

</tp:DocExchange>
The DocExchange element of the CPP defines the properties of the messaging service to be used with CPAs composed from the CPP.

The DocExchange element is comprised of a single ebXMLBinding child element.

NOTE: The document-exchange section can be extended to messaging services other than the ebXML Message service by adding additional xxxBinding elements and their child elements that describe the other services, where xxx is replaced by the name of the additional binding. An example is XPBinding, which might define support for the future XML Protocol specification.

7.5.16.1 docExchangeId attribute

The DocExchange element has a single IMPLIED docExchangeId attribute that is an [XML] ID that provides a unique identifier that MAY be referenced from elsewhere within the CPP document.
7.5.16.2 ebXMLBinding element

The ebXMLBinding element describes properties specific to the ebXML Message Service[ebMS]. The ebXMLBinding element is comprised of the following child elements:

· zero or one ReliableMessaging element which specifies the characteristics of reliable messaging,

· zero or one NonRepudiation element which specifies the requirements for signing the Message,

· zero or one DigitalEnvelope element which specifies the requirements for encryption by the digital-envelope[DIGENV] method,

· zero or more NamespaceSupported elements that identify any namespace extensions supported by the messaging service implementation.

7.5.16.3 version attribute

The ebXMLBinding element has a single REQUIRED version attribute that identifies the version of the ebXML Message Service specification being used.

7.5.16.4 ReliableMessaging element

The ReliableMessaging element specifies the properties of reliable ebXML Message exchange. The default that applies if the ReliableMessaging element is omitted is "BestEffort". The following is the element structure:

<tp:ReliableMessaging

>

 <!-- The sub-elements Retries, RetryInterval,
 has cardinality 0 or 1 -->

 <tp:Retries>5</tp:Retries>

 <tp:RetryInterval>PT2H</tp:RetryInterval> <!-- XML Schema duration -->

 <tp:PersistDuration>P1D</tp:PersistDuration> <!-- XML Schema duration -->
 <tp:MessageOrderSemantics>Guaranteed</tp:MessageOrderSemantics>
</tp:ReliableMessaging>
The ReliableMessaging element is comprised of the following child elements.
· a Retries element,

· a RetryInterval element,

· a REQUIRED PersistDuration element,
· a REQUIRED MessageOrderSemantics element.

·
·
·
7.5.16.5

·
·

7.5.16.6

7.5.16.7

·
·

7.5.16.7.1 Retries and RetryInterval elements

The Retries and RetryInterval elements specify the permitted number of retries and interval, expressed as an XML Schema[XMLSCHEMA-2] duration, between retries of sending a reliably delivered Message following a timeout waiting for the Acknowledgment. The purpose of the RetryInterval element is to improve the likelihood of success on retry by deferring the retry until any temporary conditions that caused the error might be corrected.

The Retries and RetryInterval elements MUST be included together or MAY be omitted together. If they are omitted, the values of the corresponding quantities (number of retries and retry interval) are a local matter at each Party.

7.5.16.7.2 PersistDuration element

The value of the PersistDuration element is the minimum length of time, expressed as an XML Schema[XMLSCHEMA-2] duration, that data from a Message that is sent reliably is kept in Persistent Storage by an ebXML Message-Service implementation that receives that Message to facilitate the elimination of duplicates.
7.5.16.7.3 MessageOrderSemantics element

The MessageOrderSemantics element is an enumeration comprised of the following values:

· "Guaranteed"

· "NotGuaranteed"

The presence of a MessageOrder element in the SOAP Header for ebXML messages determines if the ordering of messages sent from the From Party must be preserved so that the To Party receives those messages in the order in which they were sent. If the MessageOrderSemantics element is set to "Guaranteed", then the ebXML message MUST contain a MessageOrder element in the SOAP Header. If the MessageOrderSemantics element is set to "NotGuaranteed", then the ebXML message MUST NOT contain a MessageOrder element in the SOAP Header.
7.5.16.8 NonRepudiation element

Non-repudiation both proves who sent a Message and prevents later repudiation of the contents of the Message. Non-repudiation is based on signing the Message using XML Digital Signature[XMLDSIG]. The element structure is as follows:

<tp :NonRepudiation>

 <tp:Protocol tp:version="2000/10/31">http://www.w3.org/2000/09/xmldsig#</tp:Protocol>

 <tp:HashFunction>sha1</tp:HashFunction>

 <tp:SignatureAlgorithm>rsa</tp:SignatureAlgorithm>

 <tp:InitiatorCertificateRef tp:certId="N03"/>

 <tp:ResponderCertificateRef tp:certId="N04"/>

</tp:NonRepudiation>
If the NonRepudiation element is omitted, the Messages are not digitally signed.

Security at the document-exchange level applies to all Messages in both directions for Business Transactions for which security is enabled.
The NonRepudiation element is comprised of the following child elements:

· a REQUIRED Protocol element,

· a REQUIRED HashFunction (e.g. SHA1, MD5) element,

· a REQUIRED SignatureAlgorithm element,

· an IMPLIED InitiatorCertificateRef element,

· an IMPLIED ResponderCertificateRef element.

7.5.16.8.1 Protocol element

The REQUIRED Protocol element identifies the technology that will be used to digitally sign a Message. It has a single IMPLIED version attribute whose value is is a string that identifies the version of the specified technology. An example of the Protocol element follows:

<tp:Protocol
tp:version="2000/10/31">http://www.w3.org/2000/09/xmldsig#
</tp:Protocol>

7.5.16.8.2 HashFunction element

The REQUIRED HashFunction element identifies the algorithm that is used to compute the digest of the Message being signed.

7.5.16.8.3 SignatureAlgorithm element

The REQUIRED SignatureAlgorithm element identifies the algorithm that is used to compute the value of the digital signature.

7.5.16.8.4 InitiatorCertificateRef element

The InitiatorCertificateRef element may be present zero or one time. It refers to one of the Certificate elements elsewhere within a CPA document, using the certId IDREF attribute. This element identifies the signing Certificate owned and used by the sender when it sends a message to the receiver using the DeliveryChannel that (indirectly) references this NonRepudiation element.
Because the InitiatorCertificateRef element references a certificate owned by the collaborating party, it will always be absent from a NonRepudiation element that is found within a CPP.

7.5.16.8.5 ResponderCertificateRef element

The ResponderCertificateRef element may be present zero or one time. It refers to one of the Certificate elements elsewhere within the CPP or CPA document, using the certId IDREF attribute. This element identifies the signing Certificate owned and used by the receiver in case it is required to return a response Message synchronously to the sender.
7.5.16.9 DigitalEnvelope element

The DigitalEnvelope element[DIGENV] is an encryption procedure in which the Message is encrypted by symmetric encryption (shared secret key) and the secret key is sent to the Message recipient encrypted with the recipient's public key. The element structure is:

<tp:DigitalEnvelope>

 <tp:Protocol tp:version="2.0">S/MIME</tp:Protocol>

 <tp:EncryptionAlgorithm>rsa</tp:EncryptionAlgorithm>

 <tp:InitiatorCertificateRef tp:certId="N03"/>

 <tp:ResponderCertificateRef tp:certId="N04"/>
</tp:DigitalEnvelope>

Security at the document-exchange level applies to all Messages in both directions for Business Transactions for which security is enabled.

7.5.16.9.1 Protocol element

The REQUIRED Protocol element identifies the security protocol to be used. The REQUIRED version attribute identifies the version of the protocol.

7.5.16.9.2 EncryptionAlgorithm element

The REQUIRED EncryptionAlgorithm element identifies the encryption algorithm to be used.

7.5.16.10

7.5.16.10.1 InitiatorCertificateRef element

The InitiatorCertificateRef element may appear 0 or 1 time. It identifies the certificate, used by the sender but owned by the receiver for the purpose of encryption, by means of its certId attribute. The certId attribute is an attribute of type [XML] IDREF, which refers to a matching ID attribute in a Certificate element elsewhere in the CPP or CPA.
7.5.16.10.2 ResponderCertificateRef element

The ResponderCertificateRef element may appear 0 or 1 time. It identifies the certificate, used by the receiver but owned by the sender for the purpose of encryption, by means of its certId attribute. The certId attribute is an attribute of type [XML] IDREF, which refers to a matching ID attribute in a Certificate element elsewhere in the CPP or CPA. This certificate is only used in case the receiver is required to return a response MESSAGE to the sender synchronously.
Because the ResponderCertificateRef element references a certificate owned by the collaborating party, it will always be absent from a DigitalEnvelope element that is found within a CPP.

7.5.17 OverrideMshActionBinding element

The OverrideMshActionBinding element may occur zero or more times. It has two REQUIRED attributes. The action attribute identifies the Message Service Handler level action whose delivery is not to use the default DeliveryChannel for Message Service Handler actions. The channelId attribute specifies the DeliveryChannel to be used instead.

7.5.18 NamespaceSupported element

The NamespaceSupported element identifies the namespaces supported by the messaging service implementation and by the business application. Examples are Security Services Markup Language[S2ML] and Transaction Authority Markup Language[XAML]. For example, support for the S2ML namespace would be defined as follows:

<tp:NamespaceSupported
 tp:location="http://www.s2ml.org/s2ml.xsd"

 tp:version="0.8">http://www.s2ml.org/s2ml</tp:NamespaceSupported>
7.6 SimplePart element

The SimplePart element provides a repeatable list of the constituent parts, primarily identified by the MIME content-type value. The SimplePart element has two REQUIRED attributes: id and mimetype. The id attribute, of type ID, provides the value that will be used later to reference this Message part when specifying how the parts are packaged into composites, if composite packaging is present. The mimetype attribute provides the actual value of content-type for the simple Message part being specified.

The SimplePart element can have zero or more NamespaceSupported elements. Each of these identifies any namespace supported for the XML packaged in the parent simple body part.
7.7 Packaging element
The subtree of the Packaging element provides specific information about how the Message Header and payload constituent(s) are packaged for transmittal over the transport, including the crucial information about what document-level security packaging is used and the way in which security features have been applied. Typically the subtree under the Packaging element indicates the specific way in which constituent parts of the Message are organized. MIME processing capabilities are typically the capabilities or agreements described in this subtree. The Packaging element provides information about MIME content types, XML namespaces, security parameters, and MIME structure of the data that is exchanged between Parties.

Following is an example of the Packaging element:

<!-- Simple ebXML S/MIME Packaging for application-based payload

 encryption -->

<tp:Packaging>

 <tp:ProcessingCapabilities tp:generate="true" tp:parse="true"/>

 <tp:SimplePart tp:id="I001" tp:mimetype="text/xml"/>

 <tp:SimplePart tp:id="I002" tp:mimetype="application/xml"/>

 <tp:CompositeList>

 <tp:Encapsulation

 tp:id="I003"

 tp:mimetype="application/pkcs7-mime"

 tp:mimeparameters="smime-type="enveloped-data"">

 <Constituent tp:idref="I002"/>

 </tp:Encapsulation>

 <tp:Composite tp:id="I004"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type="text/xml" version="1.0"">

 <tp:Constituent tp:idref="I001"/>

 <tp:Constituent tp:idref="I003"/>

 </tp:Composite>

 </tp:CompositeList>

</tp:Packaging>
See "Matching Packaging" in Appendix F for a more specific example.

The Packaging element has one attribute; the REQUIRED id attribute, with type ID. It is referred to in the ActionBinding, by using the IDREF attribute, packageId.
The child elements of the Packaging element are ProcessingCapabilities, SimplePart, and CompositeList. This set of elements MAY appear one or more times as a child of each Packaging element in a CPP and SHALL appear once as a child of each Packaging element in a CPA.
7.7.1 ProcessingCapabilities element

The ProcessingCapabilities element has two REQUIRED attributes with Boolean values of either "true" or "false". The attributes are parse and generate. Normally, these attributes will both have values of "true" to indicate that the packaging constructs specified in the other child elements can be both produced as well as processed at the software Message service layer.

At least one of the generate or parse attributes MUST be true.

7.7.2 SimplePart element
The SimplePart element provides a repeatable list of the constituent parts, primarily identified by the MIME content-type value. described earlier for the content model of this element. The same SimplePart element MAY be referenced from (i.e., reused in) multiple Packaging elements.
7.7.3

7.7.4

7.7.5 CompositeList element

The final child element of Packaging is zero or more CompositeList, each of which is a container for the specific way in which the simple parts are combined into groups (MIME multiparts) or encapsulated within security-related MIME content-types. The CompositeList element MAY be omitted from Packaging when no security encapsulations or composite multiparts are used. When the CompositeList element is present, the content model for the CompositeList element is a repeatable sequence of choices of Composite or Encapsulation elements. The Composite and Encapsulation elements MAY appear intermixed as desired. There MAY be multiple CompositeList elements within a Packaging element because when a DeliveryChannel is used synchronously, the same Pacakging element MAY have to be used to describe the message format, one for the request message, one for the response message. It is also possible that the request and/or response message MAY have multiple formats, e.g., one for a normal response and another for an error response.
The sequence in which the choices are presented is important because, given the recursive character of MIME packaging, composites or encapsulations MAY include previously mentioned composites (or rarely, encapsulations) in addition to the Message parts characterized within the SimplePart subtree. Therefore, the "top-level" packaging will be described last in the sequence.

The Composite element has the following attributes:

· a REQUIRED mimetype attribute,

· a REQUIRED id attribute,

· an IMPLIED mimeparameters attribute.

The mimetype attribute provides the value of the MIME content-type for this Message part, and this will be some MIME composite type, such as "multipart/related" or "multipart/signed". The id attribute, type ID, provides a way to refer to this composite if it needs to be mentioned as a constituent of some later element in the sequence. The mimeparameters attribute provides the values of any significant MIME parameter (such as "type=application/ xml") that is needed to understand the processing demands of the content-type.

The Composite element has one child element, Constituent.
The Constituent element has one REQUIRED attribute, idref, type IDREF, and has an EMPTY content model. The idref attribute has as its value the value of the id attribute of a previous Composite, Encapsulation, or SimplePart element. The purpose of this sequence of Constituents is to indicate both the contents and the order of what is packaged within the current Composite or Encapsulation.

The Encapsulation element is typically used to indicate the use of MIME security mechanisms, such as [S/MIME] or Open-PGP[RFC2015]. A security body part can encapsulate a MIME part that has been previously characaterized. For convenience, all such security structures are under the Encapsulation element, even when technically speaking the data is not "inside" the body part. (In other words, the so-called clear-signed or detached signature structures possible with MIME multipart/signed are for simplicity found under the Encapsulation element.)

The Encapsulation element has the following attributes:

· a REQUIRED mimetype attribute,

· a REQUIRED id attribute,

· an IMPLIED mimeparameters attribute.

The mimetype attribute provides the value of the MIME content-type for this Message part, such as "application/pkcs7-mime". The id attribute, type ID, provides a way to refer to this encapsulation if it needs to be mentioned as a constituent of some later element in the sequence. The mimeparameters attribute provides the values of any significant MIME parameter(s) needed to understand the processing demands of the content-type.

Both the Encapsulation element and the Composite element have child elements consisting of a Constituent element or of a repeatable sequence of Constituent elements, respectively.

7.8 ds:Signature element

The CPP MAY be digitally signed using technology that conforms with the XML Digital Signature specification[XMLDSIG]. The ds:Signature element is the root of a subtree of elements that MAY be used for signing the CPP. The syntax is:

<ds:Signature>...</ds:Signature>

The content of this element and any subelements are defined by the XML Digital Signature specification. See Section 8.7 for a detailed discussion. The following additional constraints on ds:Signature are imposed:

· A CPP MUST be considered invalid if any ds:Signature element fails core validation as defined by the XML Digital Signature specification[XMLDSIG].

