[image: image9.jpg]Creating A Single Global Electronic Market

OASIS ebXML Testing Procedures

April 2002

ebXML Test Framework DRAFT Document

Version 0.0
OASIS ebXML Implementation, Interoperability and Conformance Technical Committee

May 28, 2002
Status of this Document

This document specifies ebXML Testing Procedures for the eBusiness community. Distribution of this document is limited to OASIS ebXML TC members only.

The document formatting is based on the Internet Society’s Standard RFC format converted to Microsoft Word 2000 format.

Note: Implementers of this specification should consult the OASIS Implementation, Interoperability and Conformance Technical Committee web site for current status and revisions to the specification
(http://www.oasis-open.org/committees/ebxml-iic/).

Specification
This is a DRAFT version of the specification.

This version

V0.0 – http://www.oasis-open.org/committees/ebxml-msg/documents/ebMS_v2_0.pdf
Errata to this version

None
Previous version

None
ebXML Participants

The authors wish to acknowledge the support of the members of the Messaging Services Team who contributed ideas, comments and text to this specification by the group’s discussion eMail list, on conference calls and during face-to-face meetings.

	Jacques Durant
	Fujitsu Limited

	Mathew McKenzie
	XMLGlobal

	Michael Kass
	NIST

2Status of this Document

2ebXML Participants

5Introduction

51
Summary of Contents of this Document

51.1.1
Document Conventions

61.1.2
Audience

61.1.3
Caveats and Assumptions

61.1.4
Related Documents

71.2
Concept of Operation

71.2.1
Scope

71.2.2
Background and Objectives

81.3
Minimal Requirements for Conformance

9The Test Framework Architecture

92
Two Testing Perspectives

92.1
Service vs. Integration

92.2
MS Conformance: Service vs. Wire

103
The Test Framework Components

103.1
A Modular Architecture

113.2
The Wire Test Driver (or WT-driver)

123.3
The Application Test Driver (or AT-driver)

143.4
The Test Service

173.5
Executing Test Steps

184
Test Harness Configurations for MS Testing

184.1
Harness for MS Conformance Testing

194.2
Harness for MS Interoperability Testing

205
Special Requirements

205.1.1
Set up –

215.1.2
Start –

215.1.3
Proceed –

215.1.4
Shutdown –

215.1.5
Restart –

215.1.6
Wrapup –

215.1.7
Stop –

225.1.8
Measure –

23Test Case and Test Suite Representation

236
Handling of Message Data

236.1
Message Templates, parameterization

236.2
Message Payloads

237
Test Requirements

238
Test Suite

239
Test Cases and Test Steps

2310
Test Conditions and Processing

24Part II. Appendices

24Appendix A
(Normative) The ebXML Test Requirements Schema

25Appendix B The ebXML Test Suite Schema

25Appendix B
Terminology

28References

28Non-Normative References

29Contact Information

29Acknowledgments

29The OASIS ebXML-MS Technical Committee would like to thank …

30Disclaimer

30Copyright Statement

30Intellectual Property Rights Statement

Introduction

This specification is one of a series of specifications realizing the vision of creating a single global electronic marketplace where enterprises of any size and in any geographical location can meet and conduct business with each other through the exchange of XML based messages. The set of specifications enable a modular, yet complete electronic business framework.

This specification focuses on defining test procedures for ebXML messaging conformance tests. The test procedures are broken down into short, concise descriptions of the steps necessary to perform a test on a generalized group of transactions. The transaction groups are categorized as either Send or Receive transactions.

1 Summary of Contents of this Document

· This specification defines the testing procedures necessary to test both sending and receiving transactions in ebXML messaging. The testing procedure design and naming conventions follow the format specified in the Standard for Software Test Documentation IEEE Std 829-1998.

This specification is organized around the following topics:

Test Procedure Specification for Sending and Receiving ebXML

· Purpose– A description of the purpose of the procedure, with reference to the design specification

· Special Requirements – A specification of the prerequisite procedures necessary for execution

· Procedural Steps – A set of predefined step types used to describe the actions necessary to execute the procedure
Appendices to this specification cover the following:

· Appendix A Test Requirements Schema – This normative appendix contains XML schema definition [ebTESTREQ] for the ebXML Testing Requirements

· Appendix B Test Suite Schema – This normative appendix contains XML schema definition [ebTESTSUITE] for the ebXML Test Suites

1.1.1 Document Conventions

Terms in Italics are defined in the ebXML Glossary of Terms [ebGLOSS]. Terms listed in Bold Italics represent the element and/or attribute content. Terms listed in Courier font relate to MIME components. Notes are listed in Times New Roman font and are informative (non-normative). Attribute names begin with lowercase. Element names begin with Uppercase.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY and OPTIONAL, when they appear in this document, are to be interpreted as described in [RFC2119] as quoted here:

· MUST: This word, or the terms "REQUIRED" or "SHALL", means that the definition is an absolute requirement of the specification.

