TIBCO PROPRIETARY AND CONFIDENTIAL [image: image4.wmf]
TIBCO PROPRIETARY AND CONFIDENTIAL

Implementation Guide

Change Log

	Date
	Version
	Name
	Revision Description

	Dec 4 2001
	0.1
	M. Wang
	Creation

	Apr 19 2002
	0.2
	M. Wang
	Corrections.

Contents

41.
Introduction

2.
General Aspects of an Implementation
4
3.
Implementation Guidelines for Specification Modules
5
4.
MSH Error Messages
5
5.
TimeToLive
5
6.
PersistDuration
6
7.
Time Out Values
7
8.
Service Value
8
9.
Action Value
8
10.
When to send MSH Acknowledgement
9
11.
When to send Receipt Acknowledgement
9
12.
How to distinguish between Signals and Response in the Same Message
10
13.
How to Populate the Manifest Element
10
14.
Business Transaction Characteristics
11
15.
Signing & Verifying ebXML Messages
12
15.1.
Generating the Signature element
12
15.2.
Verifying Messages with the Signature Element
13
15.3.
Acknowledgment Element’s References
14
15.4.
Receipt Acknowledgement Signal’s NonRepudiationInformation
14
16.
Encryption
14
17.
Overview of a potential issue when using Message Ordering
14
18.
Use Cases and Suggested Restrictions on combination among Party, Endpoint and Conversation
15
18.1.
Use Case 1 and Restriction 1
15
18.2.
Use Case 2 and Restriction 2
16
18.3.
Use case 3
16
19.
Conversation Info Management
17
19.1.
Potential Problem on Sender Side
17
19.2.
Potential Problem on Receiver Side
17
19.3.
Use of unique ConversationId
18
20.
Validation of Date/Time
19

1. Introduction

This document is gathering experience and advices about ebXML Message Service implementation from several developing entities (technology vendors or users). The objective is to provide a common understanding of some practical aspects of ebXML messaging, as well as best development practices, beyond the core specification. It is our experience that a common understanding of implementation options and issues, is necessary to provide a sound foundation to interoperability. This also allows for better management of the lifecycle of deployed MSH instances (e.g. testing, logging, configuration, version upgrade, etc.), as the associated operations – upgrades, trouble shooting - often require cooperation with other implementations and with their operators.

The document, will typically provide guidance or suggestions on:

1) Recommendation on the proper use/interpretation of the specification – what options are preferable to others from an implementation / usage perspective, gray areas, etc.

2) Advices/recommendation on some general aspects of an implementation (message persistence and search, configuration, error logging, performance, connection to a Web server, transport layer…)

3) Advices/ recommendation on some practical aspects of implementing a specification module (Security, Reliability…)

4) Assessment of existing supporting technology and tools (e.g. XML parsers, support specific to a language e.g. Java, SOAP packages, security packages). What to use, not to use…

2. General Aspects of an Implementation

· MSH Configuration. (Expected content, possible format, …)

· Application interface. (Advices on what should be in an MSH interface for the application layer. How to handle received messages: callback vs. “pull”.)

· Error logging. (What to do with errors messages received / generated? Other errors / warnings that do not translate in messages. Logging format - e.g. Log4j - and examples. This is key for interoperability testing test and debugging.)

· Web Server connection. (Implementing using servlets, thread considerations, etc.)

· Message persistence. (required functions. Scalability issues. Database / file / message queue.)

· Version management. (How to facilitate the transition to a new MS version? Implement an MSH supporting two versions?)

· ID generation (message ID, conversation Ids, SOAP extension ID)

· Timing management and computations (timeouts, handling time zones)

· Others?

3. Implementation Guidelines for Specification Modules

· Message Envelope, XML parsing

· Security

· Reliability (Duplicate search, Timeout mechanism)

· Status Messages

· Ping Service

· Message Ordering (management within a conversation)

· SyncReply (transport connection management)

· Multi-Hop

· Protocol Bindings

· …

4. MSH Error Messages

MSH Error messages are defined to be one with an ErrorList element in it.

