OASIS/ebXML MS 2.0 Basic Interoperability Profile Test Suite

	Test Object
	ID
	Description
	Mode
	Operation
	Configu-ration
	Message Expression

	Test Case
	urn:

TestCase

:id:1.1
	Basic exchange, no payload
	
	
	urn:config:

cpa_basic

<JD> assume that this corresponds to “basic_A1” in 3.2.1 of interop spec?

(we’ll need to have consistent names)

[MIKE] – Yes. I am in favor of “urn:config:cpa_basic”

<JD2> so I’ll change the name in the Interop main spec. Then see below other CPA names I propose for the other test cases, following your scheme.
	

	TestStep
	1
	
	Driver
	
	
	

	
	
	Send basic message header
	
	PutMessage
	
	<MIME:Message>

<MIME:MessageContainer>

<SOAP:Envelope>

<SOAP:Header>

<eb:MessageHeader eb:Action="Dummy">

<eb:CPAId> urn:config:cpa_basic </eb:CPAId>

<eb:ConversationId>10101</eb: ConversationId >

</eb:MessageHeader>

</SOAP:Header>

</SOAP:Envelope>

</MIME:MessageContainer>

</MIME:Message>

<JD>We need to explicitly specify the CPAId in mesg expression. And also a conversation ID, because this is what we will use for the message correlation, given

we don’t have visibility/control on MessageIDs here,

Unlike in confor. Testing where we drive directly at transport level.

[MIKE] – All CPAId’s in this document have a “typo error” They should all specify a CPAId. I will fix this.

[MIKE2] – ConversationId will be “autogenerated” by Test Driver.. so there is no need for us to explicitly set it in the scripting, unless we wish to override it.

Regarding MessageId, this means we would have to correlate messages based upon ConversationId and CPAId. This is problematic. The only way to accurately determine if we have the right message would be to include a unique MessageId in a returned message payload so that we knew that we had the right message, as far as I can see. Comments?

<JD2> I agree with you… but I don’t see how we can do otherwise: this is app-level interop test cases, we cannot assume that the test driver will be aware of MSH-level stuff like messageIDs – especially ID of messages sent out. But if we carefully point out that these tests should be executed with enough isolation, and conversation Ids be different for each test case (which, unlike MesgID, we can control at app level), then I think convID is quite reasonable: very unlikely we get unwanted test messages with same convID. See example header data above (I added conv ID value that was in test case spec for this test case.).

[MIKE2] – OK, but as I mentioned above, ConversationId “can” be autogenerated by the Test Driver.. no need to override it withour own explicit declaration.

<JD3>OK, then we must specify in TestFramework that this conversation ID MUST change for each test case execution. I think we agree we also allow for possible overriding (as above), in case some future test suite needs to manipulate this value.

	TestStep
	2
	
	Driver
	
	
	

	
	
	Correlate returned message
	
	GetMessage
	
	<JD> The major difference here with conformance, is that

We can’t really count on MessageIDs: they are under control of MSH. Even if the app (test service) gets notified of received messageIDs, we don’t know which MessageID has been generated when doing previous “putMessage”. So we can’t rely on it for correlation.

[MIKE] – Please see my question above about MessageId

/TEST:PersistStore/MIME:Message[MIME:Container[1]/

SOAP:Envelope/SOAP:Header/eb:MessageHeader[

eb:CPAId= ‘urn:config:cpa_basic’ and

eb:ConversationebTest:id=$ConversationId and

<JD2> I assume you mean:

eb:ConversationId=$ConversationId

or if we fix conv Ids:

eb:ConversationId=’10101’

[MIKE2] – Yes.. this was another typo. And yes, we can either let Test Driver assigne ConversationId.. or “fix” it outselves

<JD3> if we assume automatic generation of ConversationId for this test suite, then we’ll have here: eb:ConversationId=$ConversationId

eb:RefToMessageebTest:id=$RefToMessageId]] <JD2> again don’t think we need this last condition about RefToM. (and I guess a mistake in name RefToMessageebTestid?)

	Assertion
	
	Verify that an ebXML message is returned
	
	VerifyContent
	
	/MIME:Message[MIME:MessageContainer[1]/

SOAP:Envelope/SOAP:Header/eb:MessageHeader]

<JD> I am not sure we need to test anything here:

just having received the correlated message in time

is enough for success.

