21
Purpose

21.1
Why is this important?

22
Terminology

32.1
Interoperability

32.2
Conformance

32.3
Certification

53
Interoperability and Conformance

53.1
Interoperability

63.2
Conformance

94
ebXML-IIC MS Interoperability Process

94.2
Interoperability Requirements

94.3
ebXML-IIC Interoperability Approach

104.3.1
Integration with Conformance

104.4
Interoperability Testing Process

114.4.1
Testing Phases

114.4.2
Testing Participation Requirement

114.4.3
Testing Administration Requirement

124.4.4
Interoperability Test Plan

135
ebXML-IIC MS Interoperability Test Architecture

166
Appendix

167
Glossary

168
Test bed FAQ

169
References

<Jacques> My comments are tagged, </Jacques> or just in Red
1 Purpose

The purpose of this paper is to highlight the effort that is currently in process at the OASIS ebXML-IIC (Implementation, Interoperability and Conformance) Technical Committee in the area of interoperability. The goal of this effort is to ensure that implementations that deliver ebXML functionality are interoperable
 and compliant
 with respect to various ebXML specifications. In order to ensure that there are adequate implementation guidelines available for implementers and adoptee, ebXML-IIC has a separate effort in the area of implementation.

While this paper is focused on interoperability, it does touch on compliance. In fact, the interoperability tests define here assumes that a certain level of conformance has already been achieved (more on this later). The interoperability test suite also relies on test drivers from the work done in the ebXML IIC Conformance Group.

This paper is also focused on defining interoperability for the ebXML Messaging Service (ebXML MS) Version 2 specification. The ebXML IIC TC has chosen to work on ebXML MS first, as it seems that this specification has gotten the most traction in the industry and the demand for a conformance/interoperability suite the greatest.

1.1 Why is this important?

To speed up adoption of ebXML standards that have been supported by various consortiums it is imperative that solutions are interoperable to reduce concerns of customers currently considering ebXML solutions. This will also reduce vendor lock-in and support costs required for interoperability, and thus speed adoption.

· Speed up adoption of ebXML standards

· Decrease cost for SME, small vendors

· Ensure that implementations are interoperable

· Agree on common terminology, methodology

· Learn from others (RN, DGI, EDI, others)

· Leverage soap builders initiative

· Reduce conformance and compliance costs

· Vendors and customers

· Sharing experience

· Better specification
1.2 Status of this Document

This document is currently in a draft mode and is far from complete.

2 Terminology

At the recent ebXML track at the OAG conference
, there was representation from various industry consortiums. One of the areas agreed to was a similar definition of the various efforts. It was agreed to follow IEEE recommendations for the terminology.

· Interoperability - The ability of two or more systems or components to exchange information and to use the information that has been exchanged.

· Compatibility - (1) The ability of two or more systems or components to perform their required functions while sharing the same hardware or software environment. (2) The ability of two or more systems or components to exchange information.

2.1 Interoperability

Software interoperability is defined as two or more software implementations of a specification working together. This does not mean that the implementations are conformant to the specifications implemented. The software interoperability is typically tested under controlled environment and via an interoperability trial. Issues arising out of these trials may be addressed by

a) Usage guidelines

b) Best practices

c) Input for new conformance tests

d) Technical recommendations

e) Specification upgrade

2.2 Conformance

Software conformance is defined as the adherence of a software implementation to a specification. This is typically testable using conformance tools, test cases, and services. The quality of software conformance is directly related to the conformance tools and test cases. Issues of ambiguous specifications are addressed by feedback to the specification organizations resulting in

f) Technical recommendations

g) Specification upgrade

h) Usage guidelines, and

i) Best practices

2.3 Certification

Software certification is the process by which a neutral party or a standards organization blesses the conformance of an implementation to a standards specification. This may also be viewed as a neutral party running conformance tests against a software implementation. Currently, there are no plans for this effort at the ebXML-IIC.

Interoperability and Conformance

Interoperability and conformance both require test cases that are used to validate the implementation, however, for different purposes. The idea behind them is very similar, but the expectations are different. Conformance tests are very static and reactive in nature. Thus, the conformance to a specification can only be as good as the tests designed to test them. The interoperability on the other hand require making software implementations work together. The implementations and the understanding used to implement the specifications may differ. Therefore, it brings out more active in nature and provides a great way to incorporate the test results into a conformance test suite for future conformance effort.

