ebXML Business Transaction Management
Draft Position Paper

[image: image1.png]ch@gy

[image: image2.png]

Draft

ebXML Business Transaction Management

Tony Fletcher

(tony.fletcher@choreology.com)

Disclaimer

This document represents our current thinking, but is a draft for initial comments and feedback prior to generating a more complete proposal. We very much welcome any comments on this document. Please mail them to tony.fletcher@choreology.com or give me a call.

Limited Copyright Release

Choreology Ltd gives permission for the making and distributing of copies of this document solely for the purpose of furthering discussion on the requirements and means of achieving the management of Business Transactions in the context of ebXML.
Table of Contents

1Disclaimer

Summary
3
Interest Declared
4
Extending UMM / BPSS transactions
4
Current UMM / BPSS and BTP – protocol view
4
Current UMM / BPSS and BTP – API view
7
Extending to more than a single action / party
7
Conceptual node architecture
11
BTP sub protocols
11
Overall ebXML Architecture
12
Why extend the UMM? - Use cases
13
Simple order
13
Simple order – multiple responses
13
Negotiated simple order
13
Complex order involving suppliers to the supplier.
13
Stock quotes.
13
Conclusion and feature summary comparison table
14
References
15
Appendix A Brief outline of the Presumed Abort and Presumed Nothing Algorithms
16
Presumed Abort
16
Presumed Nothing
17
Recovery
17
Presumed abort
17
Presumed nothing
18

Figures

5Figure 1
A comparison of current UMM / BPSS and BTP outcome message sequence

Figure 2
BTP outcome with separate prepare message sequence
5
Figure 3
Generic transaction message sequence
6
Figure 4
A sequence of individual current UMM / BPSS ‘business transactions’
7
Figure 5
A sequence of individual BTP ‘business transactions’ (API view)
7
Figure 6
Grouping multiple actions into a single transaction with BTP (API view)
8
Figure 7
Extended UMM ‘business transaction’ with coordinated control
8
Figure 8
A tree structure of parties to a business transaction illustrating extended UMM method of outcome coordination
9
Figure 9
Conceptual internal structure of a node in a tree
11
Figure 10
An informal view of the ebXML architecture with BTP included
12
Figure 11
The current overall ebXML implementation architecture (+BTP)
12
Figure 12
Presumed abort logging points (as used in BTP)
16
Figure 13
Presumed nothing logging points
17

Tables

14Table 1
 Features comparison table

Summary

Currently an UMM [1] business collaboration consisting of a sequence of ‘Business Transactions’ can end in failure but leave all the commitments made during it still in place. This is undesirable and further business collaborations have to be undertaken, at present, at the business level to correct this, which themselves may fail and lead to further complications. Thus the business level is simplified when it is possible to agree to confirm or unwind a collaboration.

Thus the aim should be to allow business people and Business Process designers to design business processes according to the natural requirements of the business unfettered by the constraints of the technology to be used for its execution. For instance, this means allowing an order to be an order and not a tentative order, and there should not be a requirement to introduce extra exchanges at the business level. This needs to be distinguished from invocations within a system to ‘make it so’.

Using BTP [2] it is possible to design a business process at the business level and then to stand back and ask ‘what actions or groups of actions would it be great if we could agree that at the end of that action or group we can agree to confirm or unwind them’. BTP provides the mechanisms to mark these actions and ‘make it so’ as the business people would like.

Currently the UMM / BPSS [1 & 3] can only group a single request, or single request / response pair, in this way, and does not permit the grouping any wider set of actions. This paper illustrates this and then outlines how UMM / BPSS (and the new BCP) can be modified to achieve similar effects to those obtained using BTP. Understandably the detailed services provided and mechanisms used remain slightly different. In particular BTP allows any party to cancel its own work at any point up to the very last message and to confirm its own work after it has sent ‘prepared’ until the very last message. Even the extended version of UMM / BPSS suggested in this paper does not allow the non-initiating parties to signal any intent or action after they have sent their response.

The UMM Chapter 8 states:

‘A business collaboration protocol is not a transaction and should be used in cases where transaction rollback is inappropriate. For example, a buying partner may request a purchase order by a selling partner. The selling partner may partially accept the purchase order and thus complete the transaction but may only return shipping information on part of the order. The buying partner is sent any number of later notifications regarding the outstanding portions of the order until the order is completely reconciled.’