[MIKE] – This is true, however the formality of testing the Assertion is the only way to formally pass/fail this test. GetMessage, by itself is not an AssertionTest nor is it a PreconditionTest. That is why I include this additional operation. And we cannot assume that GetMessage is always an AssertionTest (In most cases it is not). Comments?

<JD2> OK. We’ll just need to explain this in the test framework. I propose that we use this test case as example, as well as another from conf test suite.

	Test Case
	urn:

TestCase

:id:1.2
	Basic asyncronous exchange with one payload
	
	
	urn:config:

cpa_basic
	

	TestStep
	1
	
	Driver
	
	
	

	
	
	Send basic message header
	
	PutMessage
	
	<MIME:Message>

<MIME:MessageContainer>

<SOAP:Envelope>

<SOAP:Header>

<eb:MessageHeader eb:Action="Reflector">

<eb:CPAId> urn:config:cpa_basic </eb:CPAId>

<eb:ConversationId>10102</eb: ConversationId >

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

</MIME:MessageContainer>

</MIME:Message>

	
	
	Add content-id and payload to MIME message
	
	SetPayload

Content-ID=

"cid:payload_1 " messageRef="

urn:MessagePayload:

payload_1"
	
	

	TestStep
	2
	
	Driver
	
	
	

	
	
	Correlate returned messages
	
	GetMessage
	
	/TEST:PersistStore/MIME:Message[MIME:Container[1]/

SOAP:Envelope/SOAP:Header/eb:MessageHeader[

eb:CPAId=‘urn:config:cpa_basic’ and

eb:ConversationebTest:id=$ConversationId and

<JD2> not clear what ConversationebTest is. We could as well have:

eb:RefToMessageebTest:id=$RefToMessageId]]

[MIKE2] – Another global “typo error” .. should just be eb:ConversationId

	Assertion
	
	Check for returned payload
	
	VerifyContent
	
	/MIME:Message[MIME:MessageContainer[1]/

SOAP:Body/eb:Manifest/eb:Reference[

@xlink:href='cid:payload_1']]

<JD> we need to keep in mind that in this test suite, the Test driver behaves at application level: it is used to directly control Test Service actions (sending through “initiator” action, and receiving through notification, not messages). So while we may use the same MIME+envelope message expressions as in conformance test suite, the Test Driver will only receive what a receiving app would see: header attributes and payload(s), not the details of the MIME parts. So there are tests that we can’t do (and don’t need to do) like this one.

[MIKE] – I see. So our Message Store (when in Driver mode) will not store received messages with MIME header attributes and their values. But we can still get at Manifest content, correct? <JD2> I think we can assume this, like for other header values. Even if the Manifest element itself is not visible for the test driver, it can get its content (which could be put back in the original format, by the test service.)

	
	
	Find payload in message
	
	GetPayload
	
	/MIME:Message/MIME:Container[

@Content-Id = 'cid:payload_1']

	Assertion
	
	Verify returned payload contents
	
	VerifyContent
	
	j6lwx3rvEPO0vKtMup4NbeVu8nk=

<JD> what is that?

[MIKE] – This is the mda-5 signature value for the payload (already determined when Test Case is created) compared to the signature calculated by the Test Driver for the returned payload at run time. If they match, the Assertion passed, if not the TestAssertion fails. Comments?

<JD2> Maybe we could have something less sig-algorithm-dependent: a new putMessage sub-operation to generate a payload digest, that we could refer then as $payload_digest. Then this condition here would be:

$payload_digest=

Another solution is to rely on the “PayloadVerify” service action: instead of Mute we could have sent back to PayloadVerify, and this action would have done the same job you describe (so we don’t have to specify it here). Then here we just need to check that:

/testservice/payload=’validated’

 (see description of doc returned by PayloadVerify)

[MIKE2] - I guess that depends upon whether you are testing that a payload SENT by the Test Service is verified.. or if a payload RECEIVED by the Test Service is verified. For Test Service receiving.. using the “PayloadVerify” opration makes sense. For verifying a payload sent by the Test Service, using the above method would make sense. Comments?

<JD3> Let us see our options:

· Solution 1 is yours,

· Solution 2 is same as 1, but more abstract: like for 1, we would assume the Test Driver will automatically generate and manipulate payload digests without explicitly showing their value in test cases: (a) generate a digest (or signature) for each payload sent by putMessage(), then (b) run the digest function (VerifyContent) on received payloads from GetPayload() , (c) compare both sigs/digests (VerifyContent), for same payload name.