· Whenever a CPP is signed, each ds:Reference element within a ProcessSpecification element MUST pass reference validation and each ds:Signature element MUST pass core validation.

NOTE: In case a CPP is unsigned, software MAY nonetheless validate the ds:Reference elements within ProcessSpecification elements and report any exceptions.

NOTE: Software for creation of CPPs and CPAs MAY recognize ds:Signature and automatically insert the element structure necessary to define signing of the CPP and CPA. Signature creation itself is a cryptographic process that is outside the scope of this specification.

NOTE: See non-normative note in Section 7.5.4.5 for a discussion of times at which validity tests MAY be made.

7.9 Comment Element

The CollaborationProtocolProfile element MAY contain zero or more Comment elements. The Comment element is a textual note that MAY be added to serve any purpose the author desires. The language of the Comment is identified by a REQUIRED xml:lang attribute. The xml:lang attribute MUST comply with the rules for identifying languages specified in [XML]. If multiple Comment elements are present, each MAY have a different xml:lang attribute value. An example of a Comment element follows:

<tp:Comment xml:lang="en-US">This is a CPA between A and B</tp:Comment>

When a CPA is composed from two CPPs, all Comment elements from both CPPs SHALL be included in the CPA unless the two Parties agree otherwise.

8 CPA Definition

A Collaboration-Protocol Agreement (CPA) defines the capabilities that two Parties must agree upon to enable them to engage in electronic Business for the purposes of the particular CPA. This section defines and discusses the details of the CPA. The discussion is illustrated with some XML fragments.

Most of the XML elements in this section are described in detail in section 7, "CPP Definition". In general, this section does not repeat that information. The discussions in this section are limited to those elements that are not in the CPP or for which additional discussion is required in the CPA context. See also Appendix D for the XML Schema, respectively, and Appendix B for an example of a CPA document.

8.1 CPA Structure

Following is the overall structure of the CPA:

<CollaborationProtocolAgreement

 xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-1_1.xsd"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 tp:cpaid="YoursAndMyCPA"

 tp:version="1.2">

 <tp:Status tp:value="proposed"/>

 <tp:Start>1988-04-07T18:39:09</Start>

 <tp:End>1990-04-07T18:40:00</End>

 <!-- ConversationConstraints MAY appear 0 or 1 times -->

 <tp:ConversationConstraints
 tp:invocationLimit="100"

 tp:concurrentConversations="4"/>

 <tp:PartyInfo>

 ...

 </tp:PartyInfo>

 <tp:PartyInfo>

 ...
 </tp:PartyInfo>
 <tp:SimplePart> <!-- one or more -->
 ...
 </tp:SimplePart>
 <tp:Packaging tp:id="N20"> <!-- one or more -->

 ...

 </tp:Packaging>

 <!-- ds:signature MAY appear 0 or more times -->

 <ds:Signature>

...

 </ds:Signature>

 <tp:Comment xml:lang="en-GB">any text</Comment> <!-- zero or more -->

</tp:CollaborationProtocolAgreement>
8.2 CollaborationProtocolAgreement Element

The CollaborationProtocolAgreement element is the root element of a CPA. It has a REQUIRED cpaid attribute that supplies a unique idenfier for the document. The value of the cpaid attribute SHALL be assigned by one Party and used by both. It is RECOMMENDED that the value of the cpaid attribute be a URI. The value of the cpaid attribute MAY be used as the value of the CPAId element in the ebXML Message Header[ebMS] or of a similar element in a Message Header of an alternative messaging service.

NOTE: Each Party MAY associate a local identifier with the cpaid attribute.
In addition, the CollaborationProtocolAgreement element has an IMPLIED version attribute. This attribute indicates the version of the CPA. Its purpose is to provide versioning capabilities for an instance of a CPA as it undergoes negotiation between the two parties. The version attribute SHOULD also be used to provide versioning capability for a CPA that has been deployed and then modified. The value of the version attribute SHOULD be a string representation of a numeric value such as "1.0" or "2.3". The value of the version string SHOULD be changed with each change made to the CPA document both during negotiation and after it has been deployed.

NOTE: The method of assigning version identifiers is left to the implementation.

The CollaborationProtocolAgreement element has REQUIRED [XML] Namespace[XMLNS] declarations that are defined in Section 7, "CPP Definition".

The CollaborationProtocolAgreement element is comprised of the following child elements, most of which are described in greater detail in subsequent sections:

· a REQUIRED Status element that identifies the state of the process that creates the CPA,
· a REQUIRED Start element that records the date and time that the CPA goes into effect,

· a REQUIRED End element that records the date and time after which the CPA must be renegotiated by the Parties,
· zero or one ConversationConstraints element that documents certain agreements about conversation processing,

· two REQUIRED PartyInfo elements, one for each Party to the CPA,
· one or more SimplePart elements,
· one or more Packaging elements,
· one or more ds:Signature elements that provide signing of the CPA using the XML Digital Signature[XMLDSIG] standard,

· zero or more Comment elements.
8.3 Status Element

The Status element records the state of the composition/negotiation process that creates the CPA. An example of the Status element follows:

<tp:Status tp:value="proposed"/>

The Status element has a REQUIRED value attribute that records the current state of composition of the CPA. This attribute is an enumeration comprised of the following possible values:

· "proposed", meaning that the CPA is still being negotiated by the Parties,
· "agreed", meaning that the contents of the CPA have been agreed to by both Parties,
· "signed", meaning that the CPA has been "signed" by the Parties. This "signing" MAY take the form of a digital signature that is described in section 8.7 below.

NOTE: The Status element MAY be used by a CPA composition and negotiation tool to assist it in the process of building a CPA.

8.4 CPA Lifetime

The lifetime of the CPA is given by the Start and End elements. The syntax is:

<tp:Start>1988-04-07T18:39:09Z</tp:Start>

<tp:End>1990-04-07T18:40:00Z</tp:End>

8.4.1 Start element

The Start element specifies the starting date and time of the CPA. The Start element SHALL be a string value that conforms to the content model of a canonical dateTime as defined in the XML Schema Datatypes Specification[XMLSCHEMA-2]. For example, to indicate 1:20 pm UTC (Coordinated Universal Time) on May 31, 1999, a Start element would have the following value:

1999-05-31T13:20:00Z

The Start element SHALL be represented as Coordinated Universal Time (UTC).

8.4.2 End element

The End element specifies the ending date and time of the CPA. The End element SHALL be a string value that conforms to the content model of a canonical dateTime as defined in the XML Schema Datatypes Specification[XMLSCHEMA-2]. For example, to indicate 1:20 pm UTC (Coordinated Universal Time) on May 31, 1999, an End element would have the following value:

1999-05-31T13:20:00Z

The End element SHALL be represented as Coordinated Universal Time (UTC).

When the end of the CPA's lifetime is reached, any Business Transactions that are still in progress SHALL be allowed to complete and no new Business Transactions SHALL be started. When all in-progress Business Transactions on each conversation are completed, the Conversation shall be terminated whether or not it was completed.

NOTE: It should be understood that if a Business application defines a conversation as consisting of multiple Business Transactions, such a conversation MAY be terminated with no error indication when the end of the lifetime is reached. The run-time system could provide an error indication to the application.

NOTE: It should be understood that it MAY not be feasible to wait for outstanding conversations to terminate before ending the CPA since there is no limit on how long a conversation MAY last.

NOTE: The run-time system SHOULD return an error indication to both Parties when a new Business Transaction is started under this CPA after the date and time specified in the End element.

8.5 ConversationConstraints Element

The ConversationConstraints element places limits on the number of conversations under the CPA. An example of this element follows:

<tp:ConversationConstraints tp:invocationLimit="100"

 tp:concurrentConversations="4"/>

The ConversationConstraints element has the following attributes:

· an IMPLIED invocationLimit attribute,

· an IMPLIED concurrentConversations attribute.

8.5.1 invocationLimit attribute

The invocationLimit attribute defines the maximum number of conversations that can be processed under the CPA. When this number has been reached, the CPA is terminated and must be renegotiated. If no value is specified, there is no upper limit on the number of conversations and the lifetime of the CPA is controlled solely by the End element.

NOTE: The invocationLimit attribute sets a limit on the number of units of Business that can be performed under the CPA. It is a Business parameter, not a performance parameter.

8.5.2 concurrentConversations attribute

The concurrentConversations attribute defines the maximum number of conversations that can be in process under this CPA at the same time. If no value is specified, processing of concurrent conversations is strictly a local matter.

NOTE: The concurrentConversations attribute provides a parameter for the Parties to use when it is necessary to limit the number of conversations that can be concurrently processed under a particular CPA. For example, the back-end process might only support a limited number of concurrent conversations. If a request for a new conversation is received when the maximum number of conversations allowed under this CPA is already in process, an implementation MAY reject the new conversation or MAY enqueue the request until an existing conversation ends. If no value is given for concurrentConversations, how to handle a request for a new conversation for which there is no capacity is a local implementation matter.

8.6 PartyInfo Element

The general characteristics of the PartyInfo element are discussed in section 7.5.

The CPA SHALL have one PartyInfo element for each Party to the CPA. The PartyInfo element specifies the Parties' agreed terms for engaging in the Business Collaborations defined by the Process-Specification documents referenced by the CPA. If a CPP has more than one PartyInfo element, the appropriate PartyInfo element SHALL be selected from each CPP when composing a CPA.

In the CPA, there SHALL be one PartyId element under each PartyInfo element. The value of this element is the same as the value of the PartyId element in the ebXML Message Service specification[ebMS] or similar messaging service specification. One PartyId element SHALL be used within a To or From Header element of an ebXML Message.

8.6.1 ProcessSpecification element

The ProcessSpecification element identifies the Business Collaboration that the two Parties have agreed to perform. There MAY be one or more ProcessSpecification elements in a CPA. Each SHALL be a child element of a separate CollaborationRole element. See the discussion in Section 7.5.3.

8.7 ds:Signature Element

A CPA document MAY be digitally signed by one or more of the Parties as a means of ensuring its integrity as well as a means of expressing the agreement just as a corporate officer's signature would do for a paper document. If signatures are being used to digitally sign an ebXML CPA or CPP document, then it is strongly RECOMMENDED that [XMLDSIG] be used to digitally sign the document. The ds:Signature element is the root of a subtree of elements that MAY be used for signing the CPP. The syntax is:

<ds:Signature>...</ds:Signature>

The content of this element and any subelements are defined by the XML Digital Signature specification[XMLDSIG]. The following additional constraints on ds:Signature are imposed:

· A CPA MUST be considered invalid if any ds:Signature fails core validation as defined by the XML Digital Signature specification.

· Whenever a CPA is signed, each ds:Reference within a ProcessSpecification MUST pass reference validation and each ds:Signature MUST pass core validation.

NOTE: In case a CPA is unsigned, software MAY nonetheless validate the ds:Reference elements within ProcessSpecification elements and report any exceptions.

NOTE: Software for creation of CPPs and CPAs MAY recognize ds:Signature and automatically insert the element structure necessary to define signing of the CPP and CPA. Signature creation itself is a cryptographic process that is outside the scope of this specification.

NOTE: See non-normative note in section 7.5.4.5 for a discussion of times at which a CPA MAY be validated.

8.7.1 Persistent Digital Signature

If [XMLDSIG] is used to sign an ebXML CPP or CPA, the process defined in this section of the specification SHALL be used.

8.7.1.1 Signature Generation

Following are the steps to create a digital signature:

1. Create a SignedInfo element, a child element of ds:Signature. SignedInfo SHALL have child elements SignatureMethod, CanonicalizationMethod, and Reference as prescribed by [XMLDSIG].

2. Canonicalize and then calculate the SignatureValue over SignedInfo based on algorithms specified in SignedInfo as specified in [XMLDSIG].

3. Construct the Signature element that includes the SignedInfo, KeyInfo (RECOMMENDED), and SignatureValue elements as specified in [XMLDSIG].

4. Include the namespace qualified Signature element in the document just signed, following the last PartyInfo element.

8.7.1.2 ds:SignedInfo element

The ds:SignedInfo element SHALL be comprised of zero or one ds:CanonicalizationMethod element, the ds:SignatureMethod element, and one or more ds:Reference elements.

8.7.1.3 ds:CanonicalizationMethod element

The ds:CanonicalizationMethod element is defined as OPTIONAL in [XMLDSIG], meaning that the element need not appear in an instance of a ds:SignedInfo element. The default canonicalization method that is applied to the data to be signed is [XMLC14N] in the absence of a ds:CanonicalizationMethod element that specifies otherwise. This default SHALL also serve as the default canonicalization method for the ebXML CPP and CPA documents.
8.7.1.4 ds:SignatureMethod element

The ds:SignatureMethod element SHALL be present and SHALL have an Algorithm attribute. The RECOMMENDED value for the Algorithm attribute is:

http://www.w3.org/2000/09/xmldsig#dsa-sha1
This RECOMMENDED value SHALL be supported by all compliant ebXML CPP or CPA software implementations.

8.7.1.5 ds:Reference element

The ds:Reference element for the CPP or CPA document SHALL have a REQUIRED URI attribute value of "" to provide for the signature to be applied to the document that contains the ds:Signature element (the CPA or CPP document). The ds:Reference element for the CPP or CPA document MAY include an IMPLIED type attribute that has a value of:

"http://www.w3.org/2000/09/xmldsig#Object"

in accordance with [XMLDSIG]. This attribute is purely informative. It MAY be omitted. Implementations of software designed to author or process an ebXML CPA or CPP document SHALL be prepared to handle either case. The ds:Reference element MAY include the id attribute, type ID, by which this ds:Reference element MAY be referenced from a ds:Signature element.

8.7.1.6 ds:Transform element

The ds:Reference element for the CPA or CPP document SHALL include a descendant ds:Transform element that excludes the containing ds:Signature element and all its descendants. This exclusion is achieved by means of specifying the ds:Algorithm attribute of the Transform element as

"http://www.w3.org/2000/09/xmldsig#enveloped-signature".

For example:

<ds:Reference ds:URI="">

 <ds:Transforms>

 <ds:Transform

ds:Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

 </ds:Transforms>

 <ds:DigestMethod

 ds:Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>...</ds:DigestValue>

</ds:Reference>

8.7.1.7 ds:Algorithm element

The ds:Transform element SHALL include a ds:Algorithm attribute that has a value of:
 http://www.w3.org/2000/09/xmldsig#enveloped-signature

NOTE: When digitally signing a CPA, it is RECOMMENDED that each Party sign the document in accordance with the process described above. The first Party that signs the CPA will sign only the CPA contents, excluding their own signature. The second Party signs over the contents of the CPA as well as the ds:Signature element that contains the first Party's signature. It MAY be necessary that a notary sign over both signatures.
8.8 Comment element

The CollaborationProtocolAgreement element MAY contain zero or more Comment elements. See section 7.9 for details of the syntax of the Comment element.

8.9 Composing a CPA from Two CPPs

This section discusses normative issues in composing a CPA from two CPPs. See also Appendix F , "Composing a CPA from Two CPPs (Non-Normative)".

8.9.1 ID Attribute Duplication

In composing a CPA from two CPPs, there is a hazard that ID attributes from the two CPPs might have duplicate values. When a CPA is composed from two CPPs, duplicate ID attribute values SHALL be tested for. If a duplicate ID attribute value is present, one of the duplicates shall be given a new value and the corresponding IDREF attribute values from the corresponding CPP SHALL be corrected.

8.10 Modifying Parameters of the Process-Specification Document Based on Information in the CPA
A Process-Specification document contains a number of parameters, expressed as XML attributes. An example is the security attributes that are counterparts of the attributes of the CPA Characteristics element. The values of these attributes can be considered to be default values or recommendations. When a CPA is created, the Parties MAY decide to accept the recommendations in the Process-Specification or they MAY agree on values of these parameters that better reflect their needs.