There are to be no Error messages back to the sender due to incoming Error messages.

Error message MUST not be sent reliably regardless what the channel characteristics says. When CPA is in use there should be a non-reliable delivery channel configured for Error messages.

When the ErrorList level is at least Error then it MUST be sent on its own.

5. TimeToLive

The TimeToLive element as defined in the MS Spec is meant to indicate the time by which a message should be delivered to and processed by the Responder’s MSH.

If the Responder’s MSH receives a message where TimeToLive has expired, it SHALL send a message to the Initiator MSH, reporting that the TimeToLive of the message has expired. This message SHALL be comprised of an ErrorList containing an error that has the errorCode attribute set to TimeToLiveExpired, and the severity attribute set to Error.

The TimeToLive has expired if the time of the internal clock of the Responder’s MSH is greater than the value of TimeToLive for the message. The Responder’s MSH should reject the message before anything is done with the message. This includes not logging the message for duplicate checking.

It is possible to include the TimeToLive element to appear for both Best Effort delivery as well as Reliable delivery.

When reliable messaging is in use the incoming message MUST only be checked before being persisted by the Responder’s MSH. If the Responder’s MSH crashed and came back after TimeToLive has expired but the message has already been persisted then the message MUST still be passed to the application.

Implementations should allow an input as a duration from layers above the MSH for which the message should live for from the time it is sent. For example, a message can live for 60 minutes from the time it is sent. Then the minimum TimeToLive value can be calculated as:

TimeToLive = timestamp + 60
When Reliable messaging is in effect the duration MUST allow for the retry delay. That is, the minimum TimeToLive value can be calculated as:

TimeToLive = timestamp + ((Retries + 1) * RetryInterval)

This value MUST also pass the following assertion for Reliable Messages:

TimeToLive < timestamp + PersistDuration

Implementation MAY want to have the Initiator side (Initiator’s MSH) check for the TimeToLive value for expiration before sending out messages. This is, however, not necessary if the implementation can assure the TimeToLive value is greater than or equal to the supplied duration or retry interval. If TimeToLive has expired then the Initiator’s MSH should report back to the application an errorCode of TimeToLiveExpired and a severity of Error.

When TimeToLive element does not exist then the message will never expire at the Responder’s MSH.

6. PersistDuration

The PersistDuration parameter is the minimum length of time a message sent reliably is kept in Persistent Storage by a Responder MSH.

The receiving MSH should keep a persistTill timestamp in its Persistent Storage that is calculated as:

persistTill = timestamp + PersistDuration
The timestamp here should be the value from the Timestamp element within MessageData element in the received message.

The persistTill value must be greater than the TimeToLive value inside MessageData element found in the received message. If this is not the case then an error should be reported back to the initiator MSH with an errorCode of Inconsistent and a severity of Error.

It is not necessary to expire and remove the expired messages immediately as they are expiring. The Initiator and Responder are suggested to periodically run a Persistent Storage clean-up procedure that will look for expired messages and remove them.

Initiator MSH that is trying to resend a message SHOULD check persistTill value to decide whether to resend or not. If persistTill has passed, then an error should be reported back to the application with an errorCode of DeliveryFailure and a severity of Error. It is also possible to simply let the sender to continue to retry until the retry count has been exhausted.

7. Time Out Values

There are many time out values to consider when implementing ebXML. They are:

· Time to receive a transport acknowledgment such as HTTP 200 OK message

Implementation may have a transport timeout value, e.g. transportAckWait. This value MUST be smaller than timeToAcknowledgeReceipt when syncReplyMode=none.
When syncReplyMode=mshAckOnly this value MUST be same as mshAckWait (see below).
When syncReplyMode=signalsOnly it implies timeToAcknolwedgAcceptance is either not specified or timeToAcknowledgReceipt=timeToAcknowledgAcceptance. The transport timeout then MUST be greater than timeToAcknowledgeReceipt.
When syncReplyMode=responseOnly this value MUST be the same as timeToPerform.
When syncReplyMode=signalsAndResponse it implies timeToAcknowledgReceipt=timeToPerform. If timeToAcknowledgAcceptance is specified it MUST be equal to timeToAcknowledgReceipt and timeToPerform. The transport timeout then MUST be the same as timeToPerform.
· Time to receive a MSH acknowledgement

Implementation MAY have a MSH acknowledgement timeout value, e.g. mshAckWait. This value MUST be larger than transportAckWait and smaller than timeToAcknowledgeReceipt when syncReplyMode=none.
When syncReplyMode=mshSignalsOnly this value MUST be the same as transportAckWait but smaller than timeToAcknowledgeReceipt.
When syncReplyMode=signalsOnly this value MUST be the greater(of timeToAcknowledgeReceipt and timeToAcknowledgeAcceptance.
When syncReplyMode=responseOnly or signalsAndResponse this value MUST be the same as timeToPerform.
· Time to receive receipt acknowledgment (timeToAcknowledgeReceipt)
This time MUST be smaller than timeToAcknowledgeAcceptance, if it is specified. However, it can be equal to timeToAcknolwedgReceipt if syncReplyMode is either signalsOnly or signalsAndResponse.

· Time to receive acceptance acknowledgement (timeToAcknowledgeAcceptance)

This time MUST be smaller than timeToPerform. However, this value MUST be the same as timeToPerform is syncReplyMode=signalsAndResponse.

· Time to perform a request (timeToPerform)

This time is essentially the time for the trading partner to perform the request and respond back with a response document.

timeToPerform > timeToAcknowledgeAcceptance > timeToAcknowledgeReceipt
Note that timeToAcknowledgeAcceptance may not be always specified. Also note that these three values are the same when syncReplyMode=signalsAndResponse.

All references to these timeout values are relative to the Timestamp value in the MessageData element in the message.

NOTE: It is possible to implement a solution based on the just timeToAcknowledgeReceipt, timeToAcknowledgeAcceptance and timeToPerform without introducing timeout such as MSH Acknowledgement timeout (mshAckWait) and transport timeout (transportAckWait).
8. Service Value

Sevice value will be based on the agreed CPA. This is of the form:

urn:<agency>:<business-process-name>$<major-version>.<minor-version>

For example, urn:rosettanet.org:3A4$2.0 is a valid service value.

Service value used for Receipt Acknowledgement Signal, Acceptance Acknowledgement Signal, and Exception Signal, when they are sent on their own, should be the same as the requesting or responding message.

When a message received has errors then a message contains an ErrorList MUST be returned. If severity is Error then the message with ErrorList element must be sent on its own. When ErrorList is returned on its own then the Service value MUST be set as urn:oasis:names:tc:ebxml-msg:service. If the original message contains AckRequested element then an Acknowledgment element MAY or MAY not be in the ErrorList message. When the Acknowledgment element for the same message that ErrorList is reporting is not present in the same message then the initiating side will continue to send the same error message to the responder. To stop this it is recommended that Acknowledgement element is included with the ErrorList element in the same message.

9. Action Value

Action value will be based on the agreed CPA. This will be the business transaction action name.

Action value used for Receipt Acknowledgement Signal when sent on its own MUST be ReceiptAcknowledgement.

When an Acceptance Acknowledgement Signal is sent on its own then the Action value MUST be AcceptanceAcknowledgement.
When an Exception Signal is sent on its own then the Action value MUST be Exception
When both Receipt Acknowledgement Signal and Acceptance Acknowledgement Signal are present in the same message then the Action value MUST be AcceptanceAcknowledgement.
When a message received has errors then a message contains an ErrorList MUST be returned with the Action value set as MessageError if the Error message is sent on its own. If the original message contains AckRequested element then an Acknowledgment element MAY or MAY not be in the ErrorList message. When the Acknowledgment element for the same message that ErrorList is reporting is not present in the same message then the initiating side will continue to send the same error message to the responder. To stop this it is recommended that Acknowledgement element is included with the ErrorList element in the same message.

