<Jacques>

General comment: looks like quite a good start, but we need now to get at a more detailed level. One step in this direction – that is also a step toward automation – is to define (1) the output trace of each test case, (2) the conditions to be tested on these outputs.

Although it may not be clear yet how these traces will technically be generated, we should at least know at which level (application? MSH?) (in the Conformance tests, we assumed two kinds of test tools will generate such traces, could be same here). In any case, the most important when designing these traces is to ensure (1) that they can be generated in some way, either “live” or after-tests, without putting extra-requirements on MSH design, and (2) that they can be processed so that the test conditions can be checked automatically with the right tool.

So even if we do not have an exact idea of how these traces will be generated, we can design them and use them when describing our tests. Incidentally, that forces us to be precise in our test description…

More comments below.

</Jacques>
1 Purpose

2 Terminology

3 Interoperability and Conformance

4 ebXML-IIC Interoperability Process

As ebXML Messaging Services specification is getting support and commitment from a growing number of companies, the need for testing and maintaining Interoperability is also growing. The ebXML-IIC TC has created an Messaging Service Interoperability Testing Task Force (MS-ITTF) to address the issues related to its first interoperability effort

The customers of the ebXML-IIC effort are

· ebXML implementers

· Proof of concepts

· End users who want to test before deploying

· Application vendors (eventually)

4.1.1.1 Scope and Assumptions

· Initial focus of ebXML-IIC is ebXML Messaging Services

· No content level (PIP, OAG BODs etc.) interoperability will be covered

· Interoperability participant will implement test adapters as defined by the ebXML-IIC team before participation

4.2 Interoperability Requirements

A specific challenge for the MS ITTF group is in designing interoperability tests that are easy to operate, if not fully automated. Indeed, interoperability cannot be secured once-for-all.

B2B messaging systems are dynamic environments; they are upgraded like any other system, they rely on third-party software for advanced services, their configuration may change, and they need also to support changing modes of communication (CPAs). All these requirements call for a testing procedure that is easy to set-up and to repeat on a periodical basis.

4.3 ebXML-IIC Interoperability Approach

The MS ITTF has two sub teams working in tandem:

a) Test definition team

This team defines the interoperability test cases need be done, overall scenarios and configuration, logistics and operating options. The main objectives are to come up with a test set that would make sense for the user community.

Deliverables:

· An interoperability test suite and scenarios, described in a user-readable way

· Operation guidelines

· Message and MSH configuration material, and

· Validation rules for test results

b) Test Operation team:

This team defines the format to describe the test cases (XML schema, input/output, and MSH configuration), and the design of the test driver technology able to process these descriptions, execute the tests, generate reports, and validate the results.

Although implementing the test bed technology is not part of the deliverable, its design is paramount to properly define the test cases, and should also serve as guideline to implementers. The main objective of this team is to define test format and procedure that can be easily reused/repeated and automated.

Deliverables:

· Format to describe the test cases, their sequencing, input, output & report

· Recommendation on how to process these in an automated way

· Driver design

· Translation of these inputs for MSH, and

· Validation of results.

4.4 Interoperability Testing Process

The ebXML-IIC will follow the processes that has been tried and tested before by EDIINT AS1, EDIINT AS2, RosettaNet
, and Drummond Group
.

4.4.1 Testing Phases

The testing process is divided into three phases:

· Debug: This phase will allow interoperability participant to identify and fix interoperability issues. This phase also allows the administrator time to identify errors and ambiguities in this test plan or in the specification itself and to define necessary workarounds.

· Dry Run: This phase will allow interoperability participant to insure that they have a single version of code capable of interoperating with code from the other participants.

· Final Test: This is the pass/fail interoperability test.

<Jacques>

Beyond the summary definition of the test plan (as in 4.4.4 below), we need for each test a more detailed description (probably using XML mark-up similar to what Conformance folks are doing). That will include: configuration of MSH if needed (a subset of CPA-like data?), message data in input, the “test steps” (described as operations on a test driver), and the test outputs.

