[image: image34.jpg]Creating A Single Global Electronic Market

OASIS ebXML Testing Procedures

April 2002

ebXML Test Framework DRAFT Document

Version 0.9

OASIS ebXML Implementation, Interoperability and Conformance Technical Committee

December 11, 2002

5Status of this Document

5ebXML Participants

6Introduction

61
Summary of Contents of this Document

61.1.1
Document Conventions

71.1.2
Audience

71.1.3
Caveats and Assumptions

71.1.4
Related Documents

81.2
Minimal Requirements for Conformance

9Part I: The Test Framework Architecture

92
Principles and Methodology of Operations

92.1
General Objectives

102.2
General Methodology

113
The Test Framework Components

113.1
A Modular Architecture

113.2
The Test Driver

123.2.1
Functions

133.2.2
Using the Test Driver in Connection Mode

143.2.3
Using the Test Driver in Service Mode

153.3
The Test Service

163.3.1
Functions and Interactions

173.3.2
Requestor and Responder Roles

183.3.3
Modes of Operation of the Test Service

193.3.4
States of the Test Service

193.3.5
Test Service Actions

193.3.5.1
Common Functions

193.3.5.2
Test Service Actions

203.3.5.2.1
Mute action

203.3.5.2.2
Dummy action

203.3.5.2.3
Reflector (or Responder) action

203.3.5.2.4
Initiator action

213.3.5.2.5
PayloadVerify action

213.3.5.2.6
ErrorAppNotify action

213.3.5.2.7
ErrorURLNotify action

223.3.5.2.8
Configurator action

223.3.5.3
Integration with an Implementation

233.4
Executing Test Cases

233.4.1
Test Case as a Sequence of Test Steps

233.4.2
Related Message Data and Message Templates

243.4.3
Related Configuration Data

26Part II: Test Suite Representation

264
Test Suite

264.1
Conformance vs. Interoperability Test Suite

264.2
Interoperability Test Suite

274.3
The Test Suite Document

283.3.2
Test Suite Documentation

284.3.1
The ConfigurationGroup

294.3.3
Test Driver Configuration for ebXML MS Conformance Testing

294.3.3.1
Multiple Configuration Declarations within the Test Suite

305
Test Requirements

305.1
Purpose and Structure

315.2
The Test Requirements Document

325.3
Specification Coverage

336
Test Profiles

336.1
The Test Profile Document

346.2
Relationships between Profiles, Requirements and Test Cases

357
Test Cases

357.1
Structure of a Test Case

377.1.1
Test Steps

377.1.2
Test Step Operations

377.1.3
The PutMessage Operation

387.1.4
The SetPayload Operation

397.1.5
The Dsign Operation

397.1.6
The Message Declaration

407.1.6.1
Interpreting the MIME portion of the Message Declaration

417.1.6.2
Interpreting the SOAP portion of the Message Declaration

427.1.6.3
Interpreting the SOAP Header Extension Element Declaration

437.1.6.4
Interpreting the ebXML MessageHeader Element Declaration

457.1.6.5
Interpreting the ebXML ErrorList Element Declaration

467.1.6.6
Interpreting the ebXML SyncReply Element Declaration

477.1.6.7
Interpreting the ebXML AckRequested Element Declaration

487.1.6.8
Interpreting the ebXML Acknowledgment Element Declaration

507.1.6.9
Interpreting the ebXML MessageOrder Element Declaration

517.1.6.10
Interpreting the SOAP Body Extension Element Declaration

527.1.6.11
Interpreting the ebXML Manifest Element Declaration

537.1.6.12
Interpreting the ebXML StatusRequest Element Declaration

547.1.6.13
Interpreting the ebXML StatusRequest Element Declaration

557.1.7
The GetMessage Operation

567.1.8
The TestPreCondition Operation

567.1.9
The TestConformanceCondition Operation

577.2
Run-Time Coverage of Test Requirements

588
Other Test Material

588.1.1
Schemas for Test Suite Material Construction

598.1.2
Test Framework Collaboration Protocol Profile Agreements (CPPA)

608.1.3
Schema for Test Message Payloads

608.1.4
Conformance Test Profile Documents

61Appendices

61Appendix A
(Normative) The ebXML Test Profile Schema

62Appendix B
(Normative) The ebXML Test Requirements Schema

64Appendix C (Normative) The ebXML Test Suite Schema

64(and supporting sub-schemas)

73Appendix D The “Basic” Testing CPPA

89Appendix E Terminology

94References

94Non-Normative References

95Contact Information

95Acknowledgments

95The OASIS ebXML-MS Technical Committee would like to thank …

96Disclaimer

96Copyright Statement

96Intellectual Property Rights Statement

Status of this Document

This document specifies ebXML Testing Procedures for the eBusiness community. Distribution of this document is limited to OASIS ebXML TC members only.

The document formatting is based on the Internet Society’s Standard RFC format converted to Microsoft Word 2000 format.

Note: Implementers of this specification should consult the OASIS Implementation, Interoperability and Conformance Technical Committee web site for current status and revisions to the specification
(http://www.oasis-open.org/committees/ebxml-iic/).

Specification
This is a DRAFT version of the specification.

This version

V0.2 – http://www.oasis-open.org/committees/ebxml-iic/documents/ebxmltestframework.doc
Errata to this version

None
Previous version

None
ebXML Participants

The authors wish to acknowledge the support of the members of the Messaging Services Team who contributed ideas, comments and text to this specification by the group’s discussion eMail list, on conference calls and during face-to-face meetings.

(main authors:)

	Jacques Durand
	Fujitsu Limited

	Mathew McKenzie
	XMLGlobal

	
	

	
	

	Michael Kass
	NIST

	Monica Martin
	DrakeCertivo

	Serm Kulvatunyou
	NIST

	
	

	
	

(contributors/ reviewers:)

<list of currently active IIC members>

	Eric VanLydegraf
	Kinzan

	Hatem El-Sebaaly
	IPNetSolutions

	Steve Yung
	Sun Microsystems

Introduction

This specification is one of a series of specifications realizing the vision of creating a single global electronic marketplace where enterprises of any size and in any geographical location can meet and conduct business with each other through the exchange of XML based messages – or messages which have an XML header and envelope, though their payload may be of any data format. The set of specifications enable a modular, yet complete electronic business framework.

This specification focuses on defining a test framework and procedures for ebXML conformance and interoperability tests. The Test Framework includes: functional design of software components, their interface to ebXML implementations, a language for defining a test suite, as a set of test cases which execute on the software components of the framework.

1 Summary of Contents of this Document

· This specification defines the testing procedures necessary to test both sending and receiving transactions in ebXML messaging. The testing procedure design and naming conventions follow the format specified in the Standard for Software Test Documentation IEEE Std 829-1998.

This specification is organized around the following topics:

Test Procedure Specification for Sending and Receiving ebXML

· Purpose– A description of the purpose of the procedure, with reference to the design specification

· Special Requirements – A specification of the prerequisite procedures necessary for execution

· Procedural Steps – A set of predefined step types used to describe the actions necessary to execute the procedure
Appendices to this specification cover the following:

· Appendix A Test Requirements Schema – This normative appendix contains XML schema definition [ebTESTREQ] for the ebXML Testing Requirements

· Appendix B Test Suite Schema – This normative appendix contains XML schema definition [ebTESTSUITE] for the ebXML Test Suites

1.1.1 Document Conventions

Terms in Italics are defined in the ebXML Glossary of Terms [ebGLOSS]. Terms listed in Bold Italics represent the element and/or attribute content. Terms listed in Courier font relate to MIME components. Notes are listed in Times New Roman font and are informative (non-normative). Attribute names begin with lowercase. Element names begin with Uppercase.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY and OPTIONAL, when they appear in this document, are to be interpreted as described in [RFC2119] as quoted here:

· MUST: This word, or the terms "REQUIRED" or "SHALL", means that the definition is an absolute requirement of the specification.

· MUST NOT: This phrase, or the phrase "SHALL NOT", means that the definition is an absolute prohibition of the specification.

· SHOULD: This word, or the adjective "RECOMMENDED", means that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications MUST be understood and carefully weighed before choosing a different course.

· SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that there may exist valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this label.

· MAY: This word, or the adjective "OPTIONAL", mean that an item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because the vendor feels that it enhances the product while another vendor may omit the same item. An implementation which does not include a particular option MUST be prepared to interoperate with another implementation which does include the option, though perhaps with reduced functionality. In the same vein an implementation which does include a particular option MUST be prepared to interoperate with another implementation which does not include the option (except, of course, for the feature the option provides).

1.1.2 Audience

The target audience for this specification is:

· The community of software developers who implement the ebXML Messagaging Service [ebMS], ebXML Collaboration-Protocol Profile Agreement [ebCPP], ebXML Registry Services Specification [ebREGREP] and ebXML Business Process Schema Specification (BPSS). Using the test framework described here will require some integration work with their ebXML implementation.

· The testing or verification authority, which will implement and deploy conformance or interoperability testing for ebXML products.

1.1.3 Caveats and Assumptions

It is assumed the reader has an understanding of communications protocols, MIME, XML, SOAP, SOAP Messages with Attachments and security technologies.

1.1.4 Related Documents

The following set of related specifications are developed independently of this specification as part of the ebXML initiative:

· ebXML Collaboration Protocol Profile and Agreement Specification (CPPA) – CPP defines one business partner's technical capabilities to engage in electronic business collaborations with other partners by exchanging electronic messages. A CPA documents the technical agreement between two (or more) partners to engage in electronic business collaboration.

· ebXML Messaging Service Specification (MS) – defines the messaging protocol and service for ebXML, which provide a secure and reliable method for exchanging electronic business transactions using the Internet.

· ebXML Registry Specification – defines how one party can discover and/or agree upon the information the party needs to know about another party prior to sending them a message that complies with this specification.

· ebXML Business Process Specification Schema (BPSS) – defines how two parties can cooperate through message-based collaborations, which follow particular message choreographies.

1.2 Minimal Requirements for Conformance

An implementation of the Test Framework specified in this document MUST satisfy ALL of the following conditions to be considered a conforming implementation:

· It supports all the mandatory syntax, features and behavior (as identified by the [RFC2119] key words MUST, MUST NOT, REQUIRED, SHALL and SHALL NOT) defined in Part 1.1.1 – Document Conventions.

· It supports all the mandatory syntax, features and behavior defined for each of the components of the Test Framework.

· It complies with the following interpretation of the keywords OPTIONAL and MAY: When these keywords apply to the behavior of the implementation, the implementation is free to support these behaviors or not, as meant in [RFC2119]. When these keywords apply to data and configuration material used by an implementation of the Test Framework, a conforming implementation of the Test Framework MUST be capable of processing these optional materials according to the described semantics.

Part I: The Test Framework Architecture

2 Principles and Methodology of Operations

2.1 General Objectives

The ebXML Test Framework is intended to support conformance and interoperability testing for ebXML specifications. It describes a test-bed architecture and its software components, how these can be combined to create a test harness for each type of ebXML testing. It also describes the test material to be processed by this architecture, a mark-up language and format for representing test requirements, and test suites (set of test cases).

The Test Framework described here has been designed to achieve the following objectives:

· The Test Framework is a foundation for testing all ebXML architectural components such as Messaging, Registry, BPSS, CPP/A, and Core Components.

· Test Suites and Test Cases that are related to these standards, can be defined in a formal manner (including test steps and verification conditions). They can be automatically processed by the framework, and their execution can easily be reproduced.

· The harnessing of an ebXML implementation (or possibly several, e.g. in case of interoperability) with the Test Framework requires a moderate effort. Typically, it requires some interfacing work specific to an implementation, in the case no standard interface (API) has been specified. For example, the Test Service (a component of the Test Framework) defines Actions that will need to be called by a particular MSH implementation. Besides this kind of interfacing, no application code needs to be written.

· Several test-bed configurations (or test harnesses) can be derived from the Test Framework, depending on the objectives of the testing. For example, MS conformance testing will include a particular combination (architecture) of some components of the Test Framework, while interoperability testing will require another set-up.

· Operating the Test Framework (or one of the test harnesses that can be derived from it) does not require significant training or knowledge of the framework internals. The tests should be easy to operate and to repeat with moderate effort or overhead, by users of the ebXML implementation and IT staff responsible for maintaining the B2B infrastructure, without expertise in testing activity.

· Users can define new Test Suites and Test Cases to be run on the framework. For this, they will script their tests using the proposed definition language or mark-up (XML-based) for test cases.

· A Test Suite (either for conformance or for interoperability), can be run entirely and validated from one component of the framework - the Test Driver. This means that all test outputs will be generated - and test conditions verified - by one component, even if the test harness involves several – possibly remote – components of the framework.

· The verification of each Test Case can be done by the Test Driver at run-time, as soon as the test case execution is completed. The outcome of the verification can be obtained immediately as the Test Suite has completed, and a verification report be generated.

2.2 General Methodology

The Test Framework is intended for the following mode of operation, when testing for conformance or for interoperability. In order for a testing process (or validation process) to be conform to this specification, the following phases need to be implemented:

· Phase 1: Test Plan (RECOMMENDED). An overall test plan is defined, which includes a validation program, the conditions of operations of the testing, general objectives, levels or profiles of conformance or of interoperability that are targeted, the requirements for candidate implementations.

· Phase 2: Test Requirements Design (MANDATORY). A list of Test Requirements (also called Test Assertions) is established for the tested specification, and for the profile/level of conformance/interoperability that is targeted. These Test Requirements should refer to the specification document. Jointly to this list, it is RECOMMENDED that a specification coverage be reported. <mm1: Need to differentiate the specification coverage according to the specification and the coverage as it relates to the actual test case and steps – partial, none. And full to start.> This document shows, for each specification feature, the Test Requirements items that address this feature. It also estimates to which degree the feature is validated by these Test Requirements items.

· Phase 3: Test Harness Design (MANDATORY). A Test Harness is defined for this particular test plan. It describes an architecture built from components of the Test Framework, along with operation instructions and conditions.

· Phase 4: Test Suite Design (MANDATORY). Each Test Requirement from Phase 2 is translated into one or more Test Cases. A Test Case is defined as a sequence of operations (Test Steps) over the Test Harness. A Each Test Case includes also: configuration material (CPA data), message material associated with each Test Step, test verification condition which defines criteria for passing this test. All this material, along with particular operation directives, is gathered as a Test Suite.

· Phase 5: Validation Conditions (RECOMMENDED). Validation criteria are defined for the profile/level being tested, and expressed as a general condition over the set of results from the verification report of each Test Case of the suite. These validation criteria define the certification or “badging” for this profile/level.

· Phase 6: Test Suite Execution (MANDATORY). The Test Suite is interpreted and executed by the test Driver component of the Test Harness.

3 The Test Framework Components

3.1 A Modular Architecture

The components of the framework are designed so that they can be combined in different configurations, or Test Harnesses.

<TOFIX>

<elaborate>

[mm1: Objectives and minimum requirements that the architecture should provide capability for or support

Re…..Component architecture

Extensibility

Provides the capability to interface to Message Service adapters (reference Section 2.3, figure 3) (extension of test services?)

Independent of architectural components (abstract framework)

Provide the capability to support the Test Service and Master Test Driver

…etc.]

</elaborate>

We describe here two components that are central to the Test Framework:

· The Test Driver, which interpret Test Case data and drives Test Case execution.

· The Test Service, which implements some test operations (actions) that can be triggered by messages. These operations support and automate the execution of Test Cases.

These components interface with the ebXML Message Service Handler (MSH), but are not restricted to testing an MSH implementation.

3.2 The Test Driver

The Test Driver is the component that drives the execution of each step of a Test Case. Depending on the test harness, the Test Driver may drive the Test Case by interacting with other components in connection mode, i.e. by directly generating ebXML messages - using a transport adapter, or in service mode, by invoking actions in the Test Service, which is another component of the framework.

3.2.1 Functions

The primary function of the Test Driver is to parse and interpret the Test Case definitions that are part of a Test Suite, as described in the Test Framework mark-up language. Even when these test cases involve several components of the Test Framework, the interpretation of the Test Cases is under control of the Test Driver. This interpretation leads in turn to the following functions:

· Controls the execution and workflow of the steps of a test case. Some steps may be executed by other components, but their initiation is under control of the Test Driver.

· Generates requests and receives responses (in the form of message data).

· Assembles request data (e.g. for sending a message), using message template and message data defined in the test steps of a test case. An embedded transport adapter will transform such a request into a well-formed message (at transport level, e.g. HTTP). A Service adapter will transform such a request into a Service/Action invocation that will result into a sending request to the MSH API.

· Send messages (either on the wire, or by using Test Service actions) .

· Receives messages (either on the wire, or by notification from Test Service actions)

· Tracks and correlates the sequence of message exchanges (choreography) which occur during the execution of the test steps of a test case. Such a sequence is called an “internal trace”, and contains enough information to verify the test condition. This internal trace could for example be implemented as a stateful session.

· Execute test verifications on the received message, possibly over several messages (sent or received) involved in the test case, as remembered in the test trace.

· Generate a test report, stating the degree of success of the test, and reporting detail of failures.

The design that supports these functions is illustrated in Figure 1.

[image: image1.png]Test Driver

Send
interface I Requesr | Tost
-« cquest
Message -« Case
HTTP output Tnterpreter
or SMTP Internal n
or ... T Workflow
or Test Servige Ofthe +Correlation Test Cases
“Verification
Test Case
“Reporting
e Recenti
Message Receive I s
input interface
Test Reports
& Trace

Fig 1. The Test Driver: Functions and Data Flows

3.2.2 Using the Test Driver in Connection Mode

The Test Driver MUST be able to control the inputs and outputs of an MSH at transport level. This can be achieved by using an embedded transport adapter. This adapter has transport knowledge, and can format message material into the right transport envelope. It can also handle a connection with the candidate MSH.

When used in connection mode, the Test Driver is acting as a transport end-point that can receive or send messages with an envelope consistent with this transport protocol (e.g. HTTP or SMTP). Figure 2 illustrates how the Test Driver operates in connection mode.

[image: image2.png]Test Case references

 —
 —
document | ——]
 —

QO
Message
MSH | input

MeSsage

output

Test Reports +
Trace

Fig 2. The Test Driver used in connection mode

W Test Case Data

(Configuration
sets (MSH, CPA)

Message
data

Message
templates

3.2.3 Using the Test Driver in Service Mode

In this configuration, the Test Driver directly interacts with the Service/Actions of the Test Service component (see later section), typically without involving the transport layer, e.g. by invoking these action via a software interface. This allows for controlling the test cases execution from the application layer (as opposed to the transport layer). Such a configuration is appropriate when doing interoperability testing - for example between two MSH implementations – and in particular, in situations where the transport layer should not be tampered with. The interactions with the Test Service will consist of:

· Sending: One action of the Test Service, the “Initiator”, serves as a channel to send requests to the MSH it has been interfaced with. This action – normally triggered by received messages – also provides an interface at application level. When invoked by a call that contains message data, the action generates a sending request to the MSH API for this message.

· Receiving: As all actions of the Test Service can participate in the execution of a Test Case (i.e. of its Test Steps), the Test Driver needs to be aware of their invocation by incoming messages. Each of these actions will notify the Test Driver through its “Receive” interface, passing received message data, as well as response data. This way, the Test Driver will build an internal trace (or state) for the Test Case execution, and will be able to verify the test based on this data.

The Test Driver MUST support the above communication operations with the Test Service. This may be achieved by using an embedded Service Adapter to bridge the sending and receiving functions of the Test Driver, with the Service/Action calls of the Test Service. Figure 3 illustrates how the Test Driver operates with a Service Adapter.

[image: image3.png]MSH-specific APT

Test Case references

 —
 —
document | ——]
 —

Test
Service

actions

MSH

Adapter

Test Reports +
Trace

Fig 3. The Test Driver used in Service Mode

W Test Case Data

(Configuration
sets (MSH, CPA)

Message
data

Message
Templates
(header, envelope)

<mm1: May need to revise this briefly with our focus on or addition of executable test data and profiles rather than template based model.>
This design allows for a minimal exposure of the MSH-specific API, to the components of the Test Framework. The integration code that needs to be written for connecting the MSH implementation is then restricted to an interface with the Service/Actions defined by the framework. Neither the Test Driver, nor the Service Adapter, need to be aware of the MSH-specific interface.

3.3 The Test Service

3.3.1 Functions and Interactions

The Test Service defines a set of Actions that are useful for executing Test Cases. The Test Service receives message content and error notifications from the MSH, and also generates requests to the MSH, which normally translate into messages being sent out. The Test Actions are predefined, and part of the Test Framework (i.e. not user-written). Test Service and Actions will map to the Service and Action header attributes of ebXML messages generated during the testing. Figure 4 shows the details of the Test Service and its interfaces.

[image: image4.png]Predefined
Test Service
Actions

e ||

MSH-specific adapter
+sending requests
~adm1n/:onﬁgurauon

MSH-specific APT” t

Test Service

Control interface

Direct invocation

Trace interface

NS

!

ebXML
MSH

Message

> Test Trace
(optional)

MSH-specific adapter
1, (imvokes Test Actions)

MSHrspe:xﬁ:
callback interface

*i O

input

>

output

Fig 4. The Test Service and its Interfaces 4

The functions of the Test Service are:

· Process received messages in the Action code they are intended to. These specialized Test Actions may perform diverse functions, which are enumerated below:

· Notify the Test Driver of incoming messages, in case it is interfaced with a Test Driver. In such case, the Test Service is said to be deployed in driver mode.

· Perform some test operations, e.g. compare a received message payload with a reference payload.

· Send back a response to the MSH, which will either simply acknowledge, or report on any test condition that may have been checked by the Action.

· Optionally, generate a trace of its operations, in order to help trouble shooting, or for reporting.

Although the Test Service simulates an application, it is part of the Test Framework, and does not vary from one candidate MSH to the other. However, in order to connect to the Test Service, a candidate MSH developer team will have to write wrapper code to the Test Service/Actions. This proprietary code is expected to require a minor effort, but is necessary as the API and callback interfaces of each MSH is not specified in the standard, and is implementation-dependent.

The Test Service name is: ebXML_IIC_Testing.

3.3.2 Requestor and Responder Roles

With respect to a particular instance of Test Service, two roles are identified:

· Requestor: The requestor party is the party that generates calls to the Test Service. The requestor usually involves a Test Driver in order to generate message material.

· Responder: The responder party is the party represented by the Test Service – including the associated MSH. Typically, the actions of the Test Service will respond in some way to the requestor.

There are two ways for a Test Driver to invoke a Test Service as illustrated in Figure 5, and they correspond to two different set-ups of the Requestor party.

In the upper part of the figure, a Test Driver directly generates message material at transport level. This is appropriate for conformance tests, where the message envelope itself may require some manipulation for some test cases.

In the lower part, the Test Driver uses another local instance of the (same) Test Service in order to invoke the remote Test Service. This is appropriate when message material can be controlled at a more abstract level (transport-independent), as in interoperability tests, using MSH implementations on each side. In that case, this additional Test Service instance will be part of the Requestor party, as it supports the generation of messages to the remote (Responder) instance.

[image: image5.png]Invoking a Remote Test Service via a Transport Adapter:

Responder Party Requestor Party

Test Service

Wire

Action Y Adapter

Invoking a Remote Test Service via a Local Test Service:

Responder Party Requestor Party

Test Service

Service

Action Y’ & &

Action Z
»

Fig 5. Two modes of control of a remote Test Service

3.3.3 Modes of Operation of the Test Service

The Test Service can operate in two modes:

· Driver mode: in that mode, the actions of the Test Service instance, when invoked, will send a notification to the Receive interface. The Test Driver, which implements this interface, can then be notified of the invocation. This is the appropriate mode of operation when this Test Service instance is associated with the Test Driver (e.g. in Requestor party of second alternative in Figure 5) in order to drive the test cases.

· Non-driver mode: in that mode, the actions of the Test Service instance, when invoked, will NOT send a notification to the Receive interface. Instead, the action will send a response message to the “response URL”. The response URL is usually set to be the requestor URL. This is the appropriate mode of operation when this Test Service instance is remote to the Test Driver controlling the Test Case execution (e.g. in Responder party of Figure 5). Note: response message sending will require an adapter to the local MSH.

The Test Service is stateless, except for its mode of operation, which can be set by a special action call. By default, the mode is non-driver.

3.3.4 States of the Test Service

The Test Service has only two parameters that can be modified by action invocation (and therefore represent its state):

· Operation mode (driver or non-driver)

· Response URL (for response messages)

In addition, a Test Service instance is identified by an ID that will be reported in some response messages.

Except for these parameters, the Test Service is stateless.

3.3.5 Test Service Actions

The actions described here are standard to the Test Service, and should suffice in supporting most Test Cases.

3.3.5.1 Common Functions

Some functions are common to several actions, in addition to the specific functions they fulfill. These common functions are:

· Generate a response message. This function is usually enabled when operating the Test Service in non-driver mode. Response messages also specify a Service/Action, as they are usually intended to another Test Service instance associated with the requestor party. In case the test harness does not include a Test Service on requestor side, the Action field is irrelevant. The message will then be captured and analyzed in other ways (e.g. directly by a Test Driver, via an adapter to the transport protocol, as in MS conformance testing).

· Notify the Test Driver. This can only be done when the Test Service is coupled locally with a Test Driver, (see second part of Figure 5 in previous section). In that configuration, the Test Service is in driver mode. In such a case, the Receive interface of the Test Driver is invoked, which will add an item to the internal trace of the Test Case being executed (see Figure 1.)

3.3.5.2 Test Service Actions

The standard test actions are:

3.3.5.2.1 Mute action

Description: This is a “dummy” action, which does not generate any response message back. This action will report invocations and their content to the local Test Driver (if the Test Service is coupled with a Test Driver).

In driver mode: will notify the associated Test Driver, with received header and payload(s) material. The notification will report the action name (“mute”) and the instance ID of the Test Service.

3.3.5.2.2 Dummy action

Description: This is a “dummy” action, used by messages that do not need any specific response, and the sending of which only needs to cause some side-effect in the MSH, like generating an error. On invocation, this action will however generate a pre-canned response message back (no payload), referring to the previous MessageID (for correlation) in the RefToMessageId header attribute.

Destination: the Mute action of the requestor’s Test Service. This notice serves as proof that the message has reached the responder’s Test Service, although no assumption can be made on the integrity of its content.

In driver mode: will notify the associated Test Driver, with received header and payload(s) material. The notification will report the action name (“dummy”) and the instance ID of the Test Service.

3.3.5.2.3 Reflector (or Responder) action
Description: On invocation, this action generates a response to a received message, by using the same message material, with minimal changes in the header:

· Swapping of the to/from parties so that the “to” is now the initial requestor.

· Setting RefToMessageId to the ID of the received message.

· All other header elements (except for time stamps) are unchanged. The conversation ID remains unchanged, as well as the CPAId. The payload is the same as in the received message, i.e. same attachment(s).

Destination: the Mute action of the requestor’s Test Service. This action acts somehow as a reflector for the requesting party.

In driver mode: notifies the associated Test Driver, with received header and payload(s) material. The notification will report the action name (“reflector”) and the instance ID of the Test Service.

3.3.5.2.4 Initiator action

Description: On invocation, this action generates a new message, totally unrelated to the received message. The new message material (payload and header) is provided in a pre-convened way in the payload of the received message. The header of the new message can be anything that is specified. For example, this action would be used to generate a "first" message of a new conversation, different from the conversation ID specified in the invoking message. Note: unlike in the Reflector action, MSH-controlled header attributes will not be determined by the invoking message header (messageID, RefToMessageId, timestamps...). So if the response needs to refer to the previous MessageID (for correlation), the RefToMessageId must be explicitly pre-set in the message material.

Destination: any service/action of the sender, specified with message material (by default: the Mute action of the requestor’s Test Service.)

In driver mode: in addition to generating the message, notifies the associated Test Driver, with header and payload(s) material. The notification will report the action name (“initiator”) and the instance ID of the Test Service.

3.3.5.2.5 PayloadVerify action

Description: On invocation, this action will compare the payload(s) of the received message, with reference payloads (files) pre-installed on the Test Service host. This action will test the service contract (application – MSH), as errors may originate either on the wire, or at every level of message processing in the MSH until message data is passed to the application. The action responds with a notification message to the requestor, about the outcome of the comparison. The previous MessageID is reported (for correlation) in the RefToMessageId header attribute of the response. The payload will contain an XML document of the form: <testservice><payload>…</ payload >< /testservice>. The payload element may have values: “validated” or “not-validated”. Destination: the Mute action of the requestor’s Test Service.

In driver mode: will notify the associated Test Driver, with received header and payload(s) material. The notification will report the action name (“payloadvalidate”) and the instance ID of the Test Service.

3.3.5.2.6 ErrorAppNotify action

Description: This action will capture specific error notifications from the MSH to its using application. It is not triggered by reception of an error message, but it is directly triggered by the internal error module of the MSH local to this Test Service. If the MSH implementation does not support such direct notification of the application (e.g. instead, it writes such notifications to a log), then an adapter needs to be written to read this log and invoke this action whenever such an error is notified. Such errors fall into two categories:

· MSH errors that need to be directly communicated to its application – and not to any remote party, e.g. failure to send a message (no Acks received after maximum retries).

· In case regular errors are generated by an MSH with a severity level set to “Error” – as opposed to “Warning” – the MSH is supposed to (SHOULD) also notify its application. The ErrorAppNotify action is intended to support both types of notifications. The action will make such notifications visible to the other party (typically the driver party), by generating a “report” message back to the requestor, which can check and report on the notified error.

Destination: the Mute action of the requestor’s Test Service.

In driver mode: will notify an error to the associated Test Driver.

3.3.5.2.7 ErrorURLNotify action

Description: This action will capture error messages, assuming that an adapter has been written for invoking this action. The adapter must have same URI as the ErrorURI specified in the CPA. The adapter will pass the entire message as is (in its ebXML envelope) to the action. The action extracts the ErrorCode and Severity elements, and sends then a notification message back to the originator. The action will make such notifications visible to the other party (typically the driver party), by generating a “report” message back to the requestor.

Destination: the Mute action of the requestor’s Test Service.

In driver mode: only notifies the associated Test Driver, with received header material (no report message generated). The notification will report the action name (“ErrorURLNotify”) and the instance ID of the Test Service.

3.3.5.2.8 Configurator action

Description: This action is called to either dynamically (re)configure the receiver party, or to verify that the receiver party has the right configuration set-up. Configuration may concern:

· MSH internals assumed by a test case (if applicable),

· CPA set-up assumed by a test case,

· Test Service parameters (e.g. ID, response-URL, mode of operation). In the case of CPA, the action can verify that the collaboration agreement for a conversation related to a test case or a set of test cases, is available. If the payload only contains a CPAId, this action will verify that the corresponding CPA is accessible. If the payload contains a CPA document, this CPA will be added to the available CPAs that the MSH can use. One way this can be done is by calling a configuration function of the MSH (via adapter code to its API). A response is generated back to the requestor. The previous MessageID is reported (for correlation) in the RefToMessageId header attribute of the response. When used to set some internal state of the Test Service, the message payload must contain an XML document of the form: <testservice><mode>…</mode><responseURL>…</responseURL>< /testservice>. The mode element can have values: “driver” or “non-driver”. The optional responseURL element specified the URL to which response messages must be sent. This action will be used in case the Test Service needs to be remotely and dynamically configured. For example, several remote Test Service instances may be started, and which one belongs to the driver party may be decided afterward. Or, the roles of two Test Service instances may need to be switched during an interoperability test, yet the switching be controlled from the same location.

Destination of response: the Mute action of the requestor’s Test Service.

In driver mode: notifies the associated Test Driver, e.g. with received CPAId. The notification will report the action name (“configurator”) and the instance ID of the Test Service.

Note: As previously mentioned, these actions are predefined and part of the test framework, and will require some integration code with the MSH implementation, in form of three adapters, to be provided by the MSH development (or user) team. These adapters are:

· Reception adapter, which is specific to the MSH call-back interface. This code allows for invocation of the actions of the Test Service, on reception of a message.

· MSH control adapter, which will be invoked by some Test Service actions, and will invoke in turn the MSH-specific Message Service Interface (or API). Examples of such invocations are for sending messages (e.g. by actions which send response messages), and MSH configuration changes (done by the Configurator action).

· Error URL adapter, which is actually independent from the candidate MSH. This adapter will catch error messages, and invoke the ErrorURLNotify action of the Test Service which should normally be associated with the Test Driver (driver mode).

3.3.5.3 Integration with an Implementation

As mentioned before, the actions above are predefined and part of the test framework, and will require some integration code with the MSH implementation, in form of three adapters, to be provided by the MSH development (or user) team. These adapters are:

(1) Reception adapter, which is specific to the MSH call-back interface. This code allows for invocation of the actions of the Test Service, on reception of a message.

(2) MSH control adapter, which will be invoked by some Test Service actions, and will invoke in turn the MSH-specific Message Service Interface (or API). Examples of such invocations are for sending messages (e.g. by actions which send response messages), and MSH configuration changes (done by the Configurator action).

(3) Error URL adapter, which is actually independent from the candidate MSH. This adapter will catch error messages, and invoke the ErrorURLNotify action of the Test Service which should normally be associated with the Test Driver (driver mode).

3.4 Executing Test Cases

A more detailed description of the Test Case and Test Step representation is provided in section 7.

A Test Suite contains a sequence of Test Cases. Each Test Case is intended to verify that an implementation fulfills a requirement item (or a set of items) of the specification.

3.4.1 Test Case as a Sequence of Test Steps

A test case is a sequence of Test Steps. A Test Step is an atomic operation that is performed by one of the components of the Test Framework. A Test Case instance is an execution of a particular Test Case, identified by some specific message attribute values. For example, two instances of the same Test Case will be distinguished by distinct MessageID values in the generated messages. An example of a sequence of Test Steps associated with an MS Conformance Test Case is:

Step 1: Test driver sends a sample message to the Reflector action of the Test Service. Message header data is obtained from message header template XYZ, and message payload from ABC file.

Step 2: Test driver receives the response message and adds it to the stored sequence for this Test Case instance (correlation with Step 3 is done based on the RefToMessageID attribute, which should be identical to the MessageId of Step 3.)

Step 3: Test driver verifies the test condition on response message, for example that the SOAP envelope and extensions are well-formed.

3.4.2 Related Message Data and Message Templates

Some Test Steps will require message data. This message data will be identified by a message envelope template, which can be modified for this particular Test Case (e.g. change in references, change in element value). The message elements that can be referenced by a Test Case are:

<mm1: Revise to new expanded model that may or may not use template?>
· Message header data: it is represented in form of message header templates, that are XML documents analogous to a regular message header. The template is a list of template elements, each element being a pair < path (XMLPath) inside the header, value>. A message header template can be modified, i.e. either extended by adding new template elements, or modified by overriding elements of the template with new ones with different values, or yet modified by removing template elements. Message header templates can be converted into regular, conforming ebXML message header documents, or can be passed as arguments of a request to an MSH API adapter, which will convert it into a proprietary API call.

· Message payload data: it is represented in form of payload files, that can hold any kind of MIME content (XML or not). The content of a payload file will be inserted as a MIME part in a message.

· Message envelope template: it is represented as a MIME envelope template. Such a template specifies MIME envelope and headers. It also references one message header template, and zero or more payload files.<mm1: Same comment as above.>
3.4.3 Related Configuration Data

Test Cases will be executed under a pre-defined agreement, as defined in CPA [ebXML CPPA]. This agreement will configure the ebXML implementations involved in the testing, or the collaborations that execute on these implementations. Each Test Case will therefore reference a Test Configuration document.

· Test Configuration document: it contains (1) a CPA (or CPA-like) document, (2) configuration data for the ebXML implementation(s) involved, expressed at an abstract level and expected to be general enough to most implementations, even if not specified.

Figure 6 illustrates how a Test Case references message data.

[image: image6.png]Test
Steps

Test Case
XYz

init

L 7 references

references
—
references

[~
An XML document

Test Cases
Database

ST Ty
e

)

=]
=

M= e
U -
&7

pan

ML and data
artifacts

| Test
Cases

Test configuration
sets
(MSH, CPA-level)

| Message
payloads

Message MIME
envelope templates
and b3QML header
templates

Fig 6. Test Case Document and Database

Part II: Test Suite Representation

4 Test Suite

4.1 Conformance vs. Interoperability Test Suite

We distinguish two types of test suites, which share similar document schemas and architecture components, but serve different purposes:

· Conformance Test Suite. The objective is to verify the adherence or non-adherence of a candidate implementation to the target specification. The test harness and test cases will be typically designed around a single (candidate) implementation. The suite material emphasizes the target specification, by including a comprehensive set of Test Requirements, as well as a clear mapping of these to the original specification (e.g. in form of an annotated version of this specification).

· Interoperability Test Suite. The objective is to verify that two implementations (or more) of the same specification, or that an implementation and its operational environment, can interoperate according to an agreement or contract (which is compliant with the specification, but usually restricts further the requirements). These implementations are assumed to be conforming (i.e. have passed conformance tests or have achieved the level of function of such tests), so the reference to the specification is not as important as in conformance. Such a test suite typically involves two or more implementations of the target specification. The test harness and test cases will be designed in order to drive and monitor these implementations.

A conformance test suite is composed of:

· One or more Test Profile documents (XML). Such documents represent the level or profile of conformance to the specification, as verified by this Test Suite.

· Design of a Test Harness for the target implementation, that is based on components of the ebXML Test Framework.

· A Test Requirements document. This document contains a list of conformance test assertions that are associated with the specification to be tested.

· An annotation of the target specification, that indicates the degree of coverage for each specification feature or section, that this set of Test Requirements provides.

· A Test Cases document. This document implements the Test Requirements, described using the Test Framework material (XML mark-up, etc.)

4.2 Interoperability Test Suite

An Interoperability Test Suite is composed of:

· One or more Test Profile documents (XML). Such documents represent the level or profile of interoperability, as verified by this Test Suite. <mm1: This is actually a specific set of key functions executed in the test to confirm successful interaction between endpoints (and by default to the specification) and serves as somewhat a boundary of the capability of the endpoint. Should we accommodate this in the definition – I think it is more broad than articulated here.>
· Design of a Test Harness for two or more interoperating implementations of the specification, that is based on components of the ebXML Test Framework.

· A Test Requirements document. This document contains a list of test assertions associated with this profile (or level) of interoperability.

· A Test Cases document. This document implements the Test Requirements, described using the Test Framework material (XML mark-up, etc.)

4.3 The Test Suite Document

The Test Suite XML document is a collection of configuration data, documentation and executable Test Cases.

· Configuration data provide basic Test Driver parameters used to modify the configuration of the Test Driver to accurately perform and evaluate test results. It also contains configuration data for the candidate ebXML implementation(s). Typically, such configuration data is provided as a subset of CPA document. <mm1: Suggest you say a subset of a configuration document (because later ebXML may accommodate more than the CPA and this also does include BPSS or another business process choreography definition referenced in the generic configuration document). This is a global comment – perhaps this could be a simple statement early in this section that acknowledges in the future this may include other than the CPA or BPSS, as bounded by the ebXML architecture. Suggestions?>
· Metadata provides author information, functional description and versioning and other general information about the Test Suite.

· Test Cases are a collection of discrete Test Steps. Each Test Step can execute any number of test Operations (including sending, receiving, and examining returned messages). An ebXML MS Test Suite document MUST validate against the ebXMLTestSuite.xsd file found in Appendix C.

[image: image7.png]T
S

o

Figure 4 – Graphic representation of basic view of ebXMLTestSuite.xsd schema

Definition of Content
	Name
	Description

	TestSuite
	Container for all configuration, documentation and tests

	Metadata
	Container for general documentation of the entire Test Suite

	cfg:ConfigurationGroup
	Container for “bootstrap” configuration of the Test Driver

	Message
	Payload messages for inclusion in a Test Case
<mm1: Suggest we differentiate the message envelope from the payload – there also could be a message without a payload (allowed in ebMS).>

	TestCase
	Container for an individual Test Case

3.3.2
Test Suite Documentation

Documentation for the ebXML MS Test Suite is done through the Metadata element. It is a container element for general documentation.

[image: image8.jpg]RETTT

Figure 5 – Graphic representation of expanded view of the Metadata element

Definition of Content
	Name
	Description

	Description
	General description of the Test Suite

	SourceControlInfo
	Self descriptive

	Maintainer
	Name of person(s) maintaining the Test Suite

	Location
	URL or filename of this test suite

	PublishDate
	Date of publication

	Status
	Status of this test suite

4.3.1 The ConfigurationGroup

The ConfigurationGroup typically contains configuration data for:

· The candidate implementation. For example, a Message Service Handler. Such configuration information is provided in form of a set of CPA documents – or of partial CPA – associated with CPAId values that can be referred to in test cases material.

· the Test Driver. This includes necessary information it needs to modify its “base configuration” before executing a Test Case. Because the Test Driver is not a true MSH, ConfigurationItem names and values are defined for test execution purposes only, not to emulate the behavior of an MSH.

[image: image9.png]

Figure 6 – Graphic representation of expanded view of the ConfigurationGroup element

Definition of Content
	Name
	Description

	ConfigurationGroup
	Container for any number of ConfigurationItems

	cpaId
	Unique identifier matching one of the testing CPA’s in this specification

	id
	Unique identifier for the ConfigurationGroup

	ConfigurationItem
	Individual name/value pair used by the Test Driver for configuration

	id
	Unique identifier for the ConfigurationItem

	type
	Short descriptor of the type of item

	name
	Short name for the ConfigurationItem

	value
	Value of the ConfigurationItem

	Namespace
	Container for namespace information for the ConfigurationGroup

	prefix
	Namespace prefix for all ConfigurationItems

	value
	Namespace value for all ConfigurationItems

4.3.2 Test Driver Configuration for ebXML MS Conformance Testing

Initial configuration of the Test Driver is done through a “base” Configuration Group of name/value pairs. By default, the Test Suite document MUST have a Configuration Group with an id of “base”, and containing one Configuration Item with a name of “cpa” and a value of “base” and a type of “constant”.

4.3.2.1 Multiple Configuration Declarations within the Test Suite

It is possible to dynamically modify the configuration of the Test Driver through the course of execution of the Test Suite. Configuration can be modified at the Test Suite, Test Case and Test Step levels through the introduction of a new Configuration Group or the addition/modification of an individual Configuration Item for the current Configuration Group.

Configuration Groups are hierarchically defined, with the “base” Configuration Group defined at the highest level in the testing tree. Modifications/additions at the Test Case or Test Level are possible through the introduction of Configuration Item(s). Wholesale replacement of the current Configuration Group is possible by the declaration of a new Configuration Group. The scope of the configuration change is hierarchical, and exists only for the definition of the current Test Suite, Case or Step. Upon completion, of that test component, configuration reverts to that previously defined at the higher level.

[image: image10.wmf]

1

Figure 7 – Graphic representation of configuration at Test Suite, Test Case or Test Step level
5 Test Requirements

5.1 Purpose and Structure

The next step in designing a test suite, is to define Test Requirements. This material, when used in a conformance testing context, is also called Test Assertions in NIST and OASIS terminology (see definition in glossary in Appendix).

When used for conformance testing, each Test Requirement defines a test item to be performed, that covers a particular requirement of the target specification. It rewords the specification element in a “testable form”, closer to the final corresponding Test Case, but unlike the latter, independently from the test harness specifics. In the ebXML Test Framework, a Test Requirement will be made of three parts:

· Pre-condition. The pre-condition defines the context or situation under which this test item applies. It should help a reader understand in which case the corresponding specification requirement applies. In order to verify this Test Requirement, the test harness will attempt to create such a situation, or at the very least to identify when it occurs. If for some reason the pre-condition is not satisfied when doing testing, then it does not mean that the outcome of this test is negative – only that the situation in which it applies did not occur. In that case, the corresponding specification requirement could simply not be verified and validated. <mm1: Should we acknowledge that the test requirement (via the assertion) may not be executed as well? Verified and validated correct?>
· Assertion. The assertion actually defines the specification requirement, as usually qualified by a MUST or SHALL keyword. In the test harness, the verification of an assertion will be attempted only if the pre-condition is itself satisfied. When doing testing, if the assertion cannot be verified while the pre-condition was, then the outcome of this test item is negative.

· Degree. Qualifies the degree of requirement in the specification, as indicated by such keywords as RECOMMENDED, SHOULD, MUST, MAY. Typically, we identify three degrees: (1) “required” (MUST, SHALL), (2) “recommended” ([HIGHLY] RECOMMENDED, SHOULD), (3) “optional” (MAY, OPTIONAL). Any degree lower than “required” qualifies a Test Requirement that is not mandatory for Conformance testing. Yet, lower requirement degrees may be critical to interoperability tests.<mm1: In this document, we should acknowledge that the optional functions would have to be agreed upon by the endpoints in an interoperability test and are critical to the business function of endpoints, and therefore, important in an interoperability test.>
5.2 The Test Requirements Document

The Test Requirements XML document provides metadata describing the Testing Requirements, their location in the specification, and their requirement type (REQUIRED, HIGHLY RECOMMENDED, RECOMMENDED, or OPTIONAL) . A Test Profile driver file MUST validate against the ebXMLTestRequirements.xsd file found in Appendix XX The ebXML MS Conformance Test Requirements file can be found in Appendix XX

[image: image11.png]=== mom:::.‘a.n..,ny.,ga]

¥ Teswequirement gl 5, [SemanticRequivement |

e
ol

@ requirementiype gl

Figure 3 – Graphic representation of ebXMLTestRequirements.xsd schema

Definition of Content
	Name
	Description

	Requirements
	Container for all test requirements

	MetaData
	Container for requirements metadata, including Description, Version, Maintainer, Location, Publish Date and Status

	Test Requirement
	Container for all info for a single test requirement

	description
	Description of profile

	id
	Unique identifier for each Test Requirement

	name
	Name of test requirement

	specRef
	Pointer to location in specification where requirement is found

	functionalType
	Generic classification of function to be tested

	SemanticRequirement
	Sub-requirement for the main Test Requirement <mm1: Isn’t this the actual testable requirement that is relevant in test execution? I am a bit concerned about calling this a semantic requirement as it may infer a higher level process to a business content reader. I would steer away from this word. Perhaps consider ‘functional’.>

	id
	Unique ID for the sub-requirement

	name
	Short descriptor of Semantic Requirement

	specRef
	Pointer to location in specification where sub-requirement is found

	Clause
	Grouping element for Condition expression(s)

	Condition
	Textual description of test precondition

	And/Or
	Union/Intersection operators

	Assertion
	Axiom expressing expected behavior of an MSH implementation under conditions specified by any Clause

	requirementType
	Enumerated Assertion descriptor (REQUIRED, OPTIONAL…etc.)

5.3 Specification Coverage

A Test Requirement is a different way to express a requirement of the target specification. The reference to the specification is included in each Test Requirement, and is typically one or more section numbers. There is no one-to-one mapping between sections of a specification document and the Test Requirement items listed in the test material for this specification:

· A specification section may map to several Test Requirements.

· A Test Requirement item may also cover (partially or not) more than one section or sub-section.

A Test Requirement item may then cover a subset of the requirements that are specified in a section.

For these reasons, it is important to determine to which degree the requirements of each section of a specification, are fully satisfied by the set of Test Requirements listed in the test suite document. This is done by establishing the specification coverage by the Test Requirements.

The specification coverage is simply a list of all sections and subsections of a specification document, each annotated with:

· A coverage qualifier.

· A list of Test Requirements that map to this section.

The coverage qualifier may have values:

· Full: The requirements included in the specification document section are fully covered by the associated set of Test Requirements. This means that if each one of these Test Requirements is satisfied by an implementation, then the requirements of the corresponding document section are fulfilled. When the tests requirements are about conformance: The associated set of test requirement(s) are a clear indicator of conformance to the specification item, i.e. if a candidate implementation passes a test case that implements this test requirement(s) in a verifiable manner, there is a strong indication that it will behave similarly in all situations identified by the spec item.<mm1: Full and partial should make a reference to the scope or depth of the test. As we discussed before, we have to act with reasonableness in the completeness of our test execution to determine if the requirements are fulfilled satisfactorily. I believe the partial was used because there could be, at times, an infinite number of perturbations that would be required to satisfactorily determine that we had provided full degree or coverage. I am not certain, looking at the two sections where this comment falls. Pend>
· None: This section of the specification is not covered at all. Either there is no associated set of Test Requirements, or it is known that the test requirements cannot be tested even partially, at least with the Test Framework on which the test suite is to be implemented, and under the test conditions that are defined.
· Partial: The requirements included in this document section are only partially covered by the associated (set of) Test Requirement(s). This means that if each one of these Test Requirements is satisfied by an implementation, then it cannot be asserted that all the requirements of the corresponding document section are fulfilled: only a subset of all situations identified by the specification item are addressed. Reasons may be: <mm1: See full.>
· (1) the pre-condition(s) of the test requirement(s) ignores on purpose a subset of situations, that cannot be reasonably tested under the Test Framework.

· (2) the occurrence of situations that match the pre-condition of a Test Requirement is known to be under control of the implementation (e.g. implementation-dependent) or of external factors, and out of the control of the testbed. (see contingent run-time coverage definition, Section 7). <mm1: Good this does gives some boundary – see my comments above to determine if we should expand on this a bit more.>
When the tests requirements are about conformance: The associated set of test requirement(s) are a weak indicator of conformance to the specification item. A negative test result will indicate non-conformance of the implementation.

6 Test Profiles

6.1 The Test Profile Document

The Test Profile document points to a subset of test requirements (in the Test Requirements document), that are relevant to the profile - either conformance, or interoperability profile - to be tested.

The document will drives the Test Harness by providing the Test Driver with a list of unique reference IDs of Test Requirements for a particular Test Profile. The Test Driver reads this document, and executes all Test Cases (located in another document) that contain a reference to each of the test requirements. A Test Profile driver file MUST validate against the ebXMLTestProfile.xsd file found in Appendix A. A list of Test Profile example files can be found in Appendix D.

[image: image12.jpg][¥ TerRequirementkeligH o[¥ Cor

Figure 2 – Graphic representation of ebXMLTestProfile.xsd schema

Definition of Content
	Name
	Description

	TestProfile
	Container for all references to test requirements

	requirementsLocation
	Filename or URL of test requirements XML file

	name
	Name of profile

	description
	Description of profile

	Dependency
	Prerequisite profile reference container

	name
	Name of the required prerequisite profile

	profileRef
	Identifier of prerequisite profile to be loaded by Test Driver

	TestRequirementRef
	 Test Requirement reference container

	id
	Identifier of Test Requirement

	requirementType
	Enumerated Requirement descriptor (REQUIRED, OPTIONAL…etc.)

	Comment
	Profile author’s comment for a particular requirement

6.2 Relationships between Profiles, Requirements and Test Cases

Creation of a testing profile requires selection of a group of Test Requirement references that fulfill a particular testing profile. For example, to create a testing profile for a Core Profile would require the creation of an XML document referencing Test Requirements 1,2,3,4,5 and 8.

The Test Driver would read this list, and select (from the Test Requirements Document) the corresponding Test Requirements (and their “sub” Semantic Requirements). The Test Driver then searches the Test Suite document to find all Test Cases that “point to” the selected Semantic Requirements. If more than one Test Case is necessary to satisfactorily test a single Semantic Requirement (as is the case for Semantic Requirement #1)there may be more than one Test Case pointing to it. The Test Driver would then execute Test Cases #1, #2 and #3 in order to fully test an ebXML application against Semantic Requirement #1.

The only test material outside of the three documents below that MAY require an external file reference from within a Test Case are large, or non-XML message Payloads

<mm1: Great!>
7 Test Cases

7.1 Structure of a Test Case

A Test Case is the translation of a Test Requirement, in an executable form, for a particular Test Harness. A test case includes the following information:

· Test Requirement reference.

· A Sequence of Test Steps.

· Condition(s) of success or of failure.

NOTE: The same Test Case may consolidate several Test Requirement items, i.e. a successful outcome of its execution will verify the associated set of Test Requirement items. This is usually the case when each of these Test Requirement items can make use of the same sequence of operations, varying only in the final test condition. When several Test Requirement items are covered by the same Test Case, the processing of the latter SHOULD produce separate verification reports (i.e. not all fail or not all pass).

[image: image13.png]

Figure 8 – Graphic representation of expanded view of the TestCase element

Definition of Content
	Name
	Description

	Id
	Unique identifier for this test case

	Description
	Short description of TestCase

	Name
	Short name for Test Case

	Author
	Name of person(s) creating the Test Case

	Version
	Version number of Test Case

	RequirementReferenceId
	Pointer to the unique ID of the Semantic Test Requirement (in Appendix E)

	ConfigurationGroupRef
	IDREF to reconfigure Test Driver using selected ConfigurationGroup

	Documentation
	Additional documentation text

	Type
	Identifier of the type of documentation

	ConfigurationItem
	Discreet addition or change to current ConfigurationGroup

	ConfigurationGroup
	New definition of a ConfigurationGroup for this Test Case only

	TestStep
	Container for send, receive and message verification operations

	RepeatStep
	Container for pointer to previously executed Test Step

7.1.1 Test Steps

Test Steps are operations that MUST evaluate to a Boolean value of “true/false” or (semantically) a “pass/fail”. The aggregated result of all Test Steps in a Test Case MUST be ‘true’ for a Test Case result to be “pass”.

<mm1: Unless the pre-condition is optional – I don’t know if we have this case.>
Prior to executing a Test Step, any configuration data necessary to modify the “default” configuration of the Test Driver MUST be included as ConfigurationItem or ConfigurationGroup content in the Test Step.

7.1.2 Test Step Operations

Within a Test Step, one of two main operations may be performed by the Test Driver. Message construction and transmission or message retrieval from the Message Store.

[image: image14.png][:".,my% doam..,..n..% ® configurationGroupRe]

Figure 9 – Graphic representation of expanded view of the TestStep element

Definition of Content

	Name
	Description

	party
	Name of party that runs this Test Step (Test Driver or Candidate)

	description
	Short description of Test Step

	configurationGroupRef
	Reference to existing ConfigurationGroup to change current configuration

	cfg:ConfigurationItem
	Discrete change to current Test Driver configuration

	cfg:ConfigurationGroup
	Definition of new ConfigurationGroup for this Test Step

	PutMessage
	Construct and send an ebXML Message in its entirety (MIME,SOAP,ebXML)

	GetMessage
	Retrieve messages from Message Store in their entirety

7.1.3 The PutMessage Operation

The PutMessage Operation builds an ebXML message, along with its SOAP and MIME containers, using an XML syntax described in the ebXMLTestSuite.xsd schema in Appendix C. A minimal declaration is required to create a message, with “default” values for MIME headers and ebXML message content provided by the Test Driver. A message described in a PutMessage Operation MUST validate against the ebXMLTestSuite.xsd schema in Appendix C.

[image: image15.png]

Figure 10 – Graphic representation of expanded view of the PutMessage element

Definition of Content
	Name
	Description

	description
	Metadata describing the nature of the PutMessage operation

	MessageDeclaration
	XML content to construct the message

	SetPayload
	Container element for metadata for appending a payload to message

	DSign
	Container element for pointer to message content to be digitally signed

7.1.4 The SetPayload Operation

The SetPayload Operation provides the Test Driver with the necessary information to append a message payload. Payloads can be provided to the driver through a file name reference, an in-memory message document reference, or can be constructed “on-the-fly” through any declarative syntax specific to an ebXML application.

[image: image16.png]

Figure 11 – Graphic representation of expanded view of the SetPayload element

Definition of Content
	Name
	Description

	description
	Metadata describing the nature of the SetPayload operation

	contentId
	Set the Content-Id MIME header of the payload

	contentType
	Set the the Content-Type MIME header of the payload

	contentLocation
	Set the the Content-Location MIME header of the payload

	signature
	sha-1 signature computed for payload for use in PayloadVerify Action

	FileName
	Name of the file to be loaded as a payload

	MessageRef
	Unique ID of the in memory XML document to be loaded as the payload

	PayloadDeclaration
	“Wildcard” XML declaration content for payload message construction (implementation specific)

7.1.5 The Dsign Operation

The DSign Operation instructs the Test Driver to digitally sign the portion of the message defined in its child Reference element content. Configuration information for digitally signing a message is contained in the CPPA referenced in the current ConfigurationGroup as well as in ConfigurationItems in that ConfigurationGroup.

[image: image17.png]

Figure 11 – Graphic representation of expanded view of the DSign element

Definition of Content
	Name
	Description

	DSign
	Container for content pointing to location(s) in message to sign

	Reference
	Element containing actual URI

<mm1: May want to check CPPA as I think that the reference ‘can be’ a URI but may not be.
See 9.2 in CPA 2.0 document for reference: . It is RECOMMENDED that the value of the cpaid attribute be a URI. The value of the cpaid attribute SHALL be used as the value of the CPAId element in the ebXML Message Header[ebMS] or of a similar element in a Message Header of an alternative messaging service.

We may wish to acknowledge we place a restriction on this to ensure testability.>
7.1.6 The Message Declaration

The Declaration element is a container element for XML content describing the construction of MIME, SOAP and ebXML portions of a message. The XML content necessary to describe a basic message is minimal, with “default” parameter values supplied by the Test Driver for most message content. If the test developer wishes to “override” the default element and attribute values defined in the ebXMLTestSuite.xsd schema in Appendix C, they may do so by explicitly declaring those values in the XML markup.

For illustrative purposes, a “default” message can be represented by the message envelope template The Test Driver, after parsing the a simple Message Declaration, would generate the following MIME message with enclosed SOAP/ebXML content.

Content-Type: multipart/related; type="text/xml"; boundary="boundaryText";

start=messagepackage@oasis.org

--boundaryText

Content-ID: <messagepackage@oasis.org>
Content-Type: text/xml; charset="UTF-8"

<SOAP:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">
<SOAP:Header>

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId>urn:oasis:iic:testdriver</eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>urn:oasis:iic:testservice</eb:PartyId>

</eb:To>

<eb:CPAId>base_cpa</eb:CPAId>

<eb:ConversationId>$ConversationId</eb:ConversationId> <!—Test Driver supplies value at run time (

<eb:Service>ebXML_IIC_Testing</eb:Service>

<eb:Action>Dummy</eb:Action>

<eb:MessageData>

<eb:MessageId>$MessageId</eb:MessageId> <!—Test Driver supplies value at run time (

<eb:Timestamp>$Timetamp</eb:Timestamp> <!—Test Driver supplies value at run time (

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

</SOAP:Envelope>

--boundaryText

A Test Driver would “create” the above message by parsing and interpreting the minimal MessageDeclaration content below:

<ebTest:MessageDeclaration xmlns:ebTest="http://www.oasis-open.org/tc/ebxml-iic/conformance/tests">

<MIME:Message xmlns:MIME="http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/MIME">

<MIME:MessageContainer>

<SOAP:Envelope xmlns:SOAP="http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/SOAP">

<SOAP:Header>

<eb:MessageHeader xmlns:eb=http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/eb>

 <eb:Action="Dummy"/>

<eb:CPAId>cpa_basic</eb:CPAId>

</eb:MessageHeader>

</SOAP:Header>

</SOAP:Envelope>

</MIME:MessageContainer>

</MIME:Message>

</ebTest:MessageDeclaration>

To achieve the simplicity of a simple declarative syntax to describe message construction, “default” values for MIME headers are integrated into the ebXMLTestSuite.xsd schema in Appendix C. This allows default creation of MIME, SOAP and ebXML portions of the message through a validating parse of the MessageDeclaration XML content, with substitution of default values where they are not explicitly defined in the declaration. The following sections description of how to interpret the MessageDeclaration XML content MUST be implemented by a Test Driver in order for it to be conformant to this specification.

7.1.6.1 Interpreting the MIME portion of the Message Declaration

The XML syntax used by the Test Driver to construct the MIME message content consists of the declaration of a main MIME container for the entire message, followed by a MIME container for the SOAP message envelope. Default values for MIME headers MAY be “overridden” by explicit declaration of their values in the MessageDeclaration content, otherwise, default values defined in the ebXMLTestSuite.xsd schema are used by the Test Driver to construct the MIME headers.

[image: image18.jpg]¥ MessageContainer,

| * P

Figure 12 – Graphic representation of expanded view of the MessageDeclaration element
Definition of Content
	Name
	Declaration Description
	Default Value
	Default Value From

	MIME:Message
	Generate container for MIME, SOAP and ebXML message content
	
	

	contentType
	Generate MIME message ‘Content-Type’ header
	multipart/related
	Schema

	type
	Generate MIME message ‘type’ header
	text/xml
	Schema

	MessageContainer
	Generate MIME container in message
	
	

	contentId
	MIME Generate container ‘Content-ID’ header
	messagepackage@oasis.org
	Schema

	contentType
	Generate MIME message package ‘Content-Type’ header
	Text/xml
	Schema

	charset
	Generate MIME message package character set
	UTF-8
	Schema

	SOAP:Envelope
	Generates container for SOAP message
	
	

An Example of Minimal MIME Declaration Content

The following XML represents all the information necessary to permit a Test Driver to construct a MIME message containing a SOAP envelope in its first MIME container. All MIME headers and their values would be generated by a validating parse of the document using the ebXMLTestSuite.xsd schema in Appendix C.

<MIME:Message xmlns:MIME="http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/MIME">

<MIME:MessageContainer>

</MIME:MessageContainer>

</MIME:Message>

7.1.6.2 Interpreting the SOAP portion of the Message Declaration

The XML syntax used by the Test Driver to construct the SOAP message content consists of the declaration of a SOAP Envelope element, which in turn is a container for the SOAP Header, Body and non-SOAP XML content. Construction of the SOAP Header and Body content is simple for the Test Driver, requiring only the creating of the two container elements with their namespace properly defined, and valid according to the [SOAP] schema. The SOAP Body element, or any “wildcard” XML content is only constructed by the Test Driver if it is explicitly declared in the MessageDeclaration content.

[image: image19.jpg]

Figure 13 – Graphic representation of expanded view of the SOAP:Envelope element declaration
Definition of Content
	Name
	Declaration Description
	Default Value
	Default Value From

	SOAP:Envelope
	Generate container for SOAP Header and Body elements and their content
	
	

	SOAP:Header
	Generate container for ebXML Header extension elements and their content
	
	

	SOAP:Body
	Generate container for ebXML Body extension elements and their content
	
	

	#wildCard
	Generate “inline” wildcard content inside SOAP Envelope
	
	

An Example of Minimal SOAP Declaration Content

The following XML represents all the information necessary to permit a Test Driver to construct a SOAP message. . All required content not visible in the example would be generated by a validating parse of the document using the ebXMLTestSuite.xsd schema in Appendix C.
<SOAP:Envelope xmlns:SOAP=http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/SOAP">

<SOAP:Header/>

</SOAP:Envelope>

7.1.6.3 Interpreting the SOAP Header Extension Element Declaration

The XML syntax used by the Test Driver to construct the ebXML Header extension message content consists of the declaration of a SOAP Header element, which in turn is a container for the ebXML Header extension elements and their content. The only element that is required in the container is the eb:MessageHeader element, which directs the Test Driver to construct an ebXML MessageHeader element, along with proper namespace declaration. The Test Driver does not construct any other Header extension elements unless they are explicitly declared as content in the SOAP Header Declaration.

[image: image20.png]ebiMessageHeader |

of iy

hisyncReply

hiMessageOrder

ehiacknowledgment|

Figure 14 – Graphic representation of expanded view of the SOAP:Header element declaration

Definition of Content
	Name
	Declaration Description
	Default Value
	Default Value From

	Header
	SOAP Header declaration and container for ebXML ebXML Header Extension Element declarations
	
	

<mm1: Missing other values.>
7.1.6.4 Interpreting the ebXML MessageHeader Element Declaration

The XML syntax used by the Test Driver to construct the ebXML MessageHeader extension content consists of the declaration of a MessageHeader element, and a required declaration of CPAId and Action elements within it. This is the ”minimum” declaration a test writer can create. All other required content, as defined in the schema in the ebXML MS v2.0 Specification, is provided through either default parameters defined in the ebXMLTestSuite.xsd schema in Appendix C, by the Test Driver (e.g. to supply required container elements) or by explicit declaration of content in the declaration.

[image: image21.jpg]ML

2 sty

5[RefToMessageli g

o[watica |

Figure 15 – Graphic representation of expanded view of the ebXML MessageHeader element declaration

<mm1: Suggest a more generic element than A”CPAId” for future extension usage. It can be qualified by definition to be the CPAId at this time.>
Definition of Content
	Name
	Declaration Description
	Default Value
	Default Value From

	eb:MessageHeader
	Generate container and all “default” content
	
	

	id
	Generate attribute and value
	none
	

	version
	Modify default attribute value
	2.0
	Schema

	soap:mustUnderstand
	Modify default attribute value
	true
	Schema

	From
	Replace default container
	
	Test Driver

	PartyId
	Generate element with its value
	urn:ebXML:IIC:TestDriver
	Schema

	type
	Generate type attribute with value
	none
	

	Role
	Generates a Role element with its value
	none
	

	To
	Replace default container
	
	Test Driver

	PartyId
	Generate element with its value
	urn:ebXML:IIC:TestService
	Schema

	type
	Generate type attribute with value
	none
	

	Role
	Generates a Role element with its value
	none
	

	CPAId
	Modify default value
	cpa_basic
	Schema

	ConversationId
	Modify default value
	Defined at run time
	Test Driver

	Service
	Modify default value
	urn:ebXML:iic:test
	Schema

	Action
	Generate required element with value
	none
	

	MessageData
	Modify default container
	
	

	MessageId
	Modify default value
	Defined at run time
	Test Driver

	Timestamp
	Modify default value
	Defined at run time
	Test Driver

	RefToMessageId
	Generate element with value
	Defined at run time
	Test Driver

	TimeToLive
	Generate element with value
	none
	

	DuplicateElimination
	Generate element with value
	none
	

	Description
	Generate element with value
	none
	

	#wildcard
	Generate content inline
	none
	

An Example of a Minimal ebXML MessageHeader Content Declaration

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML MessageHeader element with all necessary content to validate against the ebXML MS v2.0 schema. All required content not visible in the example would be generated by a validating parse of the document using the ebXMLTestSuite.xsd schema in Appendix C or would be generated by the Test Driver itself.

<eb:MessageHeader>

<eb:Action="Dummy"/>

<eb:CPAId>cpa_basic</eb:CPAId>

</eb:MessageHeader>

7.1.6.5 Interpreting the ebXML ErrorList Element Declaration

The XML syntax used by the Test Driver to construct the ebXML ErrorList extension content consists of the declaration of an ErrorList element, and a required declaration of one or more Error elements within it. All required content, as defined in the schema in the ebXML MS v2.0 Specification, is provided through either default parameters defined in the ebXMLTestSuite.xsd schema in Appendix C, or by explicit declaration .

[image: image22.jpg]dersandgy (@ hghestseves yq]

5 Ee=mes (32

,

L]

Figure 16 – Graphic representation of expanded view of the ebXML ErrorList element declaration
Definition of Content
	Name
	Declaration Description
	Default Value
	Default Value From

	eb:ErrorList
	Generate container element and all default content
	
	

	id
	Generate attribute and its value
	none
	

	version
	Modify default value
	2.0
	Schema

	soap:mustUnderstand
	Modify default value
	true
	Schema

	highestSeverity
	Generate required attribute and value
	none
	

	Error
	Generate required container
	
	

	id
	Generate attribute and value
	none
	

	codeContext
	Generate element and value
	none
	

	errorCode
	Generate required attribute and value
	none
	

	severity
	Generate required attribute and value
	none
	

	location
	Generate attribute and value
	none
	

	Description
	Generate element and value
	none
	

	#wildCard
	Generate content “inline”
	none
	

An Example of a Minimal ebXML ErrorList Content Declaration

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML ErrorList element with all necessary content to validate against the ebXML MS v2.0 schema. All required content not visible in the example would be generated by a validating parse of the document using the ebXMLTestSuite.xsd schema in Appendix C or would be generated by the Test Driver itself.

<eb:ErrorList eb:highestSeverity=Error">

<eb:Error eb:errorCode=”Inconsistent” eb:severity=”Error”/>

</eb:ErrorList>

7.1.6.6 Interpreting the ebXML SyncReply Element Declaration

The XML syntax used by the Test Driver to construct the ebXML SyncReply extension content consists of the declaration of an SyncReply element. All required content, as defined in the schema in the ebXML MS v2.0 Specification, is provided through either default parameters defined in the ebXMLTestSuite.xsd schema in Appendix C, or by explicit declaration.

[image: image23.png]

Figure 17 – Graphic representation of expanded view of the ebXML SyncReply element declaration
Definition of Content
	Name
	Declaration Description
	Default Value
	Default Value From

	eb:SyncReply
	Generate container element and all default content
	
	

	id
	Generate attribute and its value
	none
	

	version
	Modify default value
	2.0
	Schema

	soap:mustUnderstand
	Modify default value
	true
	Schema

	soap:actor
	Modify attribute value
	http://schemas.xmlsoap.org/soap/actor/next
	Schema

	#wildCard
	Generate content “inline”
	none
	

An Example of a Minimal ebXML SyncReply Content Declaration

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML AckRequested element with all necessary content to validate against the ebXML MS v2.0 schema. All required content not visible in the example would be generated by a validating parse of the document using the ebXMLTestSuite.xsd schema in Appendix C or would be generated by the Test Driver itself.

<eb:SyncReply/>

7.1.6.7 Interpreting the ebXML AckRequested Element Declaration

The XML syntax used by the Test Driver to construct the ebXML AckRequested extension content consists of the declaration of an AckRequested element. All required content, as defined in the schema in the ebXML MS v2.0 Specification, is provided through either default parameters defined in the ebXMLTestSuite.xsd schema in Appendix C, or by explicit declaration.

[image: image24.jpg]

Figure 18 – Graphic representation of expanded view of the ebXML AckRequested element declaration
Definition of Content
	Name
	Declaration Description
	Default Value
	Default Value From

	eb:AckRequested
	Generate container element and all default content
	
	

	id
	Generate attribute and its value
	none
	

	version
	Modify default value
	2.0
	Schema

	soap:mustUnderstand
	Modify default value
	true
	Schema

	soap:actor
	Generate attribute and value
	none
	

	signed
	Modify attribute and value
	false
	Schema

	#wildCard
	Generate content “inline”
	none
	

An Example of a Minimal ebXML AckRequested Content Declaration

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML AckRequested element with all necessary content to validate against the ebXML MS v2.0 schema. All required content not visible in the example would be generated by a validating parse of the document using the ebXMLTestSuite.xsd schema in Appendix C or would be generated by the Test Driver itself.

<eb:AckRequested/>

7.1.6.8 Interpreting the ebXML Acknowledgment Element Declaration

The XML syntax used by the Test Driver to construct the ebXML Acknowledgment extension content consists of the declaration of an Acknowledgment element. All required content, as defined in the schema in the ebXML MS v2.0 Specification, is provided through either default parameters defined in the ebXMLTestSuite.xsd schema in Appendix C, or by explicit declaration.

[image: image25.jpg](el2HE oS o[scamunienindg o[® smapacor %]

ey

rRaferance|

Figure 19 – Graphic representation of expanded view of the ebXML Acknowledgment element declaration
Definition of Content
	Name
	Declaration Description
	Default Value
	Default Value From

	eb:Acknowledgment
	Generate container element and all default content
	
	

	id
	Generate attribute and its value
	none
	

	version
	Modify default value
	2.0
	Schema

	soap:mustUnderstand
	Modify default value
	true
	Schema

	soap:actor
	Generate attribute and value
	none
	

	Timestamp
	Modify default value
	Defined at run time
	Test Driver

	RefToMessageId
	Modify default value
	Defined at run time
	Test Driver

	From
	Replace default container
	
	Test Driver

	PartyId
	Generate element with its value
	urn:ebXML:IIC:TestDriver
	Schema

	type
	Generate type attribute with value
	none
	

	Role
	Generates a Role element with its value
	none
	

	ds:Reference
	Generate container element and all default content
	
	

	Id
	Generate attribute and its value
	none
	

	URI
	Generate attribute and its value
	none
	

	type
	Generate attribute and its value
	none
	

	Transforms
	Generate container relement
	
	

	Transform
	Generate element with its value
	none
	

	Algorithm
	Generate attribute with its value
	none
	

	#wildCard
	Generate content “inline”
	none
	

	XPath
	Generate element with its value
	none
	

	DigestMethod
	Generate element with its value
	none
	

	Algorithm
	Generate attribute with its value
	none
	

	#wildCard
	Generate content “inline”
	none
	

	DigestValue
	Generate element with its value
	none
	

	#wildCard
	Generate content “inline”
	none
	

An Example of a Minimal ebXML Acknowledgment Content Declaration

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML Acknowledgment element with all necessary content to validate against the ebXML MS v2.0 schema. All required content not visible in the example would be generated by a validating parse of the document using the ebXMLTestSuite.xsd schema in Appendix C or would be generated by the Test Driver itself.

<eb:Acknowledgment/>

7.1.6.9 Interpreting the ebXML MessageOrder Element Declaration

The XML syntax used by the Test Driver to construct the ebXML MessageOrder extension content consists of the declaration of an MessageOrder element. All required content, as defined in the schema in the ebXML MS v2.0 Specification, is provided through either default parameters defined in the ebXMLTestSuite.xsd schema in Appendix C, or by explicit declaration.

[image: image26.jpg]e

ildCard

Figure 20 – Graphic representation of expanded view of the ebXML MessageOrder element declaration
Definition of Content
	Name
	Declaration Description
	Default Value
	Default Value From

	eb:MessageOrder
	Generate container element and all default content
	
	

	id
	Generate attribute and its value
	none
	

	version
	Modify default value
	2.0
	Schema

	soap:mustUnderstand
	Modify default value
	true
	Schema

	SequenceNumber
	Generate element and value
	none
	

	status
	Generate attribute and value
	none
	

	#wildCard
	Generate content “inline”
	none
	

An Example of a Minimal ebXML MessageOrder Content Declaration

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML MessageOrder element with all necessary content to validate against the ebXML MS v2.0 schema. All required content not visible in the example would be generated by a validating parse of the document using the ebXMLTestSuite.xsd schema in Appendix C or would be generated by the Test Driver itself.

<eb:MessageOrder>

<eb:SequenceNumber>1</eb:SequenceNumber>

</eb:MessageOrder>

7.1.6.10 Interpreting the SOAP Body Extension Element Declaration

The XML syntax used by the Test Driver to construct the ebXML Body extension message content consists of the declaration of a SOAP Body element, which in turn is a container for the ebXML Manifest, StatusRequest and StatusResponse elements.

The Test Driver does not construct any of these SOAP Body extension elements unless they are explicitly declared as content in the SOAP Body Declaration.

[image: image27.jpg]ehiStatusResponse|

Figure 21 – Graphic representation of expanded view of the SOAP:Body element declaration

7.1.6.11 Interpreting the ebXML Manifest Element Declaration

The XML syntax used by the Test Driver to construct the ebXML Manifest extension content consists of the declaration of an Manifest element. All required content, as defined in the schema in the ebXML MS v2.0 Specification, is provided through either default parameters defined in the ebXMLTestSuite.xsd schema in Appendix C, or by explicit declaration.

[image: image28.wmf]

1

Figure 22 – Graphic representation of expanded view of the ebXML Manifest element declaration
Definition of Content
	Name
	Declaration Description
	Default Value
	Default Value From

	eb:Manifest
	Generate container element and all default content
	
	

	id
	Generate attribute and its value
	none
	

	Version
	Modify default value
	2.0
	Schema

	Id
	Modify default value
	true
	Schema

	xlink:type
	Generate element and value
	none
	

	xlink:href
	Generate attribute and value
	none
	

	Xlink:role
	Generate attribute and value
	none
	

	Schema
	Generate container element
	none
	

	location
	Generate attribute and value
	none
	

	Version
	Generate attribute and value
	none
	

	Description
	Generate element and value
	none
	

	xml:lang
	Generate attribute and value
	none
	

	#wildCard
	Generate content “inline”
	none
	

An Example of a Minimal ebXML Manifest Content Declaration

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML Manifest element with all necessary content to validate against the ebXML MS v2.0 schema. All required content not visible in the example would be generated by a validating parse of the document using the ebXMLTestSuite.xsd schema in Appendix C or would be generated by the Test Driver itself.

<eb:Manifest>

<eb:Reference xlink:href=”cid:mpld_1”/>

</eb:Manifest>

7.1.6.12 Interpreting the ebXML StatusRequest Element Declaration

The XML syntax used by the Test Driver to construct the ebXML StatusRequest extension content consists of the declaration of an StatusRequest element. All required content, as defined in the schema in the ebXML MS v2.0 Specification, is provided through either default parameters defined in the ebXMLTestSuite.xsd schema in Appendix C, or by explicit declaration.

[image: image29.jpg]

Figure 23 – Graphic representation of expanded view of the ebXML StatusRequest element declaration
Definition of Content
	Name
	Declaration Description
	Default Value
	Default Value From

	eb:StatusRequest
	Generate container element and all default content
	
	

	id
	Generate attribute and its value
	none
	

	version
	Modify default value
	2.0
	Schema

	RefToMessageId
	Modify default value
	Defined at run time
	Test Driver

	#wildCard
	Generate content “inline”
	none
	

An Example of a Minimal ebXML StatusRequest Content Declaration

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML StatusRequest element with all necessary content to validate against the ebXML MS v2.0 schema. All required content not visible in the example would be generated by a validating parse of the document using the ebXMLTestSuite.xsd schema in Appendix C or would be generated by the Test Driver itself.

<eb:StatusRequest/>

7.1.6.13 Interpreting the ebXML StatusRequest Element Declaration

The XML syntax used by the Test Driver to construct the ebXML StatusResponse extension content consists of the declaration of an StatusResponse element. All required content, as defined in the schema in the ebXML MS v2.0 Specification, is provided through either default parameters defined in the ebXMLTestSuite.xsd schema in Appendix C, or by explicit declaration.

[image: image30.jpg]

Figure 24 – Graphic representation of expanded view of the ebXML StatusResponse element declaration
Definition of Content
	Name
	Declaration Description
	Default Value
	Default Value From

	eb:StatusResponse
	Generate container element and all default content
	
	

	id
	Generate attribute and its value
	none
	

	version
	Modify default value
	2.0
	Schema

	messageStatus
	Generate attribute and its value
	none
	

	RefToMessageId
	Modify default value
	Defined at run time
	Test Driver

	Timestamp
	Modify default value
	Defined at run time
	Test Driver

	#wildCard
	Generate content “inline”
	none
	

An Example of a Minimal ebXML StatusResponse Content Declaration

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML StatusResponse element with all necessary content to validate against the ebXML MS v2.0 schema. All required content not visible in the example would be generated by a validating parse of the document using the ebXMLTestSuite.xsd schema in Appendix C or would be generated by the Test Driver itself.

<eb:StatusResponse messageStatus=”Processed”/>

7.1.7 The GetMessage Operation

The GetMessage Operation retrieves a Node List from the Message Store of the Test Driver. The contents of the NodeList is dependent upon the filter provided in the GetMessage element’s text content. The NodeList MAY be queried for Precondition or Test Condition tests, and any Payload associated with a message MAY be queried through the GetPayload operation.

[image: image31.png]3 deswing] of 8 testSiepContent g @{mqelmulllpleq]

5

Figure 25 – Graphic representation of expanded view of the GetMessage element

Mm1: Should this be more generic where we don’t use ‘conformance’ in the element name, in that the framework supports interop and conformance? If accepted, this comment may affect more than this element.>
Definition of Content
	Name
	Description

	GetMessage
	Text node containing XPath query for correlating messages in the Message Store. Also acts as a container for further operations.

	description
	Metadata describing the nature of the GetMessage operation

	testStepContext
	Keep the CPAId, MessageId and ConversationId from the specified step <mm1: Is this a ID to the location of these items? Can you explain?>

	getMultiple
	By default, getMultiple is “false”, indicating that only one message should be present in the NodeList, even if multiple messages are in the Message Store

	TestPreCondition
	XPath query used to test message(s) in NodeList for a Precondition

	TestConformanceCondition
	XPath query used to test message(s) in NodeList for a Test Condition

	GetPayload
	Container for content describing retrieval and query of a payload for a particular message

7.1.8 The TestPreCondition Operation

The TestPreCondition Operation examines a message or messages in a GetMessage NodeList by testing the content of the NodeList against the VerifyContent (content value comparison) or ValidateContent (content integrity evaluation) operation.

[image: image32.png]

Figure 26 – Graphic representation of expanded view of the TestPreCondition element

Definition of Content
	Name
	Description

	description
	Metadata describing the nature of the TestPreCondition operation

	VerifyContent
	Use XPath expression to evaluate content of message(s)

	verifyMethod
	Either XPath or mda-5 (for message or payload integrity test)

	ValidateContent
	Empty if type is XML or XPath expression to “point to” content to be validated for correct format if type is URI, Time or Signature

	contentType
	An enumerated list of XML, URI, time, or signature validation descriptors

7.1.9 The TestConformanceCondition Operation

The TestConformanceCondition Operation examines a message or messages in a NodeList by testing the content against an XPath expression in the TestPreCondition text. If the XPath expression returns a NodeList with one or more nodes, the ConformanceCondition is “true”, else it is “false”. Within a TestPreCondition Operation, content of the NodeList can be further examined through the VerifyContent (content evaluation) or ValidateContent (content format evaluation).

[image: image33.png]VerifyContent

o=

ValidateContent 5

Figure 27 – Graphic representation of expanded view of the TestConformanceCondition element

Definition of Content
	Name
	Description

	description
	Metadata describing the nature of the TestPreCondition operation

	requirement
	Metadata describing whether this Conformance Condition MUST or MAY exist (for use in test reporting)

	VerifyContent
	Use XPath expression to evaluate content of message(s)

	verifyMethod
	Either XPath or mda-5 (for message or payload integrity test)

	ValidateContent
	Empty if type is XML or XPath expression to “point to” content to be validated for correct format if type is URI, Time or Signature

	contentType
	An enumerated list of XML, URI, time, or signature validation descriptors

7.2 Run-Time Coverage of Test Requirements

In a same way as Test Requirements may not be fully equivalent to the specification items they represent (see Specification Coverage, Section 5), the Test Cases that implement these Test Requirements may not fully verify these, for practical reasons.

Some Test Requirements may be difficult or impossible to verify in a satisfactory manner. The reason for this generally resides in an inability to satisfy the pre-condition. When processing a Test Case, the Test Harness will attempt to generate an operational context or situation that intends to satisfy the pre-condition, and that is supposed to be representative enough of real operational situations. The set of such real-world situations that is fairly covered by the pre-condition of the Test Requirement is called the run-time coverage of this test Requirement. This happens in the following cases:

· Partial run-time coverage: It is in general impossible or impractical to generate all the situations that should verify a test. It is however expected that the small subset of run-time situations generated by the Test Harness, is representative enough of all real-world situations that are relevant to the pre-condition. However, it is in some cases obvious that the Test Case definition (and its processing) will not generate a representative-enough (set of) situation(s). It could be that a significant subset of situations identified by the pre-condition of a Test Requirement cannot be practically set-up and verified. For example, this is the case when some combinations of events or of configurations of the implementation will not be tested due to the impracticality to address the combinatorial nature of their aggregation. Or, some time-related situations cannot be tested under expected time constraints.

· Contingent run-time coverage: It may happen that the test harness has no complete control in producing the situation that satisfies the pre-condition of a Test Requirement. This is the case for Test Requirements that only concern optional features that an implementation may or may not decide to exhibit, depending on factors under its own control and that are not understood or not easy to control by the test developers. An example is: “ IF the implementation chooses to bundle together messages [e.g. under some stressed operation conditions left to the appreciation of this implementation] THEN the bundling must satisfy condition XYZ”.

When a set of Test Cases is written for a particular set of Test Requirements, the degree of coverage of these Test Requirements by these Test Cases SHOULD be assessed. The Test Requirements coverage – not to be confused with the Specification Coverage - is represented by a list of the Test Requirements Ids, which associates with each Test Requirement :

· The Test Case (or set of Test Cases) that cover it,

· The coverage qualifier, which indicates the degree to which the Test Requirement is covered.

The coverage qualifier may have values:

· Full: the Test Requirement item is fully verified by the set of Test Cases.

· Contingent: The run-time coverage is contingent (see definition).

· Partial: the Test Requirement item is only partially verified by the associated set of Test Cases. The run-time coverage is partial (see definition).

None: the Test Requirement item is not verified at all: there is no relevant Test Case.

<mm1: Suggest you have a matrix that shows the specification and test coverage, and shows the definition and explicitly the differences. Suggest earlier in the document where you introduce degree that you say which coverage is being specified; and not the differences of degree and ‘content’ in this matrix.>
8 Other Test Material

Test Material necessary to support the ebXML Testing Framework includes, where required:

· Schemas necessary to construct Test Profile, Test Requirement and Test Suite XML documents

· CPPA documents necessary to describe the configuration of the Test Driver and Test Service components of the Test Framework.

· Schemas necessary to construct or validate XML message payload content

· Base, Reliable Messaging, Additional Features and MultiHop Conformance Test Profile XML Document

· Conformance Test Requirements

· Executable Test Suite

8.1.1 Schemas for Test Suite Material Construction

The OASIS ebXML Implementation and Interoperability Committee has provided a version of the ebXML Test Profile, Test Requirements and Test Suite schema that conforms to the W3C XML Schema Recommendation specification [XMLSchema]. Implementations of the ebXML Test Framework MUST use documents that validate against these three schemas. The normative versions of these schemas are located in Appendix A, B and C respectively.

8.1.2 Test Framework Collaboration Protocol Profile Agreements (CPPA)

Just as in a business transaction, a “testing transaction” between an ebXML Test Driver and Test Service requires a mutually agreed upon messaging configuration for the transmission of test messages. A set of CPPAs is required to establish the agreement between the two parties for particular conformance tests. Implementations of the ebXML Test Framework MUST configure their Test Driver and Test Service according to the semantics defined in the CPPAs listed below.

The normative “base” CPPA, located in Appendix D, validates against the ebXML CPPA schema [CPPA]. The ebXML Conformance Test Framework CPPA list includes:

<mm1: Should we list this as the default rather than normative? Will this not be an agreement between the endp points or the test administrator executing the test cases for an end point?>
	CPAId
	CPPA Description
	Party Affected

	cpa_basic
	Minimal configuration for “bootstrap” configuration
	All Test Driver and

Test Service Party Actions

	cpa_no_errorURI
	No ErrorURI defined
	All Test Service Party Actions

	cpa_sync_reply_mode_none
	syncReplyMode = “none”
	All Test Service Party Actions

	cpa_no_dsig
	No Signature configuration
	All Test Service Party Actions

	cpa_dup_elimination_true
	DuplicateElimination = “true”
	All Test Service Party Actions

	cpa_dup_elimination_per_message
	DuplicateElimination =“per message”
	All Test Service Party Actions

	cpa_dup_elimination_always
	DuplicateElimination = “always”
	All Test Service Party Actions

	cpa_dup_elimination_never
	DuplicateElimination = “never”
	All Test Service Party Actions

	cpa_persist_duration_0
	PersistDuration = 0 seconds
	All Test Service Party Actions

	cpa_message_order_guaranteed
	MessageOrder = “Guaranteed”
	All Test Service Party Actions

Both the Test Driver and the Test Service MUST resolve the above CPAId references in the Executable Test Suite to the semantically equivalent CPPA configuration described in the table above and in the CPPA instances described in Appendix D.

As the Conformance Test Suite continues to grow, new CPPAs will be required to properly execute those tests. Both the Test Driver and Test Service MUST resolve any new CPAIds to the same semantically equivalent CPPA configuration.

8.1.3 Schema for Test Message Payloads

Some Test Service Actions must receive or return messages containing specific XML message payloads that are verified by the Test Driver for determination of success or failure of a particular Test Step. Implementations of the ebXML Test Framework MUST use message payloads that validate against the ebXMLMessagePayload.xsd schema in Appendix E.

8.1.4 Conformance Test Profile Documents

The normative profile testing documents for conformance testing an MSH against specific profiles are represented as normative XML instance documents in Appendix F. Any ebXML Profile XML document MUST validate against the ebXMLTestProfile.xsd schema defined in Appendix F.<mm1: Again suggest default rather than normative. The key is they must validate against the test profile.>
The profile instance documents in Appendix F include:

	Document Name
	Description

	ebXMLMSv2.0CoreFeaturesProfile.xml
	Selects “core” conformance testing requirements for ebXML

MS v2.0, including Packacing, ebXML SOAP Envelope Extensions, Error Handling, Security and SyncReply

	ebXMLMSv2.0ReliableMessaging.xml
	Core Features plus Reliable Messaging features

	ebXMLMSv2.0MessageStatus_Order.xml
	Core, Reliable Messaging plus Message Status, Message Order, Ping and Pong Actions

	ebXMLMSv2.0MultiHop.xml
	Core plus Multi-Hop features.

Appendices

Appendix A
(Normative) The ebXML Test Profile Schema

The OASIS ebXML Implementation and Interoperability Committee has provided a version of the ebXML Test Profile schema using the schema vocabulary that conforms to the W3C XML Schema Recommendation specification [XMLSchema].
<?xml version = "1.0" encoding = "UTF-8"?>

<schema xmlns = "http://www.w3.org/2001/XMLSchema"

 targetNamespace = "http://www.oasis-open.org/tc/ebxml-iic/test-profile"

 xmlns:tns = "http://www.oasis-open.org/tc/ebxml-iic/test-profile"

>

<!-- $Id: TestProfile.xsd,v 1.2 2002/07/02 15:28:27 matt Exp $ -->

<element name = "TestProfile">

<complexType>

<sequence>

<element ref = "tns:Dependency" minOccurs = "0" maxOccurs = "unbounded"/>

<element ref = "tns:TestRequirementRef" maxOccurs = "unbounded"/>

</sequence>

<attribute name = "requirementsLocation" use = "required" type = "anyURI"/>

<attribute name = "name" use = "required" type = "string"/>

<attribute name = "description" use = "required" type = "string"/>

</complexType>

</element>

<element name = "Dependency">

<complexType>

<attribute name = "name" use = "required" type = "string"/>

<attribute name = "profileRef" use = "required" type = "anyURI"/>

</complexType>

</element>

<element name = "TestRequirementRef">

<!-- To overide the conformance type of the underlying requirement ... -->

<complexType>

<sequence>

<element name = "Comment" type = "string" minOccurs = "0" maxOccurs = "unbounded"/>

</sequence>

<attribute name = "id" use = "required" type = "string"/>

<attribute name = "conformanceType" use = "required" type = "tns:requirement.type"/>

</complexType>

</element>

<simpleType name = "requirement.type">

<restriction base = "string">

<enumeration value = "required"/>

<enumeration value = "strongly recommended"/>

<enumeration value = "recommended"/>

<enumeration value = "optional"/>

</restriction>

</simpleType>

</schema>

Appendix B
(Normative) The ebXML Test Requirements Schema

The OASIS ebXML Implementation and Interoperability Committee has provided a version of the ebXML Test Requirements schema using the schema vocabulary that conforms to the W3C XML Schema Recommendation specification [XMLSchema].

<mm1: On line 2099, where did we get to a ‘most’ test level – where is this described? Check values against document.>
<?xml version = "1.0" encoding = "UTF-8"?>

<!--Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema-->

<schema xmlns = "http://www.w3.org/2001/XMLSchema"

 targetNamespace = "http://www.oasis-open.org/tc/ebxml-iic/conformance/reqs"

 xmlns:tns = "http://www.oasis-open.org/tc/ebxml-iic/conformance/reqs"

>

<group name = "SemanticRequirementGroup">

<sequence>

<element ref = "tns:SemanticRequirement"/>

</sequence>

</group>

<!--Generated by XML Authority. Conforms to w3c http://www.w3.org/2000/10/XMLSchema-->

<!-- OASIS/ebXML Test Suite Framework

 Description: Schema used to define ebXML Test Requirements instance document

Author: Michael Kass

 Organization: NIST

Author: Matthew MacKenzie

Organization: XML Global

Date: 03/31/2002

 Version 1.0

 -->

<!-- CHANGES:

Version 1.0 (Matt):

- added attributes requirementType and name to Level.

- added other to functional.type enumeration.

-->

<element name = "TestRequirement">

<complexType>

<sequence maxOccurs = "unbounded">

<group ref = "tns:SemanticRequirementGroup"/>

</sequence>

<attribute name = "id" use = "required" type = "ID"/>

<attribute name = "name" use = "required" type = "string"/>

<attribute name = "specRef" use = "required" type = "string"/>

<attribute name = "functionalType" use = "required" type = "tns:functional.type"/>

</complexType>

</element>

<element name = "SemanticRequirement">

<complexType>

<sequence>

<element ref = "tns:Clause" minOccurs = "0"/>

<element ref = "tns:Assertion" maxOccurs = "unbounded"/>

</sequence>

<attribute name = "id" use = "required" type = "ID"/>

<attribute name = "name" use = "required" type = "string"/>

<attribute name = "specRef" use = "required" type = "string"/>

</complexType>

</element>

<element name = "Clause">

<complexType>

<sequence>

<choice>

<element ref = "tns:Clause"/>

<element ref = "tns:Condition"/>

</choice>

<sequence minOccurs = "0" maxOccurs = "unbounded">

<choice>

<element ref = "tns:And"/>

<element ref = "tns:Or"/>

</choice>

<choice>

<element ref = "tns:Clause"/>

<element ref = "tns:Condition"/>

</choice>

</sequence>

</sequence>

</complexType>

</element>

<element name = "CONNECTIVEPREDICATE" type = "string"/>

<element name = "Condition" type = "string"/>

<element name = "ConditionRef">

<complexType>

<attribute name = "id" use = "required" type = "IDREF"/>

</complexType>

</element>

<element name = "And" type = "string"/>

<element name = "Or" type = "string"/>

<element name = "Assertion">

<complexType>

<simpleContent>

<extension base = "string">

<attribute name = "requirementType" use = "required" type = "tns:requirement.type"/>

</extension>

</simpleContent>

</complexType>

</element>

<element name = "MetaData">

<complexType>

<sequence>

<element ref = "tns:Description"/>

<element ref = "tns:Version"/>

<element ref = "tns:SourceControlInfo"/>

<element ref = "tns:Maintainer"/>

<element ref = "tns:Location"/>

<element ref = "tns:PublishDate"/>

<element ref = "tns:Status"/>

</sequence>

</complexType>

</element>

<element name = "Description" type = "string"/>

<element name = "Version" type = "string"/>

<element name = "SourceControlInfo" type = "string"/>

<element name = "Maintainer" type = "string"/>

<element name = "Location" type = "anyURI"/>

<element name = "PublishDate" type = "string"/>

<element name = "Status" type = "tns:pubStatus.type"/>

<simpleType name = "pubStatus.type">

<restriction base = "string">

<enumeration value = "DRAFT"/>

<enumeration value = "FINAL"/>

<enumeration value = "RETIRED"/>

</restriction>

</simpleType>

<simpleType name = "requirement.type">

<restriction base = "string">

<enumeration value = "required"/>

<enumeration value = "strongly recommended"/>

<enumeration value = "recommended"/>

<enumeration value = "optional"/>

</restriction>

</simpleType>

<simpleType name = "testLevel.type">

<restriction base = "string">

<enumeration value = "full"/>

<enumeration value = "most"/>

<enumeration value = "partial"/>

<enumeration value = "none"/>

</restriction>

</simpleType>

<simpleType name = "functional.type">

<restriction base = "string">

<enumeration value = "security"/>

<enumeration value = "reliable messaging"/>

<enumeration value = "packaging"/>

<enumeration value = "other"/>

</restriction>

</simpleType>

<simpleType name = "layerList">

<list itemType = "string"/>

</simpleType>

<element name = "Requirements">

<complexType>

<sequence>

<element ref = "tns:MetaData"/>

<element ref = "tns:TestRequirement" maxOccurs = "unbounded"/>

</sequence>

</complexType>

</element>

</schema>
Appendix C (Normative) The ebXML Test Suite Schema

(and supporting sub-schemas)

The OASIS ebXML Implementation and Interoperability Committee has provided a version of the ebXML Test Requirements schema using the schema vocabulary that conforms to the W3C XML Schema Recommendation specification [XMLSchema].

<?xml version = "1.0" encoding = "UTF-8"?>

<!--Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema-->

<schema xmlns = "http://www.w3.org/2001/XMLSchema"

 targetNamespace = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests"

 xmlns:ebTest = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests"

 xmlns:eb = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/eb"

 xmlns:MIME = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/MIME"

 xmlns:SOAP = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/SOAP"

 xmlns:cppa = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/cppa"

 xmlns:cfg = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/config"

 version = "1.0"

 elementFormDefault = "unqualified"

 attributeFormDefault = "unqualified">

<import namespace = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/eb" schemaLocation = "eb.xsd"/>

<import namespace = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/MIME" schemaLocation = "mime.xsd"/>

<import namespace = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/SOAP" schemaLocation = "soap.xsd"/>

<import namespace = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/cppa" schemaLocation = "cppa.xsd"/>

<import namespace = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/config" schemaLocation = "ebXMLTestConfig.xsd"/>

<!--

 EbXML Conformance Test SuiteSample Schema File

 Michael Kass <michael.kass@nist.gov>.

 Date: 10/11/02

 This file was provided by the National Institute of Standards and Technology.

 This software can be redistributed and/or modified freely provided that any derivative works bear some notice that they are derived from it, and any modified versions bear some notice that they have been modified.

 -->

<element name = "TestSuite">

<complexType>

<sequence>

<element ref = "ebTest:MetaData" minOccurs = "0"/>

<element ref = "cfg:ConfigurationGroup" maxOccurs = "unbounded"/>

<element ref = "ebTest:Message" minOccurs = "0" maxOccurs = "unbounded"/>

<element ref = "ebTest:TestCase" minOccurs = "0" maxOccurs = "unbounded"/>

</sequence>

</complexType>

</element>

<element name = "MetaData">

<complexType>

<sequence>

<element ref = "ebTest:Description"/>

<element ref = "ebTest:Version"/>

<element ref = "ebTest:SourceControlInfo"/>

<element ref = "ebTest:Maintainer"/>

<element ref = "ebTest:Location"/>

<element ref = "ebTest:PublishDate"/>

<element ref = "ebTest:Status"/>

</sequence>

</complexType>

</element>

<element name = "Description" type = "string"/>

<element name = "Version" type = "string"/>

<element name = "SourceControlInfo" type = "string"/>

<element name = "Maintainer" type = "string"/>

<element name = "Location" type = "anyURI"/>

<element name = "PublishDate" type = "string"/>

<element name = "Status" type = "string"/>

<element name = "TestCase">

<complexType>

<sequence>

<element ref = "ebTest:Documentation" minOccurs = "0"/>

<element ref = "cfg:Configuration" minOccurs = "0"/>

<choice minOccurs = "0" maxOccurs = "unbounded">

<element ref = "ebTest:TestStep"/>

<element ref = "ebTest:RepeatStep"/>

</choice>

</sequence>

<attribute name = "id" use = "required" type = "string"/>

<attribute name = "description" use = "optional" type = "string"/>

<attribute name = "name" use = "required" type = "string"/>

<attribute name = "author" use = "optional" type = "string"/>

<attribute name = "version" use = "optional" type = "string"/>

<attribute name = "requirementReferenceId" use = "required" type = "anyURI"/>

<attribute name = "configurationGroupRef" use = "optional" type = "IDREF"/>

</complexType>

</element>

<element name = "TestStep">

<complexType>

<sequence>

<element ref = "cfg:Configuration" minOccurs = "0"/>

<element ref = "ebTest:PutMessage"/>

<element ref = "ebTest:GetMessage"/>

</sequence>

<attribute name = "party" use = "required" type = "string"/>

<attribute name = "description" use = "optional" type = "string"/>

<attribute name = "configurationGroupRef" use = "optional" type = "IDREF"/>

</complexType>

</element>

<element name = "MessageExpression">

<complexType>

<sequence>

<element ref = "ebTest:ErrorMessage"/>

</sequence>

</complexType>

</element>

<element name = "ErrorMessage" type = "string"/>

<element name = "PutMessage">

<complexType>

<sequence>

<element ref = "ebTest:MessageDeclaration"/>

<element ref = "ebTest:SetPayload" minOccurs = "0" maxOccurs = "unbounded"/>

<element ref = "ebTest:DSign" minOccurs = "0" maxOccurs = "unbounded"/>

</sequence>

<attribute name = "description" use = "required" type = "string"/>

</complexType>

</element>

<element name = "GetPayload">

<complexType mixed = "true">

<sequence>

<choice>

<element ref = "ebTest:Content-ID"/>

<element ref = "ebTest:Content-Location"/>

<element ref = "ebTest:Index"/>

</choice>

<choice minOccurs = "0" maxOccurs = "unbounded">

<element ref = "ebTest:TestPreCondition"/>

<element ref = "ebTest:TestConformanceCondition"/>

</choice>

</sequence>

<attribute name = "description" use = "required" type = "string"/>

</complexType>

</element>

<element name = "GetMessage">

<complexType mixed = "true">

<sequence>

<choice minOccurs = "0" maxOccurs = "unbounded">

<element ref = "ebTest:TestPreCondition"/>

<element ref = "ebTest:TestConformanceCondition"/>

</choice>

<element ref = "ebTest:GetPayload" minOccurs = "0" maxOccurs = "unbounded"/>

</sequence>

<attribute name = "description" use = "required" type = "string"/>

<attribute name = "testStepContext" use = "optional" type = "integer"/>

<attribute name = "getMultiple" default = "false" type = "boolean"/>

</complexType>

</element>

<element name = "SetPayload">

<complexType mixed = "true">

<choice>

<element ref = "ebTest:FileName"/>

<element ref = "ebTest:MessageRef"/>

<element ref = "ebTest:PayloadDeclaration"/>

</choice>

<attribute name = "description" use = "required" type = "string"/>

<attribute name = "contentId" use = "required" type = "string"/>

<attribute name = "contentType" use = "optional" type = "ebTest:content.type"/>

<attribute name = "contentLocation" use = "optional" type = "string"/>

<attribute name = "signature" use = "optional" type = "base64Binary"/>

</complexType>

</element>

<element name = "TestPreCondition">

<complexType mixed = "true">

<choice>

<element ref = "ebTest:VerifyContent"/>

<element ref = "ebTest:ValidateContent"/>

</choice>

<attribute name = "description" use = "required" type = "string"/>

</complexType>

</element>

<element name = "TestConformanceCondition">

<complexType mixed = "true">

<choice>

<element ref = "ebTest:VerifyContent"/>

<element ref = "ebTest:ValidateContent"/>

</choice>

<attribute name = "description" use = "required" type = "string"/>

<attribute name = "requirement" default = "required" type = "ebTest:requirement.type"/>

</complexType>

</element>

<simpleType name = "mimeHeader.type">

<restriction base = "NMTOKEN">

<enumeration value = "MIMEMessageContent-Type"/>

<enumeration value = "MIMEMessageStart"/>

<enumeration value = "Content-Type"/>

<enumeration value = "start"/>

<enumeration value = "charset"/>

<enumeration value = "type"/>

<enumeration value = "wildcard"/>

</restriction>

</simpleType>

<simpleType name = "content.type">

<restriction base = "NMTOKEN">

<enumeration value = "XML"/>

<enumeration value = "date"/>

<enumeration value = "URI"/>

<enumeration value = "signature"/>

</restriction>

</simpleType>

<simpleType name = "method.type">

<restriction base = "NMTOKEN">

<enumeration value = "xpath"/>

<enumeration value = "sha-1"/>

</restriction>

</simpleType>

<simpleType name = "messageContext.type">

<restriction base = "NMTOKEN">

<enumeration value = "true"/>

<enumeration value = "false"/>

</restriction>

</simpleType>

<simpleType name = "requirement.type">

<restriction base = "NMTOKEN">

<enumeration value = "required"/>

<enumeration value = "stronglyrecommended"/>

<enumeration value = "recommended"/>

<enumeration value = "optional"/>

</restriction>

</simpleType>

<element name = "MimeHeader" type = "ebTest:mimeHeader.type"/>

<element name = "MimeHeaderValue" type = "string"/>

<element name = "Content-Location" type = "string"/>

<element name = "Index" type = "string"/>

<element name = "FileName" type = "string"/>

<element name = "MessageRef" type = "string"/>

<element name = "Signature" type = "string"/>

<element name = "Content-ID" type = "string"/>

<element name = "MessageDeclaration">

<complexType>

<sequence>

<element ref = "MIME:Message"/>

</sequence>

</complexType>

</element>

<element name = "Query"/>

<element name = "ValidateContent">

<complexType>

<simpleContent>

<extension base = "string">

<attribute name = "contentType" default = "XML" type = "ebTest:content.type"/>

</extension>

</simpleContent>

</complexType>

</element>

<element name = "Container">

<complexType>

<simpleContent>

<extension base = "string">

<attribute name = "content-id" use = "optional" type = "string"/>

<attribute name = "content-location" use = "optional" type = "string"/>

</extension>

</simpleContent>

</complexType>

</element>

<element name = "VerifyContent">

<complexType>

<simpleContent>

<extension base = "string">

<attribute name = "verifyMethod" default = "xpath" type = "ebTest:method.type"/>

</extension>

</simpleContent>

</complexType>

</element>

<element name = "RepeatStep">

<complexType>

<attribute name = "stepNumber" use = "required" type = "integer"/>

<attribute name = "repeatTimes" default = "1" type = "integer"/>

</complexType>

</element>

<element name = "PayloadDeclaration">

<complexType>

<sequence>

<any namespace = "##other" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

</sequence>

</complexType>

</element>

<element name = "Documentation">

<complexType>

<simpleContent>

<extension base = "string">

<attribute name = "type" use = "optional" type = "string"/>

</extension>

</simpleContent>

</complexType>

</element>

<element name = "Message">

<complexType>

<sequence>

<any namespace = "##other" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

</sequence>

<attribute name = "id" use = "required" type = "ID"/>

</complexType>

</element>

<element name = "DSign">

<complexType>

<sequence>

<element ref = "ebTest:Reference" maxOccurs = "unbounded"/>

</sequence>

</complexType>

</element>

<element name = "Reference" type = "anyURI"/>

</schema>

MIME Message Declaration Schema

<?xml version = "1.0" encoding = "UTF-8"?>

<!--Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema-->

<schema xmlns = "http://www.w3.org/2001/XMLSchema"

 targetNamespace = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/MIME"

 xmlns:tns = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/MIME"

 xmlns:xs = "http://www.w3.org/2001/XMLSchema"

 xmlns:SOAP = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/SOAP">

<import namespace = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/SOAP" schemaLocation = "soap.xsd"/>

<!-- Schema for the MIME envelope

-->

<!-- Envelope, header and body -->

<element name = "Message">

<complexType mixed = "true">

<choice>

<element ref = "tns:MessageContainer"/>

</choice>

<attribute name = "contentType" default = "multipart/related" type = "string"/>

<attribute name = "type" use = "optional" type = "string"/>

</complexType>

</element>

<element name = "MessageContainer">

<complexType>

<sequence>

<element ref = "SOAP:Envelope"/>

</sequence>

<attribute name = "contentId" use = "optional" type = "string"/>

<attribute name = "contentType" use = "optional" type = "string"/>

<attribute name = "charset" use = "optional" type = "string"/>

</complexType>

</element>

<element name = "PayloadContainer">

<complexType>

<sequence>

<any namespace = "##other" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

</sequence>

<attribute name = "contentId" use = "optional" type = "string"/>

<attribute name = "contentType" use = "optional" type = "string"/>

<attribute name = "charset" use = "optional" type = "string"/>

</complexType>

</element>

</schema>

SOAP Message Declaration Schema

<?xml version = "1.0" encoding = "UTF-8"?>

<!--Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema-->

<schema xmlns = "http://www.w3.org/2001/XMLSchema"

 targetNamespace = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/SOAP"

 xmlns:tns = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/SOAP"

 xmlns:xs = "http://www.w3.org/2001/XMLSchema"

 xmlns:eb = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/eb">

<import namespace = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/eb" schemaLocation = "eb.xsd"/>

<attributeGroup name = "encodingStyle">

<attribute name = "encodingStyle" type = "tns:encodingStyle"/>

</attributeGroup>

<!-- Schema for the SOAP/1.1 envelope

 This schema has been produced using W3C's SOAP Version 1.2 schema

 found at:

 http://www.w3.org/2001/06/soap-envelope

 Copyright 2001 Martin Gudgin, Developmentor.

 Changes made are the following:

 - reverted namespace to http://schemas.xmlsoap.org/soap/envelope/

 - reverted mustUnderstand to only allow 0 and 1 as lexical values

 Original copyright:

 Copyright 2001 W3C (Massachusetts Institute of Technology,

 Institut National de Recherche en Informatique et en Automatique,

 Keio University). All Rights Reserved.

 http://www.w3.org/Consortium/Legal/

 This document is governed by the W3C Software License [1] as

 described in the FAQ [2].

 [1] http://www.w3.org/Consortium/Legal/copyright-software-19980720

 [2] http://www.w3.org/Consortium/Legal/IPR-FAQ-20000620.html#DTD

-->

<!-- Envelope, header and body -->

<element name = "Envelope" type = "tns:Envelope"/>

<complexType name = "Envelope">

<sequence>

<element ref = "tns:Header"/>

<element ref = "tns:Body" minOccurs = "0"/>

<any namespace = "##other" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

</sequence>

<anyAttribute namespace = "##other" processContents = "lax"/>

</complexType>

<element name = "Header">

<complexType>

<sequence>

<sequence>

<element ref = "eb:MessageHeader"/>

<element ref = "eb:ErrorList" minOccurs = "0"/>

<choice minOccurs = "0">

<element ref = "eb:SyncReply"/>

<element ref = "eb:MessageOrder"/>

</choice>

<choice minOccurs = "0">

<element ref = "eb:AckRequested" minOccurs = "0" maxOccurs = "unbounded"/>

<element ref = "eb:Acknowledgment"/>

</choice>

</sequence>

</sequence>

</complexType>

</element>

<complexType name = "Header">

<sequence>

<any namespace = "##other" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

</sequence>

<anyAttribute namespace = "##other" processContents = "lax"/>

</complexType>

<element name = "Body">

<complexType>

<choice>

<element ref = "eb:Manifest"/>

<element ref = "eb:StatusRequest"/>

<element ref = "eb:StatusResponse"/>

</choice>

</complexType>

</element>

<complexType name = "Body">

<annotation>

<documentation>

 Prose in the spec does not specify that attributes are allowed on the Body element

</documentation>

</annotation>

<sequence>

<any namespace = "##any" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

</sequence>

<anyAttribute namespace = "##any" processContents = "lax"/>

</complexType>

<!-- Global Attributes. The following attributes are intended to be usable via qualified attribute names on any complex type referencing them. -->

<attribute name = "mustUnderstand" default = "0">

<simpleType>

<restriction base = "boolean">

<pattern value = "0|1"/>

</restriction>

</simpleType>

</attribute>

<attribute name = "actor" type = "anyURI"/>

<simpleType name = "encodingStyle">

<annotation>

<documentation>

 'encodingStyle' indicates any canonicalization conventions followed in the contents of the containing element. For example, the value 'http://schemas.xmlsoap.org/soap/encoding/' indicates the pattern described in SOAP specification

 </documentation>

</annotation>

<list itemType = "anyURI"/>

</simpleType>

<complexType name = "Fault"

 final = "extension">

<annotation>

<documentation>

 Fault reporting structure

 </documentation>

</annotation>

<sequence>

<element name = "faultcode" type = "QName"/>

<element name = "faultstring" type = "string"/>

<element name = "faultactor" type = "anyURI" minOccurs = "0"/>

<element name = "detail" type = "tns:detail" minOccurs = "0"/>

</sequence>

</complexType>

<complexType name = "detail">

<sequence>

<any namespace = "##any" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

</sequence>

<anyAttribute namespace = "##any" processContents = "lax"/>

</complexType>

</schema>

Test Driver Configuration Schema

<?xml version = "1.0" encoding = "UTF-8"?>

<!--Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema-->

<schema xmlns = "http://www.w3.org/2001/XMLSchema"

 targetNamespace = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/config"

 xmlns:tns = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/config"

 xmlns:cppa = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/cppa"

 version = "1.0"

 elementFormDefault = "unqualified"

 attributeFormDefault = "unqualified">

<import namespace = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests/cppa" schemaLocation = "cppa.xsd"/>

<!--

OASIS/ebXML Test Suite Framework

Description: Schema used to define ebXML Test Suite Configuration instance document

Authors:

 Michael Kass, NIST

 Matthew MacKenzie, XML Global

EbXML Messaging v2 Conformance Test Suite Configuration Schema.

 This software can be redistributed and/or modified freely provided

 that any derivative works bear some notice that they are derived from

 it, and any modified versions bear some notice that they have been

 modified.

 $Revision: 1.1 $

 $Author: matt $

 $Date: 2002/05/28 17:21:59 $

-->

<element name = "Configuration" type = "tns:configuration.ctype"/>

<element name = "ConfigurationItem" type = "tns:configurationItem.ctype"/>

<element name = "ConfigurationGroup" type = "tns:configurationGroup.ctype"/>

<element name = "Namespace" type = "tns:namespace.ctype"/>

<!-- complex types -->

<complexType name = "configuration.ctype">

<choice>

<element ref = "tns:ConfigurationItem" maxOccurs = "unbounded"/>

<element ref = "tns:ConfigurationGroup"/>

</choice>

</complexType>

<complexType name = "configurationItem.ctype">

<attribute name = "id" use = "optional" type = "ID"/>

<attribute name = "type" use = "required" type = "tns:ciType.stype"/>

<attribute name = "name" use = "required" type = "tns:configurationName.type"/>

<attribute name = "value" use = "required" type = "string"/>

</complexType>

<complexType name = "configurationGroup.ctype">

<sequence>

<element ref = "tns:ConfigurationItem" minOccurs = "2" maxOccurs = "unbounded"/>

<element ref = "tns:Namespace" minOccurs = "0" maxOccurs = "unbounded"/>

</sequence>

<attribute name = "cpaId" use = "required" type = "anyURI"/>

<attribute name = "id" use = "required" type = "ID"/>

</complexType>

<complexType name = "namespace.ctype">

<attribute name = "prefix" type = "NMTOKEN"/>

<attribute name = "value" type = "anyURI"/>

</complexType>

<!-- simple types -->

<simpleType name = "ciType.stype">

<restriction base = "string">

<enumeration value = "xpath"/>

<enumeration value = "constant"/>

</restriction>

</simpleType>

<simpleType name = "configurationName.type">

<restriction base = "string">

<enumeration value = "cpa"/>

</restriction>

</simpleType>

</schema>

Appendix D The “Basic” Testing CPPA

The CPPA below describes the “basic” Collaboration Profile Protocol Agreement that by default is used in the majority of Conformance Tests in the ebXML MS v2.0 Conformance Test Suite. It describes the Test Driver and Test Service service names and actions, their communication protocols, their Action relationships and their message packages. This CPPA corresponds to the CPAId of “cpa_basic”, and must be referenced as such from within any test message that requires this CPPA configuration. A Test Harness that conforms to this specification MUST implemenet the semantic equivalent of this CPPA in the Test Service component.

Because the Test Driver component of the Test Harness is not a true MSH, the semantic meaning of any of the CPPAs listed below must still be followed, however implementation of features that may be “transparent” to the Test Service (for example Test Driver “DuplicateElimination”) are left to the discretion of the Test Driver implementer.

The list of CPPAs in the table below MUST be implemented to satisfy the testing requirements of the ebXML MS v2.0 Conformance Test Suite described in Appendix H.

	CPAId
	CPPA Description

	cpa_basic
	Minimal configuration for “bootstrap” configuration of a Test Case

	cpa_no_errorURI
	Basic CPPA, with no ErrorURI defined for all Test Service Actions

	cpa_sync_reply_mode_none
	Basic CPPA, with syncReplyMode = “none” defined for all Test Service Actions

	cpa_no_dsig
	Basic CPPA, with no Signature configuration for all Test Service Actions

	cpa_dup_elimination_true
	Basic CPPA, with DuplicateElimination = “true” defined for all Test Service Actions

	cpa_dup_elimination_per_message
	Basic CPPA, with DuplicateElimination =“per message” for all Test Service Actions

	cpa_dup_elimination_always
	Basic CPPA, with DuplicateElimination = “always” defined for all Test Service Actions

	cpa_dup_elimination_never
	Basic CPPA, with DuplicateElimination = “never” for all Test Service Actions

	cpa_persist_duration_0
	Basic CPPA, with PersistDuration = 0 seconds for all Test Service Actions

	cpa_message_order_guaranteed
	Basic CPPA, with MessageOrder = “Guaranteed” for all Test Service Actions

The following “basic CPPA” XML document validates to the ebXML CPPA v1.11 schema for [CPPA].

<?xml version = "1.0" encoding = "UTF-8"?>

<!-- Copyright UN/CEFACT and OASIS, 2001. All Rights Reserved. -->

<tp:CollaborationProtocolAgreement xmlns:tp = "http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd" xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance" xmlns:xlink = "http://www.w3.org/1999/xlink" xmlns:ds = "http://www.w3.org/2000/09/xmldsig#" xmlns:xsd = "http://www.w3.org/2001/XMLSchema" xsi:schemaLocation = "http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd cpp-cpa-2_0a.xsd" tp:cpaid = "uri:TestService-and-TestDriver-cpa" tp:version = "2_0a">

<tp:Status tp:value = "proposed"/>

<tp:Start>2001-05-20T07:21:00Z</tp:Start>

<tp:End>2002-05-20T07:21:00Z</tp:End>

<tp:ConversationConstraints tp:invocationLimit = "100" tp:concurrentConversations = "10"/>

<!-- Party info for TestService -->

<tp:PartyInfo tp:partyName = "TestService" tp:defaultMshChannelId = "asyncChannelA1" tp:defaultMshPackageId = "TestService_MshSignalPackage">

<tp:PartyId tp:type = "urn:oasis:names:tc:ebxml-iic:partyid-type:simple">ebXMLIIC_Test_Service</tp:PartyId>

<tp:PartyRef xlink:href = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests"/>

<tp:CollaborationRole>

<tp:ProcessSpecification xlink:href = "TestFrameworkProcess.xml" tp:version = "1.0" tp:name = "ebXMLTestFramework"/>

<tp:Role xlink:href = "TestFrameworkProcess.xml" tp:name = "TestService"/>

<tp:ApplicationCertificateRef tp:certId = "TestService_AppCert"/>

<tp:ServiceBinding>

<tp:Service>urn:ebxml:iic:testservice</tp:Service>

<!-- Async Reflector Request Send -->

<tp:CanSend>

<tp:ThisPartyActionBinding tp:id = "TestService_01" tp:action = "ReflectorResponse" tp:packageId = "TestService_Reflector_Action_RequestPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false" tp:timeToAcknowledgeReceipt = "PT4M" tp:timeToPerform = "P1D"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestDriver_01</tp:OtherPartyActionBinding>

</tp:CanSend>

<!-- Sync Reflector Action Send -->

<tp:CanSend>

<tp:ThisPartyActionBinding tp:id = "TestService_06" tp:action = "ReflectorResponse" tp:packageId = "TestService_Reflector_Action_RequestPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false" tp:timeToAcknowledgeReceipt = "PT4M" tp:timeToAcknowledgeAcceptance = "PT4M" tp:timeToPerform = "PT4M"/>

<tp:ChannelId>syncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestDriver_06</tp:OtherPartyActionBinding>

</tp:CanSend>

<!-- Async ReceiptAcknowledgment Action Send -->

<tp:CanSend>

<tp:ThisPartyActionBinding tp:id = "TestService_02" tp:action = "ReceiptAcknowledgement" tp:packageId = "TestService_ReceiptAcknowledgmentPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestDriver_02</tp:OtherPartyActionBinding>

</tp:CanSend>

<!-- Async Dummy Action Send -->

<tp:CanSend>

<tp:ThisPartyActionBinding tp:id = "TestService_09" tp:action = "DummyResponse" tp:packageId = "TestService_MshSignalPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestDriver_09</tp:OtherPartyActionBinding>

</tp:CanSend>

<!-- Sync Dummy Action Send -->

<tp:CanSend>

<tp:ThisPartyActionBinding tp:id = "TestService_10" tp:action = "DummyResponse" tp:packageId = "TestService_MshSignalPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>syncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestDriver_10</tp:OtherPartyActionBinding>

</tp:CanSend>

<!-- Async Initiator Action Send -->

<tp:CanSend>

<tp:ThisPartyActionBinding tp:id = "TestService_11" tp:action = "InitiatorResponse" tp:packageId = "TestService_MshSignalPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestDriver_11</tp:OtherPartyActionBinding>

</tp:CanSend>

<!-- Sync Initiator Action Send -->

<tp:CanSend>

<tp:ThisPartyActionBinding tp:id = "TestService_12" tp:action = "InitiatorResponse" tp:packageId = "TestService_MshSignalPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>syncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestDriver_12</tp:OtherPartyActionBinding>

</tp:CanSend>

<!-- Async ErrorAppNotify Action Send -->

<tp:CanSend>

<tp:ThisPartyActionBinding tp:id = "TestService_13" tp:action = "ErrorAppNotifyResponse" tp:packageId = "TestService_ErrorAppNotifylPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestDriver_13</tp:OtherPartyActionBinding>

</tp:CanSend>

<!-- Sync ErrorAppNotify Action Send -->

<tp:CanSend>

<tp:ThisPartyActionBinding tp:id = "TestService_14" tp:action = "ErrorAppNotifyResponse" tp:packageId = "TestService_ErrorAppNotifyPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>syncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestDriver_14</tp:OtherPartyActionBinding>

</tp:CanSend>

<!-- Async ErrorAppNotify Action Send -->

<tp:CanSend>

<tp:ThisPartyActionBinding tp:id = "TestService_15" tp:action = "PayloadVerifyResponse" tp:packageId = "TestService_PayloadVerifylResponsePackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestDriver_15</tp:OtherPartyActionBinding>

</tp:CanSend>

<!-- Sync ErrorAppNotify Action Send -->

<tp:CanSend>

<tp:ThisPartyActionBinding tp:id = "TestService_16" tp:action = "ErrorAppNotifyResponse" tp:packageId = "TestService_PaylodVerifyResponsePackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>syncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestDriver_16</tp:OtherPartyActionBinding>

</tp:CanSend>

<!-- Async ErrorAppNotify Action Send -->

<tp:CanSend>

<tp:ThisPartyActionBinding tp:id = "TestService_17" tp:action = "ErrorAppNotifyResponse" tp:packageId = "TestService_ErrorURLNotifylPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestDriver_17</tp:OtherPartyActionBinding>

</tp:CanSend>

<!-- Async Initiator Action Send -->

<tp:CanSend>

<tp:ThisPartyActionBinding tp:id = "TestService_19" tp:action = "ConfiguratorResponse" tp:packageId = "TestService_ConfiguratorResponse_Package">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestDriver_19</tp:OtherPartyActionBinding>

</tp:CanSend>

<!-- Sync Initiator Action Send -->

<tp:CanSend>

<tp:ThisPartyActionBinding tp:id = "TestService_20" tp:action = "ConfiguratorResponse" tp:packageId = "TestService_ConfiguratorResponse_Package">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>syncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestDriver_20</tp:OtherPartyActionBinding>

</tp:CanSend>

<!-- Sync ErrorURLNotify Action Send -->

<tp:CanSend>

<tp:ThisPartyActionBinding tp:id = "TestService_18" tp:action = "ErrorAppNotifyResponse" tp:packageId = "TestService_ErrorURLNotifyPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>syncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestDriver_18</tp:OtherPartyActionBinding>

</tp:CanSend>

<!-- Async Reflector Action Receive -->

<tp:CanReceive>

<tp:ThisPartyActionBinding tp:id = "TestService_03" tp:action = "ReflectorResponse" tp:packageId = "TestService_Reflector_ResponsePackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false" tp:timeToAcknowledgeReceipt = "PT4M"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestDriver_03</tp:OtherPartyActionBinding>

</tp:CanReceive>

<!-- Sync Reflector Action Receive -->

<tp:CanReceive>

<tp:ThisPartyActionBinding tp:id = "TestService_07" tp:action = "ReflectorResponse" tp:packageId = "TestService_SyncReplyPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false" tp:timeToAcknowledgeReceipt = "PT4M" tp:timeToAcknowledgeAcceptance = "PT4M"/>

<tp:ChannelId>syncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestDriver_07</tp:OtherPartyActionBinding>

</tp:CanReceive>

<!-- Sync Exception Action Receive -->

<tp:CanReceive>

<tp:ThisPartyActionBinding tp:id = "TestService_08" tp:action = "Exception" tp:packageId = "TestService_ExceptionPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>syncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestDriver_08</tp:OtherPartyActionBinding>

</tp:CanReceive>

<!-- Async Exception Action Receive -->

<tp:CanReceive>

<tp:ThisPartyActionBinding tp:id = "TestService_05" tp:action = "Exception" tp:packageId = "TestService_ExceptionPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestDriver_05</tp:OtherPartyActionBinding>

</tp:CanReceive>

<!-- Async ReceiptAcknowledgment Action Receive -->

<tp:CanReceive>

<tp:ThisPartyActionBinding tp:id = "TestService_04" tp:action = "ReceiptAcknowledgment" tp:packageId = "TestService_ReceiptAcknowledgmentPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestDriver_04</tp:OtherPartyActionBinding>

</tp:CanReceive>

</tp:ServiceBinding>

</tp:CollaborationRole>

<!-- Certificates used by the Test Service -->

<tp:Certificate tp:certId = "TestService_AppCert">

<ds:KeyInfo>

<ds:KeyName>TestService_AppCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId = "TestService_SigningCert">

<ds:KeyInfo>

<ds:KeyName>TestService_SigningCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId = "TestService_EncryptionCert">

<ds:KeyInfo>

<ds:KeyName>TestService_EncryptionCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId = "TestService_ServerCert">

<ds:KeyInfo>

<ds:KeyName>TestService_ServerCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId = "TestService_ClientCert">

<ds:KeyInfo>

<ds:KeyName>TestService_ClientCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId = "TrustedRootCertA1">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertA1_Key </ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId = "TrustedRootCertA2">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertA2_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId = "TrustedRootCertA3">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertA3_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId = "TrustedRootCertA4">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertA4_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId = "TrustedRootCertA5">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertA5_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:SecurityDetails tp:securityId = "TestService_TransportSecurity">

<tp:TrustAnchors>

<tp:AnchorCertificateRef tp:certId = "TrustedRootCertA1"/>

<tp:AnchorCertificateRef tp:certId = "TrustedRootCertA2"/>

<tp:AnchorCertificateRef tp:certId = "TrustedRootCertA4"/>

</tp:TrustAnchors>

</tp:SecurityDetails>

<tp:SecurityDetails tp:securityId = "TestService_MessageSecurity">

<tp:TrustAnchors>

<tp:AnchorCertificateRef tp:certId = "TrustedRootCertA3"/>

<tp:AnchorCertificateRef tp:certId = "TrustedRootCertA5"/>

</tp:TrustAnchors>

</tp:SecurityDetails>

<tp:DeliveryChannel tp:channelId = "asyncChannelA1" tp:transportId = "transportA1" tp:docExchangeId = "docExchangeA1">

<tp:MessagingCharacteristics tp:syncReplyMode = "none" tp:ackRequested = "perMessage" tp:ackSignatureRequested = "always" tp:duplicateElimination = "always"/>

</tp:DeliveryChannel>

<tp:DeliveryChannel tp:channelId = "syncChannelA1" tp:transportId = "transportA2" tp:docExchangeId = "docExchangeA1">

<tp:MessagingCharacteristics tp:syncReplyMode = "signalsAndResponse" tp:ackRequested = "perMessage" tp:ackSignatureRequested = "always" tp:duplicateElimination = "always"/>

</tp:DeliveryChannel>

<tp:Transport tp:transportId = "transportA1">

<tp:TransportSender>

<tp:TransportProtocol tp:version = "1.1">HTTP</tp:TransportProtocol>

<tp:AccessAuthentication>basic</tp:AccessAuthentication>

<tp:TransportClientSecurity>

<tp:TransportSecurityProtocol tp:version = "3.0">SSL</tp:TransportSecurityProtocol>

<tp:ClientCertificateRef tp:certId = "TestService_ClientCert"/>

<tp:ServerSecurityDetailsRef tp:securityId = "TestService_TransportSecurity"/>

</tp:TransportClientSecurity>

</tp:TransportSender>

<tp:TransportReceiver>

<tp:TransportProtocol tp:version = "1.1">HTTP</tp:TransportProtocol>

<tp:AccessAuthentication>basic</tp:AccessAuthentication>

<tp:Endpoint tp:uri = "https://www.TestService.com/servlets/ebxmlhandler/async" tp:type = "allPurpose"/>

<tp:TransportServerSecurity>

<tp:TransportSecurityProtocol tp:version = "3.0">SSL</tp:TransportSecurityProtocol>

<tp:ServerCertificateRef tp:certId = "TestService_ServerCert"/>

<tp:ClientSecurityDetailsRef tp:securityId = "TestService_TransportSecurity"/>

</tp:TransportServerSecurity>

</tp:TransportReceiver>

</tp:Transport>

<tp:Transport tp:transportId = "transportA2">

<tp:TransportSender>

<tp:TransportProtocol tp:version = "1.1">HTTP</tp:TransportProtocol>

<tp:AccessAuthentication>basic</tp:AccessAuthentication>

<tp:TransportClientSecurity>

<tp:TransportSecurityProtocol tp:version = "3.0">SSL</tp:TransportSecurityProtocol>

<tp:ClientCertificateRef tp:certId = "TestService_ClientCert"/>

<tp:ServerSecurityDetailsRef tp:securityId = "TestService_TransportSecurity"/>

</tp:TransportClientSecurity>

</tp:TransportSender>

<tp:TransportReceiver>

<tp:TransportProtocol tp:version = "1.1">HTTP</tp:TransportProtocol>

<tp:AccessAuthentication>basic</tp:AccessAuthentication>

<tp:Endpoint tp:uri = "https://www.TestService.com/servlets/ebxmlhandler/sync" tp:type = "allPurpose"/>

<tp:TransportServerSecurity>

<tp:TransportSecurityProtocol tp:version = "3.0">SSL</tp:TransportSecurityProtocol>

<tp:ServerCertificateRef tp:certId = "TestService_ServerCert"/>

<tp:ClientSecurityDetailsRef tp:securityId = "TestService_TransportSecurity"/>

</tp:TransportServerSecurity>

</tp:TransportReceiver>

</tp:Transport>

<tp:DocExchange tp:docExchangeId = "docExchangeA1">

<tp:ebXMLSenderBinding tp:version = "2.0">

<tp:ReliableMessaging>

<tp:Retries>3</tp:Retries>

<tp:RetryInterval>PT1M</tp:RetryInterval>

<tp:MessageOrderSemantics>NotGuaranteed</tp:MessageOrderSemantics>

</tp:ReliableMessaging>

<tp:PersistDuration>PT10M</tp:PersistDuration>

<tp:SenderNonRepudiation>

<tp:NonRepudiationProtocol>http://www.w3.org/2000/09/xmldsig#</tp:NonRepudiationProtocol>

<tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>

<tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>

<tp:SigningCertificateRef tp:certId = "TestService_SigningCert"/>

</tp:SenderNonRepudiation>

<tp:SenderDigitalEnvelope>

<tp:DigitalEnvelopeProtocol tp:version = "2.0">S/MIME</tp:DigitalEnvelopeProtocol>

<tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

<tp:EncryptionSecurityDetailsRef tp:securityId = "TestService_MessageSecurity"/>

</tp:SenderDigitalEnvelope>

</tp:ebXMLSenderBinding>

<tp:ebXMLReceiverBinding tp:version = "2.0">

<tp:ReliableMessaging>

<tp:Retries>3</tp:Retries>

<tp:RetryInterval>PT1M</tp:RetryInterval>

<tp:MessageOrderSemantics>NotGuaranteed</tp:MessageOrderSemantics>

</tp:ReliableMessaging>

<tp:PersistDuration>PT10M</tp:PersistDuration>

<tp:ReceiverNonRepudiation>

<tp:NonRepudiationProtocol>http://www.w3.org/2000/09/xmldsig#</tp:NonRepudiationProtocol>

<tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>

<tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>

<tp:SigningSecurityDetailsRef tp:securityId = "TestService_MessageSecurity"/>

</tp:ReceiverNonRepudiation>

<tp:ReceiverDigitalEnvelope>

<tp:DigitalEnvelopeProtocol tp:version = "2.0">S/MIME</tp:DigitalEnvelopeProtocol>

<tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

<tp:EncryptionCertificateRef tp:certId = "TestService_EncryptionCert"/>

</tp:ReceiverDigitalEnvelope>

</tp:ebXMLReceiverBinding>

</tp:DocExchange>

</tp:PartyInfo>

<!-- Party info for TestDriver -->

<tp:PartyInfo tp:partyName = "TestDriver" tp:defaultMshChannelId = "asyncChannelB1" tp:defaultMshPackageId = "TestDriver_MshSignalPackage">

<tp:PartyId tp:type = "urn:oasis:names:tc:ebxml-iic:partyid-type:simple">ebXMLIIC_Test_Driver</tp:PartyId>

<tp:PartyRef xlink:href = "http://www.oasis-open.org/tc/ebxml-iic/conformance/tests"/>

<tp:CollaborationRole>

<tp:ProcessSpecification xlink:href = "TestFrameworkProcess.xml" tp:version = "1.0" tp:name = "ebXMLTestFramework"/>

<tp:Role xlink:href = "TestFrameworkProcess.xml" tp:name = "TestDriver"/>

<tp:ApplicationCertificateRef tp:certId = "TestDriver_AppCert"/>

<tp:ServiceBinding>

<tp:Service>urn:ebxml:iic:testdriver</tp:Service>

<!-- Async Reflector Action Send -->

<tp:CanSend>

<tp:ThisPartyActionBinding tp:id = "TestDriver_03" tp:action = "Reflector" tp:packageId = "TestDriver_Reflector_ResponsePackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false" tp:timeToAcknowledgeReceipt = "PT4M"/>

<tp:ActionContext tp:binaryCollaboration = "Send Reflector Request" tp:businessTransactionActivity = "Send Reflector Request" tp:requestOrResponseAction = "Purchase Order Confirmation Action"/>

<tp:ChannelId>asyncChannelB1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestService_03</tp:OtherPartyActionBinding>

</tp:CanSend>

<!-- Async ReceiptAcknowledgment Action Send -->

<tp:CanSend>

<tp:ThisPartyActionBinding tp:id = "TestDriver_04" tp:action = "ReceiptAcknowledgement" tp:packageId = "TestDriver_ReceiptAcknowledgmentPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>asyncChannelB1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestService_04</tp:OtherPartyActionBinding>

</tp:CanSend>

<!-- Async Exception Action Send -->

<tp:CanSend>

<tp:ThisPartyActionBinding tp:id = "TestDriver_05" tp:action = "Exception" tp:packageId = "TestDriver_ExceptionPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>asyncChannelB1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestService_05</tp:OtherPartyActionBinding>

</tp:CanSend>

<!-- Async Reflector Action Receive -->

<tp:CanReceive>

<tp:ThisPartyActionBinding tp:id = "TestDriver_01" tp:action = "Reflector" tp:packageId = "TestDriver_Reflector_RequestPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false" tp:timeToAcknowledgeReceipt = "PT4M" tp:timeToPerform = "PT4M"/>

<tp:ActionContext tp:binaryCollaboration = "Send Reflector Request" tp:businessTransactionActivity = "Send Reflector Request" tp:requestOrResponseAction = "Send Reflector Request Action"/>

<tp:ChannelId>asyncChannelB1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestService_01</tp:OtherPartyActionBinding>

</tp:CanReceive>

<!-- Async ReceiptAcknowledgment Action Send -->

<tp:CanReceive>

<tp:ThisPartyActionBinding tp:id = "TestDriver_02" tp:action = "ReceiptAcknowledgment" tp:packageId = "TestDriver_ReceiptAcknowledgmentPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>asyncChannelB1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestService_02</tp:OtherPartyActionBinding>

</tp:CanReceive>

<!-- Sync Reflector Action Receive -->

<tp:CanReceive>

<tp:ThisPartyActionBinding tp:id = "TestDriver_06" tp:action = "Reflector" tp:packageId = "TestDriver_Reflector_RequestPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false" tp:timeToAcknowledgeReceipt = "PT4M" tp:timeToAcknowledgeAcceptance = "PT4M" tp:timeToPerform = "PT4M"/>

<tp:ChannelId>syncChannelB1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestService_06</tp:OtherPartyActionBinding>

<!-- Sync Reflector Action Send-->

<tp:CanSend>

<tp:ThisPartyActionBinding tp:id = "TestDriver_07" tp:action = "Reflector" tp:packageId = "TestDriver_SyncReplyPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false" tp:timeToAcknowledgeReceipt = "PT4M" tp:timeToAcknowledgeAcceptance = "PT4M"/>

<tp:ChannelId>syncChannelB1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestService_07</tp:OtherPartyActionBinding>

</tp:CanSend>

<!-- Sync Exception Action Send -->

<tp:CanSend>

<tp:ThisPartyActionBinding tp:id = "TestDriver_08" tp:action = "Exception" tp:packageId = "TestDriver_ExceptionPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>syncChannelB1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestService_08</tp:OtherPartyActionBinding>

</tp:CanSend>

</tp:CanReceive>

<!-- Aync Dummy Action Receive -->

<tp:CanReceive>

<tp:ThisPartyActionBinding tp:id = "TestDriver_09" tp:action = "Dummy" tp:packageId = "TestDriver_MshSignalPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestService_09</tp:OtherPartyActionBinding>

</tp:CanReceive>

<!-- Sync Dummy Action Receive -->

<tp:CanReceive>

<tp:ThisPartyActionBinding tp:id = "TestDriver_10" tp:action = "Dummy" tp:packageId = "TestDriver_MshSignalPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>syncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestService_10</tp:OtherPartyActionBinding>

</tp:CanReceive>

<!-- Sync Initiator Action Receive -->

<tp:CanReceive>

<tp:ThisPartyActionBinding tp:id = "TestDriver_11" tp:action = "Initiator" tp:packageId = "TestDriver_MshSignalPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>syncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestService_11</tp:OtherPartyActionBinding>

</tp:CanReceive>

<!-- Async Initiator Action Receive -->

<tp:CanReceive>

<tp:ThisPartyActionBinding tp:id = "TestDriver_12" tp:action = "Initiator" tp:packageId = "TestDriver_MshSignalPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestService_12</tp:OtherPartyActionBinding>

</tp:CanReceive>

<!-- Async Initiator Action Receive -->

<tp:CanReceive>

<tp:ThisPartyActionBinding tp:id = "TestDriver_13" tp:action = "ErrorAppNotifyResponse" tp:packageId = "TestDriver_ErrorAppNotifyPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestService_13</tp:OtherPartyActionBinding>

</tp:CanReceive>

<!-- Sync Initiator Action Receive -->

<tp:CanReceive>

<tp:ThisPartyActionBinding tp:id = "TestDriver_14" tp:action = "ErrorAppNotifyResponse" tp:packageId = "TestDriver_ErrorAppNotifyPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>syncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestService_14</tp:OtherPartyActionBinding>

</tp:CanReceive>

<!-- Async Initiator Action Receive -->

<tp:CanReceive>

<tp:ThisPartyActionBinding tp:id = "TestDriver_15" tp:action = "VerifyPayloadResponse" tp:packageId = "TestDriver_PayloadVerifyPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestService_15</tp:OtherPartyActionBinding>

</tp:CanReceive>

<!-- Sync Initiator Action Receive -->

<tp:CanReceive>

<tp:ThisPartyActionBinding tp:id = "TestDriver_16" tp:action = "VerifyPayloadResponse" tp:packageId = "TestDriver_Payload_VerifyPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>syncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestService_16</tp:OtherPartyActionBinding>

</tp:CanReceive>

<!-- Async Initiator Action Receive -->

<tp:CanReceive>

<tp:ThisPartyActionBinding tp:id = "TestDriver_17" tp:action = "ErrorURLNotifyResponse" tp:packageId = "TestDriver_ErrorURLNotifyPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestService_17</tp:OtherPartyActionBinding>

</tp:CanReceive>

<!-- Sync Initiator Action Receive -->

<tp:CanReceive>

<tp:ThisPartyActionBinding tp:id = "TestDriver_18" tp:action = "ErrorURLNotifyResponse" tp:packageId = "TestDriver_ErrorURLNotifyPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>syncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestService_18</tp:OtherPartyActionBinding>

</tp:CanReceive>

<!-- Async Initiator Action Receive -->

<tp:CanReceive>

<tp:ThisPartyActionBinding tp:id = "TestDriver_19" tp:action = "ConfiguratorResponse" tp:packageId = "TestDriver_ConfiguratorPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestService_19</tp:OtherPartyActionBinding>

</tp:CanReceive>

<!-- Sync Initiator Action Receive -->

<tp:CanReceive>

<tp:ThisPartyActionBinding tp:id = "TestDriver_20" tp:action = "ConfiguratorResponse" tp:packageId = "TestDriver_ConfiguratorPackage">

<tp:BusinessTransactionCharacteristics tp:isNonRepudiationRequired = "false" tp:isNonRepudiationReceiptRequired = "false" tp:isConfidential = "none" tp:isAuthenticated = "none" tp:isTamperProof = "transient" tp:isAuthorizationRequired = "false"/>

<tp:ChannelId>syncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>TestService_20</tp:OtherPartyActionBinding>

</tp:CanReceive>

</tp:ServiceBinding>

</tp:CollaborationRole>

<!-- Certificates used by the Test Driver -->

<tp:Certificate tp:certId = "TestDriver_AppCert">

<ds:KeyInfo>

<ds:KeyName>TestDriver_AppCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId = "TestDriver_SigningCert">

<ds:KeyInfo>

<ds:KeyName>TestDriver_Signingcert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId = "TestDriver_EncryptionCert">

<ds:KeyInfo>

<ds:KeyName>TestDriver_EncryptionCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId = "TestDriver_ServerCert">

<ds:KeyInfo>

<ds:KeyName>TestDriver_ServerCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId = "TestDriver_ClientCert">

<ds:KeyInfo>

<ds:KeyName>TestDriver_ClientCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId = "TrustedRootCertB4">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertB4_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId = "TrustedRootCertB5">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertB5_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId = "TrustedRootCertB6">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertB6_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId = "TrustedRootCertB7">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertB7_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId = "TrustedRootCertB8">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertB8_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:SecurityDetails tp:securityId = "TestDriver_TransportSecurity">

<tp:TrustAnchors>

<tp:AnchorCertificateRef tp:certId = "TrustedRootCertB5"/>

<tp:AnchorCertificateRef tp:certId = "TrustedRootCertB6"/>

<tp:AnchorCertificateRef tp:certId = "TrustedRootCertB4"/>

</tp:TrustAnchors>

</tp:SecurityDetails>

<tp:SecurityDetails tp:securityId = "TestDriver_MessageSecurity">

<tp:TrustAnchors>

<tp:AnchorCertificateRef tp:certId = "TrustedRootCertB8"/>

<tp:AnchorCertificateRef tp:certId = "TrustedRootCertB7"/>

</tp:TrustAnchors>

</tp:SecurityDetails>

<!-- An asynchronous delivery channel -->

<tp:DeliveryChannel tp:channelId = "asyncChannelB1" tp:transportId = "transportB1" tp:docExchangeId = "docExchangeB1">

<tp:MessagingCharacteristics tp:syncReplyMode = "none" tp:ackRequested = "perMessage" tp:ackSignatureRequested = "always" tp:duplicateElimination = "always"/>

</tp:DeliveryChannel>

<!-- A synchronous delivery channel -->

<tp:DeliveryChannel tp:channelId = "syncChannelB1" tp:transportId = "transportB2" tp:docExchangeId = "docExchangeB1">

<tp:MessagingCharacteristics tp:syncReplyMode = "signalsAndResponse" tp:ackRequested = "perMessage" tp:ackSignatureRequested = "always" tp:duplicateElimination = "always"/>

</tp:DeliveryChannel>

<tp:Transport tp:transportId = "transportB1">

<tp:TransportSender>

<tp:TransportProtocol tp:version = "1.1">HTTP</tp:TransportProtocol>

<tp:AccessAuthentication>basic</tp:AccessAuthentication>

<tp:TransportClientSecurity>

<tp:TransportSecurityProtocol tp:version = "3.0">SSL</tp:TransportSecurityProtocol>

<tp:ClientCertificateRef tp:certId = "TestDriver_ClientCert"/>

<tp:ServerSecurityDetailsRef tp:securityId = "TestDriver_TransportSecurity"/>

</tp:TransportClientSecurity>

</tp:TransportSender>

<tp:TransportReceiver>

<tp:TransportProtocol tp:version = "1.1">HTTP</tp:TransportProtocol>

<tp:AccessAuthentication>basic</tp:AccessAuthentication>

<tp:Endpoint tp:uri = "https://www.TestDriver.com/servlets/ebxmlhandler/async" tp:type = "allPurpose"/>

<tp:TransportServerSecurity>

<tp:TransportSecurityProtocol tp:version = "3.0">SSL</tp:TransportSecurityProtocol>

<tp:ServerCertificateRef tp:certId = "TestDriver_ServerCert"/>

<tp:ClientSecurityDetailsRef tp:securityId = "TestDriver_TransportSecurity"/>

</tp:TransportServerSecurity>

</tp:TransportReceiver>

</tp:Transport>

<tp:Transport tp:transportId = "transportB2">

<tp:TransportSender>

<tp:TransportProtocol tp:version = "1.1">HTTP</tp:TransportProtocol>

<tp:AccessAuthentication>basic</tp:AccessAuthentication>

<tp:TransportClientSecurity>

<tp:TransportSecurityProtocol tp:version = "3.0">SSL</tp:TransportSecurityProtocol>

<tp:ClientCertificateRef tp:certId = "TestDriver_ClientCert"/>

<tp:ServerSecurityDetailsRef tp:securityId = "TestDriver_TransportSecurity"/>

</tp:TransportClientSecurity>

</tp:TransportSender>

<tp:TransportReceiver>

<tp:TransportProtocol tp:version = "1.1">HTTP</tp:TransportProtocol>

<tp:AccessAuthentication>basic</tp:AccessAuthentication>

<tp:Endpoint tp:uri = "https://www.TestDriver.com/servlets/ebxmlhandler/sync" tp:type = "allPurpose"/>

<tp:TransportServerSecurity>

<tp:TransportSecurityProtocol tp:version = "3.0">SSL</tp:TransportSecurityProtocol>

<tp:ServerCertificateRef tp:certId = "TestDriver_ServerCert"/>

<tp:ClientSecurityDetailsRef tp:securityId = "TestDriver_TransportSecurity"/>

</tp:TransportServerSecurity>

</tp:TransportReceiver>

</tp:Transport>

<tp:DocExchange tp:docExchangeId = "docExchangeB1">

<tp:ebXMLSenderBinding tp:version = "2.0">

<tp:ReliableMessaging>

<tp:Retries>3</tp:Retries>

<tp:RetryInterval>PT1M</tp:RetryInterval>

<tp:MessageOrderSemantics>NotGuaranteed</tp:MessageOrderSemantics>

</tp:ReliableMessaging>

<tp:PersistDuration>PT10M</tp:PersistDuration>

<tp:SenderNonRepudiation>

<tp:NonRepudiationProtocol>http://www.w3.org/2000/09/xmldsig#</tp:NonRepudiationProtocol>

<tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>

<tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>

<tp:SigningCertificateRef tp:certId = "TestDriver_SigningCert"/>

</tp:SenderNonRepudiation>

<tp:SenderDigitalEnvelope>

<tp:DigitalEnvelopeProtocol tp:version = "2.0">S/MIME</tp:DigitalEnvelopeProtocol>

<tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

<tp:EncryptionSecurityDetailsRef tp:securityId = "TestDriver_MessageSecurity"/>

</tp:SenderDigitalEnvelope>

</tp:ebXMLSenderBinding>

<tp:ebXMLReceiverBinding tp:version = "2.0">

<tp:ReliableMessaging>

<tp:Retries>3</tp:Retries>

<tp:RetryInterval>PT1M</tp:RetryInterval>

<tp:MessageOrderSemantics>NotGuaranteed</tp:MessageOrderSemantics>

</tp:ReliableMessaging>

<tp:PersistDuration>PT10M</tp:PersistDuration>

<tp:ReceiverNonRepudiation>

<tp:NonRepudiationProtocol>http://www.w3.org/2000/09/xmldsig#</tp:NonRepudiationProtocol>

<tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>

<tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>

<tp:SigningSecurityDetailsRef tp:securityId = "TestDriver_MessageSecurity"/>

</tp:ReceiverNonRepudiation>

<tp:ReceiverDigitalEnvelope>

<tp:DigitalEnvelopeProtocol tp:version = "2.0">S/MIME</tp:DigitalEnvelopeProtocol>

<tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

<tp:EncryptionCertificateRef tp:certId = "TestDriver_EncryptionCert"/>

</tp:ReceiverDigitalEnvelope>

</tp:ebXMLReceiverBinding>

</tp:DocExchange>

</tp:PartyInfo>

<!-- SimplePart corresponding to the SOAP Envelope -->

<tp:SimplePart tp:id = "TestService_MsgHdr" tp:mimetype = "text/xml">

<tp:NamespaceSupported tp:location = "http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd" tp:version = "2.0"> http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<tp:SimplePart tp:id = "TestDriver_MsgHdr" tp:mimetype = "text/xml">

<tp:NamespaceSupported tp:location = "http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd" tp:version = "2.0"> http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<!-- SimplePart corresponding to a Receipt Acknowledgment business signal -->

<tp:SimplePart tp:id = "TestService_ReceiptAcknowledgment" tp:mimetype = "application/xml">

<tp:NamespaceSupported tp:location = "http://www.ebxml.org/bpss/ReceiptAcknowledgment.xsd" tp:version = "2.0">http://www.ebxml.org/bpss/ReceiptAcknowledgment.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<tp:SimplePart tp:id = "TestDriver_ReceiptAcknowledgment" tp:mimetype = "application/xml">

<tp:NamespaceSupported tp:location = "http://www.ebxml.org/bpss/ReceiptAcknowledgment.xsd" tp:version = "2.0"> http://www.ebxml.org/bpss/ReceiptAcknowledgment.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<!-- SimplePart corresponding to a Accept Acknowledgment business signal -->

<tp:SimplePart tp:id = "TestService_AcceptAcknowledgment" tp:mimetype = "application/xml">

<tp:NamespaceSupported tp:location = "http://www.ebxml.org/bpss/AcceptAcknowledgment.xsd" tp:version = "2.0">http://www.ebxml.org/bpss/AcceptAcknowledgment.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<tp:SimplePart tp:id = "TestDriver_AcceptAcknowledgment" tp:mimetype = "application/xml">

<tp:NamespaceSupported tp:location = "http://www.ebxml.org/bpss/AcceptAcknowledgment.xsd" tp:version = "2.0"> http://www.ebxml.org/bpss/AcceptAcknowledgment.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<!-- SimplePart corresponding to an Exception business signal -->

<tp:SimplePart tp:id = "TestService_Exception" tp:mimetype = "application/xml">

<tp:NamespaceSupported tp:location = "http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd" tp:version = "2.0"> http://www.ebxml.org/bpss/Exception.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<tp:SimplePart tp:id = "TestDriver_Exception" tp:mimetype = "application/xml">

<tp:NamespaceSupported tp:location = "http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd" tp:version = "2.0"> http://www.ebxml.org/bpss/Exception.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<!-- SimplePart corresponding to a request action -->

<tp:SimplePart tp:id = "TestService_Reflector_Request" tp:mimetype = "application/xml">

<tp:NamespaceSupported tp:location = "http://www.oasis-open.org/ebxml-iic/tests/schemas/ebXMLTestFramework.xsd" tp:version = "1.0"> http://www.oasis-open.org/ebxml-iic/tests/schemas/ebXMLTestFramework.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<tp:SimplePart tp:id = "TestDriver_Reflector_Request" tp:mimetype = "application/xml">

<tp:NamespaceSupported tp:location = "http://www.oasis-open.org/ebxml-iic/tests/schemas/ebXMLTestFramework.xsd" tp:version = "1.0"> http://www.oasis-open.org/ebxml-iic/tests/schemas/ebXMLTestFramework.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<!-- SimplePart corresponding to a response action -->

<tp:SimplePart tp:id = "TestService_Reflector_Response" tp:mimetype = "application/xml">

<tp:NamespaceSupported tp:location = "http://www.oasis-open.org/ebxml-iic/tests/schemas/TestFramework.xsd" tp:version = "1.0"> http://www.oasis-open.org/ebxml-iic/tests/schemas/TestFramework.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<tp:SimplePart tp:id = "TestDriver_Reflector_Response" tp:mimetype = "application/xml">

<tp:NamespaceSupported tp:location = "http://www.oasis-open.org/ebxml-iic/tests/schemas/TestFramework.xsd" tp:version = "1.0"> http://www.oasis-open.org/ebxml-iic/tests/schemas/TestFramework.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<!-- SimplePart corresponding to a request action -->

<tp:SimplePart tp:id = "TestService_PayloadVerify_Request" tp:mimetype = "application/xml">

<tp:NamespaceSupported tp:location = "http://www.oasis-open.org/ebxml-iic/tests/schemas/ebXMLTestFramework.xsd" tp:version = "1.0"> http://www.oasis-open.org/ebxml-iic/tests/schemas/ebXMLTestFramework.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<tp:SimplePart tp:id = "TestDriver_PayloadVerify_Request" tp:mimetype = "application/xml">

<tp:NamespaceSupported tp:location = "http://www.oasis-open.org/ebxml-iic/tests/schemas/ebXMLTestFramework.xsd" tp:version = "1.0"> http://www.oasis-open.org/ebxml-iic/tests/schemas/ebXMLTestFramework.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<!-- SimplePart corresponding to a response action -->

<tp:SimplePart tp:id = "TestService_PayloadVerify_Response" tp:mimetype = "application/xml">

<tp:NamespaceSupported tp:location = "http://www.oasis-open.org/ebxml-iic/tests/schemas/TestFramework.xsd" tp:version = "1.0"> http://www.oasis-open.org/ebxml-iic/tests/schemas/TestFramework.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<tp:SimplePart tp:id = "TestDriver_PayloadVerify_Response" tp:mimetype = "application/xml">

<tp:NamespaceSupported tp:location = "http://www.oasis-open.org/ebxml-iic/tests/schemas/TestFramework.xsd" tp:version = "1.0"> http://www.oasis-open.org/ebxml-iic/tests/schemas/TestFramework.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<!-- SimplePart corresponding to a response action -->

<tp:SimplePart tp:id = "TestService_ErrorAppNotify_Response" tp:mimetype = "application/xml">

<tp:NamespaceSupported tp:location = "http://www.oasis-open.org/ebxml-iic/tests/schemas/TestFramework.xsd" tp:version = "1.0"> http://www.oasis-open.org/ebxml-iic/tests/schemas/TestFramework.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<tp:SimplePart tp:id = "TestDriver_ErrorURLNotify_Response" tp:mimetype = "application/xml">

<tp:NamespaceSupported tp:location = "http://www.oasis-open.org/ebxml-iic/tests/schemas/TestFramework.xsd" tp:version = "1.0"> http://www.oasis-open.org/ebxml-iic/tests/schemas/TestFramework.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<tp:SimplePart tp:id = "TestDriver_Configurator_Response" tp:mimetype = "application/xml">

<tp:NamespaceSupported tp:location = "http://www.oasis-open.org/ebxml-iic/tests/schemas/TestFramework.xsd" tp:version = "1.0"> http://www.oasis-open.org/ebxml-iic/tests/schemas/TestFramework.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<!-- An ebXML message with a SOAP Envelope only -->

<tp:Packaging tp:id = "TestService_MshSignalPackage">

<tp:ProcessingCapabilities tp:parse = "true" tp:generate = "true"/>

<tp:CompositeList>

<tp:Composite tp:id = "TestService_MshSignal" tp:mimetype = "multipart/related" tp:mimeparameters = "type=text/xml">

<tp:Constituent tp:idref = "TestService_MsgHdr"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<tp:Packaging tp:id = "TestDriver_MshSignalPackage">

<tp:ProcessingCapabilities tp:parse = "true" tp:generate = "true"/>

<tp:CompositeList>

<tp:Composite tp:id = "TestDriver_MshSignal" tp:mimetype = "multipart/related" tp:mimeparameters = "type=text/xml">

<tp:Constituent tp:idref = "TestDriver_MsgHdr"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ebXML message with a SOAP Envelope plus a request action payload -->

<tp:Packaging tp:id = "TestDriver_Reflector_RequestPackage">

<tp:ProcessingCapabilities tp:parse = "true" tp:generate = "true"/>

<tp:CompositeList>

<tp:Composite tp:id = "TestDriver_Reflector_RequestMsg" tp:mimetype = "multipart/related" tp:mimeparameters = "type=text/xml">

<tp:Constituent tp:idref = "TestService_MsgHdr"/>

<tp:Constituent tp:idref = "TestDriver_Reflector_Request" tp:minOccurs = "0" tp:maxOccurs = "10"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ebXML message with a SOAP Envelope plus a response action payload -->

<tp:Packaging tp:id = "TestService_Reflector_ResponsePackage">

<tp:ProcessingCapabilities tp:parse = "true" tp:generate = "true"/>

<tp:CompositeList>

<tp:Composite tp:id = "TestService_Reflector_ResponseMsg" tp:mimetype = "multipart/related" tp:mimeparameters = "type=text/xml">

<tp:Constituent tp:idref = "TestService_MsgHdr"/>

<tp:Constituent tp:idref = "TestService_Reflector_Response" tp:minOccurs = "0" tp:maxOccurs = "10"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ebXML message with a SOAP Envelope plus a Receipt Acknowledgment payload -->

<tp:Packaging tp:id = "TestService_ReceiptAcknowledgmentPackage">

<tp:ProcessingCapabilities tp:parse = "true" tp:generate = "true"/>

<tp:CompositeList>

<tp:Composite tp:id = "TestService_ReceiptAcknowledgmentMsg" tp:mimetype = "multipart/related" tp:mimeparameters = "type=text/xml">

<tp:Constituent tp:idref = "TestService_MsgHdr"/>

<tp:Constituent tp:idref = "TestService_ReceiptAcknowledgment"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<tp:Packaging tp:id = "TestDriver_ReceiptAcknowledgmentPackage">

<tp:ProcessingCapabilities tp:parse = "true" tp:generate = "true"/>

<tp:CompositeList>

<tp:Composite tp:id = "TestDriver_ReceiptAcknowledgmentMsg" tp:mimetype = "multipart/related" tp:mimeparameters = "type=text/xml">

<tp:Constituent tp:idref = "TestDriver_MsgHdr"/>

<tp:Constituent tp:idref = "TestDriver_ReceiptAcknowledgment"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ebXML message with a SOAP Envelope plus an Exception payload -->

<tp:Packaging tp:id = "TestService_ExceptionPackage">

<tp:ProcessingCapabilities tp:parse = "true" tp:generate = "true"/>

<tp:CompositeList>

<tp:Composite tp:id = "TestService_ExceptionMsg" tp:mimetype = "multipart/related" tp:mimeparameters = "type=text/xml">

<tp:Constituent tp:idref = "TestService_MsgHdr"/>

<tp:Constituent tp:idref = "TestService_Exception"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<tp:Packaging tp:id = "TestDriver_ExceptionPackage">

<tp:ProcessingCapabilities tp:parse = "true" tp:generate = "true"/>

<tp:CompositeList>

<tp:Composite tp:id = "TestDriver_ExceptionMsg" tp:mimetype = "multipart/related" tp:mimeparameters = "type=text/xml">

<tp:Constituent tp:idref = "TestDriver_MsgHdr"/>

<tp:Constituent tp:idref = "TestDriver_Exception"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ebXML message with a Receipt Acknowledgment signal, plus a business response,

 or an ebXML message with an Exception signal -->

<tp:Packaging tp:id = "TestService_SyncReplyPackage">

<tp:ProcessingCapabilities tp:parse = "true" tp:generate = "true"/>

<tp:CompositeList>

<tp:Composite tp:id = "TestService_SignalAndResponseMsg" tp:mimetype = "multipart/related" tp:mimeparameters = "type=text/xml">

<tp:Constituent tp:idref = "TestService_MsgHdr"/>

<tp:Constituent tp:idref = "TestService_ReceiptAcknowledgment"/>

<tp:Constituent tp:idref = "TestService_Reflector_Response"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<tp:Packaging tp:id = "TestDriver_SyncReplyPackage">

<tp:ProcessingCapabilities tp:parse = "true" tp:generate = "true"/>

<tp:CompositeList>

<tp:Composite tp:id = "TestDriver_SignalAndResponseMsg" tp:mimetype = "multipart/related" tp:mimeparameters = "type=text/xml">

<tp:Constituent tp:idref = "TestDriver_MsgHdr"/>

<tp:Constituent tp:idref = "TestDriver_ReceiptAcknowledgment"/>

<tp:Constituent tp:idref = "TestDriver_Reflector_Response"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ebXML message with a SOAP Envelope plus a request action payload -->

<tp:Packaging tp:id = "TestService_PayloadVerify_Package">

<tp:ProcessingCapabilities tp:parse = "true" tp:generate = "true"/>

<tp:CompositeList>

<tp:Composite tp:id = "TestDriver_PayloadVerify_RequestMsg" tp:mimetype = "multipart/related" tp:mimeparameters = "type=text/xml">

<tp:Constituent tp:idref = "TestDriver_MsgHdr"/>

<tp:Constituent tp:idref = "TestDriver_PayloadVerify_Request" tp:minOccurs = "0" tp:maxOccurs = "10"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<tp:Packaging tp:id = "TestService_PayloadVerify_ResponsePackage">

<tp:ProcessingCapabilities tp:parse = "true" tp:generate = "true"/>

<tp:CompositeList>

<tp:Composite tp:id = "TestDriver_PayloadVerify_RequestMsg" tp:mimetype = "multipart/related" tp:mimeparameters = "type=text/xml">

<tp:Constituent tp:idref = "TestDriver_MsgHdr"/>

<tp:Constituent tp:idref = "TestDriver_PayloadVerify_Request"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<tp:Packaging tp:id = "TestDriver_ErrorAppNotify_ResponsePackage">

<tp:ProcessingCapabilities tp:parse = "true" tp:generate = "true"/>

<tp:CompositeList>

<tp:Composite tp:id = "TestDriver_ErrorAppNotify_ResponseMsg" tp:mimetype = "multipart/related" tp:mimeparameters = "type=text/xml">

<tp:Constituent tp:idref = "TestDriver_MsgHdr"/>

<tp:Constituent tp:idref = "TestDriver_ErrorAppNotify_Response"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<tp:Packaging tp:id = "TestDriver_ErrorURLNotify_ResponsePackage">

<tp:ProcessingCapabilities tp:parse = "true" tp:generate = "true"/>

<tp:CompositeList>

<tp:Composite tp:id = "TestDriver_ErrorURLNotify_ResponseMsg" tp:mimetype = "multipart/related" tp:mimeparameters = "type=text/xml">

<tp:Constituent tp:idref = "TestDriver_MsgHdr"/>

<tp:Constituent tp:idref = "TestDriver_ErrorURLNotify_Response"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<tp:Packaging tp:id = "TestDriver_Configurator_ResponsePackage">

<tp:ProcessingCapabilities tp:parse = "true" tp:generate = "true"/>

<tp:CompositeList>

<tp:Composite tp:id = "TestDriver_ErrorURLNotify_ResponseMsg" tp:mimetype = "multipart/related" tp:mimeparameters = "type=text/xml">

<tp:Constituent tp:idref = "TestDriver_MsgHdr"/>

<tp:Constituent tp:idref = "TestDriver_Configurator_Response"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

</tp:CollaborationProtocolAgreement>

Appendix E Terminology

MSH: Message Service Handler, an implementation of ebXML Messaging Services.
· Candidate Implementation (or Implementation Under test): The implementation (realization of a specification) used as a target of the testing (e.g. conformance testing).

· Certificate of Validation (or Brand, or Claim of Conformance): document assessing the degree to which a candidate implementation satisfies the requirements of a specification, as resulting from a validation process. Is based on the testing results and established criteria for issuing the certificates. The criteria indicates the set of tests (or number, or percentage) that an implementation must pass in order to receive a certificate. A certificate might only state that an implementation was tested to completion and provide a list of the errors found. A successful validation does not warrant that the product is free of non-conformities, even if all tests passed.

· Certification: The acknowledgement that a validation has been completed and the criteria established by the certifying organization for issuing a certificate, has been met. Certification cannot exist without validation, but validation can exist without certification.

· Certification Authority (or Certificate Issuer): Organization responsible for issuing certificates for validated products. The Certification Authority may be a trade association, consortium, standard group, government agency or private sector company.

· Conformance: Fulfillment of an implementation of all requirements specified; adherence of an implementation to the requirements of one or more specific standards or specifications.

· Conformance Clause: Is a part or collection of parts of a specification that defines the requirements, criteria or conditions that must be satisfied by an implementation in order to claim conformance. The conformance clause identifies what must conform and how conformance can be met. Typically the conformance clause is a high-level description of what is required of implementers and applications. It may refer to other parts of the standard. It may specify sets of properties, which may take the form of profiles or levels. It may specify minimal requirements for certain functions and for implementation-dependent values. A conformance clause (1) promotes a common understanding of conformance and what is required to claim conformance to a specification, (2) facilitates consistent application of conformance within a specification, (3) promotes uniformity in the development of conformance test suites.

· Conformance Profiles and Levels: Often implementations do not use all the features within a specification. In order to accommodate these implementations it may be desirable to divide a specification into sets of functions. Implementers would still be conforming if they implemented one or more of these sets rather than the entire standard. These sets are commonly implemented as profiles or levels. Profiles are used as a method for defining subsets of a specification by identifying the functionality, parameters, options, and /or implementation requirements necessary to satisfy the requirements of a particular community of users. Levels are used to indicate nested subsets of functionality, ranging from minimal or core functionality to full or complete functionality. Typically, Level 1 is the core of the specification that must be implemented by all products.

<mm1: Parts of these two definitions above would be quite helpful in the document where we use them for clarity and scope.>

· Conformance Testing: Process of verifying the adherence or non-adherence of an implementation to a specification. Assumes black box testing. This means that the internal structure of the source code of a candidate implementation is not available to the tester.

· Falsification: Test method that attempts to find errors in an implementation to determine if it correctly implements the requirements in a given specification. Falsification testing can only demonstrate non-conformance. If errors are found, the implementation does not conform. The absence of errors does not necessarily imply the converse.

· Interoperability Testing: Process of verifying that two implementations of the same specification, or that an implementation and its operational environment, can interoperate according to the requirements of an assumed agreement or contract. This contract does not belong necessarily to the specification, but its terms and elements should be defined in it with enough detail, so that such a contract, combined with the specification, will be sufficient to determine precisely the expected behavior of an implementation, and to test it.

· Test Assertions: A specification may include Test Assertions as part of the specification. A Test Assertion is a statement of behavior, action or condition that can be measured or tested. It is derived from the specification’s requirements and bridges the gap between the narrative of the specification and the test cases. Each test assertion is an independent, complete, testable statement for requirements in the specification. Each test assertion results in one or more test Cases. Examples of specifications that included test assertions as part of their specification include several IEEE (e.g. POSIX) and ISO standards (e.g. STEP).

· Test Case: Consists of a set of a test tool(s), software or files (data, programs, scripts, or instructions for manual operations) that checks a particular requirement in the specification to determine whether the results produced by the implementation match the expected results, as defined by the specification. Each Test Case includes: (1) a description of the test purpose (what is being tested - the conditions / requirements / capabilities which are to be addressed by a particular test, (2) the pass/fail criteria, (3) a reference to the requirement or section in the standard from which the test case is derived (traceability back to the specification).

· Testing Laboratory: Organization and its environment that tests an implementation, using the official conformance test suite. May be recognized by the consumer, implementer, and Certification Authority as qualified to perform testing for a given validation program. The Testing Laboratory produces a Test Report.

· Test Material: Includes Test Suites, Test Cases (including test tools), Test Procedures.

· Test Method or Methodology: Specified technical procedure to design a Test Suite for a given specification.

· Test Procedures: Procedures to be followed when applying a Test Suite to a product for the purpose of Conformance Testing.

· Test Report: Document that presents the results of the testing effort, along with additional information required by the Certification Authority, if certification exists. The test report should provide enough information that if necessary, the testing effort could be duplicated. The test report should contain at least the following information: (1) a complete description of the implementation under test, (2) the date of testing, (3)name and version number of the test suite, (4) the results of executing the test suite, including any errors that may have been detected.

· Test Suite (or Conformance Test Suite): A combination of Test Cases and Test documentation. Is used to check whether an implementation satisfies the requirements in the standard. The test documentation describes how the testing is to be done and the directions to follow (Test Procedures). A test suite does not assess the performance of an implementation, unless performance requirements are specified in the specification.

· Validation of a Test Case: The process of determining if the Test Case correctly indicates conformance to the corresponding specification material.

· Validation of an Implementation: Process of testing for conformance. The validation process consists of the steps necessary to perform testing by using an official test suite in a prescribed manner.
· Verification of a Test Case: The process of determining if the Test Case assertion or condition is satisfied by some implementation material.

<mm1: Suggest you use ISO definitions for verification and validation and then use these terms as above as they are related to a test case. Definitions attached:

Note: I am assuming you used theconformance specification developed by OASIS (See Lisa Carnahan at NIST) to develop these definitions – they look similar although I did not cross check them – http://www.oasis-open.org/committees/ioc/ >
References

Non-Normative References

[ebTESTREQ]
ebXML Collaboration Protocol Profile and Agreement specification, Version 1.0, published 10 May, 2001, http://www.ebxml.org/specs/ebCCP.doc
[ebTESTSUITE]
ebXML Business Process Specification Schema, version 1.0, published 27 April 2001, http://www.ebxml.org/specs/ebBPSS.pdf.
 [ebRS]
ebXML Registry Services Specification, version 2.0, published 6 December 2001
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf,
published, 5 December 2001.
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrim.pdf

[XMLSchema]
W3C XML Schema Recommendation,
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
[ebCPP]
ebXML Collaboration Protocol Profile and Agreement specification, Version 1.0, published 10 May, 2001, http://www.ebxml.org/specs/ebCCP.doc
[ebBPSS]
ebXML Business Process Specification Schema, version 1.0, published 27 April 2001, http://www.ebxml.org/specs/ebBPSS.pdf.

[ebMS] ebXML Messaging Service Specification, Version 2.0 http://ebxml.org/project_teams/transport/private/ebXML_Messaging_Service_Specification_v0-21.pdf
Contact Information

Team Leader
	Name
	Jacques Durand

	
	

	
	

	
	

	
	

	
	

Vice Team Leader
	Name
	

	
	

	
	

	
	

	
	

	
	

Team Editor

	Name
	Michael Kass

	
	

	
	

	
	

	
	

	
	

Acknowledgments

The OASIS ebXML-MS Technical Committee would like to thank …

Disclaimer

The views and specification expressed in this document are those of the authors and are not necessarily those of their employers. The authors and their employers specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this design.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

Copyright Statement

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]
January 2002. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document MUST be followed, or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

Intellectual Property Rights Statement

"OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director."
"OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director."
"OASIS has been notified of intellectual property rights claimed in regard to some or all of the contents of this specification. For more information consult the online list of claimed rights."
Test Profile XML Document

TestRequirementRef #1 (Validation)

TestRequirementRef #2 (Packaging)

TestRequirementRef #3 (Core Extension Elements)

TestRequirementRef #4 (Error Handling)

TestRequirementRef #5 (SyncReply)

TesetRequirementRef #8 (Security)

Test Requirements XML Document

Test Requirement #1 (Validation)

	Semantic Requirement #1 (Valid MessageHeader content)

	Semantic Requirement #2 (Valid Acknowledgment content)

	Semantic Requirement #3 (Valid Signature content)

Test Requirement #2 (Packaging)

	Semantic Requirement #4 (SOAP message in root of MME doc)

	Semantic Requirement #5 (MIME message type is “text/xml”)

	Semantic Requirement #6 (MIME ‘start’ header is present)

	…

Test Requirement #3 (Core Extension Elements)

	…

RequirementRef #4 (Error Handling)

 …

RequirementRef #5 (SyncReply)

 …

RequirementRef #6 (Reliable Messaging)

RequirementRef #7 (Message Ordering)

RequirementRef #8 (Security)

 …

RequirementRef #9 (Message Status)

RequirementRef #10 (Ping)

RequirementRef #11 (Multi-Hop)

Test Suite XML Document

Test Driver Configuration Data

XML Payloads

Test Cases

Test Case #1 (Test Valid “To content)

Test Case #2 (Test Valid “From content)

Test Case #3 (Teset Valid ‘MessageData” content)

 …

Message Payloads

� mm1: As long as it doesn’t conflict with the parameters in the business process (that link back to the terms and conditions).

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]
April 2002. All Rights Reserved.
ebXML Testing Procedures Specification 0.0

Page 4 of 97
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

_1100974312.doc
[image: image1.png]CFy-ConfigurationGroup

(2045 o2 dorming [Snmeg of2awherg

3 versiong] [@ renrementReferenceld] & confgurationGroupRer

[Brrvg of2 deseriong] o[congwratinroupel]

_1100547052.doc
[image: image1.png]