This paper shows that this is an unnecessary (and unhelpful) restriction.

With respect to Business Transactions the UMM Chapter 8 states:

BusinessTransaction

A business transaction is a set of business information and business signal exchanges between two business partners that must occur in an agreed format, sequence and time period. If any of the agreements are violated then the transaction is terminated and all business information and business signal exchanges must be discarded. Business transactions can be formal as in the formation of on-line offer/acceptance business contracts and informal as in the distribution of product announcements. Business transactions can be comprised of sub-transactions.

and

A business transaction specifies either a synchronous or asynchronous flow of control between two activities. The business transaction is a unit of work. All of the interactions in a business transaction must succeed or the transaction must be rolled back to a defined state before the transaction was initiated.

These clear statements, which amount to stating that a business transaction is an atomic unit of work, are not capable of being delivered upon using the current set of ebXML specifications and thus additional functionality must be specified to fully specify reliable business transaction management in ebXML. (Atomic means atomic not mostly atomic!)

Firstly, reliably messaging as currently specified in the ebXML Messaging Specification [5] only reliably delivers messages to the ‘application’. It does not handle the case were the application fails while processing the message, so it does not guarantee reliable processing of the message.

Secondly the UMM does not specify that key steps in the transaction sequence should be recorded persistently (logged) and these logs used to recover the transaction state following system failure.

Thirdly the permitted sequencing of the messages does not allow a Responder to signal that it is has to cancel the work after it has sent a response. This means that its resources can be locked for an unacceptably long time if the Requester is ‘slow’ issuing the positive or negative acknowledgement signal. It may have to actually back out

Thus for these reasons and the considerations below, we consider the current UMM to be under specified with respect to transactions.

Interest Declared

Choreology has a product (currently at Alpha stage) called Cohesions 1.0 ™, which implements the Business Transaction Protocol (BTP) [2]. We currently believe that BTP has all the core features required for the completion and management of business transactions, and therefore is applicable to the wide variety of transaction scenarios that is to be found in the broad sweep of ebXML. However, we are also conscious that there are various forces at play and that various variations and restrictions can be applied in given circumstances. In principle, therefore, and quite possibly in practice too, depending on market conditions, we are prepared to implement variations on transaction management including the current UMM / BPSS approach, the extended approach suggested in this paper, WS-T and WS-C [4], as well as BTP.

Extending UMM / BPSS transactions

Current UMM / BPSS and BTP – protocol view

Figure 1 left hand side shows the allowed message sequence for a current UMM transaction. It is only between two parties and only the requestor can decide the outcome after the response has been sent. The ReceiptAckowledgment and AcceptanceAcknowledgement from the responder are essentially optional (may be made mandatory by specifying them to be included in the particular pattern). The ending ReceiptAckowledgment and AcceptanceAcknowledgement from the Requestor are optional if the exchange is non-transactional, but at least one must be sent, with an indication of positive (=confirm) or negative (=cancel) if the exchange is a transaction. The right hand side shows the direct BTP equivalent. It is not clear whether the UMM mandates logging for system failure recovery purposes (I think not), though it can be requested for non-repudiation and audit purposes. BTP does specify the points at which logs shall be taken for recovery purposes as indicated in figure 1.

[image: image3.wmf]Requestor

Responder

Request

ReceiptAcknowledgement

AcceptanceAcknowledgement

Response

ReceiptAcknowledgement

AcceptanceAcknowledgement

Requestor

Responder

Request

(+context + prepare)

ReceiptAcknowledgement

AcceptanceAcknowledgement

Response

(+

enroll

+ prepared)

Confirm or Cancel

UMM / BPSS

BTP

Confirmed or Cancelled

Log

Log

Figure 1
A comparison of current UMM / BPSS and BTP outcome message sequence1TC “Figure
A comparison of current UMM / BPSS and BTP outcome message sequence” \f F \l 2

To reveal a fuller picture figure 2 shows the BTP case where separate Prepare / Prepared messages are used.