On important question that arises regarding the outputs will be:

· As we describe the output of each tests, at which level do we expect a trace to be generated? Normally, if we follow a black box approach (easiest) we can only observe what an MSH receives, at application [driver] level. Is that enough? I.e. we wont see any encryption or envelope signature at this level… we’ll see payload signatures, but that is only marginal. So it seems we are supposed to “sniff” also the transport / wire? Does DGI assume this also (e.g. do they require MSH developers to use a message log?) For example, all “Acks” produces by several tests can only be observed at wire, or inside-MSH level – how can we capture these? Should we involve in these tests, something like a “message test driver” we describe in Conformance testing? We had this impression at the last f-2-f.

· Once we formally describe the expected output trace of a test, we need to express conditions to be satisfied for this trace to be valid. That is a big step toward automation.

</Jacques>
4.4.2 Testing Participation Requirement

The participation in ebXML-IIC interoperability trial requires that particpant be ready with an ebXML Messaging Service Handler (ebXML MSH). It is not required that the implementation be of General Availability (GA). In addition, the implementations must pass the conformance tests defined by ebXML-IIC. This ensures that the interoperability effort will focus on software interoperability and uncovering issues not covered by the conformance tests.

The participants are also required to commit dedicated resources
 to ensure smooth trials.

4.4.3 Testing Administration Requirement

Administering the tests during interoperability trial is crucial to the trial’s success. This is a full-time job and he responsibilities of a test administrator include:

· Neutrality to software implementation

· Project and people management, and technical competence

· Participation in creating and describing test plan

· Arbitration and dispute resolution during the test process

· Maintaining test-plan integrity

· Ensure timeliness of trial

· Provide feedback and work with specification organizations to clarify ambiguities, and

· Document progress and facilitate participation

4.4.4 Interoperability Test Plan

In order to ensure incremental success, ebXML-IIC will initially limit its scope and focus to ebXML MSH interoperability. Therefore, it will not address business process level interoperability (e.g. timeouts for receipts, content validation etc.). The focus of the efforts is areas that are likely to create interoperability issues for example connectivity, packaging, security, message hops, error reporting, and message sequences.

4.4.4.1 Test Plan Assumptions:

Transport: HTTP, HTTP/S, SMTP

Packaging: ebXML Message Headers v2.0

Certificate Authority: Any?

Certificate File Format: DER-encoded

Signature: XML DSIG

Signature Algorithm: RSA

Signature Hash Function: sha-1

Encryption: S/MIME v3

Encryption Algorithm: (DES, 3DES, RC2-40, RC2-64, RC2-128)

Encryption Key Length: 128 bits
<Jacques>

Would it make sense to group the tests by “interoperability profiles”, that people can easily identify with some level of business requirement? For example, there could be:

· (P1) a “basic HTTP messaging” interoperability profile, involving only tests about various messages over HTTP (Tests 1 to 4 for HTTP).

· (P2) a “basic SMTP messaging” interoperability profile (same with SMTP)

· (P3) a “secure HTTP/S messaging” interoperability profile. This one would include P1 tests but over HTTP/S+ all security tests (signature, encryption, acks)

· (P4) a “secure reliable HTTP messaging” interoperability profile. This one would include P3 tests + all duplicate checks, resending)

· etc…

Let me know if you think that makes sense. The idea is that we could then “badge” interoperability for a particular profile that would make sense for business user. On the other hand, not sure we wont end up with too many profiles…

</Jacques>
4.4.4.2 Test 1: Profile Exchange

4.4.4.3 Test 2: ebXML Message Envelope Support

4.4.4.4 Test 3: ebXML Message Exchange – One Way – No Attachments

Test 3a: Small File – HTTP

Test 3b: Large File – HTTP

Test 3c: Small File – HTTP/S

Test 3d: Large File – HTTP/S

Test 3e: Small File – SMTP

Test 3f: Large File – SMTP

<Jacques> by NO attachment, you mean a single MIME part, for the SOAP envelope? (a business payload needs be in the next MIME part, not the first, so to create a “large” message you need at least one attachment. Unless you assume there are other body blocks in the SOAP envelope, that may be large? Maybe we should only consider large messages with payload in a separate MIME part?