10. When to send MSH Acknowledgement

MSH Acknowledgement message SHOULD be sent after incoming message is checked against the following:

· Incoming message contains AckRequested element and confirms with configuration.

· Schema validation of SOAP envelope against XSDs.

· Validate Trading Partner identity. Both From/Tos SHOULD be checked. For security reasons if the identities in the incoming message is not found in host system then the message SHOULD be dropped.

11. When to send Receipt Acknowledgement

Receipt Acknowledgement message SHOULD be sent after incoming message is checked against the following:

· Schema validation of SOAP envelope against XSDs.

· Validate Trading Partner identity. Both From/Tos SHOULD be checked. For security reasons if the identities in the incoming message is not found in host system then the message SHOULD be dropped.

· Configuration for incoming message requires a Receipt Acknowledgement message.

· Schema validation of payloads against XSDs if applicable.

· Service and Action values of incoming message are valid and can be found in configuration.

· Message is authenticated.

· Message is authorized.

· Message can be unencrypted successfully.

More elaboration should be given wrt syncReplyMode.

12. How to distinguish between Signals and Response in the Same Message

It is possible for business signals and responses to be all present in the payload section of the same message. Some means must be used to distinguish they are independent payloads as opposed to one being the attachment of the other. When a CPA is in place then the CPA packaging configuration must be followed. When CPA is not in-use then It is suggested that the xlink:role attribute of Manifest/Reference be populated with adequate information to identify each payload. See Section 10 “How to Populate the Manifest Element” for details.

13. How to Populate the Manifest Element

· Value of xlink:href MUST be populated and SHOULD be of the form cid:<content-id>. If not then it MUST be an URI and MUST be resolvable.

· Value of xlink:role SHOULD be populated and when CPA is in-use then it MUST be the same value as CPA’s CollaborationProtocolAgreement/SimplePart/xlink:role. When xlink:role is populated the value MUST be <processSpecificationHREF>#<businessDocumentName> where:

processSpecificationHREF is CPA’s CollaborationProtocolAgreement/PartyInfo/ CollaborationRole/ProcessSpecification/xlink:href. E.g. “http://www.rosettanet.org/processes/3A4.xml”.

businessDocumentName is BPSS’s ProcessSpecification/BusinessDocument/name. E.g. “PuchaseOrderRequest”.

When CPA is not in-use then parties MUST agree on this value. For example,

Receipt Acknowledgement Signal MUST use the value of http://www.ebxml.org/BusinessProcess/ReceiptAcknowledgment.

Acceptance Acknowledgement Signal MUST use the value of http://www.ebxml.org/BusinessProcess/AcceptanceAcknowledgment.

Exception Signal MUST use the value of http://www.ebxml.org/BusinessProcess/Exception.

Payloads (BusinessDocument and Attachments) other than business signals SHOULD use agreed process specification’s reference such as that used in CPA (see above).

When xlink:role is not available nothing can be deduced of the nature of the payload. This is not desirable as it is possible that both Acceptance Acknowledgement Signal and actual business documents are in the same message. Therefore, it is highly recommended that at least Business Signals carry the above defined xlink:role values.

· Schema element of Manifest/Reference SHOULD have its location attribute populated.

14. Business Transaction Characteristics

The following table presents the equivalent properties that are defined in CPP/A and BPSS.

	CPP/A
	BPSS
	Actions

	isNonRepudiationRequired
	isNonRepudiationRequired
	When true all payloads and ebxml envelope need to be signed and logged for NR purpose.

	isNonRepudiationReceiptRequired
	isNonRepudiationReceiptRequired
	When true the message digests of the original incoming message (the message being acknowledged), including separate message parts, need to be stored in ReceiptAcknowledgement element’s NonRepudiationInformation element. Then the message needs to be signed and logged for NR purpose.

	isAuthenticated
	isAuthenticated
	When ‘none’ incoming message is not checked for valid signature.

When ‘transient’ sender identity is checked via the use of SSL. No logging required for NR purpose.

When ‘persistent’ sender identity is checked using digital signature mechanism. Both the payload(s) and envelope are signed. No logging required for NR purpose. SSL check is optional depending whether the transport used supports SSL.

When ‘persistent-and-transient’ sender identity is checked using digital signature mechanism. Both the payload(s) and envelope are signed. SSL capable transport is also used. No logging required for NR purpose.

	isConfidential
	isConfidential
	When ‘none’ payload(s) are not encrypted.

When ‘transient’ payload(s) (as well as SOAP envelope) are encrypted via the use of secure transport such as SSL. There is no signing.

When ‘persistent’ payload(s) are encrypted. SSL is not relevant. There is no encryption for envelope and no signing.

When ‘transisent-and-persistent’ payload(s) are encrypted. The encrypted payload(s) and SOAP envelope are further encrypted by SSL.

	isAuthorizationRequired
	isAuthorizationRequired
	

	isTamperProof
	isTamperProof
	See isAuthenticated.

	
	isGuaranteedDeliveryRequired
	This is not the same as reliable messaging.

	isSecureTransportRequired
	
	When ‘true’ trasport must be capable of supporting protocols such as SSL or IPSEC.

	timeToAcknowledgeReceipt
	timeToAcknowledgeReceipt
	

	timeToAcknowledgeAcceptance
	timeToAcknowledgeAcceptance
	

	timeToPerform
	timeToPerform
	Amount of time that a response is supposed to be returned.

15. Signing & Verifying ebXML Messages

15.1. Generating the Signature element

1) Build the SOAP:Header without the ds:Signature element.

2) Build the SOAP:Body with Manifest if you have any payloads. (Assuming content-ids required by the Manifest are either pre-assigned or the MIME is built already.)

3) Build the SOAP envelope document based on the SOAP:Header and SOAP:Body that you built earlier in steps 1 and 2.

4) If required compute message digest on the SOAP envelope document generated in step 3. The output should be something like the following. Note that some output needs to be dictated by the input. These are:

URI value (in this case, it is empty string)

There MUST be a single Transforms element which contains three Transform elements.

First Transform must have an Algorithm value of: http://www.w3.org/2000/09/xmldsig#enveloped-signature
Second Transform MUST have an Algorithm value as shown below.

Third Transform element MUST have an Algorithm value of: http://www.w3.org/TR/2001/REC-xml-c14n-20010315
<Reference URI="">

<Transforms>

<Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

<Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">

<XPath> not(ancestor-or-self::*[@SOAP:actor="urn:oasis:names:tc:ebxml-msg:service:nextMSH"] | ancestor-or-self::*[@SOAP:actor="http://schemas.xmlsoap.org/soap/actor/next"])

</XPath>

</Transform>

<Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue>...</ds:DigestValue>

</Reference>

5) Compute message digest(s) on the payload(s) that require signature. Note that some output needs to be dictated by the input. These are:

URI value (in this case, it is ‘cid:123456789’. It is essentially the same value as used in the xlink:href attribute of Manifest/Referece element.)

<Reference URI="cid:123456789">

 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>345x3rvEPO0vKtMup4NbeVu8nk=</DigestValue>

</Reference>

6) Repeat step 5 if there are multiple payloads that require to be included in the signature.

7) Create CanonicalizationMethod element. Set attribute Algorithm to

http://www.w3.org/TR/2001/REC-xml-c14n-20010315
8) Create SignatureMethod element. Set attribute Algorithm to

http://www.w3.org/2000/09/xmldsig#dsa-sha1
9) Create SignedInfo element based on data generated in steps 4-8.