Even though both conformance and interoperability tests may be done in parallel, it is more efficient and less time consuming if certain level of conformance is achieved before undertaking conformance. This is the approach that is adopted at the ebXML-IIC.

2.4 Interoperability

In order to ensure that various software vendors are interoperable, interoperability requires that each implementer execute all the required tests against every other vendor. This may be pictorially represented as:

[image: image1.png]

Thus for an interoperability between six vendors, each test case must be run against five other vendors as a sender and then change role to a receiver. This introduces tremendous time and effort requirement. This may be simplified by pairing vendors with an assumption that as interoperability progresses, the basic implementations become interoperable over time as pairings change.

Pros:

· Successfully tests for interoperability of participating software solutions across the test scenarios specified in the test plan
· Catches unanticipated problems encountered during each scenario in the test plan.
· Have a unique advantage of reliably identifying problems unanticipated by test designers

· These can be fed into compliance tests to make them more robust

· If a debug phase is included, it provides an opportunity for implementers to debug and fix their software in a supportive, collaborative environment
Cons:

· Does not attempt to test full conformance to the standard
· Does not guarantee full implementation interoperability

· Only tests interoperability for the scenarios specified in the test plan

· Requires the participation of a critical mass of implementers (usually more than six) for the trial to be valuable

· Can’t scale to support hundreds of vendors

· Requires some level of ongoing trials activity

2.5 Conformance

In order to ensure that various software vendors are conformant, conformance requires defining tests that each implementer can execute. This may be pictorially represented as:

[image: image2.png]

The conformance tests approach true interoperability as the total permutations of test cases cover every possible aspects of a test specification.

Pros:

· Successfully tests for compliance with the specifications through objective, discretely testable metrics
· Usually requires less resources per vendor than mid-sized interoperability trials
· Can be scaled to situations where hundreds of vendors need to be tested

Cons:

· Conformance does not guarantee interoperability. Thus, two fully conformant software implementations may not be able to interoperate
· Conformant testing can come close to achieving interoperability if the testing is exhaustive across all of the options allowed in the specification
· If the standard has n parameters with m possible values, this implies mn possible test cases

· Test designer’s check for most likely compliance problems: Robust conformance tests clearly identify problems anticipated by the test designer but generally fail to identify unanticipated problems.

MS Interoperability Process

As ebXML Messaging Services specification is getting support and commitment from a growing number of companies, the need for testing and maintaining Interoperability is also growing. The ebXML-IIC TC has created a Messaging Service Interoperability Testing Task Force (MS-ITTF) to address the issues related to its first interoperability effort

The customers of the ebXML-IIC effort are

· ebXML implementers

· Proof of concepts

· End users who want to test before deploying

· Application vendors (eventually)

2.5.1.1 Scope and Assumptions

· Initial focus of ebXML-IIC is ebXML Messaging Services

· No content level (PIP, OAG BODs etc.) interoperability will be covered

· Interoperability participant will implement test adapters as defined by the ebXML-IIC team before participation

2.6 Interoperability Requirements

A specific challenge for the MS ITTF group is in designing interoperability tests that are easy to operate, if not fully automated. Indeed, interoperability cannot be secured once-for-all.

B2B messaging systems are dynamic environments; they are upgraded like any other system, they rely on third-party software for advanced services, their configuration may change, and they need also to support changing modes of communication (CPAs). All these requirements call for a testing procedure that is easy to set-up and to repeat on a periodical basis.

2.7 Interoperability Approach

The MS ITTF has two sub teams working in tandem:

a) Test definition team

This team defines the interoperability test cases need be done, overall scenarios and configuration, logistics and operating options. The main objectives are to come up with a test set that would make sense for the user community.

Deliverables:

· An interoperability test suite and scenarios, described in a user-readable way

· Operation guidelines

· Message and MSH configuration material, and

· Validation rules for test results

b) Test Operation team:

This team defines the format to describe the test cases (XML schema, input/output, and MSH configuration), and the design of the test driver technology able to process these descriptions, execute the tests, generate reports, and validate the results.

Although implementing the test bed technology is not part of the deliverable, its design is paramount to properly define the test cases, and should also serve as guideline to implementers. The main objective of this team is to define test format and procedure that can be easily reused/repeated and automated.

Deliverables:

· Format to describe the test cases, their sequencing, input, output & report

· Recommendation on how to process these in an automated way

· Driver design

· Translation of these inputs for MSH, and

· Validation of results.