</Jacques>

4.4.4.5 Test 4: ebXML Message Exchange – One Way – One Attachment

Test 4a: Small File – HTTP

Test 4b: Large File – HTTP

Test 4c: Small File – HTTP/S

Test 4d: Large File – HTTP/S

Test 4e: Small File – SMTP

Test 4f: Large File – SMTP

4.4.4.6 Test 5: ebXML Message Exchange – One Way – No Attachments, Signed

Test 5a: Small File – HTTP

Test 5b: Large File – HTTP

Test 5c: Small File – HTTP/S

Test 5d: Large File – HTTP/S

Test 5e: Small File – SMTP

Test 5f: Large File – SMTP

4.4.4.7 Test 6: ebXML Message Exchange – One Way – One Attachments, Signed

Test 6a: Small File – HTTP

Test 6b: Large File – HTTP

Test 6c: Small File – HTTP/S

Test 6d: Large File – HTTP/S

Test 6e: Small File – SMTP

Test 6f: Large File – SMTP

<Jacques>

you mean the entire envelope is signed, right? (no payload-level signing)

Is it enough to have the Receiver application (here, a “test application driver”) get the message, to pass successfully? Should we have a check that the signature is properly validated by receiver MSH? What is DGI doing exactly here? Note that signature validation is basically a Conformance test… but we may add it here if makes sense. For example, does the test include a “bad” signature to see if the MSH can detect that?

Maybe it is enough to test the contract app–to-app: a message with bad signature (e.g. with wrong key) will not be received, while a good one will?

</Jacques>
4.4.4.8 Test 7: ebXML Message Exchange – One Way – No Attachments, Signed, Encrypted

Test 7a: Small File – HTTP

Test 7b: Large File – HTTP

Test 7c: Small File – HTTP/S

Test 7d: Large File – HTTP/S

Test 7e: Small File – SMTP

Test 7f: Large File – SMTP

4.4.4.9 Test 8: ebXML Message Exchange – One Way – One Attachments, Signed, Encrypted

Test 8a: Small File – HTTP

Test 8b: Large File – HTTP

Test 8c: Small File – HTTP/S

Test 8d: Large File – HTTP/S

Test 8e: Small File – SMTP

Test 8f: Large File – SMTP

4.4.4.10 Test9: ebXML Message Exchange – Acknowledgement – No Attachments

Test 9a: Small File – HTTP

Test 9b: Large File – HTTP

Test 9c: Small File – HTTP/S

Test 9d: Large File – HTTP/S

Test 9e: Small File – SMTP

Test 9f: Large File – SMTP

<Jacques>

These are in fact “two-way” exchanges, but not involving the application layer on the remote side. The acknowledgement need be captured at wire level on the local side. We can make the assumption this trace is obtained in “some”way (either sniffer tool, URL redirection/proxy mechanism on HTTP server, or plain MSH log). But we need to describe formally the trace format we assume from such source. Is the XML trace format, as proposed by Conformance folks, sufficient? Because we need to express the ultimate conditions that will decide whether the test pass/fail, based on this trace output. So these tests can be automated, once the user has a tool to produce our “formal” trace from the wire capture.

</Jacques>
4.4.4.11 Test10: ebXML Message Exchange – Acknowledgement – One Attachments

Test 10a: Small File – HTTP

Test 10b: Large File – HTTP

Test 10c: Small File – HTTP/S

Test 10d: Large File – HTTP/S

Test 10e: Small File – SMTP

Test 10f: Large File – SMTP

<Jacques>

One test I see DGI does, is to check the RefToMesgId of the Ack is properly set to previous MessageID. The trace mechanism used by the Conformance team should allow for automating this kind of check spanning several trace outputs over time.

More generally, our objective here is in a first phase to only describe “formally” the test outputs, so that in a near future, test tool implementers will be able to process these automatically. So even if we do not have an exact idea of how these traces will be processed – and even how they will be produced-, it is enough for us to know they can be produced in some way, and processed to check the test conditions.