When a CPA is used to configure a run-time system, choices specified in the CPA MUST always assume precedence over choices specified in the referenced Process-Specification document. In particular, all choices expressed in a CPA’s Characteristics and Packaging elements MUST be implemented as agreed to by the Parties. These choices SHALL override the default values expressed in the Process-Specification document. The process of installing the information from the CPA and Process-Specification document MUST verify that all of the resulting choices are mutually consistent and MUST signal an error if they are not.

NOTE: There are several ways of overriding the information in the Process-Specification document by information from the CPA. For example:

· The CPA composition tool can create a separate copy of the Process-Specification document. The tool can then directly modify the Process-Specification document with information from the CPA. One advantage of this method is that the override process is performed entirely by the CPA composition tool. A second advantage is that with a separate copy of the Process-Specification document associated with the particular CPA, there is no exposure to modifications of the Process-Specification document between the time that the CPA is created and the time it is installed in the Parties' systems.

· A CPA installation tool can dynamically override parameters in the Process-Specification document using information from the corresponding parameters in the CPA at the time the CPA and Process-Specification document are installed in the Parties' systems. This eliminates the need to create a separate copy of the Process-Specification document.
· Other possible methods might be based on XSLT transformations of the parameter information in the CPA and/or the Process-Specification document.

9 References

Some references listed below specify functions for which specific XML definitions are provided in the CPP and CPA. Other specifications are referred to in this specification in the sense that they are represented by keywords for which the Parties to the CPA MAY obtain plug-ins or write custom support software but do not require specific XML element sets in the CPP and CPA.

In a few cases, the only available specification for a function is a proprietary specification. These are indicated by notes within the citations below.

[ccOVER] ebXML Core Components and Business Process Document Overview, http://www.ebxml.org.

[DIGENV] Digital Envelope, RSA Laboratories, http://www.rsasecurity.com/rsalabs/. NOTE: At this time, the only available specification for digital envelope appears to be the RSA Laboratories specification.

[ebBPSS] ebXML Business Process Specification Schema, http://www.ebxml.org.

[ebGLOSS] ebXML Glossary, http://www.ebxml.org.

[ebMS] ebXML Message Service Specification, http://www.ebxml.org.

[ebRS] ebXML Registry Services Specification, http://www.ebxml.org.

[ebTA] ebXML Technical Architecture Specification, http://www.ebxml.org.

[HTTP] Hypertext Transfer Protocol, Internet Engineering Task Force RFC2616.

[IPSEC] IP Security Document Roadmap, Internet Engineering Task Force RFC 2411.

[ISO6523] Structure for the Identification of Organizations and Organization Parts, International Standards Organization ISO-6523.

[MIME] MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies. Internet Engineering Task Force RFC 1521.

[RFC822] Standard for the Format of ARPA Internet Text Messages, Internet Engineering Task Force RFC 822.

[RFC959] File Transfer Protocol (FTP), Internet Engineering Task Force RFC 959.

[RFC1123] Requirements for Internet Hosts -- Application and Support, R. Braden, Internet Engineering Task Force, October 1989.

[RFC1579] Firewall-Friendly FTP, S. Bellovin, Internet Engineering Task Force, February 1994.

[RFC2015] MIME Security with Pretty Good Privacy, M. Elkins, Internet Engineering Task Force, RFC 2015.

[RFC2119] Key Words for use in RFCs to Indicate Requirement Levels, Internet Engineering Task Force RFC 2119.

[RFC2396] Uniform Resource Identifiers (URI): Generic Syntax; T. Berners-Lee, R. Fielding, L. Masinter - August 1998.

[S/MIME] S/MIME Version 3 Message Specification, Internet Engineering Task Force RFC 2633.

[S2ML] Security Services Markup Language, http://s2ml.org/.

[SMTP] Simple Mail Transfer Protocol, Internet Engineering Task Force RFC 821.

[SSL] Secure Sockets Layer, Netscape Communications Corp. http://developer.netscape.com.

NOTE: At this time, it appears that the Netscape specification is the only available specification of SSL. Work is in progress in IETF on "Transport Layer Security", which is intended as a replacement for SSL.

[XAML] Transaction Authority Markup Language, http://xaml.org/.

[XLINK] XML Linking Language, http://www.w3.org/TR/xlink/.

[XML] Extensible Markup Language (XML), World Wide Web Consortium,

http://www.w3.org.

[XMLC14N] Canonical XML, Ver. 1.0, http://www.w3.org/TR/XML-C14N/.

[XMLDSIG] XML Signature Syntax and Processing, Worldwide Web Consortium, http://www.w3.org/TR/xmldsig-core/.

[XMLNS] Namespaces in XML, T. Bray, D. Hollander, and A. Layman, Jan. 1999, http://www.w3.org/TR/REC-xml-names/.

[XMLSCHEMA-1] XML Schema Part 1: Structures, http://www/w3/org/TR/xmlschema-1/.

[XMLSCHEMA-2] XML Schema Part 2: Datatypes,

http://www.w3.org/TR/xmlschema-2/.

[XPOINTER] XML Pointer Language, ver. 1.0, http://www.w3.org/TR/xptr.

10 Conformance
In order to conform to this specification, an implementation:

a) SHALL support all the functional and interface requirements defined in this specification,

b) SHALL NOT specify any requirements that would contradict or cause non-conformance to this specification.

A conforming implementation SHALL satisfy the conformance requirements of the applicable parts of this specification.

An implementation of a tool or service that creates or maintains ebXML CPP or CPA instance documents SHALL be determined to be conformant by validation of the CPP or CPA instance documents, created or modified by said tool or service, against the XML Schema[XMLSCHEMA-1] definition of the CPP or CPA in Appendix D and available from

http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-1_1.xsd
by using two or more validating XML Schema parsers that conform to the W3C XML Schema specifications[XMLSCHEMA-1,XMLSCHEMA-2].

The objective of conformance testing is to determine whether an implementation being tested conforms to the requirements stated in this specification. Conformance testing enables vendors to implement compatible and interoperable systems. Implementations and applications SHALL be tested using available test suites to verify their conformance to this specification.

Publicly available test suites from vendor neutral organizations such as OASIS and the U.S.A. National Institute of Science and Technology (NIST) SHOULD be used to verify the conformance of implementations, applications, and components claiming conformance to this specification. Open-source reference implementations MAY be available to allow vendors to test their products for interface compatibility, conformance, and interoperability.

11 Disclaimer

The views and specification expressed in this document are those of the authors and are not necessarily those of their employers. The authors and their employers specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this design.

12 Contact Information
 Martin W. Sachs (Team Leader)

 IBM T. J. Watson Research Center

 P.O.B. 704

 Yorktown Hts, NY 10598

 USA

 Phone: 914-784-7287

 email: mwsachs@us.ibm.com

 Chris Ferris

 XML Technology Development

 Sun Microsystems, Inc

 One Network Drive

 Burlington, Ma 01824-0903

 USA

 Phone: 781-442-3063

 email: chris.ferris@east.sun.com

 Dale W. Moberg

 Cyclone Commerce

 17767 North Perimeter Dr., Suite 103

 Scottsdale, AZ 85255

 USA

 Phone: 480-627-1800

 email: dmoberg@columbus.rr.com

 Tony Weida

 Edifecs

 2310 130th Ave. NE, Suite 100

 Bellevue, WA 98005

 USA

 Phone: 212-678-5265

 email: TonyW@edifecs.com

Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS] 2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Copyright Statement

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

This document and translations of it MAY be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation MAY be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself MAY not be modified in any way, such as by removing the copyright notice or references to ebXML, UN/CEFACT, or OASIS, except as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by ebXML or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ebXML DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Appendix A Example of CPP Document (Non-Normative)

This example includes two CPPs that are used to form the CPA in Appendix B. They are available as ASCII files at

cpp-example-company1-1_1.xml"

http://www.oasis-open.org/committees/ebxml-cppa/schema/
cpp-example-company1-1_1.xml

http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-example-company2-1_1.xml
cpp-example-company1-1_1.xml
<?xml version="1.0"?>

<tp:CollaborationProtocolProfile

xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-1_1.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-1_1.xsd draft-cpp-cpa-04.xsd"

tp:cpaid="uri:company1-and-company2-cpa"

tp:version="1.0">

<!-- Party info for company 1 -->

<tp:PartyInfo tp:partyName="company 1" tp:defaultMshChannelId="channel1">

<tp:PartyId tp:type="DUNS">123456789</tp:PartyId>

<tp:PartyRef xlink:href="http://company1.com/about.html"/>

<tp:CollaborationRole tp:id="BuyerId">

<tp:ProcessSpecification tp:version="2.0" tp:name="PIP3A4RequestPurchaseOrder" xlink:type="simple" xlink:href="http://www.rosettanet.org/processes/3A4.xml"/>

<tp:Role tp:name="Buyer" xlink:type="simple" xlink:href="http://www.rosettanet.org/processes/3A4.xml#Buyer"/>

<tp:ApplicationCertificateRef tp:certId="company1SigningCertificate"/>

<!-- This service binding uses an asynchronous delivery channel to receive the signals and response -->

<tp:ServiceBinding>

<tp:Service tp:type="anyURI">bpid:RosettaNet:PIP3A4RequestPurchaseOrder$2.0</tp:Service>

<tp:ActionBinding tp:action="Purchase Order Confirmation Action" tp:channelId="channel1" tp:packageId="ResponsePackage">

<tp:ActionContext tp:binaryCollaboration="Request Purchase Order" tp:businessTransactionActivity="Request Purchase Order" tp:requestOrResponseAction="Purchase Order Confirmation Action"/>

</tp:ActionBinding>

<!-- Receipt Acknowledgment and Exception signals are delivered using the designated delivery channels -->

<tp:ActionBinding tp:action="ReceiptAcknowledgment" tp:channelId="channel1" tp:packageId="ReceiptAcknowledgmentPackage"/>

<tp:ActionBinding tp:action="Exception" tp:channelId="channel1" tp:packageId="ExceptionPackage"/>

</tp:ServiceBinding>

</tp:CollaborationRole>

<!-- Certificates used by the "Buyer" company -->

<tp:Certificate tp:certId="company1SigningCertificate">

<ds:KeyInfo/>

</tp:Certificate>

<tp:Certificate tp:certId="company1EncryptionCertificate">

<ds:KeyInfo/>

</tp:Certificate>

<tp:Certificate tp:certId="company1ClientCertificate">

<ds:KeyInfo/>

</tp:Certificate>

<tp:Certificate tp:certId="company1ServerCertificate">

<ds:KeyInfo/>

</tp:Certificate>

<tp:DeliveryChannel tp:channelId="channel1" tp:transportId="transport1" tp:docExchangeId="docExchange1">

<tp:BusinessProcessCharacteristics tp:syncReplyMode="none" tp:nonRepudiationOfOrigin="true" tp:nonRepudiationOfReceipt="false" tp:secureTransport="true" tp:confidentiality="true" tp:authenticated="true" tp:authorized="false"/>

<!-- Always enable Reliable Messaging behavior with duplicate elimination -->

<tp:MessagingCharacteristics tp:ackRequested="always" tp:ackSignatureRequested="always" tp:duplicateElimination="always"/>

</tp:DeliveryChannel>

<tp:Transport tp:transportId="transport1">

<tp:SendingProtocol tp:version="1.1">HTTP</tp:SendingProtocol>

<tp:ReceivingProtocol tp:version="1.1">HTTP</tp:ReceivingProtocol>

<tp:Endpoint tp:uri="https://www.company1.com/servlets/ebxmlhandler" tp:type="allPurpose"/>

<tp:TransportSecurity>

<tp:Protocol tp:version="3.0">SSL</tp:Protocol>

<tp:ServerCertificateRef tp:certId="company1ServerCertificate"/>

</tp:TransportSecurity>

</tp:Transport>

<tp:DocExchange tp:docExchangeId="docExchange1">

<tp:ebXMLBinding tp:version="1.1">

<tp:ReliableMessaging>

<tp:Retries>3</tp:Retries>

<tp:RetryInterval>PT2H</tp:RetryInterval>

<tp:PersistDuration>P1D</tp:PersistDuration>

<tp:MessageOrderSemantics>Guaranteed</tp:MessageOrderSemantics>

</tp:ReliableMessaging>

<tp:NonRepudiation>

<tp:Protocol>http://www.w3.org/2000/09/xmldsig#</tp:Protocol>

<tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>

<tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>

<tp:ResponderCertificateRef tp:certId="company1SigningCertificate"/>

</tp:NonRepudiation>

<tp:DigitalEnvelope>

<tp:Protocol tp:version="2.0">S/MIME</tp:Protocol>

<tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

<tp:InitiatorCertificateRef tp:certId="company1EncryptionCertificate"/>

</tp:DigitalEnvelope>

</tp:ebXMLBinding>

</tp:DocExchange>

</tp:PartyInfo>

<!-- SimplePart corresponding to the SOAP Envelope -->

<tp:SimplePart tp:id="MsgHdr" tp:mimetype="text/xml">

<tp:NamespaceSupported tp:location="http://www.oasis-open.org/committees/ebxml-msg/schema/draft-msg-header-05.xsd" tp:version="1.1">http://www.oasis-open.org/committees/ebxml-msg/schema/draft-msg-header-05.xsd</tp:NamespaceSupported>

</tp:SimplePart>

<!-- SimplePart corresponding to a Receipt Acknowledgment business signal -->

<tp:SimplePart tp:id="ReceiptAcknowledgment" tp:mimetype="application/xml">

<tp:NamespaceSupported tp:location="http://www.ebxml.org/bpss/ReceiptAcknowledgment.xsd" tp:version="1.1">http://www.ebxml.org/bpss/ReceiptAcknowledgment.xsd</tp:NamespaceSupported>

</tp:SimplePart>

<!-- SimplePart corresponding to an Exception business signal -->

<tp:SimplePart tp:id="Exception" tp:mimetype="application/xml">

<tp:NamespaceSupported tp:location="http://www.oasis-open.org/committees/ebxml-msg/schema/draft-msg-header-05.xsd" tp:version="1.1">http://www.oasis-open.org/committees/ebxml-msg/schema/draft-msg-header-05.xsd</tp:NamespaceSupported>

</tp:SimplePart>

<!-- SimplePart corresponding to a request action -->

<tp:SimplePart tp:id="Request" tp:mimetype="application/xml">

<tp:NamespaceSupported tp:location="http://www.rosettanet.org/schemas/PIP3A4RequestPurchaseOrder.xsd" tp:version="1.0">http://www.rosettanet.org/schemas/PIP3A4RequestPurchaseOrder.xsd</tp:NamespaceSupported>

</tp:SimplePart>

<!-- SimplePart corresponding to a response action -->

<tp:SimplePart tp:id="Response" tp:mimetype="application/xml">

<tp:NamespaceSupported tp:location="http://www.rosettanet.org/schemas/PurchaseOrderConfirmation.xsd.xsd" tp:version="1.0">http://www.rosettanet.org/schemas/PIP3A4PurchaseOrderConfirmation.xsd</tp:NamespaceSupported>

</tp:SimplePart>

<!-- An ebXML message with a SOAP Envelope plus a response action payload -->

<tp:Packaging tp:id="ResponsePackage">

<tp:ProcessingCapabilities tp:parse="true" tp:generate="true"/>

<tp:CompositeList>

<tp:Composite tp:id="ResponseMsg" tp:mimetype="multipart/related" tp:mimeparameters="type=text/xml;">

<tp:Constituent tp:idref="MsgHdr"/>

<tp:Constituent tp:idref="Response"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ebXML message with a SOAP Envelope plus a Receipt Acknowledgment payload -->