· Solution 3: use a payloadVerify action of Test Service on receiver side.

I’d vote for Solution 2… I think it is consistent with avoiding to hardcode values such as ConversationId (like you preferred above!)

	Test Case
	urn:

TestCase

:id:1.3
	Basic exchange with three payloads
	
	
	urn:config:

cpa_basic
	

	TestStep
	1
	
	Driver
	
	
	

	
	
	Send basic message header
	
	PutMessage
	
	<MIME:Message>

<MIME:MessageContainer>

<SOAP:Envelope>

<SOAP:Header>

<eb:MessageHeader eb:Action="Reflector">

<eb:CPAId> urn:config:cpa_basic </eb:CPAId>

<eb:ConversationId>10103</eb: ConversationId >

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

<eb:Reference xlink:href="cid:payload_2" />

<eb:Reference xlink:href="cid:payload_3" />

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

</MIME:MessageContainer>

</MIME:Message>

	
	
	Add content-id and payload to MIME message
	
	SetPayload

Content-ID=

"cid:payload_1 " messageRef=" urn:

MessagePayload:

payload_1"

<JD> we may not need to specify ContentID, as we wont control MIME in this test suite (only set the payload)

[MIKE] – This will be problematic, since we cannot set payload Content-ID with a matching Manifest Reference href, and the result is an invalid ebXML message. Comments?

	<JD2> this concern is valid when we craft the MIME ourselves, but as test driver behaves here like an app, we normally just need to pass the payloads: the MSH will take care of building the right envelope. That means, it will also take care of setting the eb:Reference links in Manifest.

[MIKE2] – Then the Test Driver must read the <Manifest> that we explicitly declare, and make some assumptions.. i.e.. that the <SetPayload> operations that follow (like this one) are sequentially matched to the to the Manifest href(s).
	<JD2> so in fact, since we just need to pass somehow the right payloads, we could keep SetPayload as is, and remove the ref links:

<eb:Reference xlink:href="cid:payload_1" />

<eb:Reference xlink:href="cid:payload_2" />

<eb:Reference xlink:href="cid:payload_3" />

as again the whole message expression above will be converted as an MSH API call from the Initiator action (instead of be used to directly build the mesge header) and these refs taken care of by the sender MSH.

[MIKE2] – Problem is, if we remove the href links.. we lose any knowledge of what the actual CIDs and hrefs are.. so if we need to verify payloads later (say, through a “Reflector” action… we don’t know the names of the payloads. I would keep the href(s) above.. so that I know what they are.. and can reference them later in <GetPayload><VerifyContent> operations.

<JD3> OK, we can keep these refs. They indicate what the generated message is expected to look like, even though I am not convinced we can mandate that the MSH generates exactly the reference format (cid:___) we specify, but certainly we control the payload names.

	
	
	Add content-id and payload to MIME message
	
	SetPayload

Content-ID=

"cid:payload_2 " messageRef=" urn:

MessagePayload:

payload_2"
	
	

	
	
	Add content-id and payload to MIME message
	
	SetPayload

Content-ID="

cid:payload_3 " messageRef=" urn:

MessagePayload:

payload_3"
	
	

	TestStep
	2
	
	Driver
	
	
	

	
	
	Correlate returned messages
	
	GetMessage
	
	/TEST:PersistStore/MIME:Message[MIME:Container[1]/

SOAP:Envelope/SOAP:Header/eb:MessageHeader[

eb:CPAId=‘urn:config:cpa_basic’ and

eb:ConversationebTest:id=$ConversationId and

eb:RefToMessageebTest:id=$RefToMessageId]]

	Assertion
	
	Check for returned payload
	
	VerifyContent
	
	/MIME:Message[MIME:MessageContainer[1]/

SOAP:Body/eb:Manifest/eb:Reference[

@xlink:href='cid:payload_1']]

	
	
	Find payload in message
	
	GetPayload
	
	/MIME:Message/MIME:Container[

@Content-Id = 'cid:payload_1']

	Assertion
	
	Verify returned payload contents
	
	VerifyContent
	
	j6lwx3rvEPO0vKtMup4NbeVu8nk=

	
	
	Find payload in message
	
	GetPayload
	
	/MIME:Message/MIME:Container[

@Content-Id = 'cid:payload_2']