</Jacques>
4.4.4.12 Test11: ebXML Message Exchange – Acknowledgement – No Attachments, Signed

Test 11a: Small File – HTTP

Test 11b: Large File – HTTP

Test 11c: Small File – HTTP/S

Test 11d: Large File – HTTP/S

Test 11e: Small File – SMTP

Test 11f: Large File – SMTP

4.4.4.13 Test12: ebXML Message Exchange – Acknowledgement – One Attachments, Signed

Test 12a: Small File – HTTP

Test 12b: Large File – HTTP

Test 12c: Small File – HTTP/S

Test 12d: Large File – HTTP/S

Test 12e: Small File – SMTP

Test 12f: Large File – SMTP

4.4.4.14 Test13: ebXML Message Exchange – Acknowledgement – No Attachments, Signed, Encrypted

Test 13a: Small File – HTTP

Test 13b: Large File – HTTP

Test 13c: Small File – HTTP/S

Test 13d: Large File – HTTP/S

Test 13e: Small File – SMTP

Test 13f: Large File – SMTP

4.4.4.15 Test14: ebXML Message Exchange – Acknowledgement – One Attachments, Signed, Encrypted

Test 14a: Small File – HTTP

Test 14b: Large File – HTTP

Test 14c: Small File – HTTP/S

Test 14d: Large File – HTTP/S

Test 14e: Small File – SMTP

Test 14f: Large File – SMTP

4.4.4.16 Test15: ebXML Message Exchange – Duplicate Handling – No Attachments

Test 15a: Small File – HTTP

Test 15b: Large File – HTTP

Test 15c: Small File – HTTP/S

Test 15d: Large File – HTTP/S

Test 15e: Small File – SMTP

Test 15f: Large File – SMTP

4.4.4.17 Test16: ebXML Message Exchange – Out-Of-Sequence Detection – No Attachments

Test 16a: Small File – HTTP

Test 16b: Large File – HTTP

Test 16c: Small File – HTTP/S

Test 16d: Large File – HTTP/S

Test 16e: Small File – SMTP

Test 16f: Large File – SMTP

4.4.4.18 Test17: ebXML Message Exchange – Multi-Hop – No Attachments

Test 17a: Receiver – HTTP

Test 17b: Forwarder – HTTP

Test 17c: Sender – HTTP

4.4.4.19 Test18: ebXML Message Exchange – Multi-Hop – No Attachments, Duplicate Handling

Test 18a: Receiver – HTTP

Test 18b: Forwarder – HTTP

4.4.4.20 Test19: ebXML Message Exchange – Ping – No Attachments

Test 19a: Sender– HTTP

Test 19b: Receiver – HTTP

4.4.4.21 Test20: ebXML Message Exchange – Status Service – No Attachments

Test 20a: Sender– HTTP

Test 20b: Receiver – HTTP

4.4.4.22 Test21: ebXML Message Exchange – Reliable Messaging – No Attachments

Test 21a: Sender– HTTP

Test 21b: Receiver – HTTP

4.4.4.23 Test22: ebXML Message Exchange – Reliable Messaging, Multi-Hop – No Attachments

Test 22a: Sender– HTTP

Test 22b: Receiver – HTTP

4.4.4.24 Test23: ebXML Message Exchange – Error Handling – Negative Tests

5 Appendix

CPPA

EbXML Headers

6 Glossary

7 Test bed FAQ

8 References

Software Interoperability Test Plan for RNIF 1.1/2.0 Functionality, Draft v2.5 (3/25/2002)

Drummond Group (xxx) TBD

Presentations at OAG Conferences

EbXML-IIC Conf. Calls and Conformance Test suite

EbMS v2.0

RNIF 2.0 validation program

� Initial effort is focused on interoperability for ebXML Messaging Service

� RosettaNet Interop Trial

� UCC Interoperability trial with DGI (Nov 2001 – February 2002)

� Technical resources, machines accessible by partners, certificates and other information required for configuring trading partner profiles by other participants.