2.7.1 Integration with Conformance

Where possible, the MS-ITTF will take advantage of the work already done by the Messaging Service Conformance Testing Task Force (MS-CTTF) of the ebXML IIC TC. For example, the MS Interoperability Test Harness will use the Test Service and Test Driver defined for ebXML MS conformance testing. As a result, the format of the test cases, test reports and test traces will be the same. Please see http://xsun.sdct.itl.nist.gov/~mkass/ebXML/ebXML%20Test%20Suite%20Design.htm for more information.

2.8 Interoperability Testing Process

The ebXML-IIC will follow the processes that has been tried and tested before by EDIINT AS1, EDIINT AS2, RosettaNet
, and Drummond Group
.

2.8.1 Testing Phases

The testing process is divided into three phases:

· Debug: This phase will allow interoperability participant to identify and fix interoperability issues. This phase also allows the administrator time to identify errors and ambiguities in this test plan or in the specification itself and to define necessary workarounds.

· Dry Run: This phase will allow interoperability participant to insure that they have a single version of code capable of interoperating with code from the other participants.

· Final Test: This is the pass/fail interoperability test.

2.8.2 Testing Participation Requirement

The participation in ebXML-IIC interoperability trial requires that participant be ready with an ebXML Messaging Service Handler (ebXML MSH). It is not required that the implementation be of General Availability (GA). In addition, the implementations must pass the conformance tests defined by ebXML-IIC. This ensures that the interoperability effort will focus on software interoperability and uncovering issues not covered by the conformance tests.

The participants are also required to commit dedicated resources
 to ensure smooth trials.

2.8.3 Testing Administration Requirement

Administering the tests during interoperability trial is crucial to the trial’s success. This is a full-time job and he responsibilities of a test administrator include:

· Neutrality to software implementation

· Project and people management, and technical competence

· Participation in creating and describing test plan

· Arbitration and dispute resolution during the test process

· Maintaining test-plan integrity

· Ensure timeliness of trial

· Provide feedback and work with specification organizations to clarify ambiguities, and

· Document progress and facilitate participation

2.8.4 Interoperability Test Plan

In order to ensure incremental success, ebXML-IIC will initially limit its scope and focus to ebXML MSH interoperability. Therefore, it will not address business process level interoperability (e.g. timeouts for receipts, content validation etc.). The focus of the efforts is areas that are likely to create interoperability issues for example connectivity, packaging, security, message hops, error reporting, and message sequences.

2.8.4.1 Test Plan Assumptions:

Transport: HTTP, HTTP/S, SMTP

Packaging: ebXML Message Headers v2.0

Certificate Authority: Any?

Certificate File Format: DER-encoded

Signature: XML DSIG

Signature Algorithm: RSA

Signature Hash Function: sha-1

Encryption: S/MIME v3

Encryption Algorithm: (DES, 3DES, RC2-40, RC2-64, RC2-128)

Encryption Key Length: 128 bits
MS Interoperability Test Architecture

Testing interoperability architecture:

<Jacques> new architecture is: </Jacques>
[image: image3.png](optional)
Test Trace

Test Cases

Test Test

_ _ s |
Service Service Driver

[Hh\\ 1= [HitH 1= @ Test Repotts
* + uu+Tra:e

(000

Candidate |- Candidate
MSH 2 '0’ MSH 1
(responder party) (driver party)

Fig 7. MS Interoperability Test Harness

(Note: instead of master and follower, can we call this initiator and responder?)

<Jacques> Done. Except I use “driver” instead of “initiator” because more intuitive </Jacques>

1. We assume the test harness for MS interoperability will require

(a) A test driver, which will process and drive all test cases.

(b) A test service, which will initiate actions and react to invocations from the MSH.

2. Part of a test case execution requires CPA-like configuration of the MSH. Part of the test case definition will include a subset of the actual CPA that describes these configuration values. The candidate MSH team will provide code to interpret such configuration sets, and configure their MSH with it.

3. The interoperability test suite(s) requires a corresponding test service on the MSH application side. In a real world application, this is the application that will process the message. For testing purposes, this service will perform simple task to mimic an actual application.

4. On the "application" side of MSH, the testing service will have a limited number of actions.

(Note: Steve: I am still a little unclear on the difference between reflector and AsyncResponder. Does the Reflector generate a acknowledgement?)