[image: image4.wmf]Requestor

Responder

Request

(+context)

ReceiptAcknowledgement

AcceptanceAcknowledgement

Response

Prepare

Confirm or Cancel

Prepared

Confirmed or Cancelled

Log

Log

Figure 2
BTP outcome with separate prepare message sequence2TC “Figure
BTP outcome with separate prepare message sequence” \f F \l 2

Returning to figure 1 it can be observed that the pattern of message exchange is very similar in both cases and can be shown generically as the pattern in figure 3.

[image: image5.wmf]Requestor

Responder

Request

Response

Confirm or Cancel

Confirmed or Cancelled

Log

Log

Figure 3
Generic transaction message sequence3TC “Figure
Generic transaction message sequence” \f F \l 2

Points to note:

Both the Requester and the Responder must recognise the request and response messages as being part of a transaction.

The logging points shown correspond to the use of the presumed abort algorithm. Logging of some data to persist store is required if it is to be possible to continue termination of the transaction (i.e. confirm or cancel) following a system failure. (A programme will need to be started when the failed system restarts which looks for such logs and takes appropriate action according to the content of the log.) The presumed abort algorithm is common and efficient, but requires the final confirmed / cancelled message. There are others, particularly presume nothing. This algorithm requires that the initiating side takes a log when initiating transaction termination and updates it with the confirm or cancel decision. The responding side takes a log before becoming “prepared” and deletes it again (for protocol purposes) on receipt of the confirm or cancel. Deletion of the log for protocol purposes at the initiator occurs on receipt of a confirmed / cancelled message. Significantly the UMM/BPSS does not have the confirmed or cancelled message. But for presumed nothing could leave the log and only delete after a ‘long time’ (refer also to Appendix A Brief outline of the Presumed Abort and Presumed Nothing Algorithms). These messages are used to trigger the deletion of the logs in the presumed abort algorithm. For the UMM/BPSS case there are three possibilities:

1)
Do not mandate logging and accept manual repair after a system failure,

2)
Use presume nothing (refer also to Appendix A Brief outline of the Presumed Abort and Presumed Nothing Algorithms).

3)
Add a new message into the UMM/BPSS, and follow the presumed abort algorithm as illustrated in figure 3.

Current UMM / BPSS and BTP – API view

Figure 4 gives more of an API or business level view of the current UMM/BPSS exchanges.

[image: image6.wmf]Request #1

Response #1

Ack

#1 (+ or

-

)

Request #2

Response #2

Ack

#2 (+ or

-

)

Request #3

Response #3

Ack

#3 (+ or

-

)

Figure 4
A sequence of individual current UMM / BPSS ‘business transactions’4TC “Figure
A sequence of individual current UMM / BPSS ‘business transactions’” \f F \l 2

Figure 5 gives the same view for when BTP is used as a direct comparison.

[image: image7.wmf]Tx

_Confirm or Cancel

Tx

_Confirm or Cancel

Tx

_Begin

Tx

_Begin

Tx

_Begin

Request #1

Response #1

Tx

_Confirm or Cancel

Request #2

Response #2

Request #3

Response #3

Figure 5
A sequence of individual BTP ‘business transactions’ (API view)5TC “Figure
A sequence of individual BTP ‘business transactions’ (API view)” \f F \l 2

Note that figures 4 & 5 give an API / State machine view; the BTP exchanges ‘on the wire’ are not quite like this – see figures1 & 5.

Extending to more than a single action / party

Now suppose we want to group more than one action (where ‘action’ is used here to mean a single request or request / response pair with some business meaning) into a transaction so that at the end we can confirm all the actions or ‘unwind’ as if none of them had occurred. This is easy to do using BTP as illustrated in figure 6. Note that the requests and responses can occur in any order between the Tx_Begin and Tx_Confirm or Tx_Cancel API calls (that make business sense). Also they may all between the same two parties, or they may be from one Requestor (or initiator) to several different Responders.

[image: image8.wmf]Tx

_Confirm or Cancel

Tx

_Begin

Request #1

Response #1

Request #2

Response #2

Request #3

Response #3

Figure 6
Grouping multiple actions into a single transaction with BTP (API view)6TC “Figure
Grouping multiple actions into a single transaction with BTP (API view)” \f F \l 2

To summarise, the request / response pairs 1, 2, and 3 can actually be in any order time order and can be to the same or different parties.

Now this cannot be achieved with the present rules given in the UMM and BPSS. However, looking at figure 4 we can note that we can get a similar effect by allowing the acknowledgements to be delayed until all the responses are in and the business application can decide whether to confirm or cancel. To keep as close as possible to the current UMM / BPSS we show in figure 7 each request / response pair being individually acknowledged (positively or negatively with the meaning of confirm or cancel respectively) at the API level and this would translate directly to messages at the protocol level. (Note: these acknowledgements would appear as such in the protocol, but could be replaced with a single invocation at the API level so long as the system could translate to the required individual acknowledgement messages.)

[image: image9.wmf]Request #1

Response #1

Ack

#1 (+ or

-

)

Request #2

Response #2

Ack

#2 (+ or

-

)

Request #3

Response #3

Ack

#3 (+ or

-

)

Figure 7
Extended UMM ‘business transaction’ with coordinated control7TC “Figure
Extended UMM ‘business transaction’ with coordinated control” \f F \l 2

Note that the ability to selectively cancel individual actions gives a feature very similar to that of cohesions in BTP.

Figure 8 illustrates the tree structures of several parties (systems) participating in a single coordinated business transaction that can be built up using the extended UMM procedures (such tree structures can, of course, also be built up using BTP).

[image: image10.wmf]1 Response

3 Request

5 Request

A

B

C

D

E

F

G

2 Request

4 Request

6 Request

1 Request

3 Response

5 Response

2 Response

6 Response

4 Response

1

Ack

(+ or

-

)

3

Ack

(+ or

-

)

5

Ack

(+ or

-

)

2

Ack

(+ or

-

)

6

Ack

(+ or

-

)

4

Ack

(+ or

-

)

Figure 8
A tree structure of parties to a business transaction illustrating extended UMM method of outcome coordination8TC “Figure
A tree structure of parties to a business transaction illustrating extended UMM method of outcome coordination” \f F \l 2

Ignoring the optional acknowledgement signals from the Responder back to the Requester when used as progress signals the basic message flow proposed for extending UMM business transactions is as follows (refer to figure 8):

1) The initiating business application at A sends out its requests (1 & 2) to nodes B and C in any order. A takes a log of who it has sent to for this transaction, and likewise B and C take logs of the node they have received from. (Note the request message also has the meaning of prepare in this case.)
Note: B and C may be different parties / systems or just represent the processing of different actions by the same party / system.

2) Either B and / or C could send back a negative acknowledgment (error signal) at this point. A could respond by cancelling all work to do with this transaction or could retry / take alternative action to the same or alternative parties.

3) B and C do not send a response message at this point unless they do not need to make their own requests on any other parties. Figure 8 illustrates the case were B and C extend the tree of parties in the transaction by sending requests to D & E, and F & G.

4) Any of D, E, F & G can extend the tree in the same way, but let us suppose that each can complete its requested work without further interaction. Each sends back a response message (or a negative acknowledgement cancelling any work that that node has performed). (B, C take logs on sending a request and D, E, F and G all take logs before sending a response. Note the response message also has the meaning of prepared in this case.)

5) When B has received responses (or negative acknowledgements) from D & E the business application at B decides on its response and it sends a response message (or a negative acknowledgement) to A. Similarly C waits until it has a response or a negative acknowledgement from each of F & G, then formulates its own response message or negative acknowledgement and sends it to A.

6) A is now in a position to decide the overall result of the business transaction. It sends positive or negative acknowledgements to B and C and updates its log. The business applications B and C make their own, independent decisions, based on all the information received so far and the business logic, and send positive or negative acknowledgements to D & E, and F & G. B and C update their logs. On receipt of the acknowledgement D & E, and F & G all delete their logs (for recovery purposes – may save for audit purposes). The requester logs can be deleted when some form of confirmation of receipt of the confirm or cancel instruction is received from the responder, or after a time after which there is no requirement to recover the termination of the transaction. This completes the process.

Notes:

1. In a full two-phase protocol there is a final set of messages sent up the tree from the leaves (D, E, F & G in this case) via any intermediate nodes (e.g. B & C) to the root (A). These are used to confirm that the wave of messages from the root did reach through the entire tree to each and every leaf, and also as a signal that the logs at each node can be deleted as it passes the message up the tree. This final return wave is theoretically not required if reliable messaging is used, because it is assumed that each message will reach its destination eventually (or the messaging service will explicitly indicate that it could not deliver a message and manual repair of the situation can be initiated). However, there is still a practical problem in that reliable messaging typically only gives the reliable delivery of a message and does not guarantee that it is reliably processed and this appears to be true of ebXML reliable messaging (i.e. it only gives reliable delivery and does not ensure that the message is processed). However, the presumed nothing paradigm suggested allows the recovery logs at the sender side to be kept, or deleted only after a time longer than there is any interest in transaction termination recovery, as the confirm or cancel state is recorded (not just confirm state as for presumed abort), and does not require the use of reliable messaging.

2. Need to uniquely identify each request or request / response pair and use this identification on the acknowledgement for that request or request / response pair.

3. It might be advantageous to add a Business Process identifier or a Transaction identifier so that the systems receiving the request know it has to be treated transactionally.

4. Extend further to allow multiple responses to a single request?

5. Add an extra message (signal) from the Responder back to the Requester at the end (as shown by dotted arrow in figure 3) to allow move to presumed abort algorithm (logs need to be kept for a shorter time than with presumed nothing) and to remove the requirement for reliable messaging?

6. The use of the logs to perform recovery after a system failure is for further study.

Conceptual node architecture

Figure 9 shows a conceptual model of an intermediate node (such as B or C in figure 8). This represents the general case in the sense that a root node (such as A) has no Responder and leaf nodes (such as D, E, F & G) have no Requesters. A full specification of this extended set of UMM procedures for business transactions would provide state table (or equivalent) specifications for the Responder, Multiple relationship coordinator and Requester components and hence provide the sequencing specification for the messages into and out of the Responder, the Requester(s) and the Business Application (indicated by lines with arrow heads in figure 9).

[image: image11.wmf]Business

Application

Responder

Requester 1

Requester n

Multiple

Relationship

coordinator

.

.

.

Figure 9
Conceptual internal structure of a node in a tree9TC “Figure
Conceptual internal structure of a node in a tree” \f F \l 2

BTP sub protocols

BTP can be conceived as consisting of a number of sub-protocols that together make up the whole. There are three major ones:

1)
The control protocol. (This is optional, but also is indicative of the API between the initiating application and BTP.

2)
The enrolment protocol (which systems use to ‘get connected’ to a ‘superior’ – a system immediately up the tree, which will act as its Requester in UMM / BPSS terms).

3)
The outcome protocol (which is the two-phase protocol for cancelling parts of transactions and confirming or cancelling transactions).

There are also some additional minor parts to the protocol such as requesting new transaction information (and information to extend an existing one), and requesting system status.

This proposal for extending the UMM / BPSS transaction facilities has been kept to a minimum and therefore only covers the extension of the equivalent of the BTP outcome protocol to multiple actions and multiple other parties. The equivalent of the BTP control protocol has not been developed in this proposal but left as an implicit API (refer to figures 7, 8 & 9 and accompanying text). The enrolment protocol is not required as it is assumed that the system receiving a request will now from the context it is in that the request is part of a transaction and that it has to await a positive or negative acknowledgment to its response before confirming or rolling back resources effected.

Overall ebXML Architecture

Figure 10 shows an informal representation of the ebXML architecture with BTP added where I conceive it to be (open to debate).

[image: image12.wmf]UMM

BCP

BCP&MC

BEL

CC

CCS

CCR

BP Cat

BPIMES

UML2XML

Reg

/Rep

IIC

MSG

CPA

BPSS 2

BPSS 3

BTP

Figure 10
An informal view of the ebXML architecture with BTP included10TC “Figure
An informal view of the ebXML architecture with BTP included” \f F \l 2

Figure 11 shows the modification to the implementation diagram that I have proposed. Note that the BTP component could be replaced by a generic ‘Transaction Manager’ component.

[image: image13.wmf]Business Collaboration

Rules

Business Process

Schema Specification

Instance

Trading Partner

Agreements

Business Collaboration

Manager

Business Process

Execution Engine

Messaging Service

BTP

I / O

XML structured

configuration information

Example

implementation stack

Figure 11
The current overall ebXML implementation architecture (+BTP)11TC “Figure
The current overall ebXML implementation architecture (+BTP)” \f F \l 2

We have already made a contribution to the ebXML architecture group with the aim of positioning BTP into the overall ebXML architecture as illustrated by these diagrams and we have supplied the accompanying descriptive text.

Why extend the UMM? - Use cases

Simple order

Buyer sends order to supplier. The supplier makes a single response. The buyer confirms or rejects the order to the supplier.

This scenario is handled by the current UMM transaction approach (as well as extended approach and use of BTP).

Simple order – multiple responses

Buyer sends order to supplier. The supplier makes multiple responses regarding different parts of the order. The buyer confirms or rejects the order to the supplier.

This scenario is not well handled by the current UMM transaction or extended approach (need to extend further to permit multiple responses). It is handled by use of BTP.

Negotiated simple order

Buyer sends order to supplier. The supplier makes a single response. The response contains details that the buyer wishes to query or negotiate on, or lacks some details needed by the buyer. The buyer sends a further request to the supplier who responds until eventually buyer confirms or rejects the order (as modified) to the supplier.

This scenario is not well handled by the current UMM transaction approach. Handled by extended UMM approach and by using BTP.

Complex order involving suppliers to the supplier.

Buyer sends order to primary supplier. The supplier sends requests to secondary suppliers. The multiple secondary suppliers make their responses. The primary supplier examines these responses to see if the order can be fulfilled. Cancels orders with secondary suppliers if not and responds negatively to buyer. If can fulfil order then responds positively to the buyer. The buyer confirms or rejects the order to the primary supplier, who then needs to confirm or cancel with the secondary suppliers.

This scenario is not well handled by the current UMM transaction approach. Handled by extended UMM approach and by using BTP.

Stock quotes.

Stock buyer sends request for quote / implied order on a specified stock to multiple market brokers. The brokers reply with a quote valid for a specified period. If the buyer does not respond within the specified time period the broker may cancel the offer. The buyer cancels the unwanted offers, and confirms order for wanted offer.

This scenario is not well handled by the current UMM transaction or extended approaches as neither allow the responder to cancel after making a response. Handled by using BTP which specifically supports autonomous cancel and confirm and time limited promises.

Conclusion and feature summary comparison table

This paper has shown how the current limited features of business transactions in the current versions of the UMM, which are limited to a single request or single request/response pair being grouped into a transaction, can be extended to provide transactions which span multiple actions and multiple parties. The result of this extension is to give a set of features to the business application that are more powerful than those currently provided by the UMM, though still not as powerful as those provided by BTP or some other specialist Transaction Protocol. In particular, BTP regards each system as being autonomous, and therefore permits systems to cancel or confirm their own work right up to the last message. For both the current and the extended UMM procedures the Responder can only cancel before sending the response. After that it can have no effect on the outcome, which is determined solely by the Requestor.

There are no proposed changes to UMM at what it calls the business transaction level, unless an extra message (signal) from the Responder back to the Requester is added at the end (as shown by dotted arrow in figure 3), to enable use of the presumed abort algorithm for recovery and to remove the reliance on reliable messaging. The change is the addition of rules at each system for logging, and for coordinating the individual ‘business transactions’ into an overall transaction as illustrated in figures 8 & 9.That is the ability to coordinate confirm and cancel across a group of actions (note that each action is still individually confirmed or cancelled).

Table 1 compares the features made available to the business application by these three options.

Table 1
Features comparison table1tc "Table

Features comparison table" \l 2 \f T

	Feature
	Current UMM
	Extended UMM
	BTP

	Requires prior agreement between the parties
	Yes
	Yes
	Yes

	Confirm /Go back over single request or single request / response pair
	Yes
	Yes
	Yes

	Confirm /Go back over sequence of requests and responses between two parties
	No
	Yes
	Yes

	Confirm /Go back over sequence of requests and responses between two, or more parties
	No
	Yes
	Yes

	Requires business semantics to be altered (e.g. order (tentative order)
	Yes
	No
	No

	Extra messages at business level
	Yes
	Yes
	No

	Requires reliable messaging
	Yes
(although not a complete solution)
	Yes if no extra return message (although not a complete solution)

No if extra return message?
	No

	Actions can be selectively cancelled or confirmed
	Not always
	Yes
	Yes

	Responder can cancel after sending response
	No
	No?
	Yes

	Responder can (auto) confirm after sending response
	No
	No
	Yes

	Responder can give time limited promise to go either way then cancel or confirm as indicated after time limit
	No
	No
	Yes

	Recovery after failure specified
	No
	Could be
	Yes

So the middle way of extending the UMM approach does provide considerable extra useful features over the present approach, in particular by extending to multiple actions and multiple parties. However, this covers ground already covered by BTP. The extended UMM approach will require extra work to complete whereas BTP is a completed specification, which provides the required functionality – and more for free. Therefore we recommend the adoption of BTP as a completed specification from an organisation that is already part of the ebXML partnership (OASIS).
References

[1]
UN/CEFACT's Modelling Methodology (N090), http://www.gefeg.com/tmwg/n090r10.htm
[2]
Business Transaction Protocol, Version 1.0 (An OASIS Committee Specification available from http://www.oasis-open.org/committees/business-transactions/ Headquarters: OASIS, Post Office Box 455, Billerica, MA 01821, USA Tel: +1 978 667 5115 Fax: +1 978 667 5114 scott.mcgrath@oasis-open.org
European Office: OASIS, Bakkersweg 7, 3951 CS Maarn, The Netherlands Tel: +31 622502011 Fax: +31 357727627)

[3]
ebXML Business Process Specification Schema, UN/CEFACT
[4]
Web Services Transaction (WS-Transaction), and Web Services Coordination (WS-Coordination), 9 August 2002, BEA, IBM & Microsoft, http://www-106.ibm.com/developerworks/webservices/library/ws-transpec/?dwzone=webservices & http://www-106.ibm.com/developerworks/webservices/library/ws-coor/?dwzone=webservices
[5]
Message Service Specification Version 2.0, OASIS Specification, https://www.oasis-open.org/committees/ebxml-msg/
[6]

Appendix A Brief outline of the Presumed Abort and Presumed Nothing Algorithms

This appendix provides a brief overview of two algorithms used for transaction recovery, which are called Presumed Abort and Presumed Nothing. It does not attempt to provide a complete specification of these algorithms.

Presumed Abort

Presumed abort is used in some current transaction protocols, including BTP, as the algorithm governing recovery of transactions following a system failure and it is illustrated in figure 12.

[image: image14.wmf]Requestor

Responder

Request

Response

Confirm or Cancel

Confirmed or Cancelled

Log

(on confirm only)

Log

Prepare

Prepared

Delete Log

Delete Log

Figure 12
Presumed abort logging points (as used in BTP)12TC “Figure
Presumed abort logging points (as used in BTP)” \f F \l 2

The Responder takes the first log when it becomes ‘prepared’. It does not take a log if it cancels at that point. This log is deleted when it receives the ‘confirm’ or ‘cancel’ message from the Requestor and before it sends confirmed or cancelled. The log consists an identification of the transaction of some form, acting as responder, and the address of the correspondent.

The Requestor logs when it has received a ‘prepared’ message (explicit or implicit) and when it has decided to confirm – if it decides to cancel it does not take a log but just sends the ‘cancel’ message. This log is deleted on receipt of a ‘confirmed’ or ‘cancelled’ message from the responder. The log consists an identification of the transaction of some form, acting as Requestor, and the address of the correspondent. (The fact that it is being confirmed is implicit in the existence of the log.)

Presumed Nothing

Presumed nothing has been used in transaction protocols as the algorithm governing recovery of transactions. It could be considered as the basic one from which others have been derived and it is illustrated in figure 13.

[image: image15.wmf]Requestor

Responder

Request

Response

Confirm or Cancel

Confirmed or Cancelled

Update Log

(with confirm

or cancel)

Log

Prepare

Prepared

Delete Log

Delete Log

Log

Figure 13
Presumed nothing logging points13TC “Figure
Presumed nothing logging points” \f F \l 2

The Requestor logs before it sends ‘Prepare’ (explicitly or implicitly). It updates the status field when it has received a ‘prepared’ message (explicit or implicit) and has decided to confirm or cancel. This log is deleted on receipt of a ‘confirmed’ or ‘cancelled’ message from the responder or, if no final ‘confirmed’ or ‘cancelled’ message is used then it can be left in place and deleted only after a time long relative to any requirement to recover transaction termination. The log consists an identification of the transaction of some form, acting as Requestor, the status (preparing, cancelling, confirming), and the address of the correspondent.

The Responder takes the first log when it becomes ‘prepared’. It does not take a log if it cancels at that point. This log is deleted when it receives the ‘confirm’ or ‘cancel’ message from the Requestor and before it sends confirmed or cancelled. The log consists an identification of the transaction of some form, acting as responder, and the address of the correspondent.

Recovery

The recovery mechanism is essentially the same in both cases, though different in the details. When a system recovers (or is started up), it should examine it’s persist storage to see if there are any logs. If there are it should communicate with the correspondent shown in the log to complete the termination of the transaction.

Presumed abort

If a Responder finds a log, it sends a query message (can be ‘prepared’ message) to the Requester as identified in the log.

If the Requester finds a corresponding log entry then it replies with a ‘confirm’ to the Responder (who can then confirm resources, delete its log and reply with a ‘confirmed’).

If the Requester does not find a corresponding log entry then it replies with a ‘cancel’ to the Responder (who can then cancel its resources, delete its log, and reply with a ‘cancelled’).

If a Requester finds a log it sends a ‘confirm’ message to the Responder as identified in the log.

If the Responder finds a corresponding log entry then it confirms its resources, deletes its log, and replies with a ‘confirmed’ message to the Requester.

If the Responder does not find a corresponding log entry then it just replies with a ‘confirmed’ to the Requester (who can then confirm its resources, and delete its log).

Presumed nothing

If a Requester finds a log with status prepare it sends a ‘prepare’ message (or equivalent) to the Responder as identified in the log.

If the Responder finds an active transaction and / or a corresponding log entry then it takes a log (if one not already in place), replies with ‘prepared’ and continues as normal from there.

If the Responder does not find an active transaction or corresponding log entry then it replies with a ‘cancelled’ to the Requester (who can then cancel its resources, and delete its log).

If a Requester finds a log with status confirm it sends a ‘confirm’ message (or equivalent) to the Responder as identified in the log.

If the Responder finds an active transaction and / or a corresponding log entry then it confirms its resources, deletes its log (if one is in place), and replies with ‘confirmed’.

If the Responder does not find an active transaction or corresponding log entry then it replies with a ‘confirmed’ to the Requester (who can then confirm its resources, and delete its log).

If a Requester finds a log with status cancel it sends a ‘cancel’ message (or equivalent) to the Responder as identified in the log.

If the Responder finds an active transaction and / or a corresponding log entry then it cancels its resources, deletes its log (if one is in place), and replies with ‘cancelled’.

If the Responder does not find an active transaction or corresponding log entry then it replies with a ‘confirmed’ to the Requester (who can then cancel its resources, and delete its log).

If a Responder finds a log, it sends a query message (can be ‘prepared’ message) to the Requester as identified in the log.

If the Requester finds a corresponding log entry then it replies with a ‘confirm’ or ‘cancel’, according to the status field, to the Responder (who can then confirm or cancel its resources, delete its log and reply with a ‘confirmed’ or ‘cancelled’).

If the Requester does not find a corresponding log entry then it replies with a ‘cancel’ to the Responder (who can then cancel its resources, delete its log, and reply with a ‘cancelled’) and should also flag up as an error as this case should not occur.

� 	Choreology Ltd. 13, Austin Friars, LONDON EC2N 2JX Tel: +44 (0) 20 7670 1679

Page 18 of 18
Copyright © 2002 Choreology Ltd

Choreology Ltd gives permission for the making and distributing of copies of this document solely for the purpose of furthering discussion on the requirements and means of achieving the management of Business Transactions in the context of ebXML.

_1089544845.bin

_1089545081.bin

