X.X.X.X

The SecurityDetails and SecurityDetailsRef elements are optional elements, whose use can promote interoperability, first, by allowing agreement to be reached on what certificates will be used in checking certificate validity, and, second, by eventually specifying what policies shall govern the maintenance of the PKI infrastructure, such as CRL checking policies.

Under the SecurityDetails element, the TrustAnchors subelement shall be used to contain the trusted roots to be used in checking certificate chain validity. So, whenever a collaboration participant is performing a security operation where checking certificate validity is to be done, it would be appropriate to provide a SecurityDetails element with accepted TrustAnchors pertaining to this security operation.

Checks on certificate validity typically occur during the following operations:

Server or Client transport security authentication, digital signature checking, and encrypting a symmetric key while preparing DigitalEnvelopes. Successful interoperation requires that the certificate relevant to these operations needs to be one whose Issuer is, or can “chain” to, one of the certificates in the list TrustAnchors/AnchorCertificateRef. Therefore, the SecurityDetails element will be supplied in those contexts in which the certificate security information is supplied (using the AnchorCertificateRef element that has a type of CertificateRef.type.)

There are numerous combinations possible, and the use of this information needs to be explained by adopting some conventions governing the SecurityDetails elements.

 [expand when clear about these—consult with Arvola, Peter, Hima, Tony]

1. Transport Security Conventions. During the setup of each SSL connection, certificate validity checks can be involved. In a CPP, …In the CPA, …

2. DigitalEnvelope Conventions. In a CPP, In the CPA,…

3. Signature Conventions (for Non-Repudiation of Origin (NRO) and Non-Repudiation of Receipt): In a CPP, In the CPA, …

The common pattern is that that the TrustAnchors occur at the same place as Certificate.Refs, and are placed under the PartyId, responsible for checking of certificate validity for the security operation. (Only that party will be able to provide the information for a CPP or CPA template.)

The TrustAnchor list does not have to be complete in a CPA, but can simply contain the anchor(s) that will be used by the “checking” side of the security operation. In a CPP, a TrustAnchor list may be used to indicate, from the “checking” side, the anchors that are available for use initially in checking certificate validity. Negotiation may involve both adding and deleting from these lists.

The SecurityPolicy element is used as a placeholder for future evolution of this specification to include automatic alignment in security policies. The notation and representation for policies is not yet in place. We here expect that agreements pertaining to life-cycle management, such as revocation or replacement of certificates, in either TrustAnchors or Certificates will be indicated in CPAs, and a range of preferred policies will be indicated in CPPs.

Addition to schema—trim and edit as needed.

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://www.oasis-open.org/committees/ebxml-cppa/schema/sd.xsd" xmlns="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://www.oasis-open.org/committees/ebxml-cppa/schema/sd.xsd">

<element name="SecurityDetails">

<complexType>

<sequence>

<element ref="tns:TrustAnchor" minOccurs="0" maxOccurs="unbounded"/>

<element ref="tns:SecurityPolicy" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

<element name="TrustAnchors">

<complexType>

<sequence>

<element name="AnchorCertificateRef" type="tns:CertificateRef.type" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

<element name="SecurityPolicy">

<complexType>

<sequence>

<any namespace="##any"
 minOccurs="1" maxOccurs="unbounded"
 processContents="skip"/>

</sequence>

</complexType>

</element>

<complexType name="CertificateRef.type">

<attribute name="certId" type="IDREF" use="required"/>

</complexType>
</schema>
