TIBCO PROPRIETARY AND CONFIDENTIAL [image: image1.wmf]
TIBCO PROPRIETARY AND CONFIDENTIAL

Implementation Guide

Change Log

	Date
	Version
	Name
	Revision Description

	Dec 4 2001
	0.1
	M. Wang
	Creation

	
	
	
	

Contents

31.
MSH Error Messages

2.
TimeToLive
3
3.
PersistDuration
4
4.
Time Out Values
4
5.
Service Value
5
6.
Action Value
6
7.
When to send MSH Acknowledgement
6
8.
When to send Receipt Acknowledgement
6
9.
How to distinguish between Signals and Response in the Same Message
7
10.
How to Populate the Manifest Element
7
11.
Business Transaction Characteristics
8
12.
Signing & Verifying ebXML Messages
9
12.1.
Generating the Signature element
9
12.2.
Verifying Messages with the Signature Element
10
12.3.
Acknowledgment Element’s References
11
12.4.
Receipt Acknowledgement Signal’s NonRepudiationInformation
11
13.
Encryption
11

1. MSH Error Messages

MSH Error messages are defined to be one with an ErrorList element in it.

There are to be no Error messages back to the sender due to incoming Error messages.

The only time an Error message is sent in response to an Acknowledgment message is when it does not contain expected ds:Reference element.

Error message MUST not be sent reliably regardless what the channel characteristics says.

When the ErrorList level is at least Error then it MUST be sent on its own.

2. TimeToLive

The TimeToLive element as defined in the MS Spec is meant to indicates the time by which a message should be delivered to and processed by the Responder’s MSH.

If the Responder’s MSH receives a message where TimeToLive has expired, it SHALL send a message to the Initiator MSH, reporting that the TimeToLive of the message has expired. This message SHALL be comprised of an ErrorList containing an error that has the errorCode attribute set to TimeToLiveExpired, and the severity attribute set to Error.

The TimeToLive has expired if the time of the internal clock of the Responder’s MSH is greater than the value of TimeToLive for the message. The Responder’s MSH should reject the message before anything is done with the message. This includes not logging the message for duplicate checking.

It is possible to include the TimeToLive element to appear for both Best Effort delivery as well as Reliable delivery.

When reliable messaging is in use the incoming message MUST only be checked before been persisted by the Responder’s MSH. If the Responder’s MSH crashed and came back after TimeToLive has expired but the message has already been persisted then the message MUST still be passed to the application.

Implementations should allow an input as a duration from layers above the MSH for which the message should live for from the time it is sent. For example, a message can live for 60 minutes from the time it is sent. Then the minimum TimeToLive value can be calculated as:

TimeToLive = timestamp + 60
When Reliable messaging is in effect the duration MUST allow for the retry delay. That is, the minimum TimeToLive value can be calculated as:

TimeToLive = timestamp + ((Retries + 1) * RetryInterval)

This value MUST also pass the following assertion for Reliable Messages:

TimeToLive < timestamp + PersistDuration

Implementation MAY want to have the Initiator side (Initiator’s MSH) check for the TimeToLive value for expiration before sending out messages. This is, however, not necessary if the implementation can assure the TimeToLive value is greater or equal to the supplied duration or retry interval. If TimeToLive has expired then the Initiator’s MSH should report back to the application an errorCode of TimeToLiveExpired and a severity of Error.

When TimeToLive element does not exist then the message will never expire at the Responder’s MSH.

3. PersistDuration

The PersistDuration parameter is the minimum length of time a message sent reliably is kept in Persistent Storage by a Responder MSH.

The MSH should keep a persistTill timestamp in its Persistent Storage that is calculated as:

persistTill = timestamp + PersistDuration
The timestamp here should be the value from the Timestamp element within MessageData element in the received message.

The persistTill value must be greater than the TimeToLive value inside MessageData element found in the received message. If this is not the case then an error should be reported back to the initiator MSH with an errorCode of Inconsistent and a severity of Error.

It is not necessary to expire and remove the expired messages immediately as they are expiring. The Initiator and Responder are suggested to periodically run a Persistent Storage clean-up procedure that will look for expired messages and remove them.

Initiator MSH that is trying to resend a message SHOULD check persistTill value to decide whether to resend or not. If persistTill has passed, then an error should be reported back to the application with an errorCode of DeliveryFailure and a severity of Error.

