ebXML MS v2.0 Test Case Implementation Issues

<Jacques> When several test cases seem to be implementable in an aggregated way (e.g. using “global” validation mostly based on schema analysis): it is still important to distinguish each individual test assertion, and be able to detect which fails and which passes. I am not sure that the schema validation used in test case #1 can really cover the semantics of other envelope-related test cases (depends how the schema is written…).

Maybe it could cover some, but I am not so much concerned by redundancy of tests, here: it is OK if there is some repeat of “verifications”, if that helps to report more precisely where the error occurred.
However, aggregation of test cases could be useful if it avoids useless repetitions of message sending / receiving: in case several of our Test Cases use the same sequence of test steps, and only differ by their “verification” condition at the end (and use also same CPA…), we could consider aggregating such test cases, while still keep their verification conditions separate:
For example, test #1, #19, #20, #21, #23… could be aggregated in a Test Case that would look like:
(note each step specifies what happens in case of (1) success, (2) failure.)

Step 1 (PutMessage) send message to Reflector action.
Success: continue, (i.e. do next step)
Failure: fatalPrecondition.system (#1, #19, #20…) (i.e. all tests #1, #19, #20… end with precondition failure)
Step 2 (GetMessage) receive message.
Success: continue,
Failure: fatalPrecondition.system (#1, #19, #20…)
Step 3 (Condition) Verifies Test #1 (general schema validation on received msg).
Success: pass(#1) + continue (i.e. continue to step 4)
Failure: fatalTest(#1) + continue
Step 4 (Condition) Verifies Test #19 (ebXML namespaces).
Success: pass(#19) + continue
Failure: fatalTest(#19) + continue
Step 5 (Condition) Verifies Test #20 (SOAP namespaces).
Success: pass (#20) + continue,
Failure: fatalTest(#20) + continue
Etc…

So here several test conditions are performed on the same received message, implementing different test requirements (in the same aggregation of test cases). All the tests are still logically separate, only their first steps are merged.
If we allow to do that, then we must add more info on the outcome of each step: (e.g. ID of the test case it relates to, and what to do in case of pass/fail.
	TEST CASE ID
	DESCRIPTION
	IMPLEMENTATION ISSUE

	
	
	

	urn:testcase:id:1
	All generated ebXML messages must validate
	No one test for this requirement, must “globally” validate all messages.

	urn:testcase:id:13
	MIME charset is same as actual SOAP message character set
	Is this realistically testable?

	urn:testcase:id:17
	Version number present in prolog
	Is this accessible to an XML parser? If so then we can test it, else must run regexp or other text processor.

	urn:testcase:id:19
	ebXML extension elements properly namespace qualified
	This test can be addressed through global ‘validation’.

	urn:testcase:id:20
	SOAP Envelope properly elements namespace qualified
	This test can be addressed through global ‘validation’.

	urn:testcase:id:21
	SOAP Header and Body attributes contain correct schemaLocation
	This test can be addressed through global ‘validation’.

	urn:testcase:id:22
	SOAP Header element contains proper namespace
	This test can be addressed through global ‘validation’.

	urn:testcase:id:23
	SOAP Body element contains proper namespace
	This test can be addressed through global ‘validation’.

	urn:testcase:id:25
	Foreign namespace qualified elements are not qualified with ebXML namespace
	This test can be addressed through global ‘validation’.

	urn:testcase:id:26
	Ignore “wildcard” elements
	How do we test that they are ‘ignored’?

	urn:testcase:id:29
	MustUnderstand attribute set to correct namespace
	This test can be addressed through global ‘validation’.

	urn:testcase:id:31
	type attribute is unique within PartyId list –
	How to code in XPath syntax?

	urn:testcase:id:33
	If type is present, it is a valid URI –
	This test can be addressed through global ‘validation’.

	urn:testcase:id:34
	If type is not present, PartyId is a valid URI –
	This test can be addressed through global ‘validation’.

	urn:testcase:id:39
	If type is not present, Service is a valid URI –
	This test can be addressed through global ‘validation’.

	urn:testcase:id:45
	TimeToLive conforms to schema DateTime format
	This test can be addressed through global ‘validation’.

	urn:testcase:id:46
	2 Descriptions must have different values –
	How to code in XPath syntax?

	urn:testcase:id:47
	No payload data is present in SOAP body
	How to test this?

	urn:testcase:id:52
	Process downstream SOAP faults
	How to test this in our framework?

	urn:testcase:id:53
	Generate compliant SOAP faults
	This test can be addressed through global ‘validation’.

	urn:testcase:id:54
	Do not generate warnings as SOAP faults
	Must identify all ‘Warning’ scenarios and test each one

	urn:testcase:id:55
	Report data communication errors using protocol methods
	How to test this?

	urn:testcase:id:60
	Generate correct severity values
	This test can be addressed through global ‘validation’.

	urn:testcase:id:61
	Generate correct XPointer for Error
	Must generate specific error conditions to test this

	urn:testcase:id:62
	Generate correct CID for erroneous payload MIME part
	This sounds like an “Application Layer” test.. may be untestable

	urn:testcase:id:63
	ShortDescription does not appear in Error Elements
	How to test this in a meaningful way?

	urn:testcase:id:67
	If reporting location unknown, log Error -
	Must have access to error log to do perform this test

	urn:testcase:id:68
	Generate correct values for ErrorList Service and Action in independent message –
	How to generate an ErrorList as an “independent message?

	urn:testcase:id:78
	Process reliably sent message after no Ack and system failure
	How to auto-simulate system failure/interrupt?

	urn:testcase:id:79
	Persist reliably sent message after interrupt
	How to auto-simulate system failure/interrupt?

	urn:testcase:id:80
	Process reliably received message after interrupt
	How to auto-simulate system failure/interrupt?

	urn:testcase:id:81
	Persist reliably received message after no Ack and system failure
	How to auto-simulate system failure/interrupt?

	urn:testcase:id:82
	Persist reliably received message after interrupt
	How to auto-simulate system failure/interrupt?

	urn:testcase:id:83
	Process reliably received message after system failure
	How to auto-simulate system failure/interrupt?

	urn:testcase:id:84
	Process reliably sent message after no Ack and system failure
	How to auto-simulate system failure/interrupt?

	urn:testcase:id:85
	Persist complete reliably received message
	Access to persistent store?

	urn:testcase:id:86
	Persist MessageId
	Access to persistent store?

	urn:testcase:id:87
	Persist complete reliably received message until processing
	Access to persistent store?

	urn:testcase:id:88
	Persist message receipt time
	Access to persistent store?

	urn:testcase:id:89
	Persist complete response message
	Access to persistent store?

	
	
	

	urn:testcase:id:90
	Target AckRequested to NextMSH or ToParty
	How to meaningfully evaluate this “Application Layer” test.

mm1: What several of these points to is the need for a test library that ‘bounds’ the testability. Needs include:

· Persistent store

· Scripts to disruption on service in order to simulate a system failure (disruption of network connection – what about killing a system process using a script trigger by some type of event?)
· Boundaries to simulate global validation (validation within the scope of the controlled set of abstract test cases)
· Scripts to trigger an error up to a protocol method when a data communication error occurs
· Creation of warning scenarios

· Error list generation and access

We’ll have to discuss if the library items are pre-requisites to test, and I believe they will be. Could they be bounded by the test profiles, with a basic set that can be expanded upon as the test framework matures and other industries adopt its use. Sounds like we have more registry objects to classify and make available for use.
<Jacques> Monica: these sound to me like for a next version of test material. For the sake of getting the first version of test material / test suite out soon, I would be reluctant considering adding new material now… (but it is only a-priori reluctance… if we can quickly get something convincing here, why not). In a first pass, I’d rather see a low-key approach, e.g. some precise English definition where our current test scripting cannot cover well.

Access to persistent store is really implementation-specific, so it is tricky to require MSHs to provide us with some way (e.g. API) to validate this (would require yet another impl-specific code to implement one more test interface). But I think, in the case of persistence, a black box approach still works: msge resending combined with shutdown-restart will demonstrate the existence of a store. So we have to describe shutdown-restart … (that seems easier! Or we could create yet another operation “Shutdown” with the nbr of minutes as op parameter… Same for “Restart”, all to be executed manually until we provide a “script” for this.)