<tp:Packaging tp:id="ReceiptAcknowledgmentPackage">

<tp:ProcessingCapabilities tp:parse="true" tp:generate="true"/>

<tp:CompositeList>

<tp:Composite tp:id="ReceiptAcknowledgmentMsg" tp:mimetype="multipart/related" tp:mimeparameters="type=text/xml;">

<tp:Constituent tp:idref="MsgHdr"/>

<tp:Constituent tp:idref="ReceiptAcknowledgment"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ebXML message with a SOAP Envelope plus an Exception payload -->

<tp:Packaging tp:id="ExceptionPackage">

<tp:ProcessingCapabilities tp:parse="true" tp:generate="true"/>

<tp:CompositeList>

<tp:Composite tp:id="ExceptionMsg" tp:mimetype="multipart/related" tp:mimeparameters="type=text/xml;">

<tp:Constituent tp:idref="MsgHdr"/>

<tp:Constituent tp:idref="Exception"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<tp:Comment xml:lang="en-US">Buyer's Collaboration Protocol Profile</tp:Comment>

</tp:CollaborationProtocolProfile>

cpp-example-company2-1_1.xml
<?xml version="1.0"?>

<tp:CollaborationProtocolProfile

xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-1_1.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-1_1.xsd draft-cpp-cpa-04.xsd"

tp:cpaid="uri:company1-and-company2-cpa"

tp:version="1.0">

<!-- Party info for company 2 -->

<tp:PartyInfo tp:partyName="company 2" tp:defaultMshChannelId="channel2">

<tp:PartyId tp:type="DUNS">987654321</tp:PartyId>

<tp:PartyRef xlink:type="simple" xlink:href="http://company2.com/about.html"/>

<tp:CollaborationRole tp:id="SellerId">

<tp:ProcessSpecification tp:version="2.0" tp:name="PIP3A4RequestPurchaseOrder" xlink:type="simple" xlink:href="http://www.rosettanet.org/processes/3A4.xml"/>

<tp:Role tp:name="Seller" xlink:type="simple" xlink:href="http://www.rosettanet.org/processes/3A4.xml#seller"/>

<tp:ApplicationCertificateRef tp:certId="company2SigningCertificate"/>

<!-- The first service binding uses an asynchronous delivery channel to receive requests. -->

<tp:ServiceBinding>

<tp:Service tp:type="anyURI">bpid:RosettaNet:PIP3A4RequestPurchaseOrder$2.0</tp:Service>

<tp:ActionBinding tp:action="Purchase Order Request Action" tp:channelId="channel2" tp:packageId="RequestPackage">

<tp:ActionContext tp:binaryCollaboration="Request Purchase Order" tp:businessTransactionActivity="Request Purchase Order" tp:requestOrResponseAction="Purchase Order Request Action"/>

</tp:ActionBinding>

<tp:ActionBinding tp:action="ReceiptAcknowledgment" tp:channelId="channel2" tp:packageId="ReceiptAcknowledgmentPackage"/>

<tp:ActionBinding tp:action="Purchase Order Request Action" tp:channelId="channel2" tp:packageId="RequestPackage" tp:syncReplyPackageId="SyncReplyPackage">

<tp:ActionContext tp:binaryCollaboration="Request Purchase Order" tp:businessTransactionActivity="Request Purchase Order" tp:requestOrResponseAction="Purchase Order Request Action"/>

</tp:ActionBinding>

</tp:ServiceBinding>

<!-- The second service binding uses a synchronous delivery channel for request and response. -->

<tp:ServiceBinding>

<tp:Service tp:type="anyURI">bpid:RosettaNet:PIP3A4RequestPurchaseOrder$2.0</tp:Service>

<tp:ActionBinding tp:action="Purchase Order Request Action" tp:channelId="syncChannel2" tp:packageId="RequestPackage" tp:syncReplyPackageId="SyncReplyPackage">

<tp:ActionContext tp:binaryCollaboration="Request Purchase Order" tp:businessTransactionActivity="Request Purchase Order" tp:requestOrResponseAction="Purchase Order Request Action"/>

</tp:ActionBinding>

</tp:ServiceBinding>

</tp:CollaborationRole>

<!-- Certificates used by the "Seller" company -->

<tp:Certificate tp:certId="company2SigningCertificate">

<ds:KeyInfo/>

</tp:Certificate>

<tp:Certificate tp:certId="company2EncryptionCertificate">

<ds:KeyInfo/>

</tp:Certificate>

<tp:Certificate tp:certId="company2ClientCertificate">

<ds:KeyInfo/>

</tp:Certificate>

<tp:Certificate tp:certId="company2ServerCertificate">

<ds:KeyInfo/>

</tp:Certificate>

<!-- An asynchronous delivery channel -->

<tp:DeliveryChannel tp:channelId="channel2" tp:transportId="transport2" tp:docExchangeId="docExchange2">

<tp:BusinessProcessCharacteristics tp:nonRepudiationOfOrigin="true" tp:nonRepudiationOfReceipt="true" tp:secureTransport="true" tp:confidentiality="true" tp:authenticated="true" tp:authorized="false"/>

<tp:MessagingCharacteristics tp:ackRequested="always" tp:ackSignatureRequested="always" tp:duplicateElimination="always"/>

</tp:DeliveryChannel>

<!-- A synchronous delivery channel -->

<tp:DeliveryChannel tp:channelId="syncChannel2" tp:transportId="transport2" tp:docExchangeId="docExchange2">

<tp:BusinessProcessCharacteristics tp:syncReplyMode="signalsAndResponse" tp:nonRepudiationOfOrigin="true" tp:nonRepudiationOfReceipt="true" tp:secureTransport="true" tp:confidentiality="true" tp:authenticated="true" tp:authorized="false"/>

<tp:MessagingCharacteristics tp:ackRequested="always" tp:ackSignatureRequested="always" tp:duplicateElimination="always"/>

</tp:DeliveryChannel>

<tp:Transport tp:transportId="transport2">

<tp:SendingProtocol tp:version="1.1">HTTP</tp:SendingProtocol>

<tp:ReceivingProtocol tp:version="1.1">HTTP</tp:ReceivingProtocol>

<tp:Endpoint tp:uri="https://www.company2.com/servlets/ebxmlhandler" tp:type="allPurpose"/>

<tp:TransportSecurity>

<tp:Protocol tp:version="3.0">SSL</tp:Protocol>

<tp:ServerCertificateRef tp:certId="company2ServerCertificate"/>

</tp:TransportSecurity>

</tp:Transport>

<tp:DocExchange tp:docExchangeId="docExchange2">

<tp:ebXMLBinding tp:version="1.1">

<tp:ReliableMessaging>

<tp:Retries>3</tp:Retries>

<tp:RetryInterval>PT2H</tp:RetryInterval>

<tp:PersistDuration>P1D</tp:PersistDuration>

<tp:MessageOrderSemantics>Guaranteed</tp:MessageOrderSemantics>

</tp:ReliableMessaging>

<tp:NonRepudiation>

<tp:Protocol>http://www.w3.org/2000/09/xmldsig#</tp:Protocol>

<tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>

<tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>

<tp:ResponderCertificateRef tp:certId="company2SigningCertificate"/>

</tp:NonRepudiation>

<tp:DigitalEnvelope>

<tp:Protocol tp:version="2.0">S/MIME</tp:Protocol>

<tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

<tp:InitiatorCertificateRef tp:certId="company2EncryptionCertificate"/>

</tp:DigitalEnvelope>

</tp:ebXMLBinding>

</tp:DocExchange>

</tp:PartyInfo>

<!-- SimplePart corresponding to the SOAP Envelope -->

<tp:SimplePart tp:id="MsgHdr" tp:mimetype="text/xml">

<tp:NamespaceSupported tp:location="http://www.oasis-open.org/committees/ebxml-msg/schema/draft-msg-header-05.xsd" tp:version="1.1">http://www.oasis-open.org/committees/ebxml-msg/schema/draft-msg-header-05.xsd</tp:NamespaceSupported>

</tp:SimplePart>

<!-- SimplePart corresponding to a Receipt Acknowledgment business signal -->

<tp:SimplePart tp:id="ReceiptAcknowledgment" tp:mimetype="application/xml">

<tp:NamespaceSupported tp:location="http://www.ebxml.org/bpss/ReceiptAcknowledgment.xsd" tp:version="1.1">http://www.ebxml.org/bpss/ReceiptAcknowledgment.xsd</tp:NamespaceSupported>

</tp:SimplePart>

<!-- SimplePart corresponding to an Exception business signal -->

<tp:SimplePart tp:id="Exception" tp:mimetype="application/xml">

<tp:NamespaceSupported tp:location="http://www.oasis-open.org/committees/ebxml-msg/schema/draft-msg-header-05.xsd" tp:version="1.1">http://www.oasis-open.org/committees/ebxml-msg/schema/draft-msg-header-05.xsd</tp:NamespaceSupported>

</tp:SimplePart>

<!-- SimplePart corresponding to a request action -->

<tp:SimplePart tp:id="Request" tp:mimetype="application/xml">

<tp:NamespaceSupported tp:location="http://www.rosettanet.org/schemas/PIP3A4RequestPurchaseOrder.xsd" tp:version="1.0">http://www.rosettanet.org/schemas/PIP3A4RequestPurchaseOrder.xsd</tp:NamespaceSupported>

</tp:SimplePart>

<!-- SimplePart corresponding to a response action -->

<tp:SimplePart tp:id="Response" tp:mimetype="application/xml">

<tp:NamespaceSupported tp:location="http://www.rosettanet.org/schemas/PurchaseOrderConfirmation.xsd.xsd" tp:version="1.0">http://www.rosettanet.org/schemas/PIP3A4PurchaseOrderConfirmation.xsd</tp:NamespaceSupported>

</tp:SimplePart>

<!-- An ebXML message with a SOAP Envelope plus a request action payload -->

<tp:Packaging tp:id="RequestPackage">

<tp:ProcessingCapabilities tp:parse="true" tp:generate="true"/>

<tp:CompositeList>

<tp:Composite tp:id="RequestMsg" tp:mimetype="multipart/related" tp:mimeparameters="type=text/xml;">

<tp:Constituent tp:idref="MsgHdr"/>

<tp:Constituent tp:idref="Request"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ebXML message with a SOAP Envelope plus a Receipt Acknowledgment payload -->

<tp:Packaging tp:id="ReceiptAcknowledgmentPackage">

<tp:ProcessingCapabilities tp:parse="true" tp:generate="true"/>

<tp:CompositeList>

<tp:Composite tp:id="ReceiptAcknowledgmentMsg" tp:mimetype="multipart/related" tp:mimeparameters="type=text/xml;">

<tp:Constituent tp:idref="MsgHdr"/>

<tp:Constituent tp:idref="ReceiptAcknowledgment"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ebXML message with a Receipt Acknowledgment signal, plus a business response, or an ebXML message with an Exception signal -->

<tp:Packaging tp:id="SyncReplyPackage">

<tp:ProcessingCapabilities tp:parse="true" tp:generate="true"/>

<tp:CompositeList>

<tp:Composite tp:id="SignalAndResponseMsg" tp:mimetype="multipart/related" tp:mimeparameters="type=text/xml;">

<tp:Constituent tp:idref="MsgHdr"/>

<tp:Constituent tp:idref="ReceiptAcknowledgment"/>

<tp:Constituent tp:idref="Response"/>

</tp:Composite>

</tp:CompositeList>

<tp:CompositeList>

<tp:Composite tp:id="SyncExceptionMsg" tp:mimetype="multipart/related" tp:mimeparameters="type=text/xml;">

<tp:Constituent tp:idref="MsgHdr"/>

<tp:Constituent tp:idref="Exception"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<tp:Comment xml:lang="en-US">Seller's Collaboration Protocol Profile</tp:Comment>

</tp:CollaborationProtocolProfile>

Appendix B Example of CPA Document (Non-Normative)

The example in this appendix is to be parsed with an XML Schema parser. The schema is available as an ASCII file at

 http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-1_1.xsd
The example that can be parsed with the XSD is available at:

http://www.oasis-open.org/committees/ebxml-cppa/schema/cpa-example-1_1.xml
<?xml version="1.0"?>

<tp:CollaborationProtocolAgreement

xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-1_1.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-1_1.xsd c:/ebxml/draft-cpp-cpa-04.xsd"

tp:cpaid="uri:company1-and-company2-cpa"

tp:version="1.0">

<tp:Status tp:value="proposed"/>

<tp:Start>2001-05-20T07:21:00Z</tp:Start>

<tp:End>2002-05-20T07:21:00Z</tp:End>

<tp:ConversationConstraints tp:invocationLimit="100" tp:concurrentConversations="10"/>

<!-- Party info for company 1 -->

<tp:PartyInfo tp:partyName="company 1" tp:defaultMshChannelId="channel1">

<tp:PartyId tp:type="DUNS">123456789</tp:PartyId>

<tp:PartyRef xlink:href="http://company1.com/about.html"/>

<tp:CollaborationRole tp:id="Buyer">

<tp:ProcessSpecification tp:version="2.0" tp:name="PIP3A4RequestPurchaseOrder" xlink:type="simple" xlink:href="http://www.rosettanet.org/processes/3A4.xml"/>

<tp:Role tp:name="Buyer" xlink:type="simple" xlink:href="http://www.rosettanet.org/processes/3A4.xml#Buyer"/>

<tp:ApplicationCertificateRef tp:certId="company1SigningCertificate"/>

<!-- This service binding uses an asynchronous delivery channel to receive the signals and response -->

<tp:ServiceBinding>

<tp:Service tp:type="anyURI">bpid:RosettaNet:PIP3A4RequestPurchaseOrder$2.0</tp:Service>

<tp:ActionBinding tp:action="Purchase Order Confirmation Action" tp:channelId="channel1" tp:packageId="ResponsePackage">

<tp:ActionContext tp:binaryCollaboration="Request Purchase Order" tp:businessTransactionActivity="Request Purchase Order" tp:requestOrResponseAction="Purchase Order Confirmation Action"/>

</tp:ActionBinding>

<!-- Receipt Acknowledgment and Exception signals are delivered using the designated delivery channels. -->

<tp:ActionBinding tp:action="ReceiptAcknowledgment" tp:channelId="channel1" tp:packageId="ReceiptAcknowledgmentPackage"/>

<tp:ActionBinding tp:action="Exception" tp:channelId="channel1" tp:packageId="ExceptionPackage"/>

</tp:ServiceBinding>

</tp:CollaborationRole>

<!-- Certificates used by the "Buyer" company -->

<tp:Certificate tp:certId="company1SigningCertificate">

<ds:KeyInfo/>

</tp:Certificate>

<tp:Certificate tp:certId="company1EncryptionCertificate">

<ds:KeyInfo/>

</tp:Certificate>

<tp:Certificate tp:certId="company1ClientCertificate">

<ds:KeyInfo/>

</tp:Certificate>

<tp:Certificate tp:certId="company1ServerCertificate">

<ds:KeyInfo/>

</tp:Certificate>

<tp:DeliveryChannel tp:channelId="channel1" tp:transportId="transport1" tp:docExchangeId="docExchange1">

<tp:BusinessProcessCharacteristics tp:syncReplyMode="none" tp:nonRepudiationOfOrigin="true" tp:nonRepudiationOfReceipt="true" tp:secureTransport="true" tp:confidentiality="true" tp:authenticated="true" tp:authorized="false"/>

<!-- Always enable Reliable Messaging behavior with duplicate elimination -->

<tp:MessagingCharacteristics tp:ackRequested="always" tp:ackSignatureRequested="always" tp:duplicateElimination="always"/>