· MUST NOT: This phrase, or the phrase "SHALL NOT", means that the definition is an absolute prohibition of the specification.

· SHOULD: This word, or the adjective "RECOMMENDED", means that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications MUST be understood and carefully weighed before choosing a different course.

· SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that there may exist valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this label.

· MAY: This word, or the adjective "OPTIONAL", mean that an item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because the vendor feels that it enhances the product while another vendor may omit the same item. An implementation which does not include a particular option MUST be prepared to interoperate with another implementation which does include the option, though perhaps with reduced functionality. In the same vein an implementation which does include a particular option MUST be prepared to interoperate with another implementation which does not include the option (except, of course, for the feature the option provides).

1.1.2 Audience

The target audience for this specification is:

· The community of software developers who implement the ebXML Messagaging Service [ebMS], ebXML Collaboration-Protocol Profile Agreement [ebCPP], ebXML Registry Services Specification [ebREGREP] and ebXML Business Process Schema Specification (BPSS). Using the test framework described here will require some integration work with their ebXML implementation.

· The testing or verification authority, which will implement and deploy conformance or interoperability testing for ebXML products.

1.1.3 Caveats and Assumptions

It is assumed the reader has an understanding of communications protocols, MIME, XML, SOAP, SOAP Messages with Attachments and security technologies.

1.1.4 Related Documents

The following set of related specifications are developed independent of this specification as part of the ebXML initiative:

· ebXML Collaboration Protocol Profile and Agreement Specification [ebCPP] – defines how one party can discover and/or agree upon the information the party needs to know about another party prior to sending them a message that complies with this specification

· ebXML Messaging Service Specification [ebMS] – defines how the messaging infrastructure for ebXML

· ebXML Collaboration Protocol Profile and Agreement Specification [ebREGREP] – defines how one party can discover and/or agree upon the information the party needs to know about another party prior to sending them a message that complies with this specification

· ebXML BPSS
1.2 Concept of Operation

1.2.1 Scope

The ebXML Test Framework is ultimately intended to support conformance and interoperability testing for other ebXML specifications, in addition to Message Service. However, in the first version of this document, we focus on the Messaging specification (2.0), and therefore describe only the components of the framework required for this testing.

1.2.2 Background and Objectives

The Test Framework described here has been designed to achieve the following objectives:

· Test Suites and Test Cases, their steps and verification conditions, should be automatically processed by the framework.

· The harnessing of a candidate MSH (or more, in case of interoperability) with the Test Framework requires a moderate effort, like integrating the Test Service/Action calls with the MSH. No application code needs to be written: only integration code needs to (mostly due to the fact that the API of an MSH is implementation specific.)

· Several test-bed configurations (or test harnesses) can be derived from the Test Framework, depending on the objectives of the testing. For example, MS conformance testing will include a subset of components of the Test Framework, while interoperability testing will require another subset.

· Operating the Test Framework (or one of the test harnesses that can be derived from it) does not require significant training or knowledge of the framework internals. The tests should be easy to operate and repeat with moderate effort or overhead, by users of the candidate MSH and IT staff responsible for maintaining the B2B infrastructure, without expertise in testing activity.

· Users can define new Test Suites and Test Cases to be run on the framework. For this, they will script their tests using the mark-up (XML-based) or definition language for test cases.

· The Test Framework is also a foundation for testing other ebXML standards: Registry, BPSS, CPP/A.

· A Test Suite (either for conformance or for interoperability), can be run entirely and validated from one driver of the framework, called the master driver. This means that all test outputs will be generated - and test conditions verified - by one component, even if the test harness involves several – possibly remote – components of the framework.

· The verification of each Test Case can be done at run-time by the master driver itself, as soon as the test case is completed. The outcome of the validation can be obtained immediately as the Test Suite has completed. [to discuss: An alternative would be to generate a detailed trace of all test executions in a first phase, and to perform test verifications on the log of the entire Test Suite in a second phase. Although this is allowed by the framework, the first option is the main objective.]

<To put somewhere else>

2. Part of a test case execution requires CPA-like configuration of the MSH.

Such configuration sets should be provided prior to running the tests, along

with CPAId values. The candidate MSH team will provide code to interpret

such configuration sets, and configure their MSH with it.

Each test case will reference/specify the CPA-like data that should be used.

7. Correlation between message(s) sent and message(s) received is (by default) based on

MessageID / RefToMesgID. Might correlate on conv ID on demand (in case manipulation of

RefToMesgID required.)

