ebXML MS Conformance Testing: An Approach

Jacques Durand

Fujitsu Software

Conformance Areas: Wire vs. Service
The MS specification (1.x and 2.x) is predominantly a wire protocol standard. Technically, the only MSH outputs that are precisely described and specified, are the messages sent out. This wire protocol can be characterized as describing the contract MSH-to-MSH.

However, the specification also requires some behaviors that cannot be observed/validated entirely through messages (neither MSH-level messages like errors, nor business-level messages). It is the case for most behaviors related to the contract application / MSH, i.e. whenever in the specification the described behavior involves the “to Party” or the “from Party”. Such behaviors cannot easily be formally validated in the absence of a contract interface (MSH API, callback API, logging). Yet from a practical perspective, an MSH user – e.g. a business marketplace operator - will want to make sure that the MSH fulfills its “application contract”, or in other words provides the expected service. We will distinguish then two areas of conformance:

· Wire Conformance. Resulting from the validation of the contract MSH / MSH. The wire-conformance of an MSH addresses the messaging protocol aspect of the specification. It can be validated by observing the sequence of messages that are exchanged between the candidate MSH and an external party. Are the generated messages conformant (well-formedness + semantic integrity constraints), are the correct MSH-level response messages generated (errors, acks, status, Pong), and under appropriate conditions?

· Service Conformance. Resulting from the validation of the contract Application / MSH. Examples are: Is the received message made properly available in some form to the application, if and when appropriate (e.g. with respect to ordering, duplicate checking, time-to-live)? Do the sent messages correspond to what the application has intended? Are some errors – not the error messages - properly logged / notified to the contracting party (application or sys-admin)? Also, configuration (CPA data) is part of this contract. Because such behaviors address the messaging service part of the specification, they will be relevant to the service-conformance of an MSH.

Thus, the conformance of an ebXML MSH implementation will require both wire-conformance and service-conformance. This distinction is mostly useful to understand the role of various inputs and outputs to the testing. It is not clear at this point whether we can easily separate the testing of these areas.

NOTE: The notion of “levels” or “profiles” of conformance should not be confused with these identified two areas of conformance (wire and service). They are actually orthogonal to these conformance areas. Each level or profile may actually involve both wire and service behaviors. There may be various “levels” or “profiles” of conformance, defined in the conformance clause. Each of these levels/profiles may require a distinct unit of test, but this unit of test will have to cover both wire and service conformance for this profile. The detail of how to test a level or profile is outside the scope of this document. This distinction between wire / service will mostly affect the testing procedure.

Example: Most of the Security feature is relevant to wire conformance: check that the digital signature is well-formed (message content) and that the MSH actually validates it and sends back the SecurityFailure error message if authentication fails. However, the fact that the sending MSH actually generates a digital signature in the first place when required to (e.g. per CPA request), is relevant to service conformance, as this is about a contract between the sending party and the MSH.

Overall Testing Procedure

In the proposed approach, conformance will be validated in two steps:

1. Test Phase. Testing an MSH typically means putting the MSH in a reactive situation (e.g. sending a message to it) and observing the response. The MSH to be tested for conformance (called here the “candidate” MSH) is driven by a test driver, which produces an output trace.

2. Validation Phase. The output trace resulting from the test phase is compared with a reference trace (using a validation program). The output of the validation program determines the conformance status.

By clearly separating testing from validation (thanks to a well-coded test output that can be automatically processed), these two phases can be executed by separate entities. A service company expert at running messaging tests can be in charge of the test phase – clearly requiring from this company significant expertise and support to the candidate MSH team in order to set-up the tests, even if the tests are quite automated – while a certification authority can easily compare the test trace with the reference trace, using a validation program quite simple to operate, even remotely through a Web browser.

[image: image1.png]Test input
Test Cases
(Mesg data,

Documents | g
cquencing,
(g XML) | CpA data)

Testing Reference
Documents

H (c.g. XML)

Test output
Test Output| (mecy data, % Test reference %
Documents | some errors, output

(e.g. XML)| MSHtrace)

comparison

“ .
Pass Fail

Fig 1. Conformance Process and Data Flow

The next section focuses on the input/output of the testing procedure, and identifies major types of inputs and outputs to be used (depending one wire / service conformance). These will also be inputs to and outputs of the test driver(s).

Testing a Candidate MSH: Expected Input Elements

As a pre-requisite to testing the above conformance areas, the candidate MSH is expected to be able to receive / interpret some inputs. These inputs will come from two sources: (1) a test driver (simulating an application), (2) a Testing Party MSH (or TP-MSH).

1. Application input. (useful for both wire conformance / service conformance). Even so wire-conformance does not explicitly imply an application layer, getting the candidate MSH to generate a sampling of messages that covers properly all the message options, will require the use of a driver-application. This is also needed for service conformance. As there is no MSH API yet specified, this input can be described as input to the test driver-application (not to the MSH): the application-relevant content of messages to be sent – both header data and payload – will be described in a neutral format (e.g. XML, yet preferably not ebXML) independent from the ad-hoc API of the candidate MSH. The test driver will use an adapter specific to the candidate MSH. It will interpret this format, and generate (via the adapter) corresponding ad-hoc calls to the API of the candidate MSH. In other words, the implementor who wants to certify an MSH is supposed to write a proprietary MSH adapter, that will conform to the programming interface expected by the test driver. Application input can then be described independently from the candidate MSH, and be processed by a standard test driver.