</tp:DeliveryChannel>

<tp:Transport tp:transportId="transport1">

<tp:SendingProtocol tp:version="1.1">HTTP</tp:SendingProtocol>

<tp:ReceivingProtocol tp:version="1.1">HTTP</tp:ReceivingProtocol>

<tp:Endpoint tp:uri="https://www.company1.com/servlets/ebxmlhandler" tp:type="allPurpose"/>

<tp:TransportSecurity>

<tp:Protocol tp:version="3.0">SSL</tp:Protocol>

<tp:ServerCertificateRef tp:certId="company1ServerCertificate"/>

<tp:ClientCertificateRef tp:certId="company2ClientCertificate"/>

</tp:TransportSecurity>

</tp:Transport>

<tp:DocExchange tp:docExchangeId="docExchange1">

<tp:ebXMLBinding tp:version="1.1">

<tp:ReliableMessaging>

<tp:Retries>3</tp:Retries>

<tp:RetryInterval>PT2H</tp:RetryInterval>

<tp:PersistDuration>P1D</tp:PersistDuration>

<tp:MessageOrderSemantics>Guaranteed</tp:MessageOrderSemantics>

</tp:ReliableMessaging>

<tp:NonRepudiation>

<tp:Protocol>http://www.w3.org/2000/09/xmldsig#</tp:Protocol>

<tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>

<tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>

<tp:InitiatorCertificateRef tp:certId="company2SigningCertificate"/>

<tp:ResponderCertificateRef tp:certId="company1SigningCertificate"/>

</tp:NonRepudiation>

<tp:DigitalEnvelope>

<tp:Protocol tp:version="2.0">S/MIME</tp:Protocol>

<tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

<tp:InitiatorCertificateRef tp:certId="company1EncryptionCertificate"/>

</tp:DigitalEnvelope>

</tp:ebXMLBinding>

</tp:DocExchange>

</tp:PartyInfo>

<!-- Party info for company 2 -->

<tp:PartyInfo tp:partyName="company 2" tp:defaultMshChannelId="channel2">

<tp:PartyId tp:type="DUNS">987654321</tp:PartyId>

<tp:PartyRef xlink:type="simple" xlink:href="http://company2.com/about.html"/>

<tp:CollaborationRole tp:id="Seller">

<tp:ProcessSpecification tp:version="2.0" tp:name="PIP3A4RequestPurchaseOrder" xlink:type="simple" xlink:href="http://www.rosettanet.org/processes/3A4.xml"/>

<tp:Role tp:name="Seller" xlink:type="simple" xlink:href="http://www.rosettanet.org/processes/3A4.xml#seller"/>

<tp:ApplicationCertificateRef tp:certId="company2SigningCertificate"/>

<!-- The first service binding uses an asynchronous delivery channel to receive requests. -->

<tp:ServiceBinding>

<tp:Service tp:type="anyURI">bpid:RosettaNet:PIP3A4RequestPurchaseOrder$2.0</tp:Service>

<tp:ActionBinding tp:action="Purchase Order Request Action" tp:channelId="channel2" tp:packageId="RequestPackage">

<tp:ActionContext tp:binaryCollaboration="Request Purchase Order" tp:businessTransactionActivity="Request Purchase Order" tp:requestOrResponseAction="Purchase Order Request Action"/>

</tp:ActionBinding>

<tp:ActionBinding tp:action="ReceiptAcknowledgment" tp:channelId="channel2" tp:packageId="ReceiptAcknowledgmentPackage"/>

<tp:ActionBinding tp:action="Purchase Order Request Action" tp:channelId="channel2" tp:packageId="RequestPackage">

<tp:ActionContext tp:binaryCollaboration="Request Purchase Order" tp:businessTransactionActivity="Request Purchase Order" tp:requestOrResponseAction="Purchase Order Request Action"/>

</tp:ActionBinding>

</tp:ServiceBinding>

<!-- The second service binding uses a synchronous delivery channel for request and response. -->

<tp:ServiceBinding>

<tp:Service tp:type="anyURI">bpid:RosettaNet:PIP3A4RequestPurchaseOrder$2.0</tp:Service>

<tp:ActionBinding tp:action="Purchase Order Request Action" tp:channelId="syncChannel2" tp:packageId="RequestPackage" tp:syncReplyPackageId="SyncReplyPackage">

<tp:ActionContext tp:binaryCollaboration="Request Purchase Order" tp:businessTransactionActivity="Request Purchase Order" tp:requestOrResponseAction="Purchase Order Request Action"/>

</tp:ActionBinding>

</tp:ServiceBinding>

</tp:CollaborationRole>

<!-- Certificates used by the "Seller" company -->

<tp:Certificate tp:certId="company2SigningCertificate">

<ds:KeyInfo/>

</tp:Certificate>

<tp:Certificate tp:certId="company2EncryptionCertificate">

<ds:KeyInfo/>

</tp:Certificate>

<tp:Certificate tp:certId="company2ClientCertificate">

<ds:KeyInfo/>

</tp:Certificate>

<tp:Certificate tp:certId="company2ServerCertificate">

<ds:KeyInfo/>

</tp:Certificate>

<!-- An asynchronous delivery channel -->

<tp:DeliveryChannel tp:channelId="channel2" tp:transportId="transport2" tp:docExchangeId="docExchange2">

<tp:BusinessProcessCharacteristics tp:nonRepudiationOfOrigin="true" tp:nonRepudiationOfReceipt="true" tp:secureTransport="true" tp:confidentiality="true" tp:authenticated="true" tp:authorized="false"/>

<tp:MessagingCharacteristics tp:ackRequested="always" tp:ackSignatureRequested="always" tp:duplicateElimination="always"/>

</tp:DeliveryChannel>

<!-- A synchronous delivery channel -->

<tp:DeliveryChannel tp:channelId="syncChannel2" tp:transportId="transport2" tp:docExchangeId="docExchange2">

<tp:BusinessProcessCharacteristics tp:syncReplyMode="signalsAndResponse" tp:nonRepudiationOfOrigin="true" tp:nonRepudiationOfReceipt="true" tp:secureTransport="true" tp:confidentiality="true" tp:authenticated="true" tp:authorized="false"/>

<tp:MessagingCharacteristics tp:ackRequested="always" tp:ackSignatureRequested="always" tp:duplicateElimination="always"/>

</tp:DeliveryChannel>

<tp:Transport tp:transportId="transport2">

<tp:SendingProtocol tp:version="1.1">HTTP</tp:SendingProtocol>

<tp:ReceivingProtocol tp:version="1.1">HTTP</tp:ReceivingProtocol>

<tp:Endpoint tp:uri="https://www.company2.com/servlets/ebxmlhandler" tp:type="allPurpose"/>

<tp:TransportSecurity>

<tp:Protocol tp:version="3.0">SSL</tp:Protocol>

<tp:ServerCertificateRef tp:certId="company2ServerCertificate"/>

<tp:ClientCertificateRef tp:certId="company1ClientCertificate"/>

</tp:TransportSecurity>

</tp:Transport>

<tp:DocExchange tp:docExchangeId="docExchange2">

<tp:ebXMLBinding tp:version="1.1">

<tp:ReliableMessaging>

<tp:Retries>3</tp:Retries>

<tp:RetryInterval>PT2H</tp:RetryInterval>

<tp:PersistDuration>P1D</tp:PersistDuration>

<tp:MessageOrderSemantics>Guaranteed</tp:MessageOrderSemantics>

</tp:ReliableMessaging>

<tp:NonRepudiation>

<tp:Protocol>http://www.w3.org/2000/09/xmldsig#</tp:Protocol>

<tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>

<tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>

<tp:InitiatorCertificateRef tp:certId="company1SigningCertificate"/>

<tp:ResponderCertificateRef tp:certId="company2SigningCertificate"/>

</tp:NonRepudiation>

<tp:DigitalEnvelope>

<tp:Protocol tp:version="2.0">S/MIME</tp:Protocol>

<tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

<tp:InitiatorCertificateRef tp:certId="company2EncryptionCertificate"/>

</tp:DigitalEnvelope>

</tp:ebXMLBinding>

</tp:DocExchange>

</tp:PartyInfo>

<!-- SimplePart corresponding to the SOAP Envelope -->

<tp:SimplePart tp:id="MsgHdr" tp:mimetype="text/xml">

<tp:NamespaceSupported tp:location="http://www.oasis-open.org/committees/ebxml-msg/schema/draft-msg-header-05.xsd" tp:version="1.1">http://www.oasis-open.org/committees/ebxml-msg/schema/draft-msg-header-05.xsd</tp:NamespaceSupported>

</tp:SimplePart>

<!-- SimplePart corresponding to a Receipt Acknowledgment business signal -->

<tp:SimplePart tp:id="ReceiptAcknowledgment" tp:mimetype="application/xml">

<tp:NamespaceSupported tp:location="http://www.ebxml.org/bpss/ReceiptAcknowledgment.xsd" tp:version="1.1">http://www.ebxml.org/bpss/ReceiptAcknowledgment.xsd</tp:NamespaceSupported>

</tp:SimplePart>

<!-- SimplePart corresponding to an Exception business signal -->

<tp:SimplePart tp:id="Exception" tp:mimetype="application/xml">

<tp:NamespaceSupported tp:location="http://www.oasis-open.org/committees/ebxml-msg/schema/draft-msg-header-05.xsd" tp:version="1.1">http://www.oasis-open.org/committees/ebxml-msg/schema/draft-msg-header-05.xsd</tp:NamespaceSupported>

</tp:SimplePart>

<!-- SimplePart corresponding to a request action -->

<tp:SimplePart tp:id="Request" tp:mimetype="application/xml">

<tp:NamespaceSupported tp:location="http://www.rosettanet.org/schemas/PIP3A4RequestPurchaseOrder.xsd" tp:version="1.0">http://www.rosettanet.org/schemas/PIP3A4RequestPurchaseOrder.xsd</tp:NamespaceSupported>

</tp:SimplePart>

<!-- SimplePart corresponding to a response action -->

<tp:SimplePart tp:id="Response" tp:mimetype="application/xml">

<tp:NamespaceSupported tp:location="http://www.rosettanet.org/schemas/PurchaseOrderConfirmation.xsd.xsd" tp:version="1.0">http://www.rosettanet.org/schemas/PIP3A4PurchaseOrderConfirmation.xsd</tp:NamespaceSupported>

</tp:SimplePart>

<!-- An ebXML message with a SOAP Envelope plus a request action payload -->

<tp:Packaging tp:id="RequestPackage">

<tp:ProcessingCapabilities tp:parse="true" tp:generate="true"/>

<tp:CompositeList>

<tp:Composite tp:id="RequestMsg" tp:mimetype="multipart/related" tp:mimeparameters="type=text/xml;">

<tp:Constituent tp:idref="MsgHdr"/>

<tp:Constituent tp:idref="Request"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ebXML message with a SOAP Envelope plus a response action payload -->

<tp:Packaging tp:id="ResponsePackage">

<tp:ProcessingCapabilities tp:parse="true" tp:generate="true"/>

<tp:CompositeList>

<tp:Composite tp:id="ResponseMsg" tp:mimetype="multipart/related" tp:mimeparameters="type=text/xml;">

<tp:Constituent tp:idref="MsgHdr"/>

<tp:Constituent tp:idref="Response"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ebXML message with a SOAP Envelope plus a Receipt Acknowledgment payload -->

<tp:Packaging tp:id="ReceiptAcknowledgmentPackage">

<tp:ProcessingCapabilities tp:parse="true" tp:generate="true"/>

<tp:CompositeList>

<tp:Composite tp:id="ReceiptAcknowledgmentMsg" tp:mimetype="multipart/related" tp:mimeparameters="type=text/xml;">

<tp:Constituent tp:idref="MsgHdr"/>

<tp:Constituent tp:idref="ReceiptAcknowledgment"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ebXML message with a SOAP Envelope plus an Exception payload -->

<tp:Packaging tp:id="ExceptionPackage">

<tp:ProcessingCapabilities tp:parse="true" tp:generate="true"/>

<tp:CompositeList>

<tp:Composite tp:id="ExceptionMsg" tp:mimetype="multipart/related" tp:mimeparameters="type=text/xml;">

<tp:Constituent tp:idref="MsgHdr"/>

<tp:Constituent tp:idref="Exception"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ebXML message with a Receipt Acknowledgment signal, plus a business response, or an ebXML message with an Exception signal -->

<tp:Packaging tp:id="SyncReplyPackage">

<tp:ProcessingCapabilities tp:parse="true" tp:generate="true"/>

<tp:CompositeList>

<tp:Composite tp:id="SignalAndResponseMsg" tp:mimetype="multipart/related" tp:mimeparameters="type=text/xml;">

<tp:Constituent tp:idref="MsgHdr"/>

<tp:Constituent tp:idref="ReceiptAcknowledgment"/>

<tp:Constituent tp:idref="Response"/>

</tp:Composite>

</tp:CompositeList>

<tp:CompositeList>

<tp:Composite tp:id="SyncExceptionMsg" tp:mimetype="multipart/related" tp:mimeparameters="type=text/xml;">

<tp:Constituent tp:idref="MsgHdr"/>

<tp:Constituent tp:idref="Exception"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<tp:Comment xml:lang="en-US">buy/sell agreement between company1.com and company2.com</tp:Comment>

</tp:CollaborationProtocolAgreement>

Appendix C Business Process Specification Corresponding to Complete CPP/CPA Definition (Non-Normative)

This Business Process Specification referenced by the CPPs and CPA in Appendix A and Appendix B are reproduced here. This document is available as an ASCII file at:

 http://www.oasis-open.org/committees/ebxml-cppa/schema/bpss-example-1_1.xml

<?xml version="1.0" encoding="UTF-8"?>

<ProcessSpecification xmlns="http://www.ebxml.org/BusinessProcess" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.ebxml.org/BusinessProcess ebBPSS.xsd" name="PIP3A4RequestPurchaseOrder" uuid="bpid:RosettaNet:3A4$2.0</" version="R02.00">

<Documentation>This PIP enables a buyer to issue a purchase order and obtain a quick response from the provider that acknowledges which of the purchase order product line items are accepted, rejected, or pending</Documentation>

<!--Purchase order Request Document-->

<BusinessDocument name="Puchase Order Request" nameID="Pip3A4PurchaseOrderRequest" specificationLocation="%SYSTEM /XMLPIPVALIDATION/3A4/PurchaseOrderRequest.xsd">

<Documentation>The document is an XSD file that specifies the rules for creating the XML document for the business action of requesting a purchase order</Documentation>

</BusinessDocument>

<BusinessDocument name="Puchase Order Confirmation" nameID="Pip3A4PurchaseOrderConfirmation" specificationLocation="%SYSTEM /XMLPIPVALIDATION/3A4/PurchaseOrderConfirmation.xsd">

<Documentation>The document is an XSD file that specifies the rules for creating the XML document for the business action of making a purchase order confirmation</Documentation>

</BusinessDocument>

<BusinessTransaction name="Request Purchase Order" nameID="RequestPurchaseOrder_BT">

<RequestingBusinessActivity name="Purchase Order Request Action" nameID="PurchaseOrderRequestAction" isAuthorizationRequired ="true" isIntelligibleCheckRequired="true" isNonRepudiationReceiptRequired="true" isNonRepudiationRequired="true" timeToAcknowledgeReceipt="P0Y0M0DT2H0M0S">

<DocumentEnvelope businessDocument="Puchase Order Request" businessDocumentIDRef="Pip3A4PurchaseOrderRequest" isAuthenticated="true" isConfidential="true" isTamperProof="true"/>

</RequestingBusinessActivity>

<RespondingBusinessActivity name="Purchase Order Confirmation Action" nameID="PurchaseOrderConfirmationAction" isAuthorizationRequired="true" isIntelligibleCheckRequired="true" isNonRepudiationReceiptRequired="false" isNonRepudiationRequired="true" timeToAcknowledgeReceipt="P0Y0M0DT2H0M0S">

<DocumentEnvelope businessDocument="Purchase Order Confirmation" businessDocumentIDRef="Pip3A4PurchaseOrderConfirmation" isAuthenticated="true" isConfidential="true" isPositiveResponse="true" isTamperProof="true"/>

</RespondingBusinessActivity>

</BusinessTransaction>

<BinaryCollaboration name="Request Purchase Order" nameID="RequestPurchaseOrder_BC">

<InitiatingRole name="Buyer" nameID="Buyer"/>

<RespondingRole name="Seller" nameID="Seller"/>

<BusinessTransactionActivity name="Request Purchase Order" nameID="RequestPurchaseOrder_BTA" businessTransaction="Request Purchase Order" businessTransactionIDRef="RequestPurchaseOrder_BT" fromAuthorizedRole="Buyer" fromAuthorizedRoleIDRef="Buyer" toAuthorizedRole="Seller" toAuthorizedRoleIDRef="Seller" isLegallyBinding="true" timeToPerform="P0Y0M0DT24H0M0S" isConcurrent="false"/>

</BinaryCollaboration>

</ProcessSpecification>

Appendix D XML Schema Document Corresponding to Complete CPP and CPA Definition (Normative)

This XML Schema document is available as an ASCII file at:

 http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-1_1.xsd
<?xml version = "1.0" encoding = "UTF-8"?>

<schema targetNamespace="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-1_1.xsd"

xmlns:tns="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-1_1.xsd"

xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

elementFormDefault="qualified"

attributeFormDefault="qualified"

version="1.1">

<import namespace="http://www.w3.org/1999/xlink" schemaLocation="http://www.oasis-open.org/committees/ebxml-msg/schema/xlink.xsd"/>

<import namespace="http://www.w3.org/2000/09/xmldsig#" schemaLocation="http://www.oasis-open.org/committees/ebxml-msg/schema/xmldsig-core-schema.xsd"/>

<import namespace="http://www.w3.org/XML/1998/namespace" schemaLocation="http://www.oasis-open.org/committees/ebxml-msg/schema/xml_lang.xsd"/>

<attributeGroup name="pkg.grp">

<attribute ref="tns:id"/>

<attribute name="mimetype" use="required" type="tns:non-empty-string"/>

<attribute name="mimeparameters" type="tns:non-empty-string"/>

</attributeGroup>

<attributeGroup name="xlink.grp">

<attribute ref="xlink:type" fixed="simple"/>

<attribute ref="xlink:href" use="required"/>

</attributeGroup>

<element name="CollaborationProtocolAgreement">

<complexType>

<sequence>

<element ref="tns:Status"/>

<element ref="tns:Start"/>

<element ref="tns:End"/>

<element ref="tns:ConversationConstraints" minOccurs="0"/>

<element ref="tns:PartyInfo" minOccurs="2" maxOccurs="unbounded"/>

<element ref="tns:SimplePart" maxOccurs="unbounded"/>

<element ref="tns:Packaging" maxOccurs="unbounded"/>

<element ref="ds:Signature" minOccurs="0" maxOccurs="3"/>

<element ref="tns:Comment" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="cpaid" type="tns:non-empty-string"/>

<attribute ref="tns:version"/>

<anyAttribute namespace="##targetNamespace http://www.w3.org/2001/XMLSchema-instance" processContents="lax"/>

</complexType>

</element>

<element name="CollaborationProtocolProfile">

<complexType>

<sequence>

<element ref="tns:PartyInfo" maxOccurs="unbounded"/>

<element ref="tns:SimplePart" maxOccurs="unbounded"/>

<element ref="tns:Packaging" maxOccurs="unbounded"/>

<element ref="ds:Signature" minOccurs="0" maxOccurs="2"/>

<element ref="tns:Comment" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute ref="tns:version"/>

<anyAttribute namespace="##targetNamespace http://www.w3.org/2001/XMLSchema-instance" processContents="lax"/>

</complexType>

</element>

<element name="ProcessSpecification">

<complexType>

<sequence>

<element ref="ds:Reference" minOccurs="0"/>

</sequence>

<attribute ref="tns:version"/>

<attribute name="name" use="required" type="tns:non-empty-string"/>

<attributeGroup ref="tns:xlink.grp"/>

</complexType>

</element>

<element name="Service" type="tns:service.type"/>

<element name="Protocol" type="tns:protocol.type"/>

<element name="SendingProtocol" type="tns:protocol.type"/>

<element name="ReceivingProtocol" type="tns:protocol.type"/>

<element name="OverrideMshActionBinding">

<complexType>

<attribute name="action" use="required" type="tns:non-empty-string"/>

<attribute name="channelId" use="required" type="IDREF"/>

</complexType>

</element>

<element name="ActionBinding">

<annotation>

<documentation>This is an enumeration of all the actions that the receiving trading partner will accept. The ActionContext sub-element provides the hierarchical business collaboration context information for the action in question. The action attribute provides a short-form for the action value to be used in the Action element in the ebXML message header. The channelId identifies the DeliveryChannel used for receiving the action message. The packageId identifies the Packaging used for the action message. The optional syncReplyPackageId identifies the Packaging that will be used for the response message in case the DeliveryChannel is used for the synchronous communication of both request and response. The actions that correspond to business signals (ReceiptAcknowledgment, AcceptanceAcknowledgment, and Exception) may also be included so as to explicitly assign delivery channels for these actions. By default, they should be sent using the same delivery channels as their business document counterpart, i.e., the ReceiptAcknowledgment signal for the request should sent using the same delivery channel as the response, and the ReceiptAcknowledgment for the response should be sent using the same delivery channel as the request.</documentation>

</annotation>

<complexType>

<sequence>

<element ref="tns:ActionContext" minOccurs="0"/>

</sequence>

<attribute name="action" use="required" type="tns:non-empty-string"/>

<attribute name="channelId" use="required" type="IDREF"/>

<attribute name="packageId" use="required" type="IDREF"/>

<attribute name="syncReplyPackageId" use="optional" type="IDREF"/>

<attribute ref="xlink:href" use="optional"/>

<attribute ref="xlink:type" fixed="simple"/>

</complexType>

</element>

<annotation>

<documentation>In the simplest case where there is no nested use of BinaryCollaborations, an action can be identified hierarchically using the BinaryCollaboration name, the BusinessTransactionActivity name, along with the RequestingBusinessActivity or RespondingBusinessActivity name. When there is nesting, each additional level of nesting is representing by an extra CollaborationActivity name.</documentation>

</annotation>

<element name="ActionContext">

<complexType>

<sequence>

<element ref="tns:CollaborationActivity" minOccurs="0"/>

</sequence>

<attribute name="binaryCollaboration" type="tns:non-empty-string" use="required"/>

<attribute name="businessTransactionActivity" type="tns:non-empty-string" use="required"/>

<attribute name="requestOrResponseAction" type="tns:non-empty-string" use="required"/>

</complexType>

</element>

<element name="CollaborationActivity">

<complexType>

<sequence>

<element ref="tns:CollaborationActivity" minOccurs="0"/>

</sequence>

<attribute name="name" type="tns:non-empty-string"/>

</complexType>

</element>

<element name="CollaborationRole">

<complexType>

<sequence>

<element ref="tns:ProcessSpecification"/>

<element ref="tns:Role"/>

<element name="ApplicationCertificateRef" type="tns:CertificateRef.type" minOccurs="0"/>

<element ref="tns:ServiceBinding" maxOccurs="unbounded"/>

</sequence>

<attribute ref="tns:id" use="required"/>

</complexType>

</element>

<annotation>

<documentation>The defaultMshChannelId identifies the default delivery channel that will be used for receiving MSH level signals like Acknowledgment, Error, StatusRequest, StatusResponse, Ping, Pong, etc. The OverrideMshActionBinding identifies those actions for which specific delivery channels should be used.</documentation>

</annotation>

<element name="PartyInfo">

<complexType>

<sequence>

<element ref="tns:PartyId" maxOccurs="unbounded"/>

<element ref="tns:PartyRef"/>

<element ref="tns:CollaborationRole" maxOccurs="unbounded"/>

<element ref="tns:Certificate" maxOccurs="unbounded"/>

<element ref="tns:DeliveryChannel" maxOccurs="unbounded"/>

<element ref="tns:Transport" maxOccurs="unbounded"/>

<element ref="tns:DocExchange" maxOccurs="unbounded"/>

<element ref="tns:OverrideMshActionBinding" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="partyName" type="tns:non-empty-string" use="required"/>

<attribute name="defaultMshChannelId" use="required" type="IDREF"/>

</complexType>

</element>

<element name="PartyId">

<complexType>

<simpleContent>

<extension base="tns:non-empty-string">

<attribute name="type" type="tns:non-empty-string"/>

</extension>

</simpleContent>

</complexType>

</element>

<element name="PartyRef">

<complexType>

<attributeGroup ref="tns:xlink.grp"/>

<attribute name="type" type="tns:non-empty-string"/>

</complexType>

</element>

<annotation>

<documentation>The BusinessProcessCharacteristics sub-element describes characteristics that are specified at the BPSS level. The MessagingCharacteristics sub-element describes characteristics that are specific to the use of Reliable Messaging.</documentation>

</annotation>

<element name="DeliveryChannel">

<complexType>

<sequence>

<element ref="tns:BusinessProcessCharacteristics"/>

<element ref="tns:MessagingCharacteristics"/>

</sequence>

<attribute name="channelId" use="required" type="ID"/>

<attribute name="transportId" use="required" type="IDREF"/>

<attribute name="docExchangeId" use="required" type="IDREF"/>

</complexType>

</element>

<element name="Transport">

<complexType>

<sequence>

<element ref="tns:SendingProtocol" maxOccurs="unbounded"/>

<element ref="tns:ReceivingProtocol"/>

<element ref="tns:Endpoint" maxOccurs="unbounded"/>

<element ref="tns:TransportSecurity" minOccurs="0"/>

</sequence>

<attribute name="transportId" use="required" type="ID"/>

</complexType>

</element>

<element name="Endpoint">

<complexType>

<attribute name="uri" use="required" type="anyURI"/>

<attribute name="type" default="allPurpose" type="tns:endpointType.type"/>

</complexType>

</element>

<element name="TransportSecurity">

<complexType>

<sequence>

<element ref="tns:Protocol"/>

<element name="ServerCertificateRef" type="tns:CertificateRef.type" minOccurs="0"/>

<element name="ClientCertificateRef" type="tns:CertificateRef.type" minOccurs="0"/>

</sequence>

</complexType>

</element>

<element name="Certificate">

<complexType>

<sequence>

<element ref="ds:KeyInfo"/>

</sequence>

<attribute name="certId" use="required" type="ID"/>

</complexType>

</element>

<element name="DocExchange">

<complexType>

<sequence>

<element ref="tns:ebXMLBinding"/>

</sequence>

<attribute name="docExchangeId" use="required" type="ID"/>

</complexType>

</element>

<annotation>

<documentation>The Retries parameter is used by the sending MSH to determine the number of retries. The RetryInterval is also used by the sending MSH to determine how long it must wait for an Acknowledgment before retrying. The PersistDuration parameter is used by the receiving MSH to determine how long it must keep an incoming reliably delivered message in the persistent store to facilitate duplicate detection. The MessageOrderSemantics element, when set to "Guaranteed" causes the sending MSH to include a sequence number for every message that is sent reliably. It also causes the receiving MSH to deliver messages to the receiving application in sequence number order.</documentation>

</annotation>

<element name="ReliableMessaging">

<complexType>

<sequence>

<element name="Retries" type="integer" minOccurs="0"/>

<element name="RetryInterval" type="duration" minOccurs="0"/>

<element name="PersistDuration" type="duration"/>

<element name="MessageOrderSemantics" type="messageOrderSemantics.type"/>

</sequence>

</complexType>

</element>

<annotation>

<documentation></documentation>

</annotation>

<element name="NonRepudiation">

<complexType>

<sequence>

<element ref="tns:Protocol"/>

<element ref="tns:HashFunction"/>

<element ref="tns:SignatureAlgorithm"/>

<element name="InitiatorCertificateRef" type="tns:CertificateRef.type" minOccurs="0"/>

<element name="ResponderCertificateRef" type="tns:CertificateRef.type" minOccurs="0"/>

</sequence>

</complexType>

</element>

<element name="HashFunction" type="tns:non-empty-string"/>

<element name="EncryptionAlgorithm" type="tns:non-empty-string"/>

<element name="SignatureAlgorithm" type="tns:non-empty-string"/>

<element name="DigitalEnvelope">

<complexType>

<sequence>

<element ref="tns:Protocol"/>

<element ref="tns:EncryptionAlgorithm"/>

<element name="InitiatorCertificateRef" type="tns:CertificateRef.type" minOccurs="0"/>

<element name="ResponderCertificateRef" type="tns:CertificateRef.type" minOccurs="0"/>

</sequence>

</complexType>

</element>

<element name="CertificateRef">

<complexType>

<attribute name="certId" use="required" type="IDREF"/>

</complexType>

</element>

<element name="ebXMLBinding">

<complexType>

<sequence>

<element ref="tns:ReliableMessaging" minOccurs="0"/>

<element ref="tns:NonRepudiation" minOccurs="0"/>

<element ref="tns:DigitalEnvelope" minOccurs="0"/>

<element ref="tns:NamespaceSupported" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute ref="tns:version"/>

</complexType>

</element>

<element name="NamespaceSupported">

<complexType>

<simpleContent>

<extension base="anyURI">

<attribute name="location" use="required" type="anyURI"/>

<attribute ref="tns:version"/>

</extension>

</simpleContent>

</complexType>

</element>

<element name="BusinessProcessCharacteristics">

<complexType>

<attribute ref="tns:syncReplyMode" default="none"/>

<attribute name="nonRepudiationOfOrigin" type="boolean" default="false"/>

<attribute name="nonRepudiationOfReceipt" type="boolean" default="false"/>

<attribute name="secureTransport" type="boolean" default="false"/>

<attribute name="confidentiality" type="boolean" default="false"/>

<attribute name="authenticated" type="boolean" default="false"/>

<attribute name="authorized" type="boolean" default="false"/>

</complexType>

</element>

<annotation>

<documentation>The attributes within MessagingCharacteristics describes the setting for "per message" characteristic. The sender will include an AckRequested element in the ebXML message if the ackRequested attribute is set to "always" or if the ackRequested attribute is set to "perMessage" and the application desires an Acknowledgment for the message. The sender will set the signed attribute in the AckRequested element to true if the ackSignatureRequested attribute is set to "always" or if the ackSignatureRequested attribute is set to "perMessage" and the application desires a signed Acknowledgment. The sender will include a DuplicateElimination element in the message header if the duplicateElimination attribute is set to "always" or if the duplicateElimination attribute is set to "perMessage" and if the application desires duplicate elimination. The actor attribute provides the value that should be used in the actor attribute for the AckRequested element, if such an element needs to be created.</documentation>

</annotation>

<element name="MessagingCharacteristics">

<complexType>

<attribute name="ackRequested" type="tns:perMessageCharacteristics.type" default="perMessage"/>

<attribute name="ackSignatureRequested" type="tns:perMessageCharacteristics.type" default="perMessage"/>

<attribute name="duplicateElimination" type="tns:perMessageCharacteristics.type" default="perMessage"/>

<attribute name="actor" type="tns:actor.type"/>

</complexType>

</element>

<element name="ServiceBinding">

<complexType>

<sequence>

<element ref="tns:Service"/>

<element ref="tns:ActionBinding" maxOccurs="unbounded"/>

</sequence>

<attribute name="defaultSignalChannelId" type="tns:non-empty-string"/>

</complexType>

</element>

<element name="Status">

<complexType>

<attribute name="value" use="required" type="tns:statusValue.type"/>

</complexType>

</element>

<element name="Start" type="dateTime"/>

<element name="End" type="dateTime"/>

<element name="Type" type="tns:non-empty-string"/>

<element name="ConversationConstraints">

<complexType>

<attribute name="invocationLimit" type="int"/>

<attribute name="concurrentConversations" type="int"/>

</complexType>

</element>

<element name="Role">

<complexType>

<attribute name="name" use="required" type="tns:non-empty-string"/>

<attributeGroup ref="tns:xlink.grp"/>

</complexType>

</element>

<element name="Constituent">

<complexType>

<attribute ref="tns:idref"/>

</complexType>

</element>

<annotation>

<documentation>In the case of a synchronous request response, more than one type of response may be returned.This can be modeled by using multiple CompositeList elements under the Packaging element. For example, if the syncReplyMode is set to signalsAndResponse, either a ReceiptAcknowledgment signal plus a query response may be returned, or an Exception signal may be returned.</documentation>

</annotation>

<element name="Packaging">

<complexType>

<sequence>

<element name="ProcessingCapabilities">

<complexType>

<attribute name="parse" use="required" type="boolean"/>

<attribute name="generate" use="required" type="boolean"/>

</complexType>

</element>

<element name="CompositeList" minOccurs="0" maxOccurs="unbounded">

<complexType>

<choice maxOccurs="unbounded">

<element name="Encapsulation">

<complexType>

<sequence>

<element ref="tns:Constituent"/>

</sequence>

<attributeGroup ref="tns:pkg.grp"/>

</complexType>

</element>

<element name="Composite">

<complexType>

<sequence>

<element ref="tns:Constituent" maxOccurs="unbounded"/>

</sequence>

<attributeGroup ref="tns:pkg.grp"/>

</complexType>

</element>

</choice>

</complexType>

</element>

</sequence>

<attribute ref="tns:id"/>

</complexType>

</element>

<element name="Comment">

<complexType>

<simpleContent>

<extension base="tns:non-empty-string">

<attribute ref="xml:lang"/>

</extension>

</simpleContent>

</complexType>

</element>

<element name="SimplePart">

<complexType>

<sequence>

<element ref="tns:NamespaceSupported" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attributeGroup ref="tns:pkg.grp"/>

</complexType>

</element>

<!-- COMMON -->

<simpleType name="mo.type">

<restriction base="NMTOKEN">

<enumeration value="Guaranteed"/>

<enumeration value="NotGuaranteed"/>

</restriction>

</simpleType>

<simpleType name="statusValue.type">

<restriction base="NMTOKEN">

<enumeration value="agreed"/>

<enumeration value="signed"/>

<enumeration value="proposed"/>

</restriction>

</simpleType>

<simpleType name="endpointType.type">

<restriction base="NMTOKEN">

<enumeration value="login"/>

<enumeration value="request"/>

<enumeration value="response"/>

<enumeration value="error"/>

<enumeration value="allPurpose"/>

</restriction>

</simpleType>

<simpleType name="non-empty-string">

<restriction base="string">

<minLength value="1"/>

</restriction>

</simpleType>

<simpleType name="syncReplyMode.type">

<restriction base="NMTOKEN">

<enumeration value="mshSignalsOnly"/>

<enumeration value="responseOnly"/>

<enumeration value="signalsAndResponse"/>

<enumeration value="signalsOnly"/>

<enumeration value="none"/>

</restriction>

</simpleType>

<complexType name="service.type">

<simpleContent>

<extension base="tns:non-empty-string">

<attribute name="type" type="tns:non-empty-string"/>

</extension>

</simpleContent>

</complexType>

<complexType name="protocol.type">

<simpleContent>

<extension base="tns:non-empty-string">

<attribute ref="tns:version"/>

</extension>

</simpleContent>

</complexType>

<attribute name="idref" form="unqualified" type="IDREF"/>

<attribute name="id" form="unqualified" type="ID"/>

<attribute name="version" type="tns:non-empty-string"/>

<attribute name="syncReplyMode" type="tns:syncReplyMode.type"/>

<complexType name="CertificateRef.type">

<attribute name="certId" use="required" type="IDREF"/>

</complexType>

<simpleType name="perMessageCharacteristics.type">

<restriction base="NMTOKEN">

<enumeration value="always"/>

<enumeration value="never"/>

<enumeration value="perMessage"/>

</restriction>

</simpleType>

<simpleType name="actor.type">

<restriction base="NMTOKEN">

<enumeration value="urn:oasis:names:tc:ebxml-msg:actor:nextMSH"/>

<enumeration value="urn:oasis:names:tc:ebxml-msg:actor:toPartyMSH"/>

</restriction>

</simpleType>

<simpleType name="messageOrderSemantics.type">

<restriction base="NMTOKEN">

<enumeration value="Guaranteed"/>

<enumeration value="NotGuaranteed"/>

</restriction>

</simpleType>

</schema>

Appendix E Formats of Information in the CPP and CPA (Normative)

This section defines format information that is not defined by the [XML] specification and is not defined in the descriptions of specific elements.

Formats of Character Strings

Protocol and Version Elements

Values of Protocol, Version, and similar elements are flexible. In general, any protocol and version for which the support software is available to both Parties to a CPA MAY be selected as long as the choice does not require changes to the DTD or schema and therefore a change to this specification.

NOTE: A possible implementation MAY be based on the use of plug-ins or exits to support the values of these elements.

Alphanumeric Strings

Alphanumeric strings not further defined in this section follow these rules unless otherwise stated in the description of an individual element:

 Values of elements are case insensitive unless otherwise stated.

 Strings which represent file or directory names are case sensitive to ensure that they are acceptable to both UNIX and Windows systems.

Numeric Strings

A numeric string is a signed or unsigned decimal integer in the range imposed by a 32-bit binary number, i.e. -2,147,483,648 to +2,417,483,647. Negative numbers MAY or MAY not be permitted in particular elements.

Appendix F Composing a CPA from Two CPPs (Non-Normative)

Overview and Limitations

In this appendix, we discuss the tasks involved in CPA formation from CPPs. The detailed procedures for CPA formation are currently left for implementers. Therefore, no normative specification is provided for algorithms for CPA formation. In this initial section, we provide some background on CPA formation tasks.

There are three basic reasons why we prefer to provide information about the component tasks involved in CPA formation rather than attempt to provide an algorithm for CPA formation:

1. The precise informational inputs to the CPA formation procedure vary.

2. There exist at least two distinct approaches to CPA formation. One useful approach for certain situations involves basing CPA formation from a CPA template; the other approach involves composition from CPPs.

3. The conditions for output of a given CPA given two CPPs can involve different levels and extents of interoperability. In other words, when an optimal solution that satisfies every level of requirement and every other additional constraint does not exist, a Party MAY propose a CPA that satisfies enough of the requirements for “a good enough” implementation. User input MAY be solicited to determine what is a good enough implementation, and so MAY be as varied as there are user configuration options to express preferences. In practice, compromises MAY be made on security, reliable messaging, levels of signals and acknowledgements, and other matters in order to find some acceptable means of doing Business.

Each of these reasons is elaborated in greater detail in the following sections.

Variability in Inputs

User preferences provide one source of variability in the inputs to the CPA formation process. Let us suppose in this section that each of the Parties has made its CPP available to potential collaborators. Normally one Party will have a desired Business Collaboration (defined in a Process-Specification document) to implement with its intended collaborator. So the information inputs will normally involve a user preference about intended Business Collaboration in addition to just the CPPs.
A CPA formation tool MAY have access to local user information not advertised in the CPP that MAY contribute to the CPA that is formed. A user MAY have chosen to only advertise those system capabilities that reflect nondeprecated capabilities. For example, a user MAY only advertise HTTP and omit FTP, even when capable of using FTP. The reason for omitting FTP might be concerns about the scalability of managing user accounts, directories, and passwords for FTP sessions. Despite not advertising an FTP capability, configuration software MAY use tacit knowledge about its own FTP capability to form a CPA with an intended collaborator who happens to have only an FTP capability for implementing a desired Business Collaboration. In other words, Business interests MAY, in this case, override the deprecation policy. Both tacit knowledge and detailed preference information account for variability in inputs into the CPA formation process.

Different Approaches

When a CPA is formed from a CPA template, it is typically because the capabilities of one of the Parties are limited, and already tacitly known. For example, if a CPA template were implicitly presented to a Web browser for use in an implementation using browser based forms capabilities, then the template maker can assume that the other Party has suitable web capabilities (or is about to download them). Therefore, all that really needs to be done is to supply PartyRef, Certificate, and similar items for substitution into a CPA template. The CPA template will already have all the capabilities of both Parties specified at the various levels, and will have placeholders for values to be supplied by one of the Partners. A simple form might be adequate to gather the needed information and produce a CPA.

Variable Output "Satisficing" Policies

A CPA can support a fully interoperable configuration in which agreement has been reached on all technical levels needed for Business Collaboration. In such a case, matches in capabilities will have been found in all relevant technical levels.

However, there can be interoperable configurations agreed to in a CPA in which not all aspects of a Business Collaboration match. Gaps MAY exist in packaging, security, signaling, reliable messaging and other areas and yet the systems can still transport the Business data, and special means can be employed to handle the exceptions. In such situations, a CPA MAY reflect configured policies or expressly solicited user permission to ignore some shortcomings in configurations. A system might not be capable of responding in a Business Collaboration so as to support a recommended ability to supply non repudiation of receipt, but might still be acceptable for Business reasons. A system might not be able to handle all the processing required to support, for example, SOAP with Attachments and yet still be able to treat the multipart according to "multipart/mixed" handling and allow Business Collaboration to take place. In fact, short of a failure to be able to transport data and a failure to be able to provide data relevant to the Business Collaboration, there are few features that might not be temporarily or indefinitely compromised about, given overriding Business interests. This situation of "partial interoperability" is to be expected to persist for some time, and so interferes with formulating a "clean" algorithm for deciding on what is sufficient for interoperability.

In summary, the previous considerations indicate that at the present it is at best premature to seek a simple algorithm for CPA formation from CPPs. It is to be expected that as capability characterization and exchange becomes a more refined subject, that advances will be made in characterizing CPA formation and negotiation.

Despite it being too soon to propose a simple algorithm for CPA formation that covers all the above variations, it is currently possible to enumerate the basic tasks involved in matching capabilities within CPPs. This information might assist the software implementer in designing a partially automated and partially interactive software system useful for configuring Business Collaboration so as to arrive at satisfactorily complete levels of interoperability. To understand the context for characterizing the constituent tasks, the general perspective on CPPs and CPAs needs to be briefly recalled.

CPA Formation Component Tasks

Technically viewed, a CPA provides "bindings" between Business-Collaboration specifications (as defined in the Process-Specification document) and those services and protocols that are used to implement these specifications. The implementation takes place at several levels and involves varied services at these levels. A CPA that arrives at a fully interoperable binding of a Business Collaboration to its implementing services and protocols can be thought of as arriving at interoperable, application-to-application integration. CPAs MAY fall short of this goal and still be useful and acceptable to the collaborating Parties. Certainly, if no matching data-transport capabilities can be discovered, a CPA would not provide much in the way of interoperable Business-to-Business integration. Likewise, partial CPAs will leave significant system work to be done before a completely satisfactory application-to-application integration is realized. Even so, partial integration MAY be sufficient to allow collaboration, and to enjoy payoffs from increased levels of automation.

In practice, the CPA formation process MAY produce a complete CPA, a failure result, a gap list that drives a dialog with the user, or perhaps even a CPA that implements partial interoperability "good enough" for the Business collaborators. Because both matching capabilities and interoperability can be matters of degree, the constituent tasks are finding the matches in capabilities at different levels and for different services. We next proceed to characterize many of these constituent tasks.

CPA Formation from CPPs: Enumeration of Tasks

To simplify discussion, assume in the following that we are viewing the tasks faced by a software agent when:

1. an intended collaborator is known and the collaborator's CPP has been retrieved,

2. the Business Collaboration between us and our intended collaborator has been selected,

3. the specific role that our software agent is to play in the Business Collaboration is known, and

4. the capabilities that are to be advertised in our CPP are known.

For vividness, we will suppose that our example agent wishes to play the role of supplier and seeks to find one of its current customers to begin a Purchase Order Business Collaboration in which the intended player plays a complementary role. For simplicity, we assume that the information about capabilities is restricted to what is available in our agent’s CPP and in the CPP of its intended collaborator.

In general, the constituent tasks consist of finding "matches" between our capabilities and our intended collaborator’s at the various levels of the protocol stacks and with respect to the services supplied at these various levels.

Figure 6 illustrates the basic tasks informing a CPA from two CPPs: matching roles, matching packaging, and matching transport.

[image: image7.wmf]Figure 1: Structure of CPP & Business Process Specification in

an

ebXML

Registry

Repository

Business

Collaboration

<PartyInfo PartyId=“N01”>

 <

ProcessSpecification xlink

:href=“http://

<

PartyInfo

 PartyId=“N02”>

 <

ProcessSpecification xlink

:href=“http://

CPP(A)

Process Specification(A1)

Process Specification(A2)

Business

Collaboration

The first task to be considered is certainly the most basic: finding that our intended collaborator and ourselves have complementary role capabilities.

Matching Roles

Our agent has its role already selected in the Business Collaboration. So it now begins to check the Role elements in its collaborator’s CPP. The first element to examine is the PartyInfo element that contains a subtree of elements called CollaborationRole. This set is searched to discover a role that complements the role of our agent within the Business Collaboration that we have chosen. For simple binary collaboration cases, it is typically sufficient to find that our intended collaborator’s CollaborationRole set contains ProcessSpecification elements that we intend to implement and where the role is not identical to our role. For more general collaborations, we would need to know the list of roles available within the process, and keep track that for each of the collaborators, the roles chosen instantiate those that have been specified within the Process-Specification document. Collaborations involving more than two roles are not discussed further.

Matching Transport

We now have available a list of candidate CollaborationRole elements with the desired ProcessSpecification element (Purchase Ordering) and where our intended collaborator plays the buyer role. For simplicity, we shall suppose just one CollaborationRole element meets these conditions within each of the relevant CPPs and not discuss iterating over lists. (Within these remarks, where repetition is possible, we will frame the discussion by assuming that just one element is present.)

Matching transport first means matching the SendingProtocol capabilities of our intended collaborator with the ReceivingProtocol capabilities found on our side. Perusal of the CPP DTD or Schema will reveal that the ServiceBinding element provides the doorway to the relevant information from each side’s CollaborationRole element with the channelId attribute. This channelId attribute’s value allows us to find DeliveryChannels within each CPP. The DeliveryChannel has a transportId attribute that allows us to find the relevant Transport subtrees.
For example, suppose that our intended buyer has a Tranport entry:

<tp:Transport tp:transportId="buyerid001">

 <tp:SendingProtocol>HTTP</tp:SendingProtocol>

 <tp:ReceivingProtocol>
HTTP
</tp:ReceivingProtocol>

 <tp:Endpoint tp:uri="https://www.buyername.com/po-response"

 tp:type="allPurpose"/>

 <tp:TransportSecurity>

 <tp:Protocol tp:version="1.0">TLS</tp:Protocol>

 <tp:CertificateRef tp:certId=certid001">BuyerName</tp:CertificateRef>

 </tp:TransportSecurity>

</tp:Transport>

and our seller has a Transport entry:

<tp:Transport tp:transportId="sellid001">

 <tp:SendingProtocol>HTTP</tp:SendingProtocol>

 <tp:ReceivingProtocol>
HTTP
</tp:ReceivingProtocol>

 <tp:Endpoint tp:uri="https://www.sellername.com/pos_here"

 tp:type="allPurpose"/>

 <tp:TransportSecurity>

 <tp:Protocol tp:version="1.0">TLS</Protocol>

 <tp:CertificateRef tp:certId="certid002">Sellername</tp:CertificateRef>

 </tp:TransportSecurity>

</tp:Transport>

A transport match for requests involves finding the initiator role or buyer has a SendingProtocol that matches one of our ReceivingProtocols. So here, "HTTP" provides a match. A transport match for responses involves finding the responder role or seller has a SendingProtocol that matches one of the buyer’s ReceivingProtocols. So in the above example, "HTTP" again provides a match. When such matches exist, we then have discovered an interoperable solution at the transport level. If not, no CPA will be available, and a high-priority gap has been identified that will need to be remedied by whatever exception handling procedures are in place.