<Jacques> same remark. See below. </Jacques>

The Test Service name is: ebXML_IIC_MS_Testing. Its actions are:

<Jacques> I updated the initial actions of this list (almost same) , more precise on response messages .</Jacques>

· Reflector (or Responder) action. On invocation, this action generates a response to a received message, by using the same message material, with minimal changes in the header: (1) swapping of the to/from parties so that the sender of the response is the receiver of the request, (2) setting RefToMessageId to the ID of the received message, (3) remove any Acknowledgement elements. All other header elements (except for time stamps) are unchanged. The conversation ID remains unchanged, as well as the CPAId. The payload is the same as in the received message, i.e. same attachment(s). This action acts somehow as a reflector for the invoking party. Destination of response: the Mute action of the sender.

· Initiator action. On invocation, this action generates a new message, totally unrelated to the received message. The new message material (payload and header) is provided in a pre-convened way in the payload of the received message. So the header of the new message can be anything that is specified. For example, this action would be used to generate a "first" message of a new conversation, different from the conversation ID specified in the invoking message. Note: MSH-controlled header attributes will not be determined by the invoking message header (messageID, RefToMessageId, timestamps...). So if the response need to refer to the previous MessageID (for correlation), the RefToMessageId must be explicitly pre-set in the message material. Destination of response: any service/action of the sender, specified with message material (by default: the Mute action of the sender.)

· PayloadValidate action. On invocation, this action will compare the payload(s) of the received message, with reference payloads (files) pre-installed on the Test Service host. This action will test the service contract (application – MSH), as errors may originate either on the wire, or at every level of message processing in the MSH until message data is passed to the application. The action responds with a notification message to the sender, about the outcome of the comparison. The previous MessageID is reported (for correlation) in the RefToMessageId header attribute of the response. Destination of response: the Mute action of the sender.

· ErrorNotify action. This action will capture (some) error notifications from the MSH to the application. It is not directly invoked from the sender party, but by the error module of the MSH. Note that it is only intended for errors that need to be communicated from MSH to application, e.g. a failure to send. It is not a destination for error messages sent back from the MSH to the sender, or to an ErrorURI. However, in case the errors generated by an MSH have a severity set to “Error” – as opposed to “Warning” – the MSH is supposed to (SHOULD) also notify its application. In such case, this action is intended to support such notifications and should be invoked. Another error that requires notification to application is the failure to send (no Acks received after maximum retries). The ErrorNotify action will make such notifications visible on the wire, by generating a “report” message back to the sender (here, the Test Driver), which can check and report on the notified error. Destination of response: the Mute action of the sender.

· Dummy action. This is a “dummy” action, used by messages that do not need any specific response, and the sending of which only needs to cause some side-effect in the MSH, like generating an error. On invocation, this action will however generate a pre-canned response message back (no payload), referring to the previous MessageID (for correlation) in the RefToMessageId header attribute. This notice serves as proof that the message has reached the test service, although no assumption can be made on the integrity of its content. Optionally, it generates a trace (log) item. Destination of response: the Mute action of the sender.

· Mute action. This is same as a “dummy” action, but does not generate any message back. This action will report invocations and their content to the local Test Driver (if the Test Service is coupled with a Test Driver). It may optionally generate a trace.

· Configurator action. This action is called to (re)configure the MSH. As an argument, it has a CPAId value. The action is calling the conversation (CPA) configuration function of the MSH (via adapter code to its API), in order to set or change the collaboration agreement for the conversation related to a test case or a set of test cases. A response is generated back to the sender. The previous MessageID is reported (for correlation) in the RefToMessageId header attribute of the response. Destination of response: the Mute action of the sender.

· AsyncResponder action: on invocation, generate an acknowledgement and later a response to a received message, by using same message material, with a minimal header changes: swap to/from parties, set RefToMsgId, and keep same conversation and CPA Id. The payload is same as in received message (same attachment(s)). (This can be seen as a “mute” action followed by a delayed “reflector” action.)
<Jacques> I do not see enough rationale in introducing such an action: by default, all actions already respond in asynchronous mode. They will respond synchronously “on demand”, only if the SyncReply header attribute is set in a message, and yet this is transparent to the service/action: the MSH decides whether the response is on same HTTP connection or not.

(is the Ack you mention an MSH Ack? If yes, that should also be automatically done by the MSH based on AckRequested.)</Jacques>
· Log action: on invocation of a message – usually by the recipient, log the received message (or any information provided.)
<Jacques> we may not need this: all actions may be configured to be verbose (and generate a log). But more importantly, with the new Framework design, all feedback on a test case step is communicated to the Test Driver (see Figure 1 in Test Framework: “internal trace” captures all traffic.) Would that be sufficient?

</Jacques>
NOTE: In general, the actions fall into the following categories:

1) Suppress an acknowledgement (NoAcknowledge)

<Jacques> the “Mute” operation – as defined above - should do the job here, right? </Jacques>
2) Send an acknowledgement to a received message followed by a message response (AsyncResponder)

3) Send a response (this implies acknowledgement as well – SyncReply (Reflector)
4) Send an acknowledgement, but don’t send a message response (Mute)

5) Skip the acknowledgement, but send a response (Dummy)

6) Error (ErrorNotify)

7) Log (Log)

8) Start a new message (Initiator)

5. The test verification (or validation) can be done at run-time, using test case input/output in-memory data (as opposed to analyzing a trace or log a-posteriori).

7. Correlation between message(s) sent and message(s) received is (by default) based on MessageID / RefToMesgID. Might correlate on conv ID on demand (in case manipulation of RefToMesgID required.)

MS Interoperability Test Cases

The following is a high level description of the MS interoperability test cases. More detail information, including test steps, and CPA and MS configuration values, are defined in Appendix A.

Note: These tests use HTTP as the primary transport and do not require a secondary transport. For other transport (SMTP), these tests may use SMTP as the primary transport (in which case, tests requiring synch response will not be performed).

2.9 MS Interoperability Test Case List

1. One-way message exchange – Positive test on one-way message exchange with receipt acknowledgement.

2. Two-way message exchange – Positive test on two-way message exchange with receipt acknowledgement, response message, and response acknowledgement.

3. Two-way message exchange with receipt acknowledgement error – Negative test on two-way message exchange. Receipt acknowledge is required, but Follower MSH does not send receipt acknowledgement.

4. Two-way message exchange with response error – Negative test on two-way message exchange. Response is required, but Follower MSH does not send response.

5. Two-way message exchange with response acknowledgement error – Negative test on two-way message exchange. Response acknowledge is required, but Driver MSH does not send response acknowledgement.

6. Two-way message exchange with signed origin and signed acknowledge – Positive test on two-way message exchange, both origin and receipt are signed.

7. Two-way message exchange with signed origin and unsigned acknowledge – Positive test on two-way message exchange, where origin is signed and receipt is unsigned.

8. Two-way message exchange with unsigned origin and signed acknowledge – Positive test on two-way message exchange, where origin is unsigned and receipt is signed.

9. Two-way message exchange with signed origin error – Negative test on two-way message exchange, where a signed origin is expected, but the actual data is unsigned.

10. Two-way message exchange with signed acknowledge error – Negative test on two-way message exchange, where both signed origin and acknowledge are expected, but the acknowledge is unsigned.

11. Two-way message exchange with synch response – Positive test on two-way message with synch response.

12. Two-way message exchange with synch response error – Negative test on two-way message exchange with synch response expected, but Follower MSH does not send a synch response.

13. Two-way message exchange with multiple messages in sequence – Positive test on multiple messages where messages arrive in sequence number order.

14. Two-way message exchange with multiple messages out of sequence – Negative test on multiple messages where a message in the sequence is missing.

15. Two-way message exchange with multiple payloads – Positive test on two way message exchange where the Driver MSH sends a message with multiple payloads.

Note: While the specification does not state a way to do encryption, secure messages are needed for true B2B transactions. Depending on discussions within the ebXML IIC, these test may become optional.

16. Two-way message exchange with payload encryption – Positive test on two-way message exchange with payload encrypted.

17. Two-way message exchange with payload signature and encryption – Positive test on two-way message exchange with payload signed and encrypted.

18. Two-way message exchange with payload signature and encryption out of sequence– Negative test on two-way message exchange with payload encrypted then signed (spec calls for signature then encryption).

2.10 MS Interoperability Optional Tests

The list of test cases above does not list every situation for interoperability. There may be other test such as large file transfers. Also, in setting up for interoperability testing, the partners in a test may wish to perform simple tests.

· Certificate exchange – Setup and exchange of personal certificates.

· Simple data transfer – Transfer of simple data files to ensure that the data link is working properly.

· Large file transfer – Transfer of large data file.

· Ping service

· Message status

· Multi-Hop

2.11 Working Notes: Interop Test and Conformance Test

As stated previously, the interoperability test expects some level of conformance testing be done. For example, the interoperability test does not test for the following.

· Invalid SOAP header and message

· Invalid ebXML information in SOAP header and message

· CPA Error and Resolution

· Unrecognized service

· Duplicate messages

· Simple error handling

2.12 Working Notes: Interop Test and Drummond Test

The Interoperability Test Task Force would like to recognize the contributions made by the Drummond Group. It believes that most of the test cases from the Drummond Group have been incorporated into the core test cases, with the rest in the optional tests.

3 Appendix

(Note: Assume HTTP as transport.)

<Jacques> I would propose a first even simpler test, with no Ack involved, just the Service response: </Jacques>
Test #1: One way ebXML simple message exchange (no Ack)

This scenario tests one-way ebXML message exchange between two MSH’s.

Test Type:

Positive
Transport:

HTTP
CPA Information:

Retry/Timeout

Receipt Acknowledgement:
Not required

Response:

Not required

Response Acknowledgement:
Not required

Non-Repudiation

Origin

Not required

Receipt

Not required
Security:

Encryption:

No

Signature:

No
Request

Header (Schema):

Valid

Payload (ebXML MS):

Valid
Response

Type:

None required
Attachments:

None
Duplicate Message (Receiver):

None
Out of Sequence (Receiver):

No
Attachments:

None
Multi Hop:

No
Error Expected:

None
Test steps:

1. (manual) Driver and Responder parties set up their profiles based on the agreed CPA-like information. Test operators configure Driver and Responder MSHs with this CPA for the test conversation.

<Jacques> changed master / follower to driver / responder </Jacques>

1. (automated) MSH can be configure automatically by Test Driver

a. Test Driver (on driver party side) invoke the Configurator action of the Test Service of the driver party, passing to it the CPA data. This results in the driver MSH being configured.

b. Step 1b: Then the Test Driver invokes the Initiator of the driver Test Service, passing to it a message containing CPA data, intended to the Configurator action of the responder party. This results in the responder MSH being configured.

2. Test Driver invokes the Initiator action of Driver MSH, passing a sample message with a valid ebXML payload, and a header with NO Ack requested element. Destination: Dummy action of the responder party.

3. Driver MSH receives and correlates response message (from Dummy action of step 2).

· Failure condition: On driver side: Step 3 fails (no response message is received – no Mute action triggered on driver side, or triggered but message not properly correlated -, which means the initial message did not reach the responder party in the 1st place, or the responder party business response unable to reach driver, or did but was corrupted.)

Test #1b: One way ebXML simple message exchange with Ack
This scenario tests one-way ebXML message exchange between two MSH’s.

Test Type:

Positive
Transport:

HTTP
CPA Information:

Retry/Timeout

Receipt Acknowledgement:
Required (specify)

Response:

Not required

Response Acknowledgement:
Not required

Non-Repudiation

Origin

Not required

Receipt

Not required
Security:

Encryption:

No

Signature:

No
Request

Header (Schema):

Valid

Payload (ebXML MS):

Valid
Response

Type:

None required
Attachments:

None
Duplicate Message (Receiver):

None
Out of Sequence (Receiver):

No
Attachments:

None
Multi Hop:

No
Error Expected:

None
Test steps:

2. (manual) Driver and Responder parties set up their profiles based on the agreed CPA-like information. Test operators configure Driver and Responder MSHs with this CPA for the test conversation.

<Jacques> changed master / follower to driver / responder </Jacques>

4. (automated) MSH can be configure automatically by Test Driver

a. Test Driver (on driver party side) invoke the Configurator action of the Test Service of the driver party, passing to it the CPA data. This results in the driver MSH being configured.

b. Step 1b: Then the Test Driver invokes the Initiator of the driver Test Service, passing to it a message containing CPA data, intended to the Configurator action of the responder party. This results in the responder MSH being configured.

5. Test Driver invokes the Initiator action of Driver MSH, passing a sample message with a valid ebXML payload, and a header with Ack requested element. Destination: Dummy action of the responder party.

6. Responder MSH’s (per the Ack requested element) sends an acknowledgement message to the Driver MSH. (Note that no Service/Action is involved here: this is triggered at MSH level).

7. Driver MSH receives and correlates acknowledgement message (of step 3, with step 2). No failure is expected in this case. But if no Ack is received – or properly correlated – then a sending failure is notified to the application (here, the ErrorNotify action of driver MSH).

<Jacques> we need this step 5 below, if we use “Dummy” in step 2, or else we should send to Mute. </Jacques>
8. Driver MSH receives and correlates response message (from Dummy action of step 2).

· Failure condition: On driver side: Either Step 4 fails (ErrorNotify action is invoked), or Step 5 fails (no response message is received – no Mute action triggered on driver side -, which means the initial message did not reach the responder party in the 1st place, or the responder party business response unable to reach driver.)

Test #2: Two way ebXML message exchange

This scenario tests two-way message exchange between two MSH’s.

Test Type:

Positive
Transport:

HTTP
CPA Information:

Retry/Timeout

Receipt Acknowledgement:
Required (specify timeout?)

Response:

Required

Response Acknowledgement:
Required

Non-Repudiation

Origin

Not required

Receipt

Not required
Security:

Encryption:

No

Signature:

No
Request

Header (Schema):

Valid

Payload (ebXML MS):

Valid
Response

Type:

Async, Required

Attachments:

None
Duplicate Message (Receiver):

None
Out of Sequence (Receiver):

No
Attachments:

None
Multi Hop:

No
Error Expected:

None
Test steps:

1. Configure Driver and Responder MSH with CPA-like information. For more details, see Step 1 in Test 1.

2. Test Driver invokes the Initiator action of Driver MSH, passing a sample message with a valid ebXML payload, and a header with Ack requested element. Destination: AsyncResponder action of the responder party.
<Jacques> Reflector should do the work fine here </Jacques>

3. Responder MSH’s (per the Ack requested element) sends an acknowledgement message to the Driver MSH. (Note that no Service/Action is involved here: this is triggered at MSH level).
4. Driver MSH receives and correlates acknowledgement message (of step 3). No failure is expected in this case. But if no Ack is received – or properly correlated – then a sending failure is notified to the application (here, the ErrorNotify action of driver MSH).
5. Responder MSH’s Dummy action sends back a response message to the Driver MSH (to its Mute action, so there is no infinite loop). This will tell the sender that the message has been well received, independently from the Ack it should also receive.
9. Driver MSH receives the response message of step 5 (on its Mute action) message.

6. Driver MSH sends an acknowledgement to the Responder MSH’s Mute action.

7. Responder MSH receives and correlates acknowledge message (of step 6).

Test #3: Two way ebXML message exchange with response required and no receipt acknowledgement received by the Sender.

This scenario tests two-way message exchange between two MSH’s using HTTP as the transport protocol. In this case a response is expected while the receiver does not send a receipt acknowledgement. The sender errors out after specified retries.
Test Type:

Negative
Transport:

HTTP
CPA Information:

Retry/Timeout

Receipt Acknowledgement:
Required, but NOT sent by the target.

Response:

Required

Response Acknowledgement:
Required

Non-Repudiation

Origin

Not required

Receipt

Not required
Security:

Encryption:

No

Signature:

No
Request

Header (Schema):

Valid

Payload (ebXML MS):

Valid
Response

Type:

Async, Required
Attachments:

None
Duplicate Message (Receiver):

None
Out of Sequence (Receiver):

No
Attachments:

None
Multi Hop:

No
Error Expected:

None
Test steps:

<Jacques> This is a conformance test: (resending behavior, etc.) even though it is in DGI, would suggest to leave it to conformance. Besides, we cannot ask that the MSH be hacked to suppress Acks. (even though DGI did) but conformance tests will be able to check this with no hack (by driver simulating real duplicates on the wire) </Jacques>

1. Configure Driver and Responder MSH with CPA-like information. For more details, see Step 1 in Test 1.

2. Test Driver invokes the Initiator action of Driver MSH, passing a sample message with a valid ebXML payload, and a header with Ack requested element. Destination: UnMute action of the responder party.

3. Responder MSH suppresses acknowledge.

4. Driver MSH retries message send (need to state number of retries). Errors when retries reach limit.

5. Responder MSH ignores duplicates from Driver MSH.

Test #4: Two way ebXML message exchange with response required and no message response received by the Sender.

This scenario tests two-way message exchange between two MSH’s using HTTP as the transport protocol. In this case a response is expected while the receiver does not send a response. The sender errors out after specified retries.
Test Type:

Negative
Transport:

HTTP
CPA Information:

Retry/Timeout

Receipt Acknowledgement:
Required

Response:

Required, but not sent by the target

Response Acknowledgement:
Required

Non-Repudiation

Origin

Not required

Receipt

Not required
Security:

Encryption:

No

Signature:

No
Request

Header (Schema):

Valid

Payload (ebXML MS):

Valid
Response

Type:

Async, Required
Attachments:

None
Duplicate Message (Receiver):

None
Out of Sequence (Receiver):

No
Attachments:

None
Multi Hop:

No
Error Expected:

None
The target sends an acknowledgement, but suppresses response.
Test steps:

<Jacques> Isn’t that a subset of Test #1 with Acks? If yes, should be moved up before, as a simpler test. </Jacques>

1. Configure Driver and Responder MSH with CPA-like information. For more details, see Step 1 in Test 1.

2. Test Driver invokes the Initiator action of Driver MSH, passing a sample message with a valid ebXML payload, and a header with Ack requested element. Destination: Mute action of the responder party.
3. Responder MSH’s (per the Ack requested element) sends an acknowledgement message to the Driver MSH. (Note that no Service/Action is involved here: this is triggered at MSH level).
4. Driver MSH receives and correlates acknowledgement message (of step 3, with step 2). No failure is expected in this case. But if no Ack is received – or properly correlated – then a sending failure is notified to the application (here, the ErrorNotify action of driver MSH).
5. Driver MSH times out waiting for response, calls error action.

Test #5: Two way ebXML message exchange with response sent by target and no message acknowledgement received by the Target.

This scenario tests two-way message exchange between two MSH’s using HTTP as the transport protocol. In this case a message acknowledgement is expected by the target while the candidate MSH does not send it. The sender errors out after timeout.
Test Type:

Negative
Transport:

HTTP
CPA Information:

Retry/Timeout

Receipt Acknowledgement:
Required

Response:

Required

Response Acknowledgement:
Required, but not sent by Candidate.

Non-Repudiation

Origin

Not required

Receipt

Not required
Security:

Encryption:

No

Signature:

No
Request

Header (Schema):

Valid

Payload (ebXML MS):

Valid
Response

Type:

Async, Required
Attachments:

None
Duplicate Message (Receiver):

None
Out of Sequence (Receiver):

No
Attachments:

None
Multi Hop:

No
Error Expected:

None
The target sends a response message and times out waiting for an acknowledgement.
Test steps:

<Jacques> That looks like Test #1b above? </Jacques>

1. Configure Driver and Responder MSH with CPA-like information. For more details, see Step 1 in Test 1.

2. Test Driver invokes the Initiator action of Driver MSH, passing a sample message with a valid ebXML payload, and a header with Ack requested element. Destination: AsyncResponder action of the responder party.
3. Responder MSH’s (per the Ack requested element) sends an acknowledgement message to the Driver MSH. (Note that no Service/Action is involved here: this is triggered at MSH level).
4. Driver MSH receives and correlates acknowledgement message (of step 3). No failure is expected in this case. But if no Ack is received – or properly correlated – then a sending failure is notified to the application (here, the ErrorNotify action of driver MSH).
5. Responder MSH’s Dummy action sends back a response message to the Driver MSH (to its Mute action, so there is no infinite loop). This will tell the sender that the message has been well received, independently from the Ack it should also receive.
10. Driver MSH receives the response message of step 5 (on its Mute action) message.

6. Driver MSH sends an acknowledgement to the Responder MSH’s Dummy action.

7. Responder MSH retries response message, then errors.

4 Glossary

5 Test bed FAQ

6 References

Software Interoperability Test Plan for RNIF 1.1/2.0 Functionality, Draft v2.5 (3/25/2002)

Drummond Group (xxx) TBD

Presentations at OAG Conferences

EbXML-IIC Conf. Calls and Conformance Test suite

EbMS v2.0

RNIF 2.0 validation program

� ebXML-IIC TC Interoperability

� ebXML-IIC TC Conformance.

� OAG conference, April 8-11, Washington D.C

� Initial effort is focused on interoperability for ebXML Messaging Service

� RosettaNet Interop Trial

� UCC Interoperability trial with DGI (Nov 2001 – February 2002)

� Technical resources, machines accessible by partners, certificates and other information required for configuring trading partner profiles by other participants.