4. Time Out Values

There are many time out values to consider when implementing ebXML. They are:

· Time to receive a transport acknowledgment such as HTTP 200 OK message

Implementation may have a transport timeout value, e.g. transportAckWait. This value MUST be smaller than timeToAcknowledgeReceipt when syncReplyMode=none. When syncReplyMode=mshAckOnly this value MUST be same as mshAckWait (see below). When syncrReplyMode=signalsOnly this value MUST be the greater(of timeToAcknowledgeReceipt and timeToAcknowledgeAcceptance. When syncReplyMode=responseOnly or signalsAndResponse this value MUST be the same as timeToPerform.
· Time to receive a MSH acknowledgement

Implementation MAY have a MSH acknowledgement timeout value, e.g. mshAckWait. This value MUST be larger than transportAckWait and smaller than timeToAcknowledgeReceipt when syncReplyMode=none. When syncReplyMode=mshAckOnly this value MUST be the same as transportAckWait but smaller than timeToAcknowledgeReceipt. When syncrReplyMode=signalsOnly this value MUST be the greater(of timeToAcknowledgeReceipt and timeToAcknowledgeAcceptance. When syncReplyMode=responseOnly or signalsAndResponse this value MUST be the same as timeToPerform.
· Time to receive receipt acknowledgment (timeToAcknowledgeReceipt)
This time MUST be smaller than timeToAcknowledgeAcceptance, if it is specified.

· Time to receive acceptance acknowledgement (timeToAcknowledgeAcceptance)

This time MUST be smaller than timeToPerform.

· Time to perform a request (timeToPerform)

This time is essentially the time for the trading partner to perform the request and respond back with a response document.

timeToPerform > timeToAcknowledgeAcceptance > timeToAcknowledgeReceipt
Note that timeToAcknowledgeAcceptance may not be always specified.

All references to these timeout values are relative to the Timestamp value in the MessageData element in the message.

NOTE: It is possible to implement a solution based on the just timeToAcknowledgeReceipt, timeToAcknowledgeAcceptance and timeToPerform without introducing timeout such as MSH Acknowledgement timeout (mshAckWait) and transport timeout (transportAckWait).
5. Service Value

Sevice value will be based on the agreed CPA. This is of the form:

bpid:<agency>:<agency-id>:<business-process-name>$<major-version>.<minor-version>

For example, bpid:icnna:rosettanet.org:3A4$2.0 is a valid service value.

Service value used for Receipt Acknowledgement Signal and Acceptance Acknowledgement Signal, when they are sent on their own, should be the same as the requesting or responding message.

When a message received has errors then a message contains an ErrorList MUST be returned. If severity is Error then the message with ErrorList element must be sent on its own. When ErrorList is returned on its own then the Service value MUST be set as urn:oasis:names:tc:ebxml-msg:service. If the original message contains AckRequested element then an Acknowledgment element MAY or MAY not be in the ErrorList message. When the Acknowledgment element for the same message that ErrorList is reporting is not present in the same message then the initiating side will continue to send the same error message to the responder. To stop this it is recommended that Acknowledgement element is included with the ErrorList element in the same message.

6. Action Value

Action value will be based on the agreed CPA. This will be the business transaction action name.

Action value used for Receipt Acknowledgement Signal MUST be ReceiptAcknowledgement and Acceptance Acknowledgement Signal MUST be AcceptanceAcknowledgement and for Exception Signal MUST be Exception.

When both Receipt Acknowledgement Signal and Acceptance Acknowledgement Signal are present in the same message then the Action value MUST be AcceptanceAcknowledgement.
Note that, the root element for Acceptance Acknowledgement Signal is actually named as AcceptanceAcknowledgementException(.

When a message received has errors then a message contains an ErrorList MUST be returned with the Action value set as MessageError if the Error message is sent on its own. If the original message contains AckRequested element then an Acknowledgment element MAY or MAY not be in the ErrorList message. When the Acknowledgment element for the same message that ErrorList is reporting is not present in the same message then the initiating side will continue to send the same error message to the responder. To stop this it is recommended that Acknowledgement element is included with the ErrorList element in the same message.

7. When to send MSH Acknowledgement

MSH Acknowledgement message SHOULD be sent after incoming message is checked against the following:

· Incoming message contains AckRequested element and confirms with configuration.

· Schema validation of SOAP envelope against XSDs.

· Validate Trading Partner identity. Both From/Tos SHOULD be checked. For security reasons if the identities in the incoming message is not found in host system then the message SHOULD be dropped.

More elaboration should be given wrt syncReplyMode.

8. When to send Receipt Acknowledgement

Receipt Acknowledgement message SHOULD be sent after incoming message is checked against the following:

· Schema validation of SOAP envelope against XSDs

· Validate Trading Partner identity. Both From/Tos SHOULD be checked. For security reasons if the identities in the incoming message is not found in host system then the message SHOULD be dropped.

· Configuration for incoming message requires a Receipt Acknowledgement message.

· Schema validation of payloads against XSDs if applicable

· Service and Action values of incoming message are valid and can be found in configuration

· Message is authenticated.

· Message is authorized.

· Message can be unencrypted successfully.

More elaboration should be given wrt syncReplyMode.

9. How to distinguish between Signals and Response in the Same Message

It is possible for business signals and responses to be all present in the payload section of the same message. Some means must be used to distinguish they are independent payloads as opposed to one being the attachment of the other. When a CPA is in place then the CPA packaging configuration must be followed. When CPA is not in-use then It is suggested that the xlink:role attribute of Manifest/Reference is populated with adequate information to identify them. See Section 10 “How to Populate the Manifest Element” for details.

10. How to Populate the Manifest Element

· Value of xlink:href MUST be populated and SHOULD be of the form cid:<content-id>. If not then it MUST be an URI and MUST be resolvable.

· Value of xlink:role SHOULD be populated and when CPA is in-use then it MUST be the same value as CPA’s CollaborationProtocolAgreement/SimplePart/xlink:role. The value for xlink:role MUST be <processSpecificationHREF>#<businessDocumentName> where:

processSpecificationHREF is CPA’s CollaborationProtocolAgreement/PartyInfo/ CollaborationRole/ProcessSpecification/xlink:href. E.g. “http://www.rosettanet.org/processes/3A4.xml”.

businessDocumentName is BPSS’s ProcessSpecification/BusinessDocument/name. E.g. “Puchase Order Request”.

When CPA is not in-use then parties MUST agree on this value. For example,

Receipt Acknowledgement Signal MUST use the value of http://www.ebxml.org/BusinessProcess/ReceiptAcknowledgment.

Acceptance Acknowledgement Signal MUST use the value of http://www.ebxml.org/BusinessProcess/AcceptanceAcknowledgment.

Exception Signal MUST use the value of http://www.ebxml.org/BusinessProcess/Exception.

Payloads (BusinessDocument and Attachments) other than business signals SHOULD use agreed process specification’s reference such as that used in CPA (see above).

When xlink:role is not available nothing can be deduced of the nature of the payload. This is not desirable as it is possible that both Acceptance Acknowledgement Signal and actual business documents are in the same message. Therefore, it is highly recommended that at least Business Signals carry the above defined xlink:role values.

· Schema element of Manifest/Reference SHOULD have its location attribute populated.

11. Business Transaction Characteristics

The following table presents the equivalent properties that are defined in CPP/A and BPSS.

	CPP/A
	BPSS
	Actions

	isNonRepudiationRequired
	isNonRepudiationRequired
	When true all payloads and ebxml envelope needs to be signed and logged for NR purpose.

	isNonRepudiationReceiptRequired
	isNonRepudiationReceiptRequired
	When true the message digest of the original incoming message (the message been acknowledged) needs to be stored in ReceiptAcknowledgement element’s NonRepudiationInformation element. Then the message needs to be signed and logged for NR purpose.

	isAuthenticated
	isAuthenticated
	When ‘none’ incoming message is not checked for valid signature.

When ‘transient’ sender identity is checked via the use of SSL. No logging required for NR purpose.

When ‘persistent’ sender identity is checked using digital signature mechanism. Both the payload(s) and envelope are signed. No logging required for NR purpose. SSL check is optional depending whether the transport used supports SSL.

When ‘persistent-and-transient’ sender identity is checked using digital signature mechanism. Both the payload(s) and envelope are signed. SSL capable transport is also used. No logging required for NR purpose.

	isConfidential
	isConfidential
	When ‘none’ payload(s) are not encrypted.

When ‘transient’ payload(s) (as well as SOAP envelope) are encrypted via the use of secure transport such as SSL. There is no signing.

When ‘persistent’ payload(s) are encrypted. SSL is not important. There is no encryption for envelope and no signing.