Matching Transport Security

Matches in transport security, such as in the above, will reflect agreement in versions and values of protocols. Software can supply some knowledge here so that if one side has SSL-3 and the other TLS-1, it can guess that security is available by means of a fallback of TLS to SSL.

Matching Document Packaging

Probably one of the most complex matching problems arises when it comes to finding whether there are matches in document-packaging capabilities. Here both security and other MIME handling capabilities can combine to create complexity for appraising whether full interoperability can be attained.

Access to the information needed for undertaking this task is found under the ServiceBinding elements, and again we suppose that each side has just one ServiceBinding element. However, we will initially suppose that two Packaging elements are available to consider under each role. Several quite different ways of thinking about the matching task are available, and several methods for the tasks MAY be performed when assessing whether a good enough match exists.

To continue our previous purchase-ordering example, we recall that the packaging is the particular combination of body parts, XML instances (Headers and payloads), and security encapsulations used in assembling the Message from its data sources. Both requests and responses will have packaging. The most complete specification of packaging, which MAY not always be needed, would consist of:

1. The buyer asserting what packaging it can generate for its purchase order, and what packaging it can parse for its purchase order response Messages.

2. The seller asserting what packaging it can generate for its purchase order responses and what packaging it can parse for received purchase orders.

Matching by structural comparison would then involve comparing the packaging details of the purchase orders generated by the seller with the purchase orders parsable by the buyer. The comparison would seek to establish that the MIME types of the SimplePart elements of corresponding subtrees match and would then proceed to check that the CompositeList matched in MIME types and in sequence of composition.

For example, if each CPP contained the packaging subtrees below, and under the appropriate ServiceBindings, then there would be a straightforward match by structural comparison:

<tp:Packaging tp:id="I1001">

 <tp:ProcessingCapabilities tp:parse="true" tp:generate="true"/>

 <tp:SimplePart tp:id="P1" tp:mimetype="text/xml"/>

 <tp:NamespaceSupported tp:location
="http://schemas.xmlsoap.org/soap/envelope/" tp:version="1.1">
http://schemas.xmlsoap.org/soap/envelope
</tp:NamespaceSupported>

 <tp:NamespaceSupported tp:location=
"http://www.ebxml.org/namespaces/messageHeader" tp:
version="1.0">
http://www.ebxml.org/namespaces/messageHeader</NamespaceSupported>
 <tp:NamespaceSupported tp:location=
"http://www.w3.org/2000/09/xmldsig#" tp:
version="1.0">
http://www.w3.org/2000/09/xmldsig#
</tp:NamespaceSupported>

 <tp:SimplePart tp:id="P2" tp:mimetype="application/xml"/>

 <tp:CompositeList>

 <tp:Composite tp:mimetype="multipart/related" tp:id="P3"

 tp:mimeparameters="type=text/xml">

<tp:Constituent tp:idref="P1"/>

<tp:Constituent tp:idref="P2"/>

 </tp:Composite>

 </tp:CompositeList>

</tp:Packaging>

<tp:Packaging id="I2001">

 <tp:ProcessingCapabilities tp:parse="true" tp:generate="true"/>

 <tp:SimplePart tp:id="P11" tp:mimetype="text/xml"/>

 <tp:SimplePart tp:id="P12" tp:mimetype="application/xml"/>

 <tp:CompositeList>

 <tp:Composite tp:mimetype="multipart/related" tp:id="P13"

 tp:mimeparameters="type=text/xml">

<tp:Constituent tp:idref="P11"/>

<tp:Constituent tp:idref="P12"/>

 </tp:Composite>

 </tp:CompositeList>

</tp:Packaging>

However, it is to be expected that over time it will become possible only to assert what packaging is generated within each ServiceBinding for the requester and responder roles. This simplification assumes that each side has knowledge of what MIME types it handles correctly, what encapsulations it handles correctly, and what composition modes it handles correctly. By scanning the packaging specifications against its lists of internal capabilities, it can then look up whether other side's generated packaging scheme is one it can process and accept it under those conditions. Knowing what generated packaging style was produced by the other side could enable the software agent to propose a packaging scheme using only the MIME types and packaging styles used in the incoming Message. Such a packaging scheme would be likely to be acceptable to the other side when included within a proposed CPA. Over time, and as proposal and negotiation conventions get established, it is to be expected that the methods used for determining a match in packaging capabilities will move away from structural comparison to simpler methods, using more economical representations. For example, parsing capabilities may eventually be captured by using a compact description of the accepting grammar for the packaging and content labelling schemes that can be parsed and for which semantic handlers are available.

Matching Document-Level Security

Although the matching task for document-level security is a subtask of the Packaging-matching task, it is useful to discuss some specifics tied to the three major document-level security approaches found in [S/MIME], OpenPGP[RFC2015], and XMLDsig[XMLDSIG].

XMLDsig matching capability can be inferred from document-matching capabilities when the use of ebXML Message Service[ebMS] packaging is present. However, there are other sources that should be checked to confirm this match. A SimplePart element can have a NameSpaceSupported element. XMLDsig capability should be found there. Likewise, a detailed check on this match should examine the information under the NonRepudiation element and similar elements under the ebXMLBinding element to check for compatibility in hash functions and algorithms.

The existence of several radically different approaches to document-level security, together with the fact that it is unusual at present for a given Party to commit to more than one form of such security, means that there can be basic failures to match security frameworks. Therefore, there might be no match in capabilities that supports full interoperability at all levels. For the moment, we assume that document-level security matches will require both sides able to handle the same security composites (multipart/signed using S/MIME, for example.)

However, suppose that there are matches at the transport and transport layer security levels, but that the two sides have failures at the document-security layer because one side makes use of PGP signatures while the other uses S/MIME. Does this mean that no CPA can be proposed? That is not necessarily the case.

Both S/MIME and OpenPGP permit signatures to be packaged within "multipart/signed" composites. In such a case, it MAY be possible to extract the data and arrive at a partial implementation that falls short with respect to non repudiation. While neither side could check the other's signatures, it might still be possible to have confidential document transmission and transport-level authentication for the Business data. Eventually CPA-formation software MAY be created that is able to identify these exceptional situations and "salvage" a proposed CPA with downgraded security features. Whether the other side would accept such a proposed CPA would, naturally, involve what their preferences are with respect to initiating a Business Collaboration and sacrificing some security features. CPA-formation software MAY eventually be capable of these adaptations, but it is to be expected that human assistance will be required for such situations in the near term.

Of course, an implementation MAY simply decide to terminate looking for a CPA when a match fails in any crucial factor for an interoperable implementation. At the very least, the users should be warned that the only CPAs that can be proposed will be missing security or other normally desirable features or features recommended by the Business Collaboration.

Other Considerations

Though preferences among multiple capabilities are indicated by the document order in which they are listed, it is possible that ties may occur. At present, these ties are left to be resolved by a negotiation process not discussed here.

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

�PAGE \# "'Page: '#'�'" �� I suggest taking a look at the treatment in the Message Service Specification DRAFT Version 1.091. They list the current TC participants in this section and move the previous participants to an Acknowledgment section towards the end of the specification.

�PAGE \# "'Page: '#'�'" ��This description of sectioning should be reviewed and updated as appropriate during final editing.

�PAGE \# "'Page: '#'�'" ��Should reference the 1.1 version of the Messaging spec.

�PAGE \# "'Page: '#'�'" �� It was agreed in the joint MSG-CPPA meeting in October that the 1.1 CPP/A spec will not address the requirements for interacting with intermediaries.

�PAGE \# "'Page: '#'�'" ��Need to merge with information supplied by Peter Ogden.

�PAGE \# "'Page: '#'�'" �� I am not sure if business-partner-role (actually spelt BusinessPartnerRole in BPSS 1.0) is relevent for the 1.1 CPP/A spec. BusinessPartnerRole is only used in MultiPartyCollaboration which the 1.1 CPP/A spec is not designed to model. I also don’t know what to do if the initiatingRole and respondingRole for a BinaryCollaboration do not match the fromAuthorizedRole and toAuthorizedRole for the CollaborationActivity and BusinessTransactionActivity used by the BinaryCollaboration.

�PAGE \# "'Page: '#'�'" ��Need to merge with changes from Hima. I am assuming that the DeliveryChannels for receiving business signal messages can optionally be specified. The corresponding action names would be ReceiptAcknowledgment, AcceptanceAcknowledgment, and Exception.

�PAGE \# "'Page: '#'�'" ��I thought the intent of this attribute was to specify confidential delivery between applications, and thus the sentence should remain intact.

�PAGE \# "'Page: '#'�'" ��I think the last part of the sentence “and delivered, encrypted, to the application” should be struck out. The encryption might have happened before the ebXML message is packaged and signed. The middleware on the receiver side probably should pass the decrypted payload to the destination application.

�PAGE \# "'Page: '#'�'" ��Should reference the 1.1 spec.

�PAGE \# "'Page: '#'�'" ��These notices are taken from the IPR page of the OASIS website. I’ve asked Karl Best for guidance on their use in relation to the joint UN/CEFACT and OASIS statement in the version 1.0 specification, which I’ve left in for now, as follows..

�PAGE \# "'Page: '#'�'" ��The use of paragraph styles in Appendix E and Appendix F seem non-standard. Many blank lines are used to control the spacing between paragraphs.

87
Collaboration-Protocol Profile and Agreement Specification

Page 44 of 128

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

[image: image8.wmf]Figure 3: Overview of

Collaboration-Protocol Agreements

 (

CPA

)

CPA

 ID

Party’s

 information

-

 Party

 A

-

Party

 B

Transport Protocol

Transport Security

DocExchange

 Protocol

Link to Process-

Specification Doc.

Retry

-etc.

CPP

For

Party

 A

CPP

For

Party

 B

CPA

Agreed

CPA

Agreed

CPA

1

negotiate

2

negotiate

3

Agree-

ment

 on

CPA

 has

arrived.

3

Agree-

ment

 on

CPA

 has

arrived.

4 Start Business activities with each other

[image: image9.jpg]Creating A Single Global Electronic Market

[image: image10.wmf]Delivery Channel

DC1

Transport

T1

Doc.

Exch

.

X1

Delivery Channel

DC2

Transport

T2

Doc.

Exch

.

X2

Delivery Channel

DC3

Transport

T2

Doc.

Exch

.

X1

Figure 5: Three Delivery Channels

[image: image11.wmf]Figure 2: Overview of Collaboration-Protocol Profiles (CPP)

What

Business

capabilities

it can perform

when conducting a

Business

Collaboration

 with

other parties

Party

 A

Party’s

 information

-

Party

 name

- contact info

Transport Protocol

Transport Security Protocol

Messaging Protocol

Link to Process-

Specification document

Time out/Retry

-etc.

CPP

Describe

Build

[image: image12.wmf]Figure 4: Overview of Working Architecture of CPP/CPA with

ebXML

 Registry

Registry

 Party

 B

(Buyer,Server)

 Party

 A

(Seller,Server)

CPP(A)

CPP

(B)

CPP

(X)

CPP

(Y)

CPP

(Z)

CPP

(A)

CPA

(A,B)

CPA

(A,B)

(Document)

(Exe. Code)

CPA

(A,B)

CPA

(A,B)

(Document)

(Exe. Code)

1. Any

Party

 may register its

CPPs

to an

ebXML

 Registry.

2.

Party

 B discovers trading partner

A (Seller) by searching in the

Registry and downloads

CPP

(A) to

Party

B’s server.

3.

Party

 B creates

CPA

(A,B) and

sends

CPA

(A,B) to

Party

 A.

4.

Parties

 A and B negotiate and

store identical copies of the

completed

CPA

 as a document in

both servers. This process is done

manually or automatically.

5.

Parties

 A and B configure their

run-time systems with the

information in the

CPA

.

6.

Parties

A and B

do business under

the new

CPA.

2.

6.

5.

5.

3.

4.

1.

1.

[image: image13.wmf]Packaging

matches

Packaging

Transport

Transport

Role

Role

matches

matches

Figure 6: Basic Tasks in Forming a CPA

_1049141757.ppt

Figure 2: Overview of Collaboration-Protocol Profiles (CPP)

What Business capabilities

it can perform

when conducting a Business Collaboration with other parties

Party A

Party’s information

- Party name

- contact info

Transport Protocol

Transport Security Protocol

Messaging Protocol

Link to Process- Specification document

Time out/Retry

-etc.

CPP

Describe

Build

_1050907418.ppt

Figure 4: Overview of Working Architecture of CPP/CPA with ebXML Registry

Registry

 Party B

(Buyer,Server)

 Party A

(Seller,Server)

CPP(A)

CPP(B)

CPP(X)

CPP(Y)

CPP(Z)

CPP(A)

CPA(A,B)

CPA(A,B)

(Document)

(Exe. Code)

CPA(A,B)

CPA(A,B)

(Document)

(Exe. Code)

1. Any Party may register its CPPs to an ebXML Registry.

2. Party B discovers trading partner A (Seller) by searching in the Registry and downloads CPP(A) to Party B’s server.

3. Party B creates CPA(A,B) and sends CPA(A,B) to Party A.

4. Parties A and B negotiate and store identical copies of the completed CPA as a document in both servers. This process is done manually or automatically.

5. Parties A and B configure their run-time systems with the information in the CPA.

6. Parties A and B do business under the new CPA.

2.

6.

5.

5.

3.

4.

1.

1.

_1049203152.ppt

Figure 1: Structure of CPP & Business Process Specification in an ebXML Registry

Repository

Business Collaboration

<PartyInfo PartyId=“N01”>

 <ProcessSpecification xlink:href=“http://

<PartyInfo PartyId=“N02”>

 <ProcessSpecification xlink:href=“http://

CPP(A)

Process Specification(A1)

Process Specification(A2)

Business Collaboration

_1046374009.ppt

Packaging

matches

Packaging

Transport

Transport

Role

Role

matches

matches

Figure 6: Basic Tasks in Forming a CPA

_1047740132.ppt

Figure 3: Overview of Collaboration-Protocol Agreements (CPA)

CPA ID

Party’s information

- Party A

- Party B

Transport Protocol

Transport Security DocExchange Protocol

Link to Process- Specification Doc.

Retry

-etc.

CPP

For

Party A

CPP

For

Party B

CPA

Agreed

CPA

Agreed

CPA

1

negotiate

2

negotiate

3

Agree-ment on CPA has arrived.

3

Agree-ment on CPA has arrived.

4 Start Business activities with each other

_1046370057.ppt

Delivery Channel

DC1

Delivery Channel

DC2

Delivery Channel

DC3

Figure 5: Three Delivery Channels

Transport

T1

Doc.Exch.

X1

Transport

T2

Doc.Exch.

X2

Transport

T2

Doc.Exch.

X1