</To put somewhere else>

1.3 Minimal Requirements for Conformance

An implementation of this specification MUST satisfy ALL of the following conditions to be considered a conforming implementation:

· It supports all the mandatory syntax, features and behavior (as identified by the [RFC2119] key words MUST, MUST NOT, REQUIRED, SHALL and SHALL NOT) defined in Part 1.1.1 – Document Conventions.

The Test Framework Architecture

2 Two Testing Perspectives

2.1 Service vs. Integration

In testing the conformance to - and interoperability between - specifications that define business-to-business devices and protocols, two perspectives must generally be addressed:

· The application perspective, which considers the B2B component or device as providing a service to users. In the related specification document, this perspective is represented wherever a requirement concerns the contract (application – device).

· The integration perspective, which considers the B2B component or device as implementing a protocol for communicating with other components of the infrastructure (e.g. a wire protocol between two message handlers). In the related specification document, this perspective is represented wherever a requirement concerns the contract (device – rest of the infrastructure).

Most ebXML specifications define requirements for both perspectives. This document will focus primarily on the MS specification.

2.2 MS Conformance: Service vs. Wire
The MS specification (1.x and 2.x) is predominantly a wire protocol standard. Technically, the only MSH outputs that are precisely described and specified, are the messages it sends out. This wire protocol can be characterized as describing the contract MSH-to-MSH, which mostly belongs to the integration perspective mentioned above.

However, the specification also requires some behaviors that cannot be observed/validated entirely through messages (neither MSH-level messages like errors, nor business-level messages). It is the case for most behaviors related to the contract application / MSH, i.e. whenever in the specification the described behavior involves the “to Party” or the “from Party”. Such behaviors can be formally tested / verified only in the presence of an interface – referred to as “Message Service Interface” in MS 2.0 - that implements this contract (MSH API, callback API, logging). The MS 2.0 specification does not specify such an interface. Yet from a practical perspective, an MSH user – e.g. a business marketplace operator - will want to make sure that the MSH fulfills its “application contract”, or in other words provides the expected service. We will distinguish then two areas of MS conformance:

· Wire Conformance. Resulting from the validation of the contract MSH / MSH. The wire-conformance of an MSH addresses the messaging protocol aspect of the specification. It can be validated by observing the sequence of messages that are exchanged between the candidate MSH and an external party. Are the generated messages conformant (well-formed, valid content of header attributes, integrity constraints), are the correct MSH-level response messages generated (errors, acknowledgements, status, Pong), and under appropriate conditions?

· Service Conformance. Resulting from the validation of the contract Application / MSH. Examples are: Is the received message made properly available in some form to the application, if and when appropriate (e.g. with respect to ordering, duplicate checking, time-to-live)? Do the sent messages correspond to what the application has intended? Most errors result in error messages being sent to an error URI, which can be considered as relevant to wire conformance. But others are directly notified to the application associated with the faulting MSH: are these errors properly logged / notified to the contracting party (application or sys-admin)? Also, configuration (CPA data) is part of this Application / MSH contract: is the overall behavior of the MSH conforming to this configuration data? Because such behaviors address the messaging service part of the specification, they will be relevant to the service-conformance of an MSH.

Thus, testing for conformance of an ebXML MSH implementation will require both wire-conformance and service-conformance testing. This distinction is mostly useful to understand the scope of the Testing Framework, and the role of the components of its architecture. This distinction is not an attempt to classify each test case of the MS test suite: many test cases actually involve both types of conformance, in an indivisible way. But both aspects should be addressed, and as a consequence, different components of the framework may be involved in the same test case.

NOTE: The notion of “levels” or “profiles” of conformance should not be confused with these two areas of conformance (wire and service). They are actually orthogonal to these conformance areas. Each level or profile may actually involve both wire and service behaviors. There may be various “levels” or “profiles” of conformance, defined in the conformance clause. Each of these levels/profiles may require a distinct unit of test, but this unit of test will have to cover both wire and service conformance for this profile. The detail of how to test a level or profile is outside the scope of this document. This distinction between wire / service will mostly affect the testing procedure.

Example: Most of the Security feature is relevant to wire conformance. Testing the MS Security module requires checking that the digital signature is well-formed (message content) and that the MSH actually validates it and sends back the SecurityFailure error message if authentication fails. However, the fact that the sending MSH actually generates a digital signature in the first place when required to (e.g. per CPA request), is relevant to service conformance, as this is about a contract between the sending party and the MSH. So testing Security will actually require testing these two aspects. This may be done in a single Test Case, but this test case will involve components of the Test Framework that are dedicated to each conformance area.

3 The Test Framework Components

3.1 A Modular Architecture

The components of the framework are designed so that they can be combined in different configurations, or Test Harnesses.

<elaborate>

The components involved in MS testing are:

· The Wire Test Driver

· The Test Service

· The Application Test Driver

3.2 The Wire Test Driver (or WT-driver)

The Wire Test Driver (or WT-driver) interprets test cases. As a result of this interpretation, it generates messages on the wire, sends them to the candidate MSH, and also receives the response messages or error messages. It is involved in testing the wire conformance of the MSH. The WT-driver actually simulates a second-party MSH, yet does not have most of the capability of an MSH: it is a simulation device that directly works at transport level.

[image: image1.png]Candidate
MSH

Test Case

—1
—1
document | [——]
—1

references

Message mput

O
Message Sutput

Test Reports +
Trace

Fig 1. The Wire Test Driver

¥ TestCase Data

(Configuration
sets (MSH, CPA)

Message
data

Message
templates

The functions of the WT-Driver are:

· Process test case data, i.e. parse and execute the steps of a test case, as described in the Test Framework mark-up language.

· Assemble a well-formed message (at transport level, e.g. HTTP), from message template and data defined in test case-specific elements.

· Generate a message on the wire.

· Receive a message on the wire.

· Keep in memory and correlates the sequence of message exchanges (choreography at wire level) which occur during the execution of a test case.

· Execute test verifications (validations) on the received message, possibly over several messages (sent or received) involved in the test case.

· Generate a test report.

[image: image2.png]‘Wire Test Driver

HITP . Message - Test \
SMTPM Generator | “Send. Case
(t:;j[asg;D 1wt | (e.g HTTP) | request | Interpreter]
enerates §
A §

Tnternal test __. LL Analyzes
Test Cases
“Workflow

case trace
r'y
Generates «Correlation
HTTP “Validation
Message “Reporting

SMTP
Message output
(from MSH)

Receiver
(c.g HTTP)

Test Reports
& Trace

Fig 2. Functions of the Wire Test Driver

3.3 The Application Test Driver (or AT-driver)

Like the Wire Test Driver, the Application Test Driver interprets test cases. As a result of this interpretation, it generates requests to the candidate MSH. A major difference with the WT-driver, is that it interacts with the MSH at application level. It is involved in testing the service conformance of the MSH, as it requests a service from the MSH, the quality of which will be evaluated – by another framework component - based on the input provided by the AT-Driver. The AT- Driver actually simulates a sending application.

[image: image3.png]references
Test Case

document

Test Case Data

L (Configuration
-« Application e (MSEE o)
Message input | Candidate Test

.p | MSH Driver

Message

dat
Message output ata

MSH-specific APT @
N (|

(wrapper of subset of Test Reports +
MSH APL Trace

Message
templates

configuring + mesg sending)

Fig 3. The Application Test Driver

The functions of the AT-Driver are:

· Process test case data, i.e. parse and execute the steps of a test case, as described in the Test Framework mark-up language.

· Assemble a well-formed request to the MSH, from message template / data defined in test case-specific elements.

· Pass a request to the MSH.

· Be notified by other components (e.g. Test Service) of incoming messages.

· Keep in memory and correlates the sequence of message exchanges (choreography at application level) which occur during the execution of a test case.

· Execute test verifications (validations) on the received message, possibly over several messages (sent or received) involved in the test case.

· Generate a test report.

Although the Application Test Driver simulates an application, it is part of the Test Framework, and does not vary from one candidate MSH to the other. However, in order to connect to the candidate MSH, the MSH developer team will have to write wrapper code to the MSH proprietary API. Indeed, the AT-Driver will generate calls to a “wrapper” API that may be quite different than the specific candidate MSH API. This proprietary code is expected to require a minor effort, but is necessary as the API of each MSH is not specified in the standard, and is implementation-dependent.

[image: image4.png]MSH

Test Adapter
to MSH APT
(sendMessage,
configuration)

Application Test Driver

generator

Test
- .
Send Case
request | Interpreter]

Request

% Generates | —
“Workflow Test Cases

Analyzes
LT «Correlation

Alnternal test +Validation
 case trace “Reporting

Test Reports
& Trace

Generates

Test Service

Test Action

Test Action

|

Fig 4. Functions of the Application Test Driver

3.4 The Test Service

The Test Service actually simulates the application layer for the candidate MSH. More precisely, it simulates the “reacting part” of the application, which responds to the received test messages. It is involved in testing the service conformance of the MSH, i.e. in testing the fulfillment of the contract between the MSH and the application, as specified. The Test Service receives message content and error notifications from the MSH, and also generates requests to the MSH, which normally translate into messages being sent out. The Test Service contains a set of Test Actions that are predefined, and part of the Test Framework (i.e. not user-written). Test Service and Actions will map to the Service and Action header attributes of ebXML messages generated during the testing.

The functions of the Test Service are:

· Process received messages in corresponding Actions. These specialized Test Actions may perform diverse functions, which are enumerated below:

· Send back a response to the MSH.

· Notify the AT-driver of incoming messages.

· Perform some test operations, e.g. compare a received message payload with a reference payload.

· Optionally, generate a trace of its operations, in order to help trouble shooting.

[image: image5.png]Test Configuration [E]
Data (MSH / CPA) = Test Trace

Predefined
Test Framework

MS Test Service

Actions
\\

MSH-specific adapters

ions

(wrappers for the Test “——————
Framework Actions)

MSH-specific API/

Fig 5. The MS Test Service

>0

Message outp

Even though the Test Service simulates an application, it is part of the Test Framework, and does not vary from one candidate MSH to the other. However, in order to connect to the Test Service, a candidate MSH developer team will have to write wrapper code to the Test Service/Actions. This proprietary code is expected to require a minor effort, but is necessary as the API and callback interfaces of each MSH is not specified in the standard, and is implementation-dependent.

The Test Service actions are:

· Reflector action. On invocation, this action generates a response to a received message, by using the same message material, with minimal changes in the header: (1) swapping of the to/from parties so that the sender of the response is the receiver of the request, (2) setting RefToMessageId to the ID of the received message, (3) remove any Acknowledgement elements. All other header elements (except for time stamps) are unchanged. The conversation ID remains unchanged, as well as the CPAId. The payload is the same as in the received message, i.e. same attachment(s). This action acts somehow as a reflector for the invoking party.

· Initiator action. On invocation, this action generates a new message, totally unrelated to the received message. The new message material (payload and header) is provided in a pre-convened way in the payload of the received message. So the header of the new message can be anything that is specified. For example, this action would be used to generate a "first" message of a new conversation, different from the conversation ID specified in the invoking message. Note: MSH-controlled header attributes will not be determined by the invoking message (messageID, timestamps...).

· PayloadValidate action. On invocation, this action will compare the payload(s) of the received message, with reference payloads (files) pre-installed on the Test Service host. This action will test the service contract (application – MSH), as errors may originate either on the wire, or at every level of message processing in the MSH until message data is passed to the application. The action responds with a notification message to the sender, about the outcome of the comparison.

· ErrorNotify action. This action will capture (some) error notifications from the MSH to the application. It is not directly invoked from the sender party. Note that it is not a substitute for errors that normally result in an error message sent back from the MSH to the sender, or to an ErrorURI. However, in case the errors generated by an MSH have a severity set to “Error” – as opposed to “Warning” – the MSH is supposed to (SHOULD) also notify its application. In such case, this action should be invoked. Another error that requires notification to application is the failure to send (no Acks received after maximum retries). This action actually makes such notifications visible on the wire, by generating a “report” message back to the sender (here, the Test Driver), which can check and report on the notified error.

· Dummy action. This is a “dummy” action, used by messages that do not need any response other than causing some side-effect in the MSH, like generating an error. On invocation, this action will however generate a pre-canned notice message back, referring to the previous MessageID (for correlation). This notice serves as proof that the message has reached the application / service. Optionally, it generates a trace (log) item.

· Configurator action. This action is called to (re)configure the MSH. As an argument, it has a CPAId value. The action is calling the conversation (CPA) configuration function of the MSH (via adapter code to its API), in order to set or change the collaboration agreement for the conversation related to a test case or a set of test cases.

Note 1: As mentioned before, these actions are predefined and part of the test framework, and will require some integration code with the candidate MSH, in form of an adapter, to be provided by the MSH development (or user) team. This adapter consists of:

(1) Wrapper methods or calls, that will be invoked as MSH-specific calls, and will invoke in turn the predefined actions of the Test Service.

(2) Wrapper methods or calls, that will be invoked by Test Service actions, and will invoke in turn the MSH Message Service Interface. Examples of such invocations are for sending messages (done by all actions), and MSH configuration (done by Configurator action).

[?] Note 2: As a configuration option, all these Actions may operate in a verbose mode, i.e. by generating a detailed trace. This trace is such that it should be possible to run a validation procedure over this trace. use the framework in a two-phase procedure: (1) run a test suite, (2) validate the test outcome. The other (default) option is to validate each test case at run-time, as the last step of executing a test case.

3.5 Executing Test Cases

A more detailed description of the Test Case and Test Step representation is provided in a next section.

A Test Suite is a sequence of Test Cases. Each Test Case is intended to verify that an implementation fulfills a requirement item (or a set of items) of the specification.

<more details on the structure of a test case>

Test Steps:

A test case is a sequence of Test Steps. A Test Step is an atomic operation that is performed by one of the components of the Test Framework. A Test Case instance is an execution of a particular Test Case, identified by some specific message attribute values. For example, two instances of the same Test Case will be distinguished by distinct MessageID values in the generated messages. An example of a sequence of Test Steps associated with a Test Case is:

Step 1: Wire Test driver sends configuration data (CPA subset and test specific configuration if applicable, e.g. transport-related) to the Configurator action of the Test Service. This data is included in the payload of the message.

Step 2: Wire Test driver receives response message from Configurator action. The configuration was successful.

Step 3: Wire Test driver sends a sample message to the Reflector action of the Test Service. Message header data is obtained from message template XYZ, and message payload from ABC file.

Step 4: Reflector action sends back a response message (with same payload or attachment(s)).

Step 5: Wire Test driver receives the response message and adds it to the stored sequence for this Test Case instance (correlation with Step 1 is done based on the RefToMessageID attribute, which should be identical to the MessageId of Step 1.)

Step 6: Wire Test driver verifies the test condition on response message, for example that the SOAP envelope and extensions are well-formed.

Message Templates:

Some Test Steps will require message data.

Message header data is represented inside message templates, that are XML documents analogous to a regular message header, each attribute being identified by its path (XMLPath) inside the header. Message templates can be instantiated, by adding or substituting elements. They can be converted into regular, conforming ebXML message headers, or can be passed as arguments of a request to an MSH API.

Message payloads:

[image: image6.png]Test
Steps

Test Case
XYZ

init

—

AnXML document

references

references

references

Test Cases
Database

ST Ty
e

)

=]
=

M= e
U -
&7

pan

ML and data
artifacts

| Test
Cases

Test configuration
sets
(MSH, CPA-level)

| Message
payloads

— Message
MIME envelope
templates

Fig 6. Test Case Document and Database

4 Test Harness Configurations for MS Testing

4.1 Harness for MS Conformance Testing

The components of the framework that are involved in conformance testing are:

· A Wire Test Driver component, which will process and drive all test cases.

· A Test Service component, which will react to initiatives from the WT-Driver.
The typical conformance test case procedure will consists of:

(1) Configuring the MSH for the test conversation, with CPA data. This will be controlled by the WT-driver, which is the sole component to interpret the test cases. The WT-driver will send a message to the Configurator action of the Test Service, with a CPAId value, along with possible modifications departing from the referenced CPA-based configuration data set.

(2) Sending messages – the content of which is specified in the test case – to some action of the Test Service.

(3) Receiving messages from the Test Service.

(4) Analyzing the content of received messages, possibly in correlation with other message data, received or sent during the same test case, in order to validate the requirement of the test case.

(5) Reporting on the test case outcome.

[image: image7.png][Test Trace

MS Test
Service
—
1| Test Cases
Actions
| [
-«
Condidate | Messeae ot 0y
MSH Test Repotts +
! Trace
Message output

Fig 7. MS Conformance Test Harness

4.2 Harness for MS Interoperability Testing

The components of the framework that are involved in interoperability testing are:

· An ApplicationTest Driver component – associated with the “master” MSH, which will process and drive all test cases.

· A Test Service component, associated with the “reflector” MSH, which will react to initiatives from the WT-Driver.
[image: image8.png][Test Trace

MS Test

Service

Actions

[[

O«

=

f

Candidate
MSH 2

(reflector party)

Test Reports +

Trace

ey

Application
Test

Driver

—=

Candidate
MSH 1

(master party)

Fig 8. MS Interoperability Test Harness

Test Cases

000

5 Special Requirements

In order to execute this procedure, a Test Driver MUST be installed on both the Testing Party and the Candidate Party. Also, a Message Service Handler Adapter MUST be installed on both the Testing Party and Candidate Party. In order to execute this procedure, the following steps MUST be sequentially executed. A file specifying the agreed upon Collaboration Protocol Profile Agreement must be available to both the Testing Party and Candidate Party Test Driver

5.1.1 Set up –

(1) A file specifying the agreed upon Collaboration Protocol Profile Agreement must be available to both the Testing Party and the Candidate Party test driver.

(2) An XML file containing the Testing Requirements, and validating to the ebXML Test Requirements schema [ebTESTREQ] must be accessible to both the Candidate and Testing Party Test Driver.

(3) An XML file containing the Test Suite, and validating to the ebXML Test Suite schema [ebTESTSUITE] must be accessible to both the Candidate and Testing Party Test Driver.

5.1.2 Start –

(1) Initiate the testing sequence by clicking the “Start Test” button on the ebXML Conformance Test Suite web page.

· The Test Party driver will initiate testing if the TestRequirement element’s testType is “receiving”.

· The Candidate Party driver will initiate testing if the TestReqrement element testType is “sending”.

5.1.3 Proceed –

(1) Testing is automated to proceed until abnormal or normal completion of the test suite.

5.1.4 Shutdown –

(1) Normal shutdown occurs when the last TestStep of the last TestCase is completed.

(2) Abnormal shutdown with a status of “fatal” occurs when either party’s Test Driver catches a “fatal” exception.

(3) Abnormal shutdown with a status of “warning” occurs when either party’s Test Driver catches a “warning” exception.

5.1.5 Restart –

(1) If it is an abnormal shutdown was the result of a “warning” exception, the test drivers of both parties restart with the next Test Requirement.

5.1.6 Wrapup –

(1) If it is an abnormal shutdown due to a “fatal” exception, a log entry indicating the error is written by both test drivers.

(2) If it is a normal shutdown, a final log entry indicating normal termination is written by both parties test driver.

(3) The testing log is closed.

(4) The test driver terminates execution.

5.1.7 Stop –

(1) Testing is automated to proceed until an error or completion of the test suite.

5.1.8 Measure –

(1) After completion of testing, the tester clicks the “Validate” button in the browser window to generate a validation report of the Candidate Party.

Test Case and Test Suite Representation

6 Handling of Message Data

6.1 Message Templates, parameterization

6.2 Message Payloads

7 Test Requirements

8 Test Suite

9 Test Cases and Test Steps

10 Test Conditions and Processing

Part II. Appendices

Appendix A (Normative) The ebXML Test Requirements Schema

The OASIS ebXML Implementation and Interoperability Committee has provided a version of the ebXML Test Requirements schema using the schema vocabulary that conforms to the W3C XML Schema Recommendation specification [XMLSchema].
To be added

Appendix B The ebXML Test Suite Schema

The OASIS ebXML Implementation and Interoperability Committee has provided a version of the ebXML Test Suite schema using the schema vocabulary that conforms to the W3C XML Schema Recommendation specification [XMLSchema].
It was necessary to craft a schema for the XLINK [XLINK] attribute vocabulary to conform to the W3C XML Schema Recommendation [XMLSchema]. This schema is referenced from the ebXML SOAP extension elements schema and is available from the following URL:

Xlink - http://www.oasis-open.org/committees/ebxml-msg/schema/xlink.xsd
Appendix B Terminology

MSH: Message Service Handler, an implementation of ebXML Messaging Services.
· Candidate Implementation (or Implementation Under test): The implementation (realization of a specification) used as a target of the testing (e.g. conformance testing).

· Certificate of Validation (or Brand, or Claim of Conformance): document assessing the degree to which a candidate implementation satisfies the requirements of a specification, as resulting from a validation process. Is based on the testing results and established criteria for issuing the certificates. The criteria indicates the set of tests (or number, or percentage) that an implementation must pass in order to receive a certificate. A certificate might only state that an implementation was tested to completion and provide a list of the errors found. A successful validation does not warrant that the product is free of non-conformities, even if all tests passed.

· Certification: The acknowledgement that a validation has been completed and the criteria established by the certifying organization for issuing a certificate, has been met. Certification cannot exist without validation, but validation can exist without certification.

· Certification Authority (or Certificate Issuer): Organization responsible for issuing certificates for validated products. The Certification Authority may be a trade association, consortium, standard group, government agency or private sector company.

· Conformance: Fulfillment of an implementation of all requirements specified; adherence of an implementation to the requirements of one or more specific standards or specifications.

· Conformance Clause: Is a part or collection of parts of a specification that defines the requirements, criteria or conditions that must be satisfied by an implementation in order to claim conformance. The conformance clause identifies what must conform and how conformance can be met. Typically the conformance clause is a high-level description of what is required of implementers and applications. It may refer to other parts of the standard. It may specify sets of properties, which may take the form of profiles or levels. It may specify minimal requirements for certain functions and for implementation-dependent values. A conformance clause (1) promotes a common understanding of conformance and what is required to claim conformance to a specification, (2) facilitates consistent application of conformance within a specification, (3) promotes uniformity in the development of conformance test suites.

· Conformance Profiles and Levels: Often implementations do not use all the features within a specification. In order to accommodate these implementations it may be desirable to divide a specification into sets of functions. Implementers would still be conforming if they implemented one or more of these sets rather than the entire standard. These sets are commonly implemented as profiles or levels. Profiles are used as a method for defining subsets of a specification by identifying the functionality, parameters, options, and /or implementation requirements necessary to satisfy the requirements of a particular community of users. Levels are used to indicate nested subsets of functionality, ranging from minimal or core functionality to full or complete functionality. Typically, Level 1 is the core of the specification that must be implemented by all products.

· Conformance Testing: Process of verifying the adherence or non-adherence of an implementation to a specification. Assumes black box testing. This means that the internal structure of the source code of a candidate implementation is not available to the tester.

· Falsification: Test method that attempts to find errors in an implementation to determine if it correctly implements the requirements in a given specification. Falsification testing can only demonstrate non-conformance. If errors are found, the implementation does not conform. The absence of errors does not necessarily imply the converse.

· Interoperability Testing: Process of verifying that two implementations of the same specification, or that an implementation and its operational environment, can interoperate according to the requirements of an assumed agreement or contract. This contract does not belong necessarily to the specification, but its terms and elements should be defined in it with enough detail, so that such a contract, combined with the specification, will be sufficient to determine precisely the expected behavior of an implementation, and to test it.

· Test Assertions: A specification may include Test Assertions as part of the specification. A Test Assertion is a statement of behavior, action or condition that can be measured or tested. It is derived from the specification’s requirements and bridges the gap between the narrative of the specification and the test cases. Each test assertion is an independent, complete, testable statement for requirements in the specification. Each test assertion results in one or more test Cases. Examples of specifications that included test assertions as part of their specification include several IEEE (e.g. POSIX) and ISO standards (e.g. STEP).

· Test Case: Consists of a set of a test tool(s), software or files (data, programs, scripts, or instructions for manual operations) that checks a particular requirement in the specification to determine whether the results produced by the implementation match the expected results, as defined by the specification. Each Test Case includes: (1) a description of the test purpose (what is being tested - the conditions / requirements / capabilities which are to be addressed by a particular test, (2) the pass/fail criteria, (3) a reference to the requirement or section in the standard from which the test case is derived (traceability back to the specification).

· Testing Laboratory: Organization and its environment that tests an implementation, using the official conformance test suite. May be recognized by the consumer, implementer, and Certification Authority as qualified to perform testing for a given validation program. The Testing Laboratory produces a Test Report.

· Test Material: Includes Test Suites, Test Cases (including test tools), Test Procedures.

· Test Method or Methodology: Specified technical procedure to design a Test Suite for a given specification.

· Test Procedures: Procedures to be followed when applying a Test Suite to a product for the purpose of Conformance Testing.

· Test Report: Document that presents the results of the testing effort, along with additional information required by the Certification Authority, if certification exists. The test report should provide enough information that if necessary, the testing effort could be duplicated. The test report should contain at least the following information: (1) a complete description of the implementation under test, (2) the date of testing, (3)name and version number of the test suite, (4) the results of executing the test suite, including any errors that may have been detected.

· Test Suite (or Conformance Test Suite): A combination of Test Cases and Test documentation. Is used to check whether an implementation satisfies the requirements in the standard. The test documentation describes how the testing is to be done and the directions to follow (Test Procedures). A test suite does not assess the performance of an implementation, unless performance requirements are specified in the specification.

· Validation: Process of testing for conformance. The validation process consists of the steps necessary to perform testing by using an official test suite in a prescribed manner.

References

Non-Normative References

[ebTESTREQ]
ebXML Collaboration Protocol Profile and Agreement specification, Version 1.0, published 10 May, 2001, http://www.ebxml.org/specs/ebCCP.doc
[ebTESTSUITE]
ebXML Business Process Specification Schema, version 1.0, published 27 April 2001, http://www.ebxml.org/specs/ebBPSS.pdf.
 [ebRS]
ebXML Registry Services Specification, version 2.0, published 6 December 2001
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf,
published, 5 December 2001.
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrim.pdf

[XMLSchema]
W3C XML Schema Recommendation,
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
[ebCPP]
ebXML Collaboration Protocol Profile and Agreement specification, Version 1.0, published 10 May, 2001, http://www.ebxml.org/specs/ebCCP.doc
[ebBPSS]
ebXML Business Process Specification Schema, version 1.0, published 27 April 2001, http://www.ebxml.org/specs/ebBPSS.pdf.

[ebMS] ebXML Messaging Service Specification, Version 2.0 http://ebxml.org/project_teams/transport/private/ebXML_Messaging_Service_Specification_v0-21.pdf
Contact Information

Team Leader
	Name
	Jacques Durand

	
	

	
	

	
	

	
	

	
	

Vice Team Leader
	Name
	

	
	

	
	

	
	

	
	

	
	

Team Editor

	Name
	Michael Kass

	
	

	
	

	
	

	
	

	
	

Acknowledgments

The OASIS ebXML-MS Technical Committee would like to thank …

Disclaimer

The views and specification expressed in this document are those of the authors and are not necessarily those of their employers. The authors and their employers specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this design.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

Copyright Statement

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]
January 2002. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document MUST be followed, or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

Intellectual Property Rights Statement

"OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director."
"OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director."
"OASIS has been notified of intellectual property rights claimed in regard to some or all of the contents of this specification. For more information consult the online list of claimed rights."

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]
April 2002. All Rights Reserved.
ebXML Testing Procedures Specification 0.0

Page 17 of 30
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