When ‘transisent-and-persistent’ payload(s) are encrypted. The encrypted payload(s) and SOAP envelope are further encrypted by SSL.

	isAuthorizationRequired
	isAuthorizationRequired
	

	isTamperProof
	isTamperProof
	See isAuthenticated.

	
	isGuaranteedDeliveryRequired
	This is not the same as reliable messaging.

	isSecureTransportRequired
	
	When ‘true’ trasport must be capable of supporting protocols such as SSL or IPSEC.

	timeToAcknowledgeReceipt
	timeToAcknowledgeReceipt
	

	timeToPerform
	timeToPerform
	Amount of time that a response is supposed to be returned.

12. Signing & Verifying ebXML Messages

12.1. Generating the Signature element

1) Build your SOAP:Header without the ds:Signature element.

2) Build the SOAP:Body with Manifest if you have any payloads. (Assuming content-ids required by the Manifest are either pre-assigned or the MIME is built already.)

3) Build the SOAP envelope document based on the SOAP:Header and SOAP:Body that you built earlier in steps 1 and 2.

4) If required apply XML-DSIG on the SOAP envelope document generated in step 3. The output should be something like the following. Note that some output needs to be dictated by the input. These are:

URI value (in this case, it is empty string)

There MUST be a single Transforms element which contains three Transform element.

First Transform must have an Algorithm value of: http://www.w3.org/2000/09/xmldsig#enveloped-signature
Second Transform MUST have an Algorithm value as shown below.

Third Transform element MUST have an Algorithm value of: http://www.w3.org/TR/2001/REC-xml-c14n-20010315
<Reference URI="">

<Transforms>

<Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

<Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">

<XPath> not(ancestor-or-self::*[@SOAP:actor="urn:oasis:names:tc:ebxml-msg:service:nextMSH"] | ancestor-or-self::*[@SOAP:actor="http://schemas.xmlsoap.org/soap/actor/next"])

</XPath>

</Transform>

<Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue>...</ds:DigestValue>

</Reference>

5) Apply XML-DSIG on the payload(s) that require signature. Note that some output needs to be dictated by the input. These are:

URI value (in this case, it is ‘cid:123456789’. It is essentially the same value as used in the xlink:href attribute of Manifest/Referece element.)

<Reference URI="cid:123456789">

 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>345x3rvEPO0vKtMup4NbeVu8nk=</DigestValue>

</Reference>

6) Repeat step 5 if there are multiple payloads that require to be included in the signature.

7) Create CanonicalizationMethod element. Set attribute Algorithm to

http://www.w3.org/TR/2001/REC-xml-c14n-20010315
8) Create SignatureMethod element. Set attribute Algorithm to

http://www.w3.org/2000/09/xmldsig#dsa-sha1
9) Create SignedInfo element based on data generated in steps 4-8.

10) Canonicalize SignedInfo generated in step 9

11) Create SignatureValue element with value based signature generated from the canonicalized SignedInfo in step 10.

12) Create Signature element based on SignedInfo from step 9 and SigantureValue from step 11.

13) Include Signature element generated in step 12 in the SOAP:Header.

Note that white spaces contained in the SOAP envelope MUST be preserved between time of signing and time of dispatching to trading partners.

12.2. Verifying Messages with the Signature Element

While spaces in the incoming message MUST be preserved while validating the signature.

1) Remove Signature element from the SOAP:Header.

2) For each of the Reference in the Signature element re-compute the DigestValue based on the referenced URI. Make sure they match.

3) Check the SignatureValue element value by canonicalize and signing the SignedInfo element. Make sure they match.

4) Compare the public certificate that was part of the message with the certificate stored at a trusted store, including chain verification. They MUST match.

12.3. Acknowledgment Element’s References

When an Acknowledgment element is to be signed the Reference elements MUST contain the message digest of the received SOAP envelope and the message digest(s) of all payloads/attachments.

12.4. Receipt Acknowledgement Signal’s NonRepudiationInformation

The message digests for the Receipt Acknowledgement Signal only includes the payloads/attachments. The SOAP envelope will not be included.

13. Encryption

Encryption are to be done only for payloads (& attachments). There are to be no encryption of SOAP envelope.

Payload (& attachments) encryptions are to be carried out first before the complete message is signed.

When business signals such as Receipt Acknowledgement Signals are sent in a message and encryption is required for payloads then the signals need to be encrypted as well.

(Note: another view is that this value must be the lesser rather than the greater. CPPA TC has been approached for this.

(Note: another view is that this value must be the lesser rather than the greater. CPPA TC has been approached for this.

(This name could be changed due to upcoming changes in BPSS.

[image: image2.wmf]
Last saved on 2/4/2002 4:42 PM
Page 6 of 11

_993558761.doc

�

