ebXML IIC – Barcelona Face to Face Meeting Notes

May 21, 2002

Attendees:

Matthew MacKenzie, XML Global

Michael Kass, NIST

Steve Yung, Sun Microsystems

Michael Wang, Tibco

Eric Van Lydegraf, Kinzan

Prakash Sinha, IONA (attended only informal meetings)

Jacques Durand, Fujitsu

Note: informal meetings took place also on May 20, May 23. This minutes document also consolidates some of the output of these.

Agenda for May 21 (9am-12)

1. Milestones / Deliverables

2. Review Conformance Test Suite

· 2 Test Cases

· XML Coding

3. Test Architecture

· Test Service

· Overall Test Procedures

Milestones and Deliverables

According to OASIS procedures, we can submit specs on a quarterly basis, which will be June 1st and September 1st of 2002 (although this constraint is currently being revised). We also need to work with ebXML MS team before we can submit the spec.

Overall objective:

· Submit by September 1st to OASIS (or earlier if appropriate), our deliverable for MS Conformance test suite, and MS Interoperability test suite.

· The deliverable will actually consist of three documents / specifications:

(1) An ebXML Test Framework V1.0, which will describe the test architecture and its functions, that is recommended to run MS test suites.

(2) An MS Conformance test suite, that specifies the test requirements and test cases for MS conformance at core level, and more advanced levels. These test cases will be described using material specified in the Test Framework document.

(3) An MS Interoperability test suite, that specifies the test requirements and test cases for some MS interoperability profiles, based on current business user requirements. These test cases will be described using material specified in the Test Framework document.

Intermediate milestones:

· June 15, 2002: A subset of the MS Conformance test suite is submitted to IIC TC for review and vote. The subset is the one we plan to submit to the MS TC. It will consist of: (1) A plain English description of each test requirement items for MS, (2) A plain English description of the test cases associated with these test requirements (test steps, operations), at least for MS core functions. This document subset is referred to as “MS conformance outline”.

· July 1st, 2002: MS conformance outline is voted by IIC TC (expected). It is then submitted to the MS TC. Objective: MS TC is expected to verify that (1) the test requirements are complete and correct, and cover the MS conformance clause, (2) that the test cases description (for MS core) are correctly addressing the test requirements they relate to, i.e. each test case properly covers all or part of its associated test requirement, and nothing else. We do NOT guarantee that a successful execution/verification of these test cases demonstrates that the implementation fully conforms to the associated test requirements (and specification requirements), as (a) for practical reasons test cases may not cover/generate all situations or combinations of features, and (b) these test cases are designed to be automated on the test framework, which may restrict the type of verification that can be done.

· July 8th, 2002: Complete deliverable (three documents) submitted to IIC TC for review.

· July 23rd, 2002: TC vote to approve the deliverables as TC specifications. If revisions are necessary, the internal update/review process may continue throughout August.

Conformance Test Suite

For September deliverable, we will cover most of the MS specification with our test requirements, and associated English description of test cases (which describe the test steps and operations on the Test Framework).

However, when it comes to the formal definition of Test Cases (using XML mark-up and message material specified in the Test Framework document) we will cover only MS core features, [plus some advanced features that are of prime interest to users, like reliability / ordering ?].

Conformance requirements for MS core features are divided into three sets (or sub-levels):

· Message structure / consistency

· MIME parts

· SOAP envelop

· EbXML header extensions (schema)

· Error handling

· Bad message

· Unsupported features (i.e. features not implemented by MSH)*

· Security

· Signature (structure only)*

· Acknowledgement signed

*Indicates simple testing only, the Interop group is responsible for more complete testing.

(See http://xsun.sdct.itl.nist.gov/~mkass/ebXML/ebXML%20Test%20Suite%20Design.htm for more information)

Follow up work will be Test Requirements and Test Suite/Cases for rest of MS spec, plus framework for testing.

Additional comments:

· For each Test Requirement (in XML), there is a corresponding (1 to 1 relationship) Test Case. For each Test Case, there is 1 to many Test Steps.

· A Test Case consists of a series of Test Steps, each consisting of an ebXML operation, e.g. a message operation like "send" or "receive".

· The message data (primarily header) used in Test Steps is described using message "templates". Templates for ebXML MessageHeaders, ErrorLists, Acknowledgements, Manifests and other message components are modified using an XPath-like syntax. Modifications are made to discreet element or attribute content values before messages are sent.

· For received messages, an XPath syntax is used to evaluate discreet incoming message content against set values. Pass or fail of a Test Step is based upon whether or not each XPath expression evaluates to either a "true" or "false" value.

· Failure of a “receive” Test Step results is failure of the Test Case. [Failure of a Test Case means failure of either a Condition, or Assertion.]

· Following the hierarchy upward, failure of a "REQUIRED" Test condition that appears in a test step, means failure of the associated test case, and of associated Test Requirement. Failure of a "RECOMMENDED" or "OPTIONAL" Test condition does not mean failure of the Semantic Requirement, only that that Semantic Requirement is "UNTESTED". An implementation can still be considered to "pass" a Test Requirement, even if there are "UNTESTED" Semantic Requirements, assuming that those Semantic Requirements are "RECOMMENDED" or "OPTIONAL"

Test Architecture

Design Principles

We agreed on the following design principles for the test architecture (called Test Framework):

1. We assume the test harness for MS conformance is made of :

(a) a Test Driver, which will process and drive all test cases.

(b) a Test Service, which will react to invocations from candidate MSH.

2. Part of a test case execution requires CPA-like configuration of the MSH.

Such configuration sets should be provided prior to running the tests, along

with CPAId values. The candidate MSH team will provide code to interpret

such configuration sets, and configure their MSH with it.

Each test case will reference/specify the CPA-like data that should be used.

3. The conformance Test Suite(s) can be run entirely by controlling the

MSH from the Test Driver side (no test driving needed on MSH application side).

4. on the "application" side of MSH, the Testing Service will have

a limited number of pre-defined Actions, in the MS sense of Service/Action as specified in message headers. These Actions will/should be sufficient to run all MS conformance test cases. They are generic and not specific to a particular test case: we should not have to create new actions when creating new test cases. Examples of such actions are:

(a) a Responder (or Reflector) action: on invocation, generate a response to a received message, by using same message material, with a minimal header changes: swap to/from parties, set RefToMsgId,(keep same conversation Id, same CPAid). The payload is same as in received message (same attachment(s)).

(b) an Initiator action: on invocation, generate a new message, by using

message material (payload and header) that is contained in the payload of received message. So the header of the new message can be anything that is specified. For example, used to generate a "first" message in a conversation. Note: MSH-controlled header attributes will not be determined by the invoking message (messageID, timestamps...)

(c) an Error action: used for MSH notification of (some) errors to the application. These actions may generate a trace.

(d) a Mute (or Dummy) action: on invocation, may generate a pre-defined notice message back. May generate (optionally) local trace.

5. The test verification (or validation) of each test case can be done at run-time, using test case input/output in-memory data (as opposed to analyzing a trace or log a-posteriori).

6. Also, the test verification can be done by using test case input/output observable on Test Driver side only. (we should not need to execute test verifications inside the Test Service, or if some Action do, they will report to the Test Driver via messages).

7. Correlation between message(s) sent and message(s) received is (by default) based on MessageID / RefToMesgID. Might correlate on conversation ID on demand (in case manipulation of RefToMesgID required.)

Example of “English” description of Test Cases, using above architecture.

r1.1.1: (SOAP 1.1 conformance)

step 1: test driver sends sample mesg to Responder action.

step 2: Responder action sends response mesg (with same attachment(s)).

step 3: test driver receives response mesg (that correlates with step 1)

step 4: test driver verifies test condition on response mesg.

failure reported: if (step 3 not executed within timeout) or (step 4 condition fails)

r1.1.3: (Message package content: "text/xml" type attribute in COntent-Type MIME)

step 1: test driver sends sample mesg to Responder action.

step 2: Responder action sends response mesg.

step 3: test driver receives response mesg (that correlates with step 1)

step 4: test driver verifies test condition on response mesg.

failure reported: if (step 3 not executed within timeout) or (step 4 condition fails)

r1.2.5: (Error in PartyId content)

step 1: test driver sends "bad" mesg to Mute action.

step 2: MSH sends back error mesg.

step 3: test driver receives response mesg (that correlates with step 1)

step 4: test driver verifies content error mesg.

failure reported: if (step 3 not executed within timeout) or (step 4 condition fails)

Test Architecture: Scope of IIC Specification

This was an informal discussion. Some of the points from the discussions are:

· The IIC will not define the implementation details of the various drivers for testing, but it will define the functionality of the drivers.

· When possible, the MS Interoperability team (ITTF) will use the work already done by the Conformance team. The group should first draft examples using the same framework (e.g. definition of Test Requirements and Test Suites/Cases).

· It looks like the Interoperability team will have very similar test architecture as the Conformance Group.