	Assertion
	
	Verify returned payload contents
	
	VerifyContent
	
	j6lwx3rvEPO0vKtMup4NbeVu8nk=

	
	
	Find payload in message
	
	GetPayload
	
	/MIME:Message/MIME:Container[

@Content-Id = 'cid:payload_3']

	Assertion
	
	Verify returned payload contents
	
	VerifyContent
	
	j6lwx3rvEPO0vKtMup4NbeVu8nk=

	Test Case
	urn:

TestCase

:id:1.4
	Basic exchange with Error Message
	
	
	urn:config:

cpa_basic
	

	TestStep
	1
	
	Driver
	
	
	

	
	
	MessageHeader mustUnderstand set to 'true'
	
	PutMessage
	
	<MIME:Message>

<MIME:MessageContainer>

<SOAP:Envelope>

<SOAP:Header>

<eb:MessageHeader eb:Action="Dummy">

<eb:CPAId></eb:CPAId>

<eb:ExtensionLement SOAP:mustUnderstand="true" />

</eb:MessageHeader>

</SOAP:Header>

</SOAP:Envelope>

</MIME:MessageContainer>

</MIME:Message>

	TestStep
	2
	
	Driver
	
	
	

	
	
	Correlate returned messages
	
	GetMessage
	
	/TEST:PersistStore/MIME:Message[

MIME:Container[1]/SOAP:Envelope/

SOAP:Header/eb:MessageHeader[

eb:CPAId='cpa_basic' and

eb:ConversationebTest:id=$ConversationId and

eb:MessageData/RefToMessageebTest:id=

$RefToMessageId]]

	Assertion
	
	Test if Error is generated
	
	VerifyContent
	
	MIME:Message[MIME:MessageContainer[1]/

SOAP:Envelope/SOAP:Body/SOAP:Fault/SOAP:Code[

SOAP:Value='MustUnderstand']]

	Test Case
	urn:

TestCase

:id:1.5
	Signed message with key info
	
	
	urn:config:

cpa_basic
	

	TestStep
	1
	
	Driver
	
	
	

	
	
	Send basic message header
	
	PutMessage
	
	<MIME:Message>

<MIME:MessageContainer>

<SOAP:Envelope>

<SOAP:Header>

<eb:MessageHeader eb:Action="Reflector">

<eb:CPAId></eb:CPAId>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

</MIME:MessageContainer>

</MIME:Message>

	
	
	Add content-id and payload to MIME message
	
	SetPayload

Content-ID=

"cid:payload_1 " messageRef=" urn:

MessagePayload:

payload_1"
	
	

	
	
	
	
	DSign
	
	cid:payload_1

	TestStep
	2
	
	Driver
	
	
	

	
	
	Correlate returned messages
	
	GetMessage
	
	/TEST:PersistStore/MIME:Message[MIME:Container[1]/

SOAP:Envelope/SOAP:Header/eb:MessageHeader[

eb:CPAId='cpa_basic' and

eb:ConversationebTest:id=$ConversationId and

eb:RefToMessageebTest:id=$RefToMessageId]]

	Assertion
	
	Check for returned payload
	
	VerifyContent
	
	/MIME:Message[MIME:MessageContainer[1]/

SOAP:Body/eb:Manifest/eb:Reference[

@xlink:href='cid:payload_1']]

	
	
	Find payload in message
	
	GetPayload
	
	/MIME:Message/MIME:Container[

@Content-Id = 'cid:payload_1']

	Assertion
	
	Verify returned payload contents
	
	VerifyContent
	
	j6lwx3rvEPO0vKtMup4NbeVu8nk=

	Test Case
	urn:

TestCase

:id:1.6
	Signed message without key info
	
	
	urn:config:

cpa_basic_

signed
	

	TestStep
	1
	
	Driver
	
	
	

	
	
	Send basic message header
	
	PutMessage
	
	<MIME:Message>

<MIME:MessageContainer>

<SOAP:Envelope>

<SOAP:Header>

<eb:MessageHeader eb:Action="Reflector">

<eb:CPAId></eb:CPAId>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

</MIME:MessageContainer>

</MIME:Message>

	
	
	Add content-id and payload to MIME message
	
	SetPayload

Content-ID=

"cid:payload_1 " messageRef=" urn:

MessagePayload:

payload_1"
	
	

	
	
	
	
	DSign
	
	""

	TestStep
	2
	
	Driver
	
	
	

	
	
	Correlate returned messages
	
	GetMessage
	
	/TEST:PersistStore/MIME:Message[MIME:Container[1]/

SOAP:Envelope/SOAP:Header/eb:MessageHeader[

eb:CPAId='cpa_basic' and

eb:ConversationebTest:id=$ConversationId and

eb:RefToMessageebTest:id=$RefToMessageId]]

	Assertion
	
	Check for returned payload
	
	VerifyContent
	
	/MIME:Message[MIME:MessageContainer[1]/

SOAP:Body/eb:Manifest/eb:Reference[

@xlink:href='cid:payload_1']]

	
	
	Find payload in message
	
	GetPayload
	
	/MIME:Message/MIME:Container[

@Content-Id = 'cid:payload_1']

	Assertion
	
	Verify returned payload contents
	
	VerifyContent
	
	j6lwx3rvEPO0vKtMup4NbeVu8nk=

	Test Case
	urn:

TestCase

:id:1.7
	Basic syncronous exchange with one payload
	
	
	urn:config:

cpa_basic
	

	TestStep
	1
	
	Driver
	
	
	

	
	
	Send basic message header with SyncReply
	
	PutMessage
	
	<MIME:Message>

<MIME:MessageContainer>

<SOAP:Envelope>

<SOAP:Header>

<eb:MessageHeader eb:Action="Reflector">

<eb:CPAId></eb:CPAId>

</eb:MessageHeader>

<eb:SyncReply />

</SOAP:Header>

<SOAP:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

</MIME:MessageContainer>

</MIME:Message>

	
	
	Add content-id and payload to MIME message
	
	SetPayload

Content-ID="

cid:payload_1 " messageRef=" urn:

MessagePayload:

payload_1"
	
	

	TestStep
	2
	
	Driver
	
	
	

	
	
	Correlate returned messages
	
	GetMessage asycronous="false"
	
	/TEST:PersistStore/MIME:Message[MIME:Container[1]/

SOAP:Envelope/SOAP:Header/eb:MessageHeader[

eb:CPAId='cpa_basic' and

eb:ConversationebTest:id=$ConversationId and

eb:RefToMessageebTest:id=$RefToMessageId]]

	Assertion
	
	Check for returned payload
	
	VerifyContent
	
	/MIME:Message[MIME:MessageContainer[1]/

SOAP:Body/eb:Manifest/eb:Reference[

@xlink:href='cid:payload_1']]

	
	
	Find payload in message
	
	GetPayload
	
	/MIME:Message/MIME:Container[

@Content-Id = 'cid:payload_1']

	Assertion
	
	Verify returned payload contents
	
	VerifyContent
	
	j6lwx3rvEPO0vKtMup4NbeVu8nk=

	Test Case
	urn:

TestCase

:id:1.8
	Test unsigned AckRequested message with unsigned Acknowledgment
	
	
	urn:config:

cpa_basic
	

	TestStep
	1
	
	Driver
	
	
	

	
	
	Send basic message with AckRequested element
	
	PutMessage
	
	<MIME:Message>

<MIME:MessageContainer>

<SOAP:Envelope>

<SOAP:Header>

<eb:MessageHeader eb:Action="Dummy">

<eb:CPAId></eb:CPAId>

</eb:MessageHeader>

<eb:AckRequested />

</SOAP:Header>

<SOAP:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

</MIME:MessageContainer>

</MIME:Message>

	TestStep
	2
	
	Driver
	
	
	

	
	
	Correlate returned messages
	
	GetMessage
	
	/TEST:PersistStore/MIME:Message[MIME:Container[1]/

SOAP:Envelope/SOAP:Header/eb:MessageHeader[

eb:CPAId='cpa_basic' and

eb:ConversationebTest:id=$ConversationId and

eb:MessageData/RefToMessageebTest:id=

$RefToMessageId and ../eb:Acknowledgment]]

	Assertion
	
	Verify that no Error is returned
	
	VerifyContent
	
	/MIME:Message[not MIME:MessageContainer[1]/

SOAP:Envelope/SOAP:Header/eb:ErrorList]

	Assertion
	
	Verify that no SOAP fault is generated for warnings
	
	VerifyContent
	
	/MIME:Message[not MIME:MessageContainer[1]/

SOAP:Envelope/SOAP:Body[not SOAP:Fault]]

	Assertion
	
	Verify that only one Acknowledgment was returned
	
	VerifyContent
	
	/MIME:Message[[MIME:MessageContainer[1]/

SOAP:Envelope/eb:MessageHeader/

eb:Acknowledgment]count()=1]

	Test Case
	urn:

TestCase

:id:1.9
	Test signed AckRequested message with signed Acknowledgment
	
	
	urn:config:

cpa_basic
	

	TestStep
	1
	
	Driver
	
	
	

	
	
	Send basic message with AckRequested (signed = 'true') element, and signed payload
	
	PutMessage
	
	<MIME:Message>

<MIME:MessageContainer>

<SOAP:Envelope>

<SOAP:Header>

<eb:MessageHeader eb:Action="Dummy">

<eb:CPAId></eb:CPAId>

</eb:MessageHeader>

<eb:AckRequested eb:signed="true" />

</SOAP:Header>

<SOAP:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

</MIME:MessageContainer>

</MIME:Message>

	
	
	Add content-id and payload to MIME message
	
	SetPayload

Content-ID=

"cid:payload_1 " messageRef=" urn:

MessagePayload:

payload_1"
	
	

	
	
	Sign message
	
	DSign
	
	""

	TestStep
	2
	
	Driver
	
	
	

	
	
	Correlate returned messages
	
	GetMessage
	
	/TEST:PersistStore/MIME:Message[MIME:Container[1]/

SOAP:Envelope/SOAP:Header/eb:MessageHeader[

eb:CPAId='cpa_basic' and

eb:ConversationebTest:id=$ConversationId and

eb:MessageData/RefToMessageebTest:id=

$RefToMessageId and ../eb:Acknowledgment]]

	Assertion
	
	Verify that no Error is returned
	
	VerifyContent
	
	/MIME:Message[not MIME:MessageContainer[1]/

SOAP:Envelope/SOAP:Header/eb:ErrorList]

	Assertion
	
	Verify that no SOAP fault is generated for warnings
	
	VerifyContent
	
	/MIME:Message[not MIME:MessageContainer[1]/

SOAP:Envelope/SOAP:Body[not SOAP:Fault]]

	Assertion
	
	Verify that only one Acknowledgment was returned
	
	VerifyContent
	
	/MIME:Message[[MIME:MessageContainer[1]/

SOAP:Envelope/eb:MessageHeader/

eb:Acknowledgment]count()=1]

	Assertion
	
	Validate Acknowledgment Signature
	
	ValidateContent
	
	/MIME:Messag/[MIME:MessageContainer[1]/

SOAP:Envelope/eb:MessageHeader/eb:Acknowledgment

	Test Case
	urn:

TestCase

:id:1.10
	Test unsigned AckRequested message with unsigned Acknowledgment
	
	
	urn:config:

cpa_basic
	

	TestStep
	1
	
	Driver
	
	
	

	
	
	Send basic message with AckRequested element
	
	PutMessage
	
	<MIME:Message>

<MIME:MessageContainer>

<SOAP:Envelope>

<SOAP:Header>

<eb:MessageHeader eb:Action="Dummy">

<eb:CPAId></eb:CPAId>

</eb:MessageHeader>

<eb:AckRequested />

</SOAP:Header>

<SOAP:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

</MIME:MessageContainer>

</MIME:Message>

	TestStep
	2
	
	Driver
	
	
	

	
	
	Correlate returned messages
	
	GetMessage

asycronous="false"
	
	/TEST:PersistStore/MIME:Message[MIME:Container[1]/

SOAP:Envelope/SOAP:Header/eb:MessageHeader[

eb:CPAId='cpa_basic' and

eb:ConversationebTest:id=$ConversationId and

eb:MessageData/RefToMessageebTest:id=

$RefToMessageId]]

	Assertion
	
	Verify that no Error is returned
	
	VerifyContent
	
	/MIME:Message[not MIME:MessageContainer[1]/

SOAP:Envelope/SOAP:Header/eb:ErrorList]

	Assertion
	
	Verify that no SOAP fault is generated for warnings
	
	VerifyContent
	
	/MIME:Message[not MIME:MessageContainer[1]/

SOAP:Envelope/SOAP:Body[not SOAP:Fault]]

	Assertion
	
	Verify that only one Acknowledgment was returned
	
	VerifyContent
	
	/MIME:Message[[MIME:MessageContainer[1]/

SOAP:Envelope/eb:MessageHeader/

eb:Acknowledgment]count()=1]