2. CPA input. (for service conformance) The candidate MSH must support a configuration capability that will reflect CPA data. Although the access to a formal CPA is not assumed, we need to test that the MSH is configuration-capable, and that its behavior is consistent with this configuration. A solution is to require again the test driver to accept configuration data in form of an XML document (preferably an ebXML CPPA-conforming document), and to translate it into the MSH-specific configuration format or protocol (e.g. property file, API calls) via the same MSH-specific adapter. CPA input can then be expressed in MSH-independent format.

3. Message input. (for wire conformance) The candidate MSH will receive messages from another party, here described as the Testing Party MSH (or TP-MSH). The TP-MSH is itself a conforming MSH, supposed to provide message manipulation/simulation capability (e.g. generation of incorrect messages, unordered sequences, unsent acknowledgments, bad timing).

Testing a Candidate MSH: Expected Output Elements

4. Message output. (for wire conformance) The candidate MSH will send messages to the TP-MSH. The content of these messages will either be controlled by the test driver of the candidate MSH, or generated by the candidate MSH (MSH-level, like errors, acks) as response to its message input from TP-MSH. The TP-MSH must have advanced logging / tracing capability (format of received messages, sequences, cross-referencing), in order to validate the header of messages generated by the candidate MSH.

5. Application output. (for service-conformance) The candidate MSH is expected to pass the received messages to its driver application. The same MSH-specific adapter layer is expected to “translate” contents of the message into the same neutral format mentioned in (1), so that validation of this output can be automated.

[image: image2.png]Applinput

Appl output

(mesg data)

CPA
input

Adapter APT
(test-standard)

/' (for candidate)
MSH-specific

adapter

MSH-specific APT

- ‘ Test Driver [**

MSH adapter

Candidate
MSH

Candidate Party

> _L (mesg data,

some errors)

Message output
[

Message input

Fig 2. Test Driver Architecture: Input and Output

NOTE: This testing procedure assumes that an MSH-specific adapter is provided by the candidate party in order to comply with the standard “adapter API” expected by the test driver. For now, the conformance test – especially the service conformance – actually tests the combination {adapter + MSH}, not just the MSH. So, a successful test actually means that:

“ It is possible to write an application (or adapter) that drives the candidate MSH in such a way that it demonstrates the behavior described in the specification”,

instead of :

“The candidate MSH demonstrates the behavior described in the specification”.

Future MS versions are expected to standardize also the MSH API, which would remove the need for ad-hoc adapters. Only then, can we have a standard test driver that directly drives the MSH, without need for an adapter (or with a standard adapter that becomes actually part of the test driver.)

The system will test conformance of the candidate MSH by doing an automated analysis of its outputs at two levels:

(1) MSH level (wire conformance). The message output is traced at TP-MSH level. A detailed enough trace will be generated by the TP-MSH, so that a separate test module can validate the message structure (well-formed) as well as their semantic consistency. Sequences of messages, timing, repeats, will also be tested at this level based on the trace.

(2) Application level (service conformance). The application output will be generated by the Test Driver, from the output provided by the adapter to the MSH candidate, based on received messages. This output will be formatted in a way that is standard to the test system (e.g. XML format), and that can easily be automatically compared with a reference document (e.g. the same document used to feed the Test Driver on Testing Party side, for generating the message).

So ideally, all tests can be automated, for both wire and service conformance.

[image: image3.png]Applinput

(mesg data)

CPA

Test Output{ Appl output
documents | (ese data.
some errors)

MSH trace

v

v
Test Driver Common Test Driver
(smutte [TestDriver | (e
pplication Application)
< Adapter APT
(standard) MSH adapter
MSH adapter I
(for candidate)
Candidate |... -]
N Message ontput, | 1*MSH
Candidate Party Testing Party

Fig 3. A Conformance Test Architecture

Test Patterns

The architecture above will allow for the following test patterns:

· Sending pattern. Initiator: Candidate party. The test driver, on candidate side, generates predefined message-sending requests to the candidate MSH, for sending to TP-MSH. The Testing Party validates these messages both at MSH (well-formedness) and application levels (payload integrity). This will test (1) full wire-conformance of candidate message output, (2) partially, service conformance of candidate (sending service, some error notification). Additional MSH-to-MSH exchanges may occur (e.g. when testing retries).

· Receiving pattern. Initiator: Testing Party. The test driver, on testing party side, generates predefined message-sending requests to the TP-MSH. The TP-MSH sends these messages to the candidate MSH, which transmits to its test driver. The test driver validates these messages at application level (header/payload content integrity). This will test (1) full wire-conformance of candidate message input, (2) partially, service conformance of candidate (receiving service, error notification). Additional MSH-to-MSH exchanges may occur (e.g. when testing retries). Additional MSH-to-MSH exchanges may occur (e.g. when generating duplicates, or receiving errors after simulating incorrect messages).

· Two-way pattern. Initiator: Testing Party. This is simply a sequence of receiving + sending patterns. Its interest is, this can be entirely controlled by the Testing side, if the test driver has “service” logic that will be able to interpret received messages and generate responses, on the candidate side. Only CPA data may still need be fed locally to the candidate party.

Where To Go From Here

Implementing the architecture above will require the following steps (not necessarily in sequence):

· Define a “standard” format for expected input documents to test drivers: (1) CPA data, (2) message data, (3) sequencing data for messages. Output documents need also be defined, but should be of same format (for messages). The format of trace data generated by the TP-MSH must also be defined.

· Define what additional features should be supported by the TP-MSH implementation: (1) tracing capability, (2) message manipulation capability (e.g. simulating error in message envelope, timing, etc.)

· Define Test Cases that cover various profiles or levels of conformance (may refer to test patterns above).

· Design the test driver, and in particular what should be the standard “adapter API” through which the driver will control the MSH.

· Design the validation engine that will compare output documents to reference documents.

Copyright Fujitsu © 2001

