ebXML MS for X12 Technical Report

Introduction

ebXML Messaging Services provides a protocol for exchanging business data between a pair of trading partners. While this protocol is XML-based, the business data payload is carried as a separate attachment whose syntax is not constrained to XML syntax.

This Technical Report provides advice on the use of ebXML Messaging Services Version 2.0 to convey data in X12 syntax between a pair of trading partners. It addresses the case where both sender and receiver are capable of sending and receiving messages wrapped in ebXML 2.0 protocol, and the case where one or the other participant uses a third party value added service to perform wrapping and unwrapping services.

This Technical Report provides advice on the content of the ebXML MS 2.0 envelope, and on the content and structure of one or more X12 attachments defined in the ebXML 2.0 envelope.

References

ebXML MS 2.0 Design Criteria

The requirements that led to development of the ebXML Messaging Services specifications addressed both the need to convey ebXML business messages expressed in XML syntax, and the need to convey other business data, either related or unrelated to ebXML business messages. Use of ebXML Messaging Services to convey EDI data in an existing EDI syntax is a specific requirement that has been realized in the specifications.

The ebXML Messaging specifications provide a basic transport protocol, and an extensive set of options to meet varied business needs to communicate supplemental information about message content. The extent to which these options may be used depends in part on the message payload, which from the viwpoint of the ebXML Messaging Services specifications is arbitrary. That is, the use of optional fields in the Messaging Services protocol is dependent upon the message payload and upon the business scenario that created that payload. This technical report addresses only the use of ebXML MS 2.0 to convey EDI data expressed in X12 syntax and assembled into X12 Interchanges. As such, it does not address all of the optional capabilities of the ebXML MS 2.0 specification.

Handling X12 Attachments

In ebXML MS 2.0 protocol, all client data is carried in attachments to the message. Each such attachment is identified via a Reference within a Manifest.

X12 syntax relies on delimiters to distinguish the components of a message. These delimiters are defined in the interchange header segment. For this reason, an X12 data exchange must be wrapped within an X12 Interchange Envelope. The X12 protocol further requires that Transaction Sets within an interchange be wrapped within one or more Functional Groups, as defined by the Functional Group Envelope.

The number of Functional Groups within an X12 Interchange, and the number of Transaction Sets within a Functional Group are nearly boundless, so a single X12 Interchange could contain all of the data to be exchanged between trading partners in a single communication. However, trading partners are not constrained to conveying data in a single X12 Interchange within a communication session. The use of ebXML MS 2.0 to convey X12 data should not and need not constrain a single communication to a single X12 Interchange. When multiple X12 Interchanges are conveyed in a single ebXML MS 2.0 transmission, they may be transmitted within one attachment, or in more than one attachment. The following advice addresses the use of attachments to convey X12 interchanges:

RECOMMENDATION:

Convey each X12 Interchange in a separate Attachment.

This recommendation is intended to simplify the identification, tracking, and processing of individual interchanges by the receiving party or intermediary party. It also assures that the ebXML Message Digest contains an index of all of the attached interchanges.

Both X12 and ebXML MS 2.0 provide optional acknowledgements for message receipt. This report includes guidance on the use of both ebXML MS 2.0 and X12 acknowledgements to track the progress of business data between trading partners.

Each attachment is given a reference name in the output stream. If the Message Service Handler allows the user to select this name, it is recommended that the following naming pattern be used:

RECOMMENDATION:

Use the following pattern to identify each interchange attachment

 X12-{attachment sequence number}-{Interchange Control Number}

Example:

 X12-1-123456789

In the examples in this report, the X12 interchanges are not encrypted, nor do they contain non-friendly delimiters. Interchange content may require Base64 filtering of the interchange data as it is placed into the message. If Base64 encoding is required, the header must specify “Content-Transfer-Encoding: Base64”

Since ebXML protocol does not restrict the content of attachments, a message may contain a mixture of X12 interchanges and other attachments. It is recommended that non-X12 attachments be identified using a pattern similar to that used to identify X12 interchanges, but using a prefix other than ‘X12’.

Example:

 CALS1840-2-D001

Each attachment in the HTTP data stream is headed by declarations that define the content. These declarations are registered with IANA (See http://www.iana.org/assignments/media-types/application/)

For X12 data the Content-type is “Application/EDI-X12”

Mapping X12 Envelope Fields to ebXML Envelope Fields

This section provides recommendations on the mapping of X12 Envelope fields to fields within the ebXML MS 2.0 envelope.

The following sample ISA segment is used as input for the examples given below:

ISA|03|MySiteAuth|01|MyPassword|12|4015551234 |30|101202303 |021020|1224|&|00405|123456789|0|P$
The ISA segment should be provided as the value of Description in the ebXML Manifest within the SOAP Body. By providing the entire ISA segment, all information provided in the ISA, including the delimiters used throughout the interchange, are made available within the SOAP Body.

The sender and receiver addresses from the ISA segment are also provided within the ebXML MS “From” and ”To” elements.

The MessageId element also contains a unique identifier for the message, but this element would likely be generated internally by the Message Service Handler.

ISA01/ ISA02
Authorization Information Qualifier/Value

Represented in Manifest/Reference/Description
ISA03/ ISA04
Security Information Qualifier/Value

Represented in Manifest/Reference/Description
ISA05/ISA06
Sender Identification Qualifier/Value

Represented as a Party ID within the “From” element. The type attribute of PartyID is expressed as a URI intended to point to a specific code value in element I05 of some specified version of the X12 standards. Also represented in Manifest/Reference/Description

Example:

<eb:From>

<eb:PartyID type=”http://www.X12.org/X12/004050/DE/I05/12”>

4015551234

</eb:PartyID>

</eb:From>

ISA07/ISA08
Receiver Identification Qualifier/Value

Represented as a Party ID within the “To” element

Also represented in Manifest/Reference/Description
<eb:From>

<eb:PartyID type=”http://www.X12.org/004050/DE/I05/30”>

101202303

</eb:PartyID>

</eb:From>

ISA09/ISA10
Interchange Date/Time

Represented within Manifest/Reference/Description
ISA11

Repetition Separator

Represented within Manifest/Reference/Description
ISA12

Interchange Control Version Number

Represented within Manifest/Reference/Description
ISA13

Interchange Control Number

Represented within Manifest/Reference/Description
ISA14

Acknowledgment Requested

Represented within Manifest/Reference/Description
ISA15

Interchange Usage Indicator

Represented within Manifest/Reference/Description
ISA16

Component Element Separator

Represented within Manifes/Reference/ Description
ebXML Header

This section discusses each of the elements that comprise an ebXML Message Header, and makes recommendations on how these fields should be used.

Message Header

The message header is a required element, and is comprised of the following elements:

From

The From element is a required element. It consists of one or more PartyId elements, and zero or one Role element

To

The To element is a required element. It consists of one or more PartyId elements, and zero or one Role element

CPAId

The CPAId element is a required element. It establishes parameters required by the Message Service handler to effect the requested message transfer.

ConversationId

The ConversationId element is a required element. It provides a means to identify a set of messages each related to a single conversation thread.

Service

Action

MessageData

DuplicateElimination

If present, the Message Service Handler is responsible for duplicate elimination. Since EDI systems generally must protect against multiple processing of duplicate interchanges, use of this optional message handling service may not be cost effective.

Description

If present, provides additional information on the message content.

The ebXML Header shall be constructed as provided below. Characters in bold print are provided dynamically.

<eb:MessageHeader version=”2.0” mustUnderstand=”1”>

<eb:From>

<PartyId type=”URI Reference to an X12 DE I05 Code” >Identifier</PartyId>

</eb:From>

<eb:To>

<PartyId type=”URI Reference to an X12 DE I05 Code””>Identifier</PartyId>

</eb:To>

<eb:CPAId>http://www.x12.org/cpa/x12/example</eb:CPAId>

<eb:ConversationId>x12</eb:ConversationId>

<eb:Service>X12Servicehandler</eb:Service>

<eb:Action>X12Interchanges</eb:Action>

<eb:MessageData>

<eb:MessageId>{Typically generated by MSH}</eb:MessageId>

<eb:Timestamp>{Typically generated by MSH}</eb:Timestamp>

<eb:RefToMessageId>{No recommendation on use is provided}</eb:RefToMessageId>

<eb:TimeToLive>{No recommendation on use is provided}</eb:TimeToLive>

</eb:MessageData>

<eb:DuplicateElimination/>{No recommendation on use is provided}

</eb:Messageheader>

Security Considerations

When encryption of EDI data is required, use of the X12.58 Security Structures standard is recommended.

Encryption of the entire X12 attachment using the W3 recommendations is not advised, since this report recommends in-the-clear conveyance of the ISA segment that starts the attachment in the manifest description.

When both signing and encryption are required, use of the X12.58 Security Structures standard is recommended, as the signatures apply to the clear text. For consistency, it is further recommended that X12.58 also be used for signing unencrypted X12 data.

8-Bit Data in X12 Interchange

If an X12 interchange contains 8-bit data, as when binary data, encrypted data, or an 8-bit delimiter is used, an additional MIME header must be created inside the MIME header for the X12 interchange. This secondary header defines the type of filter applied to the data to convert it to 7-bit ASCII.

The CPA Agreement

Use of the ebXML MS 2.0 specification requires use of a CPA. Trading partners are free to establish a CPA to whatever level of detail meets their business need.

In this report, a very simple CPA is provided that may be used to meet the ebXML MS 2.0 requirement. This CPA defines a collaboration in which the ‘unit of business’ is simply the transmittal of an arbitrary EDI message from a sending party role “X12-Sender” to a receiving party role “X12-Receiver”.

In cases where either the sender or the receiver is communicating with a third party providing value added services, that party role should not be represented as above. A suggested representation is: “X12-VAN”..

Trading partners are encouraged to develop a more detailed CPA than the minimal CPA presented here, which is intended primarily to serve as an example CPA.

Sending Trading Partner to Receiving Trading Partner

The ebXML Envelope identifies the Sending Trading Partner as the sender, and identifies the Receiving Trading Partner as the receiver. The sender and receiver identifiers are extracted from the X12 envelope of the first interchange of the first X12 Interchange Attachment. If more than one X12 interchange is included in the message, the order of inclusion of interchanges in the message could affect the identifiers in the ebXML message. This may not be desirable. Therefore, the following advice is given:

RECOMMENDATION:

Send each interchange in a separate message to avoid the possibility that interchanges intended for a given receiver might instead be sent to some other receiver.

Sending Trading Partner to Third Party (presumably for delivery to a non-ebXML protocol receiver)

The ebXML Envelope identifies the Sending Trading Partner as the sender, and identifies the Third Party as the receiver of the message. The ebXML envelope does not identify the receiving trading partner(s). The CPA represents the negotiated trading partnership between sender and third party. Multiple interchanges may be attached to the message, and each interchange may be addressed between different trading partnerships.

RECOMMENDATION:

Use a separate attachment for each interchange.

Third Party to Receiving Trading Partner (for delivery from a non-ebXML protocol sender)

The ebXML Envelope identifies the Third Party as the sender, and identifies the Receiving Trading Partner as the receiver of the message. The ebXML envelope does not identify the sending trading partner(s). The CPA represents the negotiated trading partnership between third party and receiver. Multiple interchanges may be attached to the message, and each interchange may be addressed between different trading partnerships.

RECOMMENDATION:

Use a separate attachment for each interchange.

ebXML MS 2.0 X12 MESSAGE EXAMPLE

Following is an example of an ebXML message used to convey two X12 interchanges in conformance with the recommendations of this report. In the example, HTTP is used as the underlying communication protocol.

POST /servlet/ebXMLhandler HTTP/1.1

Host: www.X12.org/xml/TR/ebXML/MS/example1

SOAPAction: "ebXML"

Content-type: multipart/related; boundary="X12Interchange"; type="text/xml";

 start="<???>"

--EDIBoundary

ContentID: <Header>

Content-type: text/xml

<?xml version="1.0" encoding="UTF-8"?>

<SOAP:Envelope

 xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

 xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

 <SOAP:Header>

 <eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

 <eb:From>

 <eb:PartyId type="http://www.X12.org/X12/004050/I05/12">

 3015551234

 </eb:PartyId>

 <eb:Role>X12Sender</eb:Role>

 </eb:From>

 <eb:To>

 <eb:PartyId type="http://www.X12.org/X12/004050/I05/12">

 6155554321

 </eb:PartyId>

 <eb:Role>X12Receiver</eb:Role>

 </eb:To>

 <eb:CPAId>http://www.X12.org/xml/cpa/cpaX12xmlexample</eb:CPAId>

 <eb:ConversationId>X12Data</eb:ConversationId>

 <eb:Service>X12ServiceHandler</eb:Service>

 <eb:Action>X12Interchanges</eb:Action>

 <eb:MessageData>

 <eb:MessageId>031124132220003</eb:MessageId>

 <eb:Timestamp>2003-11-24T13:22:20</eb:Timestamp>

 </eb:MessageData>

 </eb:MessageHeader>

 </SOAP:Header>

 <SOAP:Body>

 <eb:Manifest>

 <eb:Reference xlink:href="cid:X12-1-030324123">

 <eb:Description xml:lang="en-US">

 ISA|03|MySiteAuth|01|MyPassword|12|3015551234 |12|6155554321 |031124|1321|&|00405|123456789|0|P$
 </eb:Description>

 </eb:Reference>

 <eb:Reference xlink:href="cid:X12-2-030324124">

 <eb:Description xml:lang="en-US">

 ISA|03|MySiteAuth|01|MyPassword|12|3015551234 |12|6155554321 |031124|1321|&|00405|123456790|0|P$
 </eb:Description>

 </eb:Reference>

 <eb:Reference xlink:href="cid:CALS1840-3-D001">

 <eb:Description xml:lang="en-US">

 CALS-1840 Declaration File referenced in X12-2-030324124

 </eb:Description>

 </eb:Reference>

 </eb:Reference>

 <eb:Reference xlink:href="cid:CALS1840-4-D001A001">

 <eb:Description xml:lang="en-US">

 CALS-1840 Data (Contract defined)

 </eb:Description>

 </eb:Reference>

 </eb:Reference>

 <eb:Reference xlink:href="cid:CALS1840-5-D001Q001">

 <eb:Description xml:lang="en-US">

 CALS-1840 Data (Raster including 1840 headers)

 </eb:Description>

 </eb:Reference>

</eb:Manifest>

 </SOAP:Body>

</SOAP:Envelope>

--EDIBoundary

Content-ID: <X12-1-030324123>

Content-Type: Application/EDI-X12

ISA|03|MySiteAuth|01|MyPassword|12|3015551234 |12|6155554321 |031124|1321|&|00405|123456789|0|P$

 ...

IEA*1*123456789$

--EDIBoundary

Content-ID: <X12-2-030324124>

Content-Type: Application/EDI-X12

ISA|03|MySiteAuth|01|MyPassword|12|3015551234 |12|6155554321 |031124|1321|&|00405|123456790|0|P$

 ...

IEA|1|123456790$

--EDIBoundary

Content-ID: <CALS1840-3-D001>

Content-Type: Application/CALS-1840; filename=D001; version="MIL-STD-1840B, O, 19921103"

Content-Transfer-Encoding: Base64

 [Declaration File]

--EDIBoundary--

Content-ID: <CALS1840-4-D001A001>

Content-Type: Application/CALS-1840; filename=D001A001; version="MIL-STD-1840B, O, 19921103"

Content-Transfer-Encoding: Base64

 [Data File -- Contract Defined including headers]

--EDIBoundary--

Content-ID: <CALS1840-5-D001Q001>

Content-Type: Application/CALS-1840; filename=D001Q001; version="MIL-STD-1840B, O, 19921103"

Content-Transfer-Encoding: Base64

 [Data File -- Raster including 1840 headers]

--EDIBoundary--

ebXML CPA 2.0 Example for X12 Message Exchange

This example CPA establishes an agreement between an X12 Sender and an X12 Receiver that enables the sender to send X12 interchanges to the receiver using ebXML MS 2.0 protocol. It does not enable receipt of responses from the receiver to the sender. Instead, a parallel CPA agreement would be required in which the sending and receiving parties are reversed.

Partners trading X12 interchanges may choose to establish more elaborate CPA’s governing the exchange of X12 interchanges. The example provides a ‘bare necessity’ CPA for use in exchanging X12 interchanges.

<?xml version=”1.0” encoding=”UTF-8”?>

<tp:CollaborationProtocolAgreement

 xmlns:tp=”http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd”

 xmlns:tp=”http://www.w3.org/XMLSchema”

 xmlns:xlink=”http://www.w3.org/1999/xlink”

 xmlns:ds=”http://www.w3.org/2000/09/xmldsig#”

 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

 xsi:schemaLocation=”http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd

 cpp-cpa-2_0.xsd”

 tp:cpaid=”uri:X12Sender-and-X12Receiver-cpa” tp:version=”2_0b”>

 <tp:Status value=”proposed”>

 <tp:Start>2003-01-01T00:00:00Z</tp:Start>

 <tp:End>2099-12-31T23:23:59Z>/tp:End>

 <tp:PartyInfo

 tp:PartyName=”X12Sender”

 tp:defaultMshChannelId=”syncChannelA1”

 tp:defaultMshPackageId=”X12SenderMshPackageSignal”

 <tp:PartyId tp:type=”http://www.X12.org/X12/004050/I05/12”>123456789</tp:PartyId>

 <tp:PartyRef xlink:href=”http://X12Senderabout.html”/>

 <tp:CollaborationRole>

 <tp:ProcessSpecification

 tp:version=”2.0”

 tp:name=”X12Message”

 xlink:type=”simple”

 xlink:href=”http://www.X12.org/xml/X12Message”

 tp:uuid=”urn:icann:x12.org:bpid:X12.X12.1”

 <tp:Role

 tp:name=”X12Sender”

 xlink:type=”simple”

 xlink:href=”http://www.X12.org/xml/X12Sender”

 />

 <tp:ServiceBinding>

 <tp:Service>bpid:icann:X12:X12Interchange</tp:Service>

 </tp:ServiceBinding>

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id=”X12SenderX12Interchange”

 tp:action=”X12Interchange”

 tp:packageId=”X12Interchange”>

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired=”false”

 tp:isNonRepudiationReceiptRequired=”false”

 tp:isConfidential=”false”

 tp:isAuthenticated=”false”

 tp:isTamperProof=”false”

 tp:isAuthorizationRequired=”false”

 tp:timeToAcknowledgeReceipt=”PT4H”

 tp:timeToPerform=”P1D”

 />

 <tp:ActionContext

 tp:binaryCollaboration=”X12Interchange”

 tp:businessTransactionActivity=”X12Interchange”

 tp:requestOrResponseAction=”none”

 />

 <tp:ChannelId>syncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 <tp:OtherPartyActionBinding>X12ReceiverX12Interchange</tp:OtherPartyActionBinding>

 </tp:CanSend>

 </tp:CollaborationRole>

 <tp:DeliveryChannel

 tp:channelId=”syncChannelA1”

 tp:syncReplyMode=”mshSignalsOnly”

 tp:ackRequested=”never”

 tp:ackSignatureRequested=”never”

 tp:duplicateElimination=”never”

 />

 <tp:SimplePart

 tp:id=”X12Interchange”

 tp:mimetype=”Application/EDI-X12”

 </tp:SimplePart>

 <tp:Packaging

 tp:id=”X12Interchange”>

 <tp:ProcessingCapabilities

 tp:parse=”true”

 tp:generate=”true”

 />

 </tp:Packaging>

 </tp:PartyInfo>

</tp:CollaborationProtocolAgreement>