10) Canonicalize SignedInfo generated in step 9

11) Create SignatureValue element with value based signature generated from the canonicalized SignedInfo in step 10.

12) Create Signature element based on SignedInfo from step 9 and SigantureValue from step 11.

13) Include Signature element generated in step 12 in the SOAP:Header.

Note that white spaces contained in the SOAP envelope MUST be preserved between time of signing and time of dispatching to trading partners.

15.2. Verifying Messages with the Signature Element

While spaces in the incoming message MUST be preserved while validating the signature.

1) Remove Signature element from the SOAP:Header.

2) For each of the Reference in the Signature element re-compute the DigestValue based on the referenced URI. Make sure they match.

3) Check the SignatureValue element value by canonicalize and signing the SignedInfo element. Make sure they match.

4) Compare the public certificate that was part of the message with the certificate stored at a trusted store, including chain verification. They MUST match.

15.3. Acknowledgment Element’s References

When an Acknowledgment element is to be signed the Reference elements MUST contain the message digest of the received SOAP envelope and the message digest(s) of all payloads/attachments.

15.4. Receipt Acknowledgement Signal’s NonRepudiationInformation

The message digests for the Receipt Acknowledgement Signal only includes the payloads/attachments. The SOAP envelope will not be included.

16. Encryption

Encryption is to be done only for payloads (& attachments). There is to be no encryption of SOAP envelope.

Payload (& attachments) encryptions is to be carried out first before the complete message is signed.

When CPA is in use the delivery channel properties would dictate whether a payload is to be encrypted or not. This also applies to the business signals such as Receipt Acknowledgment Signal, Acceptance Acknowledgment Signal, and Exception Signal.

17. Overview of a potential issue when using Message Ordering

Using MSH in a highly scalable architecture may require, on the same host, the deployment of several MSH instances, each associated with a specific URL endpoint on the Web server side, (and possibly configured differently, depending on the application services they each serves.) It is then possible that the same PartyId (either “from” or “to” in a message) will be associated with several MSH/endpoints. As the notion of Conversation is only required (in the spec) to be between “from” and “to” business parties, this means that nothing – in the specification - prevents the same conversation from involving more than one MSH on either side.

This may cause a problem when using the MessageOrder module. Indeed, message ordering relies on a sequence number that is generated for each Conversation (i.e. there is a specific sequence of numbers that is generated for each Conversation, each number being unique within this conversation). We have then the following situation:

· The conversation ID is defined by the Party (application layer), and is between two parties: <From PartyId, To PartyId>, regardless of how many MSHs are involved on each side.

· The sequence numbers generated for a particular conversation, are in fact intended for a single destination MSH, and are checked and reordered by this MSH. The sequence of ordered messages is then specific to a single pair: <from_MSH, to_MSH>

However, message ordering is a contract between MSH and Application (Party): it guarantees that all messages for a conversation will be delivered in order to the receiving party. In order to guarantee this with a multi-MSH (or multi endpoint) configurations, the following restrictions are suggested.

18. Use Cases and Suggested Restrictions on combination among Party, Endpoint and Conversation
18.1. Use Case 1 and Restriction 1

The current CPPA and the Message Service specification make it possible to have the following configuration, where the To Party can have several Services, and each Service can have a specific HTTP Endpoint (associated with an MSH instance). The following restriction below is actually a recommendation for the sending Party, on how to generate a ConversationId, as it is the party responsibility (not the MSH) to generate these.

[image: image1.wmf]From

Party

Sending

MSH A

Receiving

MSH B

Receiving

MSH C

To

Party

Service B

Service C

Endpoint C

for Service C

Endpoint B

for Service B

path A-C

path A-B

In this configuration, if MSH A sends messages that belong to the same conversation to both MSH B and MSH C, two problems arise: (p1) the message sequences received by both MSH (B and C) will not be contiguous, so each receiving MSH will assume broken order, and (p2) two receiving MSHs (B and C) cannot cooperate to pass received messages in the right order to the “To Party”.

Restriction 1: Ordered conversations, in addition to be supported between two parties, should also be specific to a single pair of MSHs serving these parties. So in Use Case 1 above, the same ConversationId should never be used in both path A-B and path A-C, when ordering is required, and ordering should only be required “per service”, not over the full set of messages received by the To Party.

MSH operator recommendation:

Because the Conversation ID is an application concept, the CPA is the right place to check for potentially incompatible combination of (ordering requirement, conversation definitions, multiple endpoint MSH URLs). In case destination MSHs are clearly associated with distinct application services, the sending application should be able to know this from the CPA, and manage its conversation Ids accordingly, e.g. appending a differentiator that depends on the service invoked. (Note: that will only solve problem p1, not p2. So this will only apply when the ordering is important “per service”, not for all messages sent to the To Party.)

MSH implementers recommendation:

We suggest that an MSH implementation always checks that is sequence numbers are targeted to the same destination MSH (URL), not just to the same Party. That is, when the first message of a conversation is sent, the destination URL should be associated with the sequence counter for this conversation. It is called the “target URL” for this conversation. For each subsequent message, the actual destination URL is checked against the target URL, and should be the same.

18.2. Use Case 2 and Restriction 2
The current CPPA and the Message Service specification do not prohibit the following configuration.

[image: image2.wmf]From

Party

Sending

MSH A

Receiving

MSH B

Receiving

MSH D

To

Party

Service B

Service D

Endpoint D

for Service D

Endpoint B

for Service B

path C-D

path A-B

Sending

MSH C

In this configuration, if MSH A and MSH C both send messages that belong to the same conversation, they will be able each to generate an ordered sequence respectively to MSH B and MSH D. But the same problem (p2) as for Use Case 1 remains: two receiving MSHs (B and D) cannot cooperate to pass the received messages in the right order to the “To Party”.

Restriction 2: In this configuration, ordering can be controlled if the sending Party does NOT use more than one sending MSH within a conversation. The path A-B and the path C-D should not be involved in the same conversation. This can be ensured if (1) the sending application controls its sending MSHs (and the associated conversations) based on which services they access on the receiver side, (2) the ordering requirement on the receiver side is “per service”.

18.3. Use case 3
This is a combination of Use Case 1 and 2 (more than one MSH on the sender party side, more than one MSH on the receiver party side, and possibly crossing paths. In that case, both Restriction 1 and 2 apply.

19. Conversation Info Management

19.1. Potential Problem on Sender Side

Since Sending MSH has a retry mechanism for error recovery, the following scenario might occur in Conversation management:

1) The From Party specifies the start of a Conversation and asks the Sending MSH to send a message within the Conversation.

2) The Sending MSH tries to send the message, but an error occurs in the delivery sequence. So the Sending MSH executes the retry sequence.

3) From Party specifies the end of the Conversation.

4) From Party specifies the start of a new Conversation with same ConversationId, and asks the Sending MSH to send a message within this Conversation.

5) However, the Sending MSH cannot accept the From Party’s request (4). Because the previous Conversation is not actually terminated yet. It means that a SequenceNumber series is still used in the retry sequence in the Conversation. However the From Party’s request (4) means that SeqeunceNumber should be reset soon.

Here is a solution to the problem:
MSH implementor recommendation:

When From Party specifies the end of a Conversation to the Sending MSH, the Sending MSH prohibits the From Party from re-using the same ConversationId of the Conversation for a period. If the From Party tries to start the Conversation again with same ConversationId in the period, the Sending MSH raises an exception. The period is specified by configuration as following:

Prohibition Period = timeToLive + buffer period. (specified by configuration)

At least, the Prohibition Period should be longer than [RetryInterval * Retries].

19.2. Potential Problem on Receiver Side

In the current ebXML Message Service specification, the Sending MSH has no way to propagate the end of Conversation to the Receiving MSH. Thus the Receiving MSH should decide by itself when a Conversation’s information (sequence number counter) should be removed from its persistent storage. Here is a way to ensure automatic garbage collection of the Conversation data.
MSH implementor recommendation:

· After receiving the last message of the Conversation in order (without knowing this is the last one), the Receiving MSH holds the Conversation’s information (ConversationId, SeqeunceNumber, etc.) in persistent storage for a period of time. The period is specified by configuration as following:

Prohibition Period = timeToLive + buffer period (specified by configuration)

· After the period, the Receiving MSH removes the Conversation’s information from the persistent storage. This can be done by a periodical look-up on the entire conversation registry, for checking which ones have expired.

· After expiration of a conversation, if the Receiving MSH receives a message with this Conversation ID and the SequenceNumber of the message is “0”, the Receiving MSH accepts the message. If the SequenceNumber of the message is not “0”, the Receiving MSH does not accept the message and returns an error message.
19.3. Use of unique ConversationId
However even if implementations adopt the solutions above, following error can’t be prevented.

[image: image3.wmf]

B

A

A

error

Sending MSH

timeToLive

buffer

delay arrival

Receiving MSH

1) Sending MSH sends Message A with conversationId:AAAAA and sequenceNumber:0.

2) The Message A has reached Receiving MSH with much delay.

3) Since Prohibition Period has passed, the Sending MSH may start a new conversation with same conversationId:AAAAA and may send new Message B with the conversationId.

4) The Message B has reached the Receiving MSH at once.

5) The Receiving MSH detects an error in the Message B. Because the Message B has same conversationId and same sequenceNumber as Message A.

	messageId
	conversation Id
	sequence Number

	A
	AAAAAA
	0

	B
	AAAAAA
	0

The situation described above can be prevented if AckRequired is used. Because the Sending MSH can wait to send the Message B until Acknowledgement Message for Message A returns to the Sending MSH in the situation. As the MessageOrder module must only be used with Reliable Messaging (“exactly-once” semantics), then an Ack message is always expected.

Here is a solution to the problem:

MSH operator recommendation:

Each conversation must have globally unique ConversationId. Same ConversationId may not be used for different conversation. Following format is a recommended way to generate unique ConversationId:
ConversationId = business specific string + From PartyId + To PartyId + Endpoint URL + UTC date + sequence number within one second

(the “sequence number within one second “ is needed to generate two or more different ConversationIds in one second.)

20. Validation of Date/Time

All date manipulations should take into account the fact that messages are likely to cross different time zones, and therefore all timestamps should be expressed NOT in local time, but adjusted in UTC time (see spec).

Before comparing the value of a timestamp in a message, with the local time, the local time should then be converted in UTC time.

So the sentence:

"...The TimeToLive has expired if the time of the internal clock of the Responder’s MSH is greater than the value of TimeToLive for the message. "

should be replaced with:

"...The TimeToLive has expired if the time of the internal clock - adjusted as UTC time - of the Responder’s MSH is greater than the value of TimeToLive for the message. "

(Note: another view is that this value must be the lesser rather than the greater. CPPA TC has been approached for this.

[image: image5.wmf]
Last saved on 2/4/2002 4:42 PM
Page 3 of 19

_1075210540.doc

From�Party

Sending�MSH A

Receiving�MSH B

Receiving�MSH D

To�Party

Service B

Service D

Endpoint D�for Service D

Endpoint B�for Service B

path C-D

path A-B

Sending�MSH C

_1080743861.doc

error

A

A

B

Sending MSH

timeToLive

buffer

delay arrival

Receiving MSH

_1075202640.doc

From�Party

Sending�MSH A

Receiving�MSH B

Receiving�MSH C

To�Party

Service B

Service C

Endpoint C�for Service C

Endpoint B�for Service B

path A-C

path A-B

_993558761.doc

�

