[image: image16.jpg]Creating A Single Global Electronic Market

OASIS ebXML Testing Procedures

April 2002

ebXML Test Framework DRAFT Document

Version 0.92

OASIS ebXML Implementation, Interoperability and Conformance Technical Committee

January 23, 2002

4Status of this Document

4ebXML Participants

5Introduction

51
Summary of Contents of this Document

51.1.1
Document Conventions

61.1.2
Audience

61.1.3
Caveats and Assumptions

61.1.4
Related Documents

71.2
Minimal Requirements for Conformance

8Part I: The Test Framework Architecture

82
Principles and Methodology of Operations

82.1
General Objectives

92.2
General Methodology

103
The Test Framework Components

103.1
A Modular Architecture

103.2
The Test Driver

103.2.1
Functions

123.2.2
Using the Test Driver in Connection Mode

133.2.3
Using the Test Driver in Service Mode

143.3
The Test Service

153.3.1
Functions and Interactions

163.3.2
Requestor and Responder Roles

173.3.3
Modes of Operation of the Test Service

183.3.4
States of the Test Service

183.3.5
Test Service Actions

233.4
Executing Test Cases

233.4.1
Test Case as a Sequence of Test Steps

233.4.2
Related Message Data and Message Templates

243.4.3
Related Configuration Data

26Part II: Test Suite Representation

264
Test Suite

264.1
Conformance vs. Interoperability Test Suite

274.2
The Test Suite Document

283.3.2
Test Suite Documentation

284.2.1
The ConfigurationGroup

294.2.3
Test Driver Configuration for ebXML MS Conformance Testing

305
Test Requirements

305.1
Purpose and Structure

315.2
The Test Requirements Document

335.3
Specification Coverage

345.4
Run-Time Coverage of Test Requirements

356
Test Profiles

356.1
The Test Profile Document

366.2
Relationships between Profiles, Requirements and Test Cases

387
Test Cases

387.1
Structure of a Test Case

397.1.1
Test Steps

397.1.2
Test Step Operations

407.1.3
The PutMessage Operation

427.1.4
The Message Declaration

597.1.5
The SetPayload Operation

597.1.6
The Dsign Operation

627.1.7
The GetMessage Operation

637.1.8
The TestPreCondition Operation

657.1.9
The TestAssertion Operation

668
Additional Test Framework Schemas

729
Test Material

729.1.1
Testing Profile Document

739.1.2
Test Requirements Document

739.1.3
Test Suite Document

739.1.4
Base CPPA and derived CPPAs

7410
Test Material Examples

7410.1
Example Test Requirements

75Appendices

75Appendix A
(Normative) The ebXML Test Profile Schema

76Appendix B
(Normative) The ebXML Test Requirements Schema

78Appendix C (Normative) The ebXML Test Suite Schema

78(and supporting sub-schemas)

88Appendix D (Normative) The ebXML Message Store Schema (and supporting sub-schemas)

91Appendix E (Normative) ebXML Test Report Schema

95Appendix F Terminology

100References

100Non-Normative References

101Contact Information

101Acknowledgments

101The OASIS ebXML-MS Technical Committee would like to thank …

102Disclaimer

102Copyright Statement

102Intellectual Property Rights Statement

Status of this Document

This document specifies ebXML Testing Procedures for the eBusiness community. Distribution of this document is limited to OASIS ebXML TC members only.

The document formatting is based on the Internet Society’s Standard RFC format converted to Microsoft Word 2000 format.

Note: Implementers of this specification should consult the OASIS Implementation, Interoperability and Conformance Technical Committee web site for current status and revisions to the specification
(http://www.oasis-open.org/committees/ebxml-iic/).

Specification
This is a DRAFT version of the specification.

This version

V0.9 – http://www.oasis-open.org/committees/ebxml-iic/documents/ebxmltestframework.doc
Errata to this version

None
Previous version

None
ebXML Participants

The authors wish to acknowledge the support of the members of the Messaging Services Team who contributed ideas, comments and text to this specification by the group’s discussion eMail list, on conference calls and during face-to-face meetings.

(main authors:)

	Michael Kass
	NIST

	Mathew McKenzie
	XMLGlobal

	
	

	
	

	Jacques Durand
	Fujitsu Limited

	Monica Martin
	DrakeCertivo

	
	

	
	

	
	

(contributors/ reviewers:)

<list of currently active IIC members>

	Eric VanLydegraf
	Kinzan

	Hatem El-Sebaaly
	IPNetSolutions

	Steve Yung
	Sun Microsystems

	Jeff Turpin
	CycloneCommerce

	Serm Kulvatunyou
	NIST

Introduction

This specification is one of a series of specifications realizing a global electronic marketplace where enterprises of any size and in any geographical location can meet and conduct business with each other through the exchange of XML based messages – or messages which have an XML header and envelope, though their payload may be of any data format. The set of specifications enables a modular, yet complete electronic business framework.

This specification focuses on defining a test framework and procedures for ebXML conformance and interoperability tests. The Test Framework includes: functional design of software components, their interface to ebXML implementations, a language for defining a test suite, as a set of test cases which execute on the software components of the framework.

1 Summary of Contents of this Document

The naming conventions follow the format specified in the Standard for Software Test Documentation IEEE Std 829-1998.

This specification is organized around the following topics:

Test Framework Architecture

· Purpose– A functional and architectural description of the test framework as a set of software components, which would serve as a reference in describing the test suites. It will also serve as a high-level design for implementing a test-bed that would automatically process the test suite material.

Test Suite Representation

· Purpose– A description of the elements of a test suite, as well as of the test scripting language and material. The test suite definition is in a form that can be processed by components of the test framework.
Appendices to this specification cover the following:

· Appendix A Test Profile Schema – This normative appendix contains XML schema definition for a profile definition.

· Appendix B Test Requirements Schema – This normative appendix contains XML schema definition [ebTESTREQ] for the ebXML Testing Requirements

· Appendix C Test Suite Schema – This normative appendix contains XML schema definition [ebTESTSUITE] for the ebXML Test Suites

· Appendix D Basic CPA formats Schema – This appendix contains XML schema definition for CPA data
· Appendix E Terminology – This appendix contains a glossary of terms used that are related to the testing process.

1.1.1 Document Conventions

Terms in Italics are defined in the ebXML Glossary of Terms [ebGLOSS]. Terms listed in Bold Italics represent the element and/or attribute content. Terms listed in Courier font relate to MIME components. Notes are listed in Times New Roman font and are informative (non-normative). Attribute names begin with lowercase. Element names begin with Uppercase.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY and OPTIONAL, when they appear in this document, are to be interpreted as described in [RFC2119] as quoted here:

· MUST: This word, or the terms "REQUIRED" or "SHALL", means that the definition is an absolute requirement of the specification.

· MUST NOT: This phrase, or the phrase "SHALL NOT", means that the definition is an absolute prohibition of the specification.

· SHOULD: This word, or the adjective "RECOMMENDED", means that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications MUST be understood and carefully weighed before choosing a different course.

· SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that there may exist valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this label.

· MAY: This word, or the adjective "OPTIONAL", mean that an item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because the vendor feels that it enhances the product while another vendor may omit the same item. An implementation which does not include a particular option MUST be prepared to interoperate with another implementation which does include the option, though perhaps with reduced functionality. In the same vein an implementation which does include a particular option MUST be prepared to interoperate with another implementation which does not include the option (except, of course, for the feature the option provides).

1.1.2 Audience

The target audience for this specification is:

· The community of software developers who implement the ebXML Messaging Service [ebMS], ebXML Collaboration-Protocol Profile Agreement [ebCPP], ebXML Registry Services Specification [ebREGREP] and ebXML Business Process Schema Specification (BPSS). Using the test framework described here will require some integration work with their ebXML implementation.

· The testing or verification authority, which will implement and deploy conformance or interoperability testing for ebXML products.

1.1.3 Caveats and Assumptions

It is assumed the reader has an understanding of communications protocols, MIME, XML, SOAP, SOAP Messages with Attachments and security technologies.

1.1.4 Related Documents

The following set of related specifications are developed independently of this specification as part of the ebXML initiative:

· ebXML Messaging Conformance Test Suite – defines a test suite and test harness for testing conformance to ebXML Messaging Service. The test suite and test harness are based on the test framework and material described in this document.

· ebXML Messaging Basic Interoperability Test Suite – defines a test suite and test harness for testing interoperability between implementations of the ebXML Messaging Service. The document defines a basic interoperability profile and its test suite. The test suite and test harness are based on the test framework and material described in this document.

· ebXML Collaboration Protocol Profile and Agreement Specification (CPPA) – CPP defines one business partner's technical capabilities to engage in electronic business collaborations with other partners by exchanging electronic messages. A CPPA documents the technical agreement between two (or more) partners to engage in electronic business collaboration. This CPP/A (should we use a / in our name? <JD2> we do not have to…. CPPA is OK If so, we should be consistent throughout- MIKE) document is reused by the test framework as test case configuration material (part of test suite material).

· ebXML Messaging Service Specification (MS) – defines the messaging protocol and service for ebXML, which provide a secure and reliable method for exchanging electronic business transactions using the Internet. The test framework assumes the use of ebXML Message Service Handlers, although the test material is not tightly dependent on the MS specification.

· ebXML Registry Specification – defines how one party can discover and/or agree upon the information the party needs to know about another party prior to sending them a message that complies with this specification. The test framework is also designed to support the testing of a registry implementation.

· ebXML Business Process Specification Schema (BPSS) – defines how two parties can cooperate through message-based collaborations, which follow particular message choreographies. The test framework is also designed to support the testing of a business process implementation.

1.2 Minimal Requirements for Conformance

An implementation of the Test Framework specified in this document MUST satisfy ALL of the following conditions to be considered a conforming implementation:

· It supports all the mandatory syntax, features and behavior (as identified by the [RFC2119] key words MUST, MUST NOT, REQUIRED, SHALL and SHALL NOT) defined in Part 1.1.1 – Document Conventions.

· It supports all the mandatory syntax, features and behavior defined for each of the components of the Test Framework.

· It complies with the following interpretation of the keywords OPTIONAL and MAY: When these keywords apply to the behavior of the implementation, the implementation is free to support these behaviors or not, as meant in [RFC2119]. When these keywords apply to data and configuration material used by an implementation of the Test Framework, a conforming implementation of the Test Framework MUST be capable of processing these optional materials according to the described semantics.

Part I: The Test Framework Architecture

2 Principles and Methodology of Operations

2.1 General Objectives

The ebXML Test Framework is intended to support conformance and interoperability testing for ebXML specifications. It describes a test-bed architecture and its software components, how these can be combined to create a test harness for each type of ebXML testing. It also describes the test material to be processed by this architecture, a mark-up language and format for representing test requirements, and test suites (set of test cases).

The Test Framework described here has been designed to achieve the following objectives:

· The Test Framework is a foundation for testing all ebXML architectural components such as Messaging, Registry, BPSS, CPP/A, and Core Components.

· Test Suites and Test Cases that are related to these standards, can be defined in a formal manner (including test steps and verification conditions). They can be automatically processed by the framework, and their execution can easily be reproduced.

· The harnessing of an ebXML implementation (or possibly several, e.g. in case of interoperability) with the Test Framework requires a moderate effort. Typically, it requires some interfacing work specific to an implementation, in the case no standard interface (API) has been specified. For example, the Test Service (a component of the Test Framework) defines Actions that will need to be called by a particular MSH implementation. Besides this kind of interfacing, no application code needs to be written.

· Several test-bed configurations - or test harnesses - can be derived from the Test Framework, depending on the objectives of the testing. For example, MS conformance testing will include a particular combination (architecture) of some components of the Test Framework, while interoperability testing will require another set-up.

· Operating the Test Framework - or one of the test harnesses that can be derived from it – in order to execute a test suite, does not require advanced expertise in the framework internals, once the test suites have been designed. The tests should be easy to operate and to repeat with moderate effort or overhead, by users of the ebXML implementation(s) and IT staff responsible for maintaining the B2B infrastructure, without expertise in testing activity.

· Users can define new Test Suites and Test Cases to be run on the framework. For this, they will script their tests using the proposed test suite definition language or mark-up (XML-based) for test cases.

· A Test Suite (either for conformance or for interoperability), can be run entirely and validated from one component of the framework: the Test Driver. This means that all test outputs will be generated - and test conditions verified - by one component, even if the test harness involves several – possibly remote – components of the framework.

· The verification of each Test Case can be done by the Test Driver at run-time, as soon as the test case execution is completed. The outcome of the verification can be obtained immediately as the Test Suite has completed, and a verification report be generated.

2.2 General Methodology

The Test Framework is intended for the following mode of operation, when testing for conformance or for interoperability. In order for a testing process (or validation process) to be conform to this specification, the following phases need to be implemented:

· Phase 1: Test Plan (RECOMMENDED). An overall test plan is defined, which includes a validation program and its objectives, the conditions of operations of the testing, levels or profiles of conformance or of interoperability, and the requirements for candidate implementations to be tested (context of deployment, configuration).

· Phase 2: Test Requirements Design (MANDATORY). A list of Test Requirements (also called Test Assertions) is established for the tested specification, and for the profile/level of conformance/interoperability that is targeted. These Test Requirements should refer to the specification document. Jointly to this list, it is RECOMMENDED that a specification coverage be reported. This document shows, for each specification feature, the Test Requirements items that address this feature. It also estimates to which degree the feature is validated by these Test Requirements items.

· Phase 3: Test Harness Design (MANDATORY). A Test Harness is defined for this particular test plan. It describes an architecture built from components of the Test Framework, along with operation instructions and conditions.

· Phase 4: Test Suite Design (MANDATORY). Each Test Requirement from Phase 2 is translated into one or more Test Cases. A Test Case is defined as a sequence of operations (Test Steps) over the Test Harness. A Each Test Case includes: configuration material (CPA data), message material associated with each Test Step, test verification condition which defines criteria for passing this test. All this material, along with particular operation directives, is gathered as a Test Suite.

· Phase 5: Validation Conditions (RECOMMENDED). Validation criteria are defined for the profile/level being tested, and expressed as a general condition over the set of results from the verification report of each Test Case of the suite. These validation criteria define the certification or “badging” for this profile/level.

· Phase 6: Test Suite Execution (MANDATORY). The Test Suite is interpreted and executed by the test Driver component of the Test Harness.

3 The Test Framework Components

3.1 A Modular Architecture

The components of the framework are designed so that they can be combined in different configurations, or Test Harnesses.

We describe here two components that are central to the Test Framework:

· The Test Driver, which interpret Test Case data and drives Test Case execution.

· The Test Service, which implements some test operations (actions) that can be triggered by messages. These operations support and automate the execution of Test Cases.

These components interface with the ebXML Message Service Handler (MSH), but are not restricted to testing an MSH implementation.

3.2 The Test Driver

The Test Driver is the component that drives the execution of each step of a Test Case. Depending on the test harness, the Test Driver may drive the Test Case by interacting with other components in connection mode, i.e. by directly generating ebXML messages - using a transport adapter, or in service mode, by invoking actions in the Test Service, which is another component of the framework.

3.2.1 Functions

The primary function of the Test Driver is to parse and interpret the Test Case definitions that are part of a Test Suite, as described in the Test Framework mark-up language. Even when these test cases involve several components of the Test Framework, the interpretation of the Test Cases is under control of the Test Driver.

The Test Driver component of the ebXML Test Framework MUST have the following capabilities:

· Self Configuration - Based upon supplied Test Case configuration parameters specified in the ebXML TestSuite.xsd schema (Appendix C), Test Driver configuration is done at startup, and MAY be modified at the TestCase and TestStep levels as well.

· ebXML Message Construction – Includes MIME, SOAP and ebXML portions of the message

· Received Message Persistence – Persisted received messages MUST persist for the life of a Test Case. Persistent messages MUST validate to the ebXMLPersistentMessage.xsd schema in Appendix D.

· Parse and query received persistent messages – Test Driver MUST use XPath query syntax to query MIME, SOAP and ebXML persistent message content

· Parse and query received message payloads – Test Driver MUST support XPath query syntax to query XML message payloads

· Controls the execution and workflow of the steps of a test case. Some steps may be executed by other components, but their initiation is under control of the Test Driver.

· Repeat previously executed Test Steps – Test Driver MUST be capable of repeating previously executed Test Steps for the current Test Case.

· Send messages - Either directly at transport layer (e.g. by opening an HTTP connection), or by using Test Service actions .

· Receive messages - Either directly at transport layer, or by notification from Test Service actions.

· Perform discreet message content validation – Test Driver MUST be capable of performing discreet validation of Time, URI, Signature and the entire XML message

· Perform discreet payload content validation – Test Driver MUST be capable of performing discreet validation of Time, URI, Signature and an XML payload

· Report Conformance Test Results – Test Driver MUST generate an XML conformance report for all executed tests in the profile. Conformance reports MUST validate to the ebXMLConformanceReport.xsd schema in Appendix E.

The design that supports these functions is illustrated in Figure 1.

[image: image1.png]Test Driver

Send
interface I Requesr | Tost
-« cquest
Message -« Case
HTTP output Tnterpreter
or SMTP Internal n
or ... T Workflow
or Test Servige Ofthe +Correlation Test Cases
“Verification
Test Case
“Reporting
e Recenti
Message Receive I s
input interface
Test Reports
& Trace

Fig 1. The Test Driver: Functions and Data Flows

3.2.2 Using the Test Driver in Connection Mode

The Test Driver MUST be able to control the inputs and outputs of an MSH at transport level. This can be achieved by using an embedded transport adapter. This adapter has transport knowledge, and can format message material into the right transport envelope. It can also handle a connection with the candidate MSH.

When used in connection mode, the Test Driver is acting as a transport end-point that can receive or send messages with an envelope consistent with this transport protocol (e.g. HTTP or SMTP). Figure 2 illustrates how the Test Driver operates in connection mode.

[image: image2.png]Test Case references

 —
 —
document | ——]
 —

QO
Message
MSH | input

MeSsage

output

Test Reports +
Trace

Fig 2. The Test Driver used in connection mode

W Test Case Data

(Configuration
sets (MSH, CPA)

Message
data

Message
templates

3.2.3 Using the Test Driver in Service Mode

In this configuration, the Test Driver directly interacts with the Service/Actions of the Test Service component (see later section), typically without involving the transport layer, e.g. by invoking these action via a software interface. This allows for controlling the test cases execution from the application layer (as opposed to the transport layer). Such a configuration is appropriate when doing interoperability testing - for example between two MSH implementations – and in particular, in situations where the transport layer should not be tampered with. The interactions with the Test Service will consist of:

· Sending: One action of the Test Service, the “Initiator”, serves as a channel to send requests to the MSH it has been interfaced with. This action – normally triggered by received messages – also provides an interface at application level. When invoked by a call that contains message data, the action generates a sending request to the MSH API for this message.

· Receiving: As all actions of the Test Service can participate in the execution of a Test Case (i.e. of its Test Steps), the Test Driver needs to be aware of their invocation by incoming messages. Each of these actions will notify the Test Driver through its “Receive” interface, passing received message data, as well as response data. This way, the Test Driver will build an internal trace (or state) for the Test Case execution, and will be able to verify the test based on this data.

The Test Driver MUST support the above communication operations with the Test Service. This may be achieved by using an embedded Service Adapter to bridge the sending and receiving functions of the Test Driver, with the Service/Action calls of the Test Service. Figure 3 illustrates how the Test Driver operates with a Service Adapter.

[image: image3.png]MSH-specific APT

Test Case references

 —
 —
document | ——]
 —

Test
Service

actions

MSH

Adapter

Test Reports +
Trace

Fig 3. The Test Driver used in Service Mode

W Test Case Data

(Configuration
sets (MSH, CPA)

Message
data

Message
Templates
(header, envelope)

This design allows for a minimal exposure of the MSH-specific API, to the components of the Test Framework. The integration code that needs to be written for connecting the MSH implementation is then restricted to an interface with the Service/Actions defined by the framework. Neither the Test Driver, nor the Service Adapter, need to be aware of the MSH-specific interface.

3.3 The Test Service

3.3.1 Functions and Interactions

The Test Service defines a set of Actions that are useful for executing Test Cases. The Test Service receives message content and error notifications from the MSH, and also generates requests to the MSH, which normally translate into messages being sent out. The Test Actions are predefined, and part of the Test Framework (i.e. not user-written). Test Service and Actions will map to the Service and Action header attributes of ebXML messages generated during the testing. Figure 4 shows the details of the Test Service and its interfaces.

[image: image4.png]Predefined
Test Service
Actions

e ||

MSH-specific adapter
+sending requests
~adm1n/:onﬁgurauon

MSH-specific APT” t

Test Service

Control interface

Direct invocation

Trace interface

NS

!

ebXML
MSH

Message

> Test Trace
(optional)

MSH-specific adapter
1, (imvokes Test Actions)

MSHrspe:xﬁ:
callback interface

*i O

input

>

output

Fig 4. The Test Service and its Interfaces 4

The functions of the Test Service are:

· Process received messages in the Action code they are intended to. These specialized Test Actions may perform diverse functions, which are enumerated below:

· Notify the Test Driver of incoming messages, in case it is interfaced with a Test Driver. In such case, the Test Service is said to be deployed in driver mode.

· Perform some test operations, e.g. compare a received message payload with a reference payload.

· Send back a response to the MSH, which will either simply acknowledge, or report on any test condition that may have been checked by the Action.

· Optionally, generate a trace of its operations, in order to help trouble shooting, or for reporting.

Although the Test Service simulates an application, it is part of the Test Framework, and does not vary from one candidate MSH to the other. However, in order to connect to the Test Service, a candidate MSH developer team will have to write wrapper code to the Test Service/Actions. This proprietary code is expected to require a minor effort, but is necessary as the API and callback interfaces of each MSH is not specified in the standard, and is implementation-dependent.

The Test Service name is: urn:ebXML:iic:test.

3.3.2 Requestor and Responder Roles

With respect to a particular instance of Test Service, two roles are identified:

· Requestor: The requestor party is the party that generates calls to the Test Service. The requestor usually involves a Test Driver in order to generate message material.

· Responder: The responder party is the party represented by the Test Service – including the associated MSH. Typically, the actions of the Test Service will respond in some way to the requestor.

There are two ways for a Test Driver to invoke a Test Service as illustrated in Figure 5, and they correspond to two different set-ups of the Requestor party.

In the upper part of the figure, a Test Driver directly generates message material at transport level. This is appropriate for conformance tests, where the message envelope itself may require some manipulation for some test cases.

In the lower part, the Test Driver uses another local instance of the (same) Test Service in order to invoke the remote Test Service. This is appropriate when message material can be controlled at a more abstract level (transport-independent), as in interoperability tests, using MSH implementations on each side. In that case, this additional Test Service instance will be part of the Requestor party, as it supports the generation of messages to the remote (Responder) instance.

[image: image5.png]Invoking a Remote Test Service via a Transport Adapter:

Responder Party Requestor Party

Test Service

Transport

Action Y Adapter

Invoking a Remote Test Service via a Local Test Service:

Responder Party Requestor Party

Test Service

Service

Action Y’ & &

Action Z
»

Fig 5. Two modes of control of a remote Test Service

3.3.3 Modes of Operation of the Test Service

The Test Service can operate in two modes:

<JD2> changes below. “driver mode” bullet changed.

· Driver mode: in that mode, the actions of the Test Service instance, when invoked, will send a notification to the Receive interface. The Test Driver, which implements this interface, can then be notified of the invocation. This is the appropriate mode of operation when this Test Service instance is associated with the Test Driver (e.g. in Requestor party of second alternative in Figure 5) which drives the test cases.

· Non-driver mode: in that mode, the actions of the Test Service instance, when invoked, will NOT send a notification to the Receive interface. This is the appropriate mode of operation when this Test Service instance is remote to the Test Driver controlling the Test Case execution (e.g. in Responder party of Figure 5).

In both modes, the action may send a response message, typically the requesting party via the “response URL”. The response URL is usually set to be the requestor URL. Note: response message sending will require an adapter to the local MSH.

The Test Service is stateless, except for its mode of operation, which can be set by a special action call. By default, the mode is non-driver.

3.3.4 States of the Test Service

The Test Service has only two parameters that can be modified by action invocation (and therefore represent its state):

· Operation mode (driver or non-driver)

· Response URL (for response messages)

In addition, a Test Service instance is identified by an ID that will be reported in some response messages. These two parameters can be set by invoking the Configurator action described below. Typically, in a configuration where an interoperability test suite involves two parties, the test suite will need to be executed twice - alternatively driven from each party. In that case, each Test Service instance will alternatively be set to a driver mode, while the other will be set to a non-driver mode. These settings can be done remotely by sending messages to the Configurator action.

Except for these parameters, the Test Service is stateless.

3.3.5 Test Service Actions

The actions described here are standard to the Test Service, and should suffice in supporting most Test Cases.

3.3.5.1 Common Functions

Some functions are common to several actions, in addition to the specific functions they fulfill. These common functions are: <JD2> changes:
· Generate a response message. Response messages also specify a Service/Action, as they are usually intended to another Test Service instance associated with the requestor party. In case the test harness does not include a Test Service on requestor side, (e.g. when messages are generated directly at transport level by the Test Driver in connection mode) the Action field is irrelevant. The message will then be captured and analyzed in other ways (e.g. directly by a Test Driver, via an adapter to the transport protocol, as in MS conformance testing).

· Notify the Test Driver. This can only be done when the Test Service is coupled locally with a Test Driver, (see second part of Figure 5 in previous section) and is in driver mode. In such a case, the Receive interface of the Test Driver is invoked, which will add an item to the internal trace of the Test Case being executed (see Figure 1.)
3.3.5.2 Test Service Actions

The standard test actions are:

3.3.5.2.1 Mute action

Description: This is a “dummy” action, which does not generate any response message back. This action will report invocations and their content to the local Test Driver (if the Test Service is coupled with a Test Driver).

In driver mode: will notify the associated Test Driver, with received header and payload(s) material. The notification will report the action name (“mute”) and the instance ID of the Test Service.

3.3.5.2.2 Dummy action

Description: This is a “dummy” action, used by messages that do not need any specific response, and the sending of which only needs to cause some side-effect in the MSH, like generating an error. On invocation, this action will however generate a pre-canned response message back (no payload, simplest header with no extra-features), referring to the previous MessageID (for correlation) in the RefToMessageId header attribute.

Destination: the Mute action of the requestor’s Test Service. This notice serves as proof that the message has reached the responder’s Test Service, although no assumption can be made on the integrity of its content.

In driver mode: will notify the associated Test Driver, with received header and payload(s) material. The notification will report the action name (“dummy”) and the instance ID of the Test Service.

3.3.5.2.3 Reflector (or Responder) action
Description: On invocation, this action generates a response to a received message, by using the same message material, with minimal changes in the header:

· Swapping of the to/from parties so that the “to” is now the initial requestor.

· Setting RefToMessageId to the ID of the received message.

· Removing AckRequested or syncReply elts if any.

· All other header elements (except for time stamps) are unchanged. The conversation ID remains unchanged, as well as the CPAId. The payload is the same as in the received message, i.e. same attachment(s).

Destination: the Mute action of the requestor’s Test Service. This action acts somehow as a reflector for the requesting party.

In driver mode: notifies the associated Test Driver, with received header and payload(s) material. The notification will report the action name (“reflector”) and the instance ID of the Test Service.

3.3.5.2.4 Initiator action

Description: On invocation, this action generates a new message, totally unrelated to the received message. The new message material (payload and header) is provided in a pre-convened way in the payload of the received message. The header of the new message can be anything that is specified. For example, this action would be used to generate a "first" message of a new conversation, different from the conversation ID specified in the invoking message. Note: unlike in the Reflector action, MSH-controlled header attributes will not be determined by the invoking message header (messageID, RefToMessageId, timestamps...). So if the response needs to refer to the previous MessageID (for correlation), the RefToMessageId must be explicitly pre-set in the message material.

Destination: any service/action of the sender, specified with message material (by default: the Mute action of the requestor’s Test Service.)

In driver mode: in addition to generating the message, notifies the associated Test Driver, with header and payload(s) material. The notification will report the action name (“initiator”) and the instance ID of the Test Service.

3.3.5.2.5 PayloadVerify action

<JD2>see modifs in red:
Description: On invocation, this action will compare the payload(s) of the received message, with the expected payload. Instead of using real payloads, to be pre-installed on the site of the Test Service, it is RECOMMENDED that a digest (or signature) of the reference payloads (files) be pre-installed on the Test Service host. The PayloadVerify action will then calculate the digest of each received payload and compare with the reference digests. This action will test the service contract between application and MSH, as errors may originate either on the wire, or at every level of message processing in the MSH until message data is passed to the application. The action responds with a notification message to the requestor, about the outcome of the comparison. The previous MessageID is reported (for correlation) in the RefToMessageId header attribute of the response. The previous ConversationId is also reported.The payload will contain a verification status notification: an XML document of the form:

<verificationstatus>

<testservice name=”urn:ebXML:iic:test “ action=”PayloadVerify”>

<payload name=”P1”>validated</ payload >

<payload name=”P2”> validated </ payload >

<payload name=”P3”> validated </ payload >

< /testservice>.

</verificationstatus>

There will be one payload element for each payload to verify. The payload element MUST have values: “validated” or “not-validated”.
Destination: the Mute action of the requestor’s Test Service.

In driver mode: will notify the associated Test Driver, with received header and also with the verification status notification document. The notification will report the action name (“payloadvalidate”) and the instance ID of the Test Service.

3.3.5.2.6 ErrorAppNotify action

Description: This action will capture specific error notifications from the MSH to its using application. It is not triggered by reception of an error message, but it is directly triggered by the internal error module of the MSH local to this Test Service. If the MSH implementation does not support such direct notification of the application (e.g. instead, it writes such notifications to a log), then an adapter needs to be written to read this log and invoke this action whenever such an error is notified. The verification status notification document is generated by this action, of the form:
<verificationstatus>

<testservice name=”urn:ebXML:iic:test “ action=”ErrorAppNotify”>

<error code=”…” severity=”…”> </ error >

< /testservice>.

</verificationstatus>
Such errors fall into two categories:

· MSH errors that need to be directly communicated to its application – and not to any remote party, e.g. failure to send a message (no Acks received after maximum retries).

· In case regular errors are generated by an MSH with a severity level set to “Error” – as opposed to “Warning” – the MSH is supposed to (SHOULD) also notify its application. The ErrorAppNotify action is intended to support both types of notifications.
Destination: A response message containing the verification status notification is sent only when in non-driver mode, to the Mute action of the requestor’s Test Service,.

In driver mode: will notify an error to the associated Test Driver and NOT send the verification status document.

3.3.5.2.7 ErrorURLNotify action

Description: This action will capture error messages, assuming that an adapter has been written for invoking this action. The adapter must have same URI as the ErrorURI specified in the CPA. The adapter will pass the entire message as is (in its ebXML envelope) to the action. The action extracts the ErrorCode and Severity elements, and sends then a notification message back to the originator, when operating in non-driver mode. The action will make such notifications visible to the other party (typically the driver party), by generating a “report” message back to the requestor of the form:

<verificationstatus>

<testservice name=”urn:ebXML:iic:test “ action=”ErrorURLNotify”>

<error code=”…” severity=”…”> </ error >

< /testservice>.

</verificationstatus>

Destination:When in non-driver mode, generates a verification status notification to the Mute action of the requestor’s Test Service.

In driver mode: only notifies the associated Test Driver (via the Receive interface), with received header material (no report message generated). The notification will report the action name (“ErrorURLNotify”) and the instance ID of the Test Service.

3.3.5.2.8 Configurator action

Description: This action is called to either dynamically (re)configure the receiver party, or to verify that the receiver party has the right configuration set-up. Configuration may concern:

· MSH internals assumed by a test case (if applicable),

· CPA set-up assumed by a test case,

· Test Service parameters (e.g. ID, response-URL, mode of operation). In the case of CPA, the action can verify that the collaboration agreement for a conversation related to a test case or a set of test cases, is available. If the payload only contains a CPAId, this action will verify that the corresponding CPA is accessible. If the payload contains a CPA document, this CPA will be added to the available CPAs that the MSH can use. One way this can be done is by calling a configuration function of the MSH (via adapter code to its API). A response is generated back to the requestor. The previous MessageID is reported (for correlation) in the RefToMessageId header attribute of the response.

· Predefined digests of payloads to be used in test cases. These digests or signatures will be then used as references for comparing digests from received payloads. Such comparison will be done by the PayloadVerify action.
When used to set some internal state of the Test Service, the message payload MUST contain an XML document of the form:
<verificationstatus>

<testservice name=”urn:ebXML:iic:test “ action=”Configurator”>
<mode>…</mode>
<responseURL>…</responseURL>
<CPA name=”myCPAId”>…</CPA>
<payloadDigest name=”payload_1”>…</ payloadDigest >
< /testservice>

</verificationstatus>
The mode element can have values: “driver” or “non-driver”. The optional responseURL element specified the URL to which response messages must be sent. This action will be used in case the Test Service needs to be remotely and dynamically configured. For example, several remote Test Service instances may be started, and which one belongs to the driver party may be decided afterward. Or, the roles of two Test Service instances may need to be switched during an interoperability test, yet the switching be controlled from the same location.

Destination of response: the Mute action of the requestor’s Test Service.

In driver mode: notifies the associated Test Driver, with the verification status document. The notification will report the action name (“configurator”) and the instance ID of the Test Service.
Note: The above actions are specific to the Test Service, and are not supported by the Test Driver.

3.3.5.3 Integration with an Implementation

As mentioned before, the actions above are predefined and part of the test framework, and will require some integration code with the MSH implementation, in form of three adapters, to be provided by the MSH development (or user) team. These adapters are:

(1) Reception adapter, which is specific to the MSH call-back interface. This code allows for invocation of the actions of the Test Service, on reception of a message.

(2) MSH control adapter, which will be invoked by some Test Service actions, and will invoke in turn the MSH-specific Message Service Interface (or API). Examples of such invocations are for sending messages (e.g. by actions which send response messages), and MSH configuration changes (done by the Configurator action).

(3) Error URL adapter, which is actually independent from the candidate MSH. This adapter will catch error messages, and invoke the ErrorURLNotify action of the Test Service which should normally be associated with the Test Driver (driver mode).

3.4 Executing Test Cases

A more detailed description of the Test Case and Test Step representation is provided in section 7.

A Test Suite contains a sequence of Test Cases. Each Test Case is intended to verify that an implementation fulfills a requirement item (or a set of items) of the specification.

3.4.1 Test Case as a Sequence of Test Steps

<JD2> changes in red:
A test case is a sequence of Test Steps. A Test Step is an aggregate of one or more operations performed by a single component of the test harness. A test step typically involves a single message sending or receiving operation, plus some message data processing operations, like checking a condition on message header. A test step may also include conditional actions that are a basis for the execution of the assertion within the test step itself.

A Test Case instance is an execution of a particular Test Case, identified by some specific message attribute values. For example, two instances of the same Test Case will be distinguished by distinct MessageID values in the generated messages. An example of a sequence of Test Steps associated with an MS Conformance Test Case is:

Step 1: Test driver sends a sample message to the Reflector action of the Test Service. Message header data is obtained from message header template XYZ, and message payload from ABC file.

Step 2: Test driver receives the response message and adds it to the stored sequence for this Test Case instance (correlation with Step 3 is done based on the RefToMessageID attribute, which should be identical to the MessageId of Step 3.)

Step 3: Test driver verifies the test condition on response message, for example that the SOAP envelope and extensions are well-formed.

3.4.2 Related Message Data and Message Templates

Some Test Steps will require message data. This message data will be identified by a message envelope template, which can be modified for this particular Test Case (e.g. change in references, change in element value). The message elements that can be referenced by a Test Case are:
<JD2> we need to verify all this is still conforming to the test script material Mike has finalized for MS Conformance. <mm1: Agreed – the executable format that was proposed as an alternative by Mike Kass.>
· Message header data: it is represented in form of message header templates, that are XML documents analogous to a regular message header. The template is a list of template elements, each element being a pair < path (XMLPath) inside the header, value>. A message header template can be modified, i.e. either extended by adding new template elements, or modified by overriding elements of the template with new ones with different values, or yet modified by removing template elements. Message header templates can be converted into regular, conforming ebXML message header documents, or can be passed as arguments of a request to an MSH API adapter, which will convert it into a proprietary API call.

· Message payload data: it is represented in form of payload files, that can hold any kind of MIME content (XML or not). The content of a payload file will be inserted as a MIME part in a message.

· Message envelope template: it is represented as a MIME envelope template. Such a template specifies MIME envelope and headers. It also references one message header template, and zero or more payload files.

3.4.3 Related Configuration Data

Test Cases will be executed under a pre-defined agreement, as defined in CPA [ebXML CPPA]. This agreement will configure the ebXML implementations involved in the testing, or the collaborations that execute on these implementations. Each Test Case will therefore reference a Test Configuration document.

· Test Configuration document: it contains (1) a CPA (or CPA-like) document, (2) configuration data for the ebXML implementation(s) involved, expressed at an abstract level and expected to be general enough to most implementations, even if not specified.

Figure 6 illustrates how a Test Case references message data.

[image: image6.png]Test Case

refersnces
references
Test
Steps
references
An XML document

Test Cases
Database

e

Test case data

QUL artifacts)

| Test
Cases

Test configuration
T data:: Test Driver,
CPPA

| Message
payloads

Fig 6. Test Case Document and Database

<JD2> I updated this figure.

Part II: Test Suite Representation

4 Test Suite

4.1 Conformance vs. Interoperability Test Suite

We distinguish two types of test suites, which share similar document schemas and architecture components, but serve different purposes:

· Conformance Test Suite. The objective is to verify the adherence or non-adherence of a candidate implementation to the target specification. The test harness and test cases will be typically designed around a single (candidate) implementation. The suite material emphasizes the target specification, by including a comprehensive set of Test Requirements, as well as a clear mapping of these to the original specification (e.g. in form of an annotated version of this specification).

· Interoperability Test Suite. The objective is to verify that two implementations (or more) of the same specification, or that an implementation and its operational environment, can interoperate according to an agreement or contract (which is compliant with the specification, but usually restricts further the requirements). These implementations are assumed to be conforming (i.e. have passed conformance tests), so the reference to the specification is not as important as in conformance. Such a test suite typically involves two or more implementations of the target specification. The test harness and test cases will be designed in order to drive and monitor these implementations.

A conformance test suite is composed of:

· One or more Test Profile documents (XML). Such documents represent the level or profile of conformance to the specification, as verified by this Test Suite.

· Design of a Test Harness for the target implementation, that is based on components of the ebXML Test Framework.

· A Test Requirements document. This document contains a list of conformance test assertions that are associated with the specification to be tested.

· An annotation of the target specification, that indicates the degree of coverage for each specification feature or section, that this set of Test Requirements provides.

· A Test Suite document. This document implements the Test Requirements, described using the Test Framework material (XML mark-up, etc.)

An Interoperability Test Suite is composed of:

· One or more Test Profile documents (XML). Such documents represent the level or profile of interoperability, as verified by this Test Suite.

· Design of a Test Harness for two or more interoperating implementations of the specification, that is based on components of the ebXML Test Framework.

· A Test Requirements document. This document contains a list of test assertions associated with this profile (or level) of interoperability.

· A Test Suite document. This document implements the Test Requirements, described using the Test Framework material (XML mark-up, etc.)

4.2 The Test Suite Document

The Test Suite XML document is a collection of Test Driver configuration data, documentation and executable Test Cases.

· Metadata provides documentation used by the Test Driver to generate a Test Report for all executed Test Cases.

· Configuration data provides basic Test Driver parameters used to modify the bootstrap configuration of the Test Driver to accurately perform and evaluate test results. It contains a CPPA reference to configuration data for the ebXML Test Driver implementation along with “non-CPPA” configuration parameters used to control behavior of the Test Driver. Metadata provides author information, functional description and versioning and other general information about the Test Suite.

· Message data is a collection of pre-defined XML payload messages that can be referenced for inclusion in an ebXML test message.

· Test Cases are a collection of discreet Test Steps. Each Test Step can execute any number of test Operations (including sending, receiving, and examining returned messages). An ebXML MS Test Suite document MUST validate against the ebXMLTestSuite.xsd file in Appendix C.

[image: image7.png][

4

Figure 4 – Graphic representation of basic view of ebXMLTestSuite.xsd schema

Definition of Content
	Name
	Description
	Default Value From Test Driver
	Required/Optional

	TestSuite
	Container for all configuration, documentation and tests
	
	Required

	Metadata
	Container for general documentation of the entire Test Suite
	
	Required

	cfg:ConfigurationGroup
	Container for modification of “bootstrap” configuration of the Test Driver
	
	Optional

	Message
	XML Payload message for inclusion in a Test Case
	
	Optional

	TestCase
	Container for an individual Test Case
	
	Required

Content Semantics

The Test Suite document
3.3.2
Test Suite Documentation

Documentation for the ebXML MS Test Suite is done through the Metadata element. It is a container element for general documentation.

[image: image8.png]ETTT

Figure 5 – Graphic representation of expanded view of the Metadata element

Definition of Content
	Name
	Description
	Default Value From Test Driver
	Required/Optional

	Description
	General description of the Test Suite
	
	Required

	Version
	Version identifier for Test Suite
	
	Required

	Maintainer
	Name of person(s) maintaining the Test Suite
	
	Required

	Location
	URL or filename of this test suite
	
	Required

	PublishDate
	Date of publication
	
	Required

	Status
	Status of this test suite
	
	Required

4.2.1 The ConfigurationGroup

The ConfigurationGroup typically contains configuration data for:

· The candidate implementation. For example, a Message Service Handler. Such configuration information is provided in form of a set of CPA documents – or of partial CPA – associated with CPAId values that can be referred to in test cases material.

· the Test Driver. This includes necessary information it needs to modify its “base configuration” before executing a Test Case. Because the Test Driver is not a true MSH, ConfigurationItem names and values are defined for test execution purposes only, not to emulate the behavior of an MSH.

[image: image9.png]

Figure 6 – Graphic representation of expanded view of the ConfigurationGroup element

Definition of Content
	Name
	Description
	Default Value From Test Driver
	Required/Optional

	ConfigurationGroup
	Container for any number of ConfigurationItems
	
	Optional

	cpaId
	Unique identifier matching one of the testing CPA’s in this specification
	
	Required

	id
	Unique identifier for the ConfigurationGroup
	
	Required

	ConfigurationItem
	Individual name/value pair used by the Test Driver for configuration
	
	Optional

	name
	Short name for the ConfigurationItem
	
	Required

	value
	Value of the ConfigurationItem
	
	Required

4.2.2 Test Driver Configuration for ebXML MS Conformance Testing

Initial configuration of the Test Driver is done through a “base” Configuration Group of name/value pairs. By default, the Test Suite document MUST have a Configuration Group with an id of “base”, and containing one Configuration Item with a name of “cpa” and a value of “base” and a type of “constant”.

4.2.2.1 Multiple Configuration Declarations within the Test Suite

It is possible to dynamically modify the configuration of the Test Driver through the course of execution of the Test Suite. Configuration can be modified at the Test Suite, Test Case and Test Step levels through the introduction of a new Configuration Group or the addition/modification of an individual Configuration Item for the current Configuration Group.

Configuration Groups are hierarchically defined, with the “base” Configuration Group defined at the highest level in the testing tree. Modifications/additions at the Test Case or Test Level are possible through the introduction of Configuration Item(s). Wholesale replacement of the current Configuration Group is possible by the declaration of a new Configuration Group. The scope of the configuration change is hierarchical, and exists only for the definition of the current Test Suite, Case or Step. Upon completion, of that test component, configuration reverts to that previously defined at the higher level.

[image: image10.png][dyConfouwationcrou

[:"Idé @{:"desmplmna :"nzmea @{:"zmhnra

3 versiong] [@ renrementReferenceld] & confgurationGroupRer

nE o8 cofiawratinGrawRels o[Lepezﬂlmesq]

Configurationttem]

cFy:Configuration|

Figure 7 – Graphic representation of configuration at Test Suite, Test Case or Test Step level
5 Test Requirements

5.1 Purpose and Structure

The next step in designing a test suite, is to define Test Requirements. This material, when used in a conformance testing context, is also called Test Assertions in NIST and OASIS terminology (see definition in glossary in Appendix).

When used for conformance testing, each Test Requirement defines a test item to be performed, that covers a particular requirement of the target specification. It rewords the specification element in a “testable form”, closer to the final corresponding Test Case, but unlike the latter, independently from the test harness specifics. In the ebXML Test Framework, a Test Requirement will be made of three parts:

· Pre-condition. The pre-condition defines the context or situation under which this test item applies. It should help a reader understand in which case the corresponding specification requirement applies. In order to verify this Test Requirement, the test harness will attempt to create such a situation, or at the very least to identify when it occurs. If for some reason the pre-condition is not satisfied when doing testing, then it does not mean that the outcome of this test is negative – only that the situation in which it applies did not occur. In that case, the corresponding specification requirement could simply not be validated.

· Assertion. The assertion actually defines the specification requirement, as usually qualified by a MUST or SHALL keyword. In the test harness, the verification of an assertion will be attempted only if the pre-condition is itself satisfied. When doing testing, if the assertion cannot be verified while the pre-condition was, then the outcome of this test item is negative.

· Degree. Qualifies the degree of requirement in the specification, as indicated by such keywords as RECOMMENDED, SHOULD, MUST, MAY. Typically, we identify three degrees: (1) “required” (MUST, SHALL), (2) “recommended” ([HIGHLY] RECOMMENDED, SHOULD), (3) “optional” (MAY, OPTIONAL). Any degree lower than “required” qualifies a Test Requirement that is not mandatory for Conformance testing. Yet, lower requirement degrees may be critical to interoperability tests.

5.2 The Test Requirements Document

The Test Requirements XML document provides metadata describing the Testing Requirements, their location in the specification, and their requirement type (REQUIRED, HIGHLY RECOMMENDED, RECOMMENDED, or OPTIONAL) . A Test Profile driver file MUST validate against the ebXMLTestRequirements.xsd file found in Appendix B The ebXML MS Conformance Test Requirements instance file can be found in Appendix E.

[image: image11.png]Sromer] [spekelg [fonctionaiType %]

emanticRequirement
Lof® rermeprementg ¥ a

Figure 3 – Graphic representation of ebXMLTestRequirements.xsd schema

Definition of Content
	Name
	Description
	Default Value From Test Driver
	Required/Optional

	Requirements
	Container for all test requirements
	
	Required

	MetaData
	Container for requirements metadata, including Description, Version, Maintainer, Location, Publish Date and Status
	
	Required

	Test Requirement
	Container for all components of a single test requirement
	
	Required

	description
	Description of requirement
	
	Required

	id
	Unique identifier for each Test Requirement
	
	Required

	name
	Name of test requirement
	
	Required

	specRef
	Pointer to location in specification where requirement is found
	
	Required

	functionalType
	Generic classification of function to be tested
	
	Required

	SemanticRequirement
	Sub-requirement for the main Test Requirement
	
	Required

	id
	Unique ID for the sub-requirement
	
	Required

	name
	Short descriptor of Semantic Requirement
	
	Required

	specRef
	Pointer to location in specification where sub-requirement is found
	
	Required

	Clause
	Grouping element for Condition expression(s)
	
	Optional

	Condition
	Textual description of test precondition
	
	Required

	ConditionRef
	Reference (via id attribute) to existing Condition element already defined in the Test Requirements document
	
	Required

	And/Or
	Union/Intersection operators for Conditions
	
	Optional

	Assertion
	Axiom expressing expected behavior of an MSH implementation under conditions specified by any Clause
	
	Required

	AssertionRef
	Reference (via id attribute) to existing Assertion element already defined in the Test Requirements document
	
	Required

	requirementType
	Enumerated Assertion descriptor (REQUIRED, OPTIONAL…etc.)
	
	Required

5.3 Specification Coverage

A Test Requirement is a formalized way to express a requirement of the target specification. The reference to the specification is included in each Test Requirement, and is typically one or more section numbers. There is no one-to-one mapping between sections of a specification document and the Test Requirement items listed in the test material for this specification:

· A specification section may map to several Test Requirements.

· A Test Requirement item may also cover (partially or not) more than one section or sub-section.

A Test Requirement item may then cover a subset of the requirements that are specified in a section.

For these reasons, it is important to determine to which degree the requirements of each section of a specification, are fully satisfied by the set of Test Requirements listed in the test suite document. This is done by establishing the specification coverage by the Test Requirements.

The specification coverage is simply a list of all sections and subsections of a specification document, each annotated with:

· A coverage qualifier.

· A list of Test Requirements that map to this section.

The coverage qualifier may have values:

· Full: The requirements included in the specification document section are fully covered by the associated set of Test Requirements. This means that if each one of these Test Requirements is satisfied by an implementation, then the requirements of the corresponding document section are fulfilled. When the tests requirements are about conformance: The associated set of test requirement(s) are a clear indicator of conformance to the specification item, i.e. if a candidate implementation passes a test case that implements this test requirement(s) in a verifiable manner, there is a strong indication that it will behave similarly in all situations identified by the spec item.
· None: This section of the specification is not covered at all. Either there is no associated set of Test Requirements, or it is known that the test requirements cannot be tested even partially, at least with the Test Framework on which the test suite is to be implemented, and under the test conditions that are defined.
· Partial: The requirements included in this document section are only partially covered by the associated (set of) Test Requirement(s). This means that if each one of these Test Requirements is satisfied by an implementation, then it cannot be asserted that all the requirements of the corresponding document section are fulfilled: only a subset of all situations identified by the specification item are addressed. Reasons may be:

· (1) the pre-condition(s) of the test requirement(s) ignores on purpose a subset of situations, that cannot be reasonably tested under the Test Framework.

· (2) the occurrence of situations that match the pre-condition of a Test Requirementt is known to be under control of the implementation (e.g. implementation-dependent) or of external factors, and out of the control of the testbed. (see contingent run-time coverage definition, Section 7).

When the tests requirements are about conformance: The associated set of test requirement(s) are a weak indicator of conformance to the specification item. A negative test result will indicate non-conformance of the implementation.

5.4 Run-Time Coverage of Test Requirements

In a same way as Test Requirements may not be fully equivalent to the specification items they represent (see Specification Coverage, Section 5), the Test Cases that implement these Test Requirements may not fully verify these, for practical reasons.

Some Test Requirements may be difficult or impossible to verify in a satisfactory manner. The reason for this generally resides in an inability to satisfy the pre-condition. When processing a Test Case, the Test Harness will attempt to generate an operational context or situation that intends to satisfy the pre-condition, and that is supposed to be representative enough of real operational situations. The set of such real-world situations that is generally covered by the pre-condition of the Test Requirement is called the run-time coverage of this test Requirement. This happens in the following cases:

· Partial run-time coverage: It is in general impossible to generate all the situations that should verify a test. It is however expected that the small subset of run-time situations generated by the Test Harness, is representative enough of all real-world situations that are relevant to the pre-condition. However, it is in some cases obvious that the Test Case definition (and its processing) will not generate a representative-enough (set of) situation(s). It could be that a significant subset of situations identified by the pre-condition of a Test Requirement cannot be practically set-up and verified. For example, this is the case when some combinations of events or of configurations of the implementation will not be tested due to the impracticality to address the combinatorial nature of their aggregation. Or, some time-related situations cannot be tested under expected time constraints.

· Contingent run-time coverage: It may happen that the test harness has no complete control in producing the situation that satisfies the pre-condition of a Test Requirement. This is the case for Test Requirements that only concern optional features that an implementation may or may not decide to exhibit, depending on factors under its own control and that are not understood or not easy to control by the test developers. An example is: “ IF the implementation chooses to bundle together messages [e.g. under some stressed operation conditions left to the appreciation of this implementation] THEN the bundling must satisfy condition XYZ”.

When a set of Test Cases is written for a particular set of Test Requirements, the degree of coverage of these Test Requirements by these Test Cases SHOULD be assessed. The Test Requirements coverage – not to be confused with the Specification Coverage - is represented by a list of the Test Requirements Ids, which associates with each Test Requirement :

· The Test Case (or set of Test Cases) that cover it,

· The coverage qualifier, which indicates the degree to which the Test Requirement is covered.

The coverage qualifier may have values:

· Full: the Test Requirement item is fully verified by the set of Test Cases.

· Contingent: The run-time coverage is contingent (see definition).

· Partial: the Test Requirement item is only partially verified by the associated set of Test Cases. The run-time coverage is partial (see definition).

None: the Test Requirement item is not verified at all: there is no relevant Test Case.

6 Test Profiles

6.1 The Test Profile Document

The Test Profile document points to a subset of Test Requirements (in the Test Requirements document), that are relevant to the profile - either conformance, or interoperability profile - to be tested.

The document will drives the Test Harness by providing the Test Driver with a list of unique reference IDs of Test Requirements for a particular Test Profile. The Test Driver reads this document, and executes all Test Cases (located in another document) that contain a reference to each of the test requirements. A Test Profile driver file MUST validate against the ebXMLTestProfile.xsd file found in Appendix A. A list of Test Profile example files can be found in Appendix D.

[image: image12.png]@ wremenloctiong] (@ nameg] | decrpion %]

Figure 2 – Graphic representation of ebXMLTestProfile.xsd schema

Definition of Content
	Name
	Description
	Default Value From Test Driver
	Required/Optional

	TestProfile
	Container for all references to test requirements
	
	Required

	requirementsLocation
	URI of test requirements XML file
	
	Required

	name
	Name of profile
	
	Required

	description
	Short description of profile
	
	Required

	Dependency
	Prerequisite profile reference container
	
	Optional

	name
	Name of the required prerequisite profile
	
	Required

	profileRef
	Identifier of prerequisite profile to be loaded by Test Driver
	
	Required

	TestRequirementRef
	Test Requirement reference
	
	Required

	id
	Unique Identifier of Test Requirement, as defined in the Test Requirements document
	
	Required

	requirementType
	Override existing requirement type with enumerated type of (REQUIRED,OPTIONAL, STRONGLY RECOMMENDED or RECOMMENDED)
	
	Optional

	Comment
	Profile author’s comment for a particular requirement
	
	Optional

6.2 Relationships between Profiles, Requirements and Test Cases

Creation of a testing profile requires selection of a group of Test Requirement references that fulfill a particular testing profile. For example, to create a testing profile for a Core Profile would require the creation of an XML document referencing Test Requirements 1,2,3,4,5 and 8.

The Test Driver would read this list, and select (from the Test Requirements Document) the corresponding Test Requirements (and their “sub” Semantic Requirements). The Test Driver then searches the Test Suite document to find all Test Cases that “point to” the selected Semantic Requirements. If more than one Test Case is necessary to satisfactorily test a single Semantic Requirement (as is the case for Semantic Requirement #1)there may be more than one Test Case pointing to it. The Test Driver would then execute Test Cases #1, #2 and #3 in order to fully test an ebXML application against Semantic Requirement #1.

The only test material outside of the three documents below that MAY require an external file reference from within a Test Case are large, or non-XML message Payloads

7 Test Cases

7.1 Structure of a Test Case

A Test Case is the translation of a Test Requirement, in an executable form, for a particular Test Harness. A test case includes the following information:

· Test Requirement reference.

· A Sequence of Test Steps.

· Condition(s) of success or of failure.

NOTE: The same Test Case may consolidate several Test Requirement items, i.e. a successful outcome of its execution will verify the associated set of Test Requirement items. This is usually the case when each of these Test Requirement items can make use of the same sequence of operations, varying only in the final test condition. When several Test Requirement items are covered by the same Test Case, the processing of the latter SHOULD produce separate verification reports.

[image: image13.png]

Figure 8 – Graphic representation of expanded view of the TestCase element

Definition of Content
	Name
	Description
	Default Value From Test Driver
	Required/Optional

	id
	Unique identifier for this test case
	
	Required

	description
	Short description of TestCase
	
	Optional

	name
	Short name for Test Case
	
	Required

	author
	Name of person(s) creating the Test Case
	
	Optional

	version
	Version number of Test Case
	
	Optional

	requirementReferenceId
	Pointer to the unique ID of the Semantic Test Requirement (in Appendix E)
	
	Required

	configurationGroupRef
	IDREF to reconfigure Test Driver using selected ConfigurationGroup
	
	Optional

	type
	Identifier of the type of documentation
	
	Optional

	ConfigurationItem
	Discreet addition or change to current ConfigurationGroup
	
	Optional

	name
	Parameter used to modify Test Driver configuration outside of CPPA
	
	Required

	value
	Value of parameter
	
	Required

	ConfigurationGroup
	New definition of a ConfigurationGroup for this Test Case only
	
	Optional

	cpaId
	Unique CPPA id used to identify a configuration outside of the “base” CPPA
	
	Required

	id
	Unique identifier for this ConfigurationGroup
	
	Required

	TestStep
	Container for send, receive and message verification operations
	
	Required

7.1.1 Test Steps

Test Steps are operations that MUST evaluate to a Boolean value of “true/false” or (semantically) a “pass/fail”. The aggregated result of all Test Steps in a Test Case MUST “true” for a Test Case result to be “pass”.

Prior to executing a Test Step, any configuration data necessary to modify the “default” configuration of the Test Driver MUST be included as ConfigurationItem or ConfigurationGroup content in the Test Step.

7.1.2 Test Step Operations

Within a Test Step, one of two main operations may be performed by the Test Driver. Message construction and transmission (PutMessage) or message retrieval and examination (GetMessage).

Associated with a test step are optional and required attributes. The “mode” attribute is the only required parameter to describe a Test Step. The mode MUST be either “driver” (for interoperability testing) or “non-driver” (for conformance testing). Altering the configuration of the Test Driver from its “bootstrap” or “base” configuration may be done through the addition of a Configuration element and its content.

[image: image14.png]

Figure 9 – Graphic representation of expanded view of the TestStep element

Definition of Content

	Name
	Description
	Default Value From Test Driver
	Required/Optional

	description
	Short description of Test Step
	
	Optional

	configurationGroupRef
	Reference to existing ConfigurationGroup to change current configuration for this Test Step
	
	Optional

	repeatTimes
	Integer value indicating number of times this step should be repeated
	1
	Optional

	testStepContext
	Use CPAId, ConversationId, MessageId and RefToMessageId from previous step number indicated
	
	Optional

	mode
	Sets mode of Test Driver, with a choice of “driver” (interop) or “non-driver” (conformance) mode
	
	Required

	cfg:Configuration
	Container for modification (ConfigurationItem) or replacement (ConfigurationGroup) of Test Driver configuration parameters for this Test Step
	
	Optional

	PutMessage
	Directive to construct and send an ebXML Message in its entirety (MIME,SOAP, and ebXML)
	
	Required

	GetMessage
	Directive to retrieve messages from Message Store in their entirety
	
	Required

7.1.3 The PutMessage Operation

The PutMessage Operation builds an ebXML message, along with its SOAP and MIME containers, using an XML syntax described in the ebXMLTestSuite.xsd schema in Appendix C. A minimal message declaration is required to create a message, with “default” values for MIME headers and ebXML message content provided by the Test Driver. A message declaration described in a PutMessage Operation MUST validate against the ebXMLTestSuite.xsd schema in Appendix C.

 The message components that can be created and modified by PutMessage include:

· MIME header data: MIME headers MUST be created or modified using the declarative syntax described in the ebXMLTestSuite.xsd schema in Appendix C. Default message MIME header data is illustrated in the message envelope template in section<JD> bad section? 7.1.6. How the MIME headers are actually constructed in the Test Driver component is implementation dependent. MIME message content MUST be created or modified using the declarative syntax described in the ebXMLTestSuite.xsd schema in Appendix C. Test Drivers operating in “service” mode (or sending messages via the Initiator action of the Test Service, like in some interoperability testing) MAY ignore the MIME portion of a Message Declaration, since message MIME manipulation may be unavailable at the application level interface used for a particular ebXML MSH implementation. Test drivers in “connection” mode (or directly generating the message envelope at transport level, e.g. for MSH conformance testing) MUST properly interpret the MIME portion of a Message Declaration and generate the appropriate MIME header information.
· SOAP header and body data: SOAP message content MUST be created or modified using the declarative syntax described in the ebXMLTestSuite.xsd schema described in Appendix C. Default message SOAP content is illustrated in the message envelope template in section<JD> bad section? 7.1.6. How the actual SOAP message is constructed in the Test Driver is implementation dependent. Test Drivers operating in “service” mode MAY ignore the SOAP portion of a MessageDeclaration, since message SOAP manipulation may be unavailable at the application level interface used for an MSH implementation. Test drivers in “connection” mode MUST properly interpret the SOAP portion of a Message Declaration and generate the appropriate SOAP header information.
· <JD> do we need this paragraph? Isn’t that included in the SOAP header data above? [MIKE] – I see what you mean.. but we have to differentiate between generating <SOAP:Header> <SOAP:Body> <SOAP:Fault> XML and SOAP extension elements… hence this paragraph. Comments?
· ebXML Message data: ebXML message content MUST be created or modified using the declarative syntax described in the ebXMLTestSuite.xsd schema described in Appendix C. How the actual ebXML message is constructed by the Test Driver is implementation dependent. Test drivers operating in both “driver” and “non-driver”modes MUST properly interpret the ebXML portion of a Message Declaration, and generate the appropriate ebXML content.

· ebXML payload data: ebXML message payload content – when there is a payload - MUST be created or modified using the syntax described in the ebXMLTestSuite.xsd schema described in Appendix C. ebXML payloads are created through file or through an XML ID reference inclusion into a message, and MAY be modified through any implementation-specific XML syntax. Test drivers operating in both “service” and “connection”modes MUST properly interpret the Manifest portion of a Message Declaration, and generate the appropriate ebXML content.

[image: image15.png]s e

Figure 10 – Graphic representation of expanded view of the PutMessage element

Definition of Content
	Name
	Description
	Default Value From Test Driver
	Required/Optional

	description
	Metadata describing the nature of the PutMessage operation
	
	Required

	clearMessageStore
	Boolean attribute directive to purge the Test Driver Message Store of all previous received messages for this particular Test Case
	false
	Optional

	MessageDeclaration
	Container for XML content to construct the message
	
	Required

	DSign
	Container element for XML Digital Signature declaration(s) for this message
	
	Optional

7.1.4 The Message Declaration

The MessageDeclaration element is a container element for XML content describing the construction of MIME, SOAP and ebXML portions of a message. The XML content necessary to describe a basic message is minimal, with “default” parameter values supplied by the Test Driver for most message content. If the test developer wishes to “override” the default element and attribute values, they may do so by explicitly declaring those values in the XML markup.

For illustrative purposes, a “default” parameterized message can be represented by the example message below. The parameter values are identified by ‘$’. In our example, they are:
· $SenderParty
· $ReceiverParty

· $CPA [MIKE] - need to be consistent… $CPPA??
· $ConversationId

· $Action

· $MessageId

· $TimeStamp
These MAY be specified in a ConfigurationGroup, each name/value pair specified as a ConfigurationItem. [MIKE] –There are advantages to assigning these parameters in the ConfigurationGroup (e.g. $SenderParty and $ReceiverParty and $CPPA. On the other hand the last 4 items $ConversationId, $Action $MessageId and $TimeStamp are incredibly dynamic parameters that will change from Test Case to Test Case.. or Test Step to Test StepThey may however be overridden when the test suite is deployed in a particular environment, as some values may depend on such deployment, like SenderParty and ReceiverParty. A Test Driver instance will be configured with a set of default values for such parameters, for a particular test suite, and also for particular test cases if needed. When putMessage operation is used, if no overriding values are provided as argument, these parameters will be substituted by their default values. I agree that.. if these parameters are specified in a ConfigurationGroup, then they should take precedence over system defined values (i.e. run-time generated $MessageId or $TimeStamp. Of course, that can be dangerous, if for example $TimeStamp is defined in a ConfigurationGroup at the Test Suite level.. then ALL generated messages will have the identical Timestamp.. not a good thing..so such power would have to be used judiciously. Plus, would you really want to define the ConversationId for ..say 1000 TestCases? I don’t think so, you would probably prefer to have the Test Driver “autogenerate” ConversationId, as well as MessageId and TimeStamp. Still, this is a powerful way to globally assign important parameter values at Test Suite, Test Case or Test Step level, and we should use it.

Content-Type: multipart/related; type="text/xml"; boundary="boundaryText";

start=messagepackage@oasis.org

--boundaryText

Content-ID: <messagepackage@oasis.org>
Content-Type: text/xml; charset="UTF-8"

<soap:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">
<soap:Header>

<eb:MessageHeader soap:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId>$SenderParty </eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>$ReceiverParty</eb:PartyId>

</eb:To>

<eb:CPAId>$CPA </eb:CPAId>

<eb:ConversationId><$ConversationId/eb:ConversationId>

<eb:Service>urn:ebXML:iic:test</eb:Service>

<eb:Action>$Action</eb:Action>

<eb:MessageData>

<eb:MessageId>$MessageId </eb:MessageId>

<eb:Timestamp>$TimeStamp /eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</soap:Header>

</soap:Envelope>

--boundaryText

Assuming, as an example, that the default values for these parameters are:

· $SenderParty=”urn:duns:123456789”
· $ReceiverParty=”urn:duns:912345678”
· $CPA=”urn:config:cpa_basic”
· $ConversationId=”1000”
· $Action=”Dummy”
· $MessageId=”1234”
· $TimeStamp=”2002-02-15T11:01:01”
A Test Driver could override some of the above values by parsing and interpreting the Message Declaration content below:
<JD> Is this what is provided as message expression for putMessage? If yes, we should say so.
[MIKE] – Yes , this is what is provided inside of a <MessageDeclaration> element, which is inside of a <PutMessage> operation declaration.
<ebTest:MessageDeclaration xmlns:ebTest="http://www.oasis-open.org/tc/ebxml-iic/testing/eb">

<mime:Message xmlns:mime="http://www.oasis-open.org/tc/ebxml-iic/testing/mime">

<mime:MessageContainer>

<soap:Envelope xmlns:soap="http://www.oasis-open.org/tc/ebxml-iic/testing/soap">

<soap:Header>

<eb:MessageHeader xmlns:eb=http://www.oasis-open.org/tc/ebxml-iic/testing/eb>

 <eb:Action="Receiver"/>

<eb:COnversationId> 20001209-133003-28572 </eb:CPAId>

<eb:MessageData>

<eb:MessageId>10001</eb:MessageId>

<eb:Timestamp>2003-02-15T11:12:12</eb:Timestamp >

</eb:MessageHeader>

</soap:Header>

</soap:Envelope>

</mime:MessageContainer>

</mime:Message>

</ebTest:MessageDeclaration>

Note that in case the Test Driver is used in “service” mode, it will rely on an MSH to actually generate the message envelope. In that case, some parameters will be under MSH control, like MessageId and Timestamp. The Test Driver would not be able to impose such values, and if these are specified, they would be override by the MSH. [MIKE] – Agreed.. I would suggest that we state that , in “service mode”, any MIME and SOAP (not SOAP extension elements..i.e ebXML) declarations MAY be overridden by the MSH, and SHOULD NOT be declared or evaluated in a Test Case.
The Test Driver, after parsing the simple Message Declaration above, would generate the following MIME message with enclosed SOAP/ebXML content.:

Content-Type: multipart/related; type="text/xml"; boundary="boundaryText";

start=messagepackage@oasis.org

--boundaryText

Content-ID: <messagepackage@oasis.org>
Content-Type: text/xml; charset="UTF-8"

<soap:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">
<soap:Header>

<eb:MessageHeader soap:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId> urn:duns:123456789</eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId> urn:duns:912345678</eb:PartyId>

</eb:To>

<eb:CPAId>urn:config:cpa_basic</eb:CPAId>

<eb:ConversationId>20001209-133003-28572</eb:ConversationId>

<eb:Service>urn:ebXML:iic:test</eb:Service>

<eb:Action> Receiver</eb:Action>

<eb:MessageData>

<eb:MessageId>10001 </eb:MessageId>

<eb:Timestamp>2003-02-15T11:12:12 /eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</soap:Header>

</soap:Envelope>

--boundaryText

To achieve the simplicity of a simple declarative syntax to describe message construction, “default” values for MIME headers are integrated into the ebXMLTestSuite.xsd schema in Appendix C. This allows default creation of MIME, SOAP and ebXML portions of the message through a validating parse of the MessageDeclaration XML content, with substitution of default values where they are not explicitly defined in the declaration. The following sections description of how to interpret the MessageDeclaration XML content MUST be implemented by a Test Driver in order for it to be conformant to this specification.

7.1.4.1 Interpreting the MIME portion of the Message Declaration

Test Profile XML Document

TestRequirementRef #1 (Validation)

TestRequirementRef #2 (Packaging)

TestRequirementRef #3 (Core Extension Elements)

TestRequirementRef #4 (Error Handling)

TestRequirementRef #5 (SyncReply)

TesetRequirementRef #8 (Security)

Test Requirements XML Document

Test Requirement #1 (Validation)

	Semantic Requirement #1 (Valid MessageHeader content)

	Semantic Requirement #2 (Valid Acknowledgment content)

	Semantic Requirement #3 (Valid Signature content)

Test Requirement #2 (Packaging)

	Semantic Requirement #4 (SOAP message in root of MME doc)

	Semantic Requirement #5 (MIME message type is “text/xml”)

	Semantic Requirement #6 (MIME ‘start’ header is present)

	…

Test Requirement #3 (Core Extension Elements)

	…

RequirementRef #4 (Error Handling)

 …

RequirementRef #5 (SyncReply)

 …

RequirementRef #6 (Reliable Messaging)

RequirementRef #7 (Message Ordering)

RequirementRef #8 (Security)

 …

RequirementRef #9 (Message Status)

RequirementRef #10 (Ping)

RequirementRef #11 (Multi-Hop)

Test Suite XML Document

Test Driver Configuration Data

XML Payloads

Test Cases

Test Case #1 (Test Valid “To content)

Test Case #2 (Test Valid “From content)

Test Case #3 (Teset Valid ‘MessageData” content)

 …

Message Payloads

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]
April 2002. All Rights Reserved.
ebXML Testing Procedures Specification 0.0

Page 4 of 44
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

