[image: image19.png]UN/CEFACT
DRAFT

United Nations Centre for Trade Facilitation and Electronic Business

[image: image20.wmf] UN/CEFACT – ebXML Implementation Guide
Very Draft Working Draft

Revision 0.12
17 October 2002

1 Table of Contents

21
Table of Contents

42
Status of this Document

53
TMG - ebXML Implementation Guide Project Team Participants

53.1
Disclaimer

53.2
Contact Information

63.3
Introduction

63.3.1
Summary of Contents of Document

63.3.2
Audience

63.3.3
Related Documents

74
Objectives

74.1
Goals of the ebXML Implementation Guide

74.1.1
Requirements

74.1.2
Caveats and Assumptions

85
Overview

96
Static View

96.1
Introduction

106.2
Business Application

106.3
Business Objects

106.4
API 2

116.5
Business Collaboration Protocol

116.6
Transaction Management

116.7
API 1

116.8
Messaging Service

116.9
Business Process Specification Instance

126.10
Trading Partner Agreement Instance

126.10.1
Agreeing a CPA to use

137
Dynamic View

137.1
Introduction

148
Relationships with other standards

159
Other potential sections

1610
Appendix A UN/CEFACT and OASIS Technical specifications that relate to this architecture and their relationships

1811
Appendix B T-Architecture and Electronic Business Collaborations

2112
APPENDIX C Modular configuration of the OpenXchange runtime engine.

Figures

9Figure 1
Overall UMM based framework

Figure 2
Overall UMM based framework
9
Figure 3
ebXML implementation architecture
10
Figure 4
Technical specifications that relate to this architecture
16
Figure 5
The basic T- Architecture
18
Figure 6
Three example applications of the T-Architecture
18
Figure 7
Shared view of business state using the T-Architecture
19
Figure 8
Business objects and shared view of business state using the T-Architecture
20
Figure 9
OpenXchange Minimum functionality
21
Figure 10
OpenXchange Minimum configuration
22
Figure 11
OpenXchange Security
23
Figure 12
OpenXchange Transactions
24
Figure 13
OpenXchange Process monitoring
25
Figure 14
OpenXchange Process management
26
Figure 15
OpenXchange Document validation
27
Figure 16
OpenXchange Document content services
28
Figure 17
OpenXchange Document filtering
29
Figure 18
OpenXchange Cartridges
30
Figure 19
OpenXchange Total configuration
31

2 Status of this Document

This [proposed] Guide is being developed in accordance with the UN/CEFACT/TRADE/22 Open Development Process for Technical Guides. [It is under development within UN/CEFACT Forum /TMG/ Architecture Project Team.] [It has been approved for internal review by the UN/CEFACT Forum /TMG/ Architecture Project Team.]

This document contains information to guide in the interpretation and implementation of the ebXML family of Technical Specifications from UN/CEFACT and OASIS.

Distribution of this document is limited to TMG Project teams.

The document formatting is based on the Internet Society’s Standard RFC format.

This version: ebXML Implementation Guide, Version 0.12 of 17 October 02.

[Previous version: ebXML Implementation Architecture Technical Specification, Version 0.11 of 8 October 02.]

3 TMG - ebXML Implementation Guide Project Team Participants

We would like to recognize the following for their significant participation to the development of this document.

Project Team Leader:
TBD

Lead Editor:
TBD

Editing Team Members:
TBD

Contributors:
Anders W. Tell, Financial Toolsmiths AB

Yukinori Saito, Electronic Commerce Promotion Council of Japan (ECOM)

Tony Fletcher, Choreology Ltd.

3.1 Disclaimer

The views and specification expressed in this document are those of the authors and are not necessarily those of their employers. The authors and their employers specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this technical specification.

3.2 Contact Information

TMG Chair:
Klaus-Dieter Naujok, Axata, knaujok@attglobal.net

Introduction

3.2.1 Summary of Contents of Document

This document provides an operational overview of the Electronic Business extensible Markup Language (ebXML) framework, its use and implementation guidelines to assist in the design and development of an ebXML system.

3.2.2 Audience

The primary target audience for this document are professionals concerned with the planning, design and implementation of real systems, or networks of systems, that utilise the ebXML family of technical specifications.

Secondary audiences include those drafting ebXML related specifications and those concerned with testing of systems and services that utilise the ebXML family of technical specifications.

3.2.3 Related Documents

Documents:

Normative References:

[1]
UN/CEFACT – Electronic Business Architecture (UEB Architecture), Working Draft
[2]
UN/CEFACT's Modelling Methodology (N090), http://www.gefeg.com/tmwg/n090r10.htm
[3]
Business Entity Types Technical Specification, 1st Working Draft, Revision #0.12, 28 July 2002
[4]
OASIS Standard – Messaging Service Specification, Version 2.0

[5]
ebXML Business Process Specification Schema, Version 2.0
[6]
OASIS Standard - Collaboration-Protocol Profile and Agreement Specification, Version 2.0
[7]
OASIS Committee Specification - Business Transaction Protocol, Version 1.0
[8]

Non-normative References:

[9]
Business Collaboration Patterns and Monitored Commitments, 1st Working Draft
[10]

4 Objectives

4.1 Goals of the ebXML Implementation Guide
The goals of this ebXML Implementation Guide document are to provide implementers with guidance on how to design, develop and implement systems that make use of and conform to one, or more, of the ebXML family of Technical Specifications and related documents.

4.1.1 Requirements

This document should specify:

1)
The arrangement and relationships between the implementation components of ebXML, leading to the deployment of electronic business systems that provide the capability for systems’ interoperability across partners

2)
Functional guidelines that provide a logical view of how these implementation components can be used in an operational environment.

3)
Relationship among MS, CPPA, BPSS, and others.

4)
Practical Implementation Scenarios of XML/EDI system based on ebXML (e.g. ebMS→CPPA→BPSS).

5)
Consideration about Compatibilities - Current status of compatibilities among several specifications (e.g. MS, CPPA, R&R, BPSS) -Policy about downward compatibility about next version (e.g. Version 3.0) -How to deal with several versions of specifications for users.

6)
Relationships and complements to other standards development relevant to the deployment of electronic business systems.

7)
Provide a primer for implementers leading to the deployment of electronic business systems (maybe as a separate Annex or even a separate document).

4.1.2 Caveats and Assumptions

This document is not a deployment guide specific to an industry, sector, or entity. This work should complement with other joint efforts such as the ebXML Joint Technical Liaison Team (JTLT), ebXML Implementation, Interoperability and Conformance (IIC) Technical Committee (TC), United Nations Centre for Trade Facilitation and Electronic Business (UN/CEFACT) Technologies and Methodologies Group (TMG), and others that are subsequently identified.

5 Overview

The ebXML Architecture Technical Specification [1] describes many of the ebXML components in terms of classes of things and their theoretical arrangement. However to translate this into implementation terms means making various assumptions – inevitably different people will make different assumptions unless they are clearly documented. It is the intent of this document to provide an implementation-oriented interpretation of the ebXML architecture and the related family of Technical Specifications. This will guide implementers in the choices and assumptions they make. It should also provide the capability for different implementations of the ebXML family of specifications to interoperate more effectively.

6 Static View

6.1 Introduction

The ebXML architecture Technical Specification [1], Appendix A provides a diagram that shows the relationships amongst the various specifications that form the ebXML family of specifications. The aim of this section is to show how the components described and specified in those specifications relate and work with each other.

Figure 1 takes the UMM [2] views (Collaboration or Requirements, Transaction and Service) views and translates them into logical representations to assist in implementation. The business process and associated business rules, transaction patterns, and services that are required to conduct business are represented broadly here. The Business Collaboration Protocol enables the alignment of the state of the business objects, processes and provides references for the service interface.

[image: image1.wmf]

Party A

Party B

Technology Neutral Specification

Business Collaboration

Protocol

Business Transaction

Protocol (Not BTP)

Business Service

Protocol

Business Collaboration

Protocol

Business Transaction

Protocol (Not BTP)

Business Service

Protocol

Business Events, Entities

and Information

Business Events, Entities

and Information

Business Events, Entities

and Information

Business Events, Entities

and Information

Business signals

and messages

UMM Business Collaboration

Protocol vs. Business

Collaboration Protocol Model

8 August 2002

Business events

BSV

BTV

BCV

Observable

Logical

Logical

Business Application Interface

Key

Business Collaboration Use Case

Business Collaboration

(State Machine Container)

Business Collaboration Protocol

Business Transaction

BRV

BTV

BSV

Model

End

Start

Transformation

Engine

Business

Collaboration

Protocol

En

d

Sta

rt

BCP Scope

Business Service Interface

Shared Collaboration

End

Start

View

Into

Figure 1
Overall UMM based framework1TC “Figure
Overall UMM based framework” \f F \l 2

Figure 2
Overall UMM based framework2TC “Figure
Overall UMM based framework” \f F \l 2

Taking a focused outlook of this logical view (figure1), figure 3 depicts the static view of the implementation architecture.

[image: image2.wmf]Business Process

Specification

Instance

Trading Partner

Agreements

Business Collaboration

Protocol

(UMM Protocol)

Messaging Service

I / O

XML structured

configuration information

Example

implementation stack

Business

Application

Business Objects

and business data

API 1

API 2

Transaction

Management

Figure 3
ebXML implementation architecture3TC “Figure
ebXML implementation architecture” \f F \l 2

6.2 Business Application

The business application contains all the company / organisation, as well as the domain, specific business rules for executing tasks and processes. Thus there is no standardised specification in the ebXML family for the Business Application, even though it is an identified component of the architecture. It may make decisions autonomously by reference to its sets of rules, but it also may support interaction with human users, who may be responsible for making some of the decisions. It has access to a store of business objects that are instances of specific business object types that have state and content, are identifiable and bounded by their environment (context). It also has access to the history of the execution of this particular instance of a business process thus far. The business application makes use of the common UN/CEFACT Modelling Methodology (UMM [2]) business collaboration protocol via a notional API (API 2) in figure 3.

6.3 Business Objects

Business objects are instances of specific business object types that have state and content. They are specified in detail in [3]. It is an implementation design decision as to whether the business objects are accessed and updated only by the business application, only by the a protocol defined according to the UMM [2], or by both.

6.4 API 2

This notional API is identified in this implementation architecture, but not specified in detail by any of the ebXML family of specifications.

Note: Organisations other than UN/CEFACT and OASIS may decide to specify an API that is applicable to this location.

This API provides the controlling business application with access to the UMM Business Collaboration protocol state machines and hence to the messaging service.

6.5 Business Collaboration Protocol

The Business Collaboration Protocol is specified in the UMM, and the generic state machines particularly in Chapter 10 [2], reinforced by the metamodel and patterns in earlier chapters. There are 3 layers of interacting state machine that drive and are driven by API 2 (to the business application) and API 1 (to the Messaging Service).

6.6 Transaction Management

This is an optional component. That is, it is not required that it is implemented if the business functions the system is required to support do not require explicit transaction management. Its purpose is to coordinate the outcome of groups of actions (from a single action through to a large group of actions) that are designated to be subject to outcome coordination. The component is realised by implementing an explicit transaction management protocol such as the Business Transaction Protocol (BTP) [7].

6.7 API 1

This notional API is identified in this implementation architecture, but not specified in detail by any of the ebXML family of specifications. The meanings of the function calls of this interface together with their permitted sequencing, is sometimes referred to as the Business Service Interface.

Note: Organisations other than UN/CEFACT and OASIS may decide to specify an API that is applicable to this location.

This API provides the Business Collaboration Protocol state machines with access to and from the messaging service.

6.8 Messaging Service

The messaging service provides transportation of the business protocol messages to and from the systems that communicate and interoperate. It may, or may not, provide for a specified level of reliable delivery, security, and other aspects of a communications channel. The ebXML messaging service is specified in [4]. However, other messaging services (and hence other messaging protocol stacks) may be used according to agreements made with other parties.

6.9 Business Process Specification Instance

The Business Collaboration Protocol machine provides a generic set of state machines organised and prescribed by the UMM. Thus they are not configured for any particular business process. The Business Process Specification instance [5] provides a description, in XML syntax according to the base business process specification XML schema, of a particular business process. It is used to provide configuration information for the generic state machines to particularise them for the execution of a particular business process.

Note: It is also possible to use other business process description languages to provide this configuration information.

6.10 Trading Partner Agreement Instance

A Trading Partner Agreement (TPA) provides the legal agreement between the party running a system and one other party with which this party potentially needs to do business. A party will usually have several different Trading Partner Agreements in place, one for each other party that it potentially or actually needs to interact with. A TPA addresses the legal issues concerned with the relationship between the two parties, the business processes they agree to undertake with each other and other relevant legal, logistical or business matters.

Note: Work to define the content and format of a TPA is underway with the UN/CEFACT Forum.

The technical aspects of a TPA have been specified in the Collaboration-Protocol Profile and Agreement (CPPA) specification [6].

Note: In principle a TPA may include or reference another format for the technical aspects of the relationship but no other formats are currently publicly available as specifications.

6.10.1 Agreeing a CPA to use

A Collaboration-Protocol Profile (CPP) is an XML formatted document that provides information on acceptable configuration parameters for a particular system. A particular system may have several CPPs that apply to it, if it can be configured in a variety of ways.

A Collaboration-Protocol Agreement (CPPA) is defined in the same specification [6]. It is contains the configuration information, in XML format, that has been agreed to be used to configure two specific systems that need to communicate with each other. The agreement on the contents of a mutually agreed CPPA can be manual (i.e. by people interacting with each other to agree which parameters are applicable, and the values for each applicable parameter by automated means with minimal or perhaps even no manual intervention in some cases.

It is not required that an ebXML CPA is used at all. One can just write down the values of the various parameters and specific guidance on how to set the parameters specific to each system as a document and give it to the administrator of each system involved so each system is configured in a compatible manner. The next step in sophistication is for someone to prepare CPA template [6], which fixes values for some of the parameters and the remainder are negotiated. The negotiation - can be a manual process, though work is in progress to provide an automated method. Finally you can start from a set of CPPs that describe the capabilities a system is able to offer (and company policy allows to be offered) and negotiate a CPA from that basis (again can be a manual process, though work is in progress to provide an automated method).

7 Dynamic View

7.1 Introduction

[mm1: Suggest we place further detail on implementation profiles being discussed under JTLT here or provide a non-normative reference to them.]

[mm1: Add representations for XML, EDI and fax (comments by Brian Hayes on Arch specification.]
8 Relationships with other standards

[mm1: Suggest we have a section that talks about the relationship with other standards development such as web services (capabilities and weaknesses – no non-repudiation, no explicit relationship to TPA, etc), unless this is placed in the dynamic view.]
9 Other potential sections

Suggestions have been made to include sections covering the following topics:
a) Profiles of versions of ebXML spec that work together.
b) Implementation guidelines and sample uses.
c) Payload usage.
d) Messaging and CPA compatibility.
e) Application of UMM (not to overlap with UMM QSG)
f) BPSS catalogue and CC catalogue

g) Working with specific syntaxes like UBL, OAG et al.
h) Syntax binding for Core Components, BIE's and Business Context.

i) Execution and guard conditions for BPSS
j) Error message standardization handling at runtime (Best practices?)

10 Appendix A UN/CEFACT and OASIS Technical specifications that relate to this architecture and their relationships

Note: This Appendix was understood to be correct at the time of writing.

Figure 4 shows the main specifications and the main relationships between them, which are being produced by UN/CEFACT and OASIS Technical Committees that relate to the architecture described and specified in this specification. These specifications facilitate the Working Requirements as described in this document. These specifications and their underlying architectural components are more fully described in the UN/CEFACT eBusiness Architecture (UeB) Specification [1].

[image: image3.wmf]UMM

BCP

BCP&MC

BET

CC

CCR

BP Cat

BPIMES

Reg

/Rep

RSS

IIC

MSG

CPA

BPSS 2

BPSS 3

BTP

Reg

/Rep

RIM

Figure 4
Technical specifications that relate to this architecture4TC “Figure
Technical specifications that relate to this architecture” \f F \l 2

The abbreviations used in figure 4 are expanded in the table below:

	Abbreviation
	Title
	Status
	Organisation

	BCP
	Business Collaboration Protocol specification.
	Draft (for v1.0)
	UN/CEFACT

	BCP&MC
	Business Collaboration Patterns / Business Commitment Patterns Technical Specification (BCP2) – “Monitored Commitments”
	Draft (for v1.0)
	UN/CEFACT

	BET
	Business Entity Types Technical Specification
	Draft (for v1.0)
	UN/CEFACT

	BP Cat
	Common Business Process Catalog
	Draft (for v1.0)
	UN/CEFACT

	BPIMES
	Business Process Interchange Modelling Exchange Schema
	Not yet started
	UN/CEFACT

	BPSS 2
	ebXML Business Process Specification Schema
	Draft (for v2.0)
	UN/CEFACT

	BPSS 3
	ebXML Business Process Specification Schema
	Not yet started
	UN/CEFACT

	BTP
	Business Transaction Protocol
	TC specification version 1.0
	OASIS

	CC
	Core Components Technical Specification, Part 1
	Draft (for v2.0)
	UN/CEFACT

	CCR
	Core Components Realisation
	Draft (for v1.0)
	UN/CEFACT

	CPA
	Collaboration-Protocol Profile and Agreement Specification
	TC Standard version 2.0
	OASIS

	IIC
	ebXML Test Framework Design and Specification (Implementation, Interoperability and Conformance suite of specifications)
	Draft (for v1.0)
	OASIS

	MSG
	Message Service Specification
	OASIS Standard version 2.0
	OASIS

	Reg / Rep RIM
	OASIS/ebXML Registry Information Model
	OASIS Standard version 2.0
(TC specification 2.1)
	OASIS

	Reg / Rep RSS
	OASIS/ebXML Registry Services Specification
	OASIS Standard 2.0
(TC specification 2.1)
	OASIS

	UMM
	UN/CEFACT Modelling Methodology
	Draft (for v1.0)
	UN/CEFACT

11 Appendix B T-Architecture and Electronic Business Collaborations

The T-architecture (Figure 5 - looks like a T) is useful for describing architectures and systems in general. It is a 3-layer architecture extended to handle electronic collaborations. Between each “layer” there are “translations/mappings” being performed.

[image: image4.wmf]Storage Layer

Database

User Agent

Queue

Business Logic Layer

Integration Layer

Presentation

Layer

Business

Services

B-Transaction

B-Process

B-Activity

B-Object

Business

Services

Business

Services

L-I

Mapping

P-L

Mapping

S-L

Mapping

Report

Form

Printer

Message

Queue

Horizontal Services

Vertical

Vertical

Vertical

Vertical

H

V

V

V

V

H

V

V

V

V

Horizontal Services

Disk

Format(XML,...)

Object

Broker

Messge

Broker

RPC

Figure 5
The basic T- Architecture5TC “Figure
The basic T- Architecture” \f F \l 2

The diagram above describes various “concepts” related to each architectural part. Depending on the view, it is easy to replace the content inside the “layers” with desired concepts. A few examples are given in figure 6 below.

[image: image5.wmf]Integration and

Collaborations

H

V

V

V

V

V

Business

Collaboration

Collaboration State

Collaboration

Object

State

CIO

CIO

Integration

Layers

H

V

V

V

V

S

A

P

A

P

I

Integration

Technologies

WebService

OMG Corba

Java JMS

H

V

V

V

V

ebXML MSH

Figure 6
Three example applications of the T-Architecture6TC “Figure
Three example applications of the T-Architecture” \f F \l 2

One way of showing shared view of business state is depicted in figure 7 below.

[image: image6.wmf]Shared View of Business State

User Agent

Presentation

Layer

L-I

Mapping

P-L

Mapping

S-L

Mapping

Report

Form

Printer

H

V

V

V

V

Integration and

Collaborations

H

V

V

V

V

V

Business

Collaboration

Collaboration State

Collaboration

Object

State

CIO

CIO

Business Logic Layer

Business

Services

B-Transaction

B-Process

B-Activity

B-Object

Business

Services

Business

Services

Horizontal Services

Storage Layer

Database

Queue

Horizontal Services

Vertical

Vertical

Vertical

Vertical

Disk

Format(XML,...)

User Agent

Presentation

Layer

L-I

Mapping

P-L

Mapping

S-L

Mapping

Report

Form

Printer

H

V

V

V

V

Integration and

Collaborations

H

V

V

V

V

V

Business

Collaboration

Collaboration State

Collaboration

Object

State

CIO

CIO

Business Logic Layer

Business

Services

B-Transaction

B-Process

B-Activity

B-Object

Business

Services

Business

Services

Horizontal Services

Storage Layer

Database

Queue

Horizontal Services

Vertical

Vertical

Vertical

Vertical

Disk

Format(XML,...)

Figure 7
Shared view of business state using the T-Architecture7TC “Figure
Shared view of business state using the T-Architecture” \f F \l 2

The T architecture also point out that Business Objects (BO) exist in a business system in several different shapes and forms. The following figure 8 is a summary diagram showing all possible incarnations of a business object. The diagram contains the OMG Model Driven Architecture principle applied to T-Architecture artefacts. The MDA teaches that there are two sides to a BO, abstract, conceptual and technological. Between all “models” there are translations and mappings. So implicitly there are 11 different variants of a business object in a collaborative environment. With ebXML the internal integration models are the same as the external integration models, i.e. shared view of state and information.

[image: image7.wmf]Business model

(platform independent)

Data model

(platform specific)

(relational db, object db,

XML, UDDI)

Presentation model

(platform independent)

Internal

Integration modell

(platform independent)

External

Integration modell

(platform specific)

Internal

Integration modell

(platform specific)

(Corba, COM+, WebServices

Presentation model

(platform specific)

(JSP, ASP, Portals, GUI)

Data model

(platform independent)

(datawarehouse,

operational datastore)

translation

translation

translation

Presentation (in/out)

Integration (in/out)

Business Logic

Storage

Business model

(platform specific)

(Java, EBJ, COM, Corba CCM)

translation

External

User modell

(speach, body language)

Mental model

(platform independent)

Figure 8
Business objects and shared view of business state using the T-Architecture8TC “Figure
Business objects and shared view of business state using the T-Architecture” \f F \l 2

12 APPENDIX C Modular configuration of the OpenXchange runtime engine.

The full OpenXchange runtime engine is a very powerful one. It can handle multiparty processes, multiple applications within the company and route documents based on their contents. Not all companies need such a powerful engine. Sometimes all routing is performed by the (ERP-)application. Sometimes the only function of the engine is to present the documents to the (one) user. Therefore the architecture of the runtime engine has been set up modularly. Not all companies need all modules, or do not need them in the beginning. They may however add modules later on, without having to replace the modules they already configured.

[image: image21.bmp][image: image8.png]Authentication, Authorization
and
Non-Repudiation services

!

Header Processing

T o

=

Encryption E
and/or i
Digital £
Signatures)
[o]

=

1T}

Message Packaging

)

Delivery Module
Send/Receive
Transport mapping and
binding

Figure 9
OpenXchange Minimum functionality 9TC “Figure
OpenXchange Minimum functionality” \f F \l 2

[image: image9.wmf]TRANSACTION TIME

openXchange

Message

Handler

Service

Transaction log file

XML

Mutual Agreed CPA

BPSS

CPA defined

Document definitions

EB

Message

Store IN

EB

Message

Store

OUT

Encrypted and signed Payload + parameters

Transaction

Administration

Manager

DocStore

 IN

DocStore

OUT

Application

SMTP server

POP3 server

POP3 client

SMTP client

Xpath server

X

P

a

t

h

Figure 10
OpenXchange Minimum configuration10TC “Figure
OpenXchange Minimum configuration” \f F \l 2

Minimum

The bear minimum configuration of the OpenXchange runtime engine needs to be able to route XML documents over the Internet. In fact we are talking about two (or more) alternative modules here, depending on the Internet protocol used. For the OpenXchange project we support HTTP and SMTP/POP3. Readily signed and encrypted payload, taken from a store in which an application placed it, is enveloped conform EBMS and sent over the chosen Internet connection. This process is governed by a CPA file, containing the network parameters. Payload received is extracted from the SOAP envelope and sent to a store from which an application may collect it.

[image: image10.wmf]TRANSACTION TIME

openXchange

Message

Handler

Service

Transaction log file

XML

Mutual Agreed CPA

BPSS

CPA defined

Document definitions

Payload + parameters

Transaction

Administration

Manager

DocStore

 IN

DocStore

OUT

Application

SMTP server

POP3 server

POP3 client

SMTP client

Xpath server

X

P

a

t

h

OX security

manager

EB

Message

Store IN

EB

Message

Store

OUT

Figure 11
OpenXchange Security11TC “Figure
OpenXchange Security” \f F \l 2

Security

A separate module adds encryption and electronic signatures. In this case the ready-to-send payload is received from and sent to an external application unencrypted through a message store. The runtime engine now performs all functions in figure 1, including the shaded ones.

[image: image11.wmf]TRANSACTION TIME

OX Messaging service

openXchange

Message

Handler

Service

Transaction log file

XML

Mutual Agreed CPA

BPSS

CPA defined

Document definitions

Documents

Signals

Transaction

Administration

Manager

DocStore

 IN

DocStore

OUT

Application

SMTP server

POP3 server

POP3 client

SMTP client

Xpath server

X

P

a

t

h

OX security

manager

OX Transaction

manager

XML

Xpath server

XPath

DocStore

 IN

DocStore

OUT

Requests responses exceptions

EB

Message

Store IN

EB

Message

Store

OUT

Figure 12
OpenXchange Transactions12TC “Figure
OpenXchange Transactions” \f F \l 2

Transactions

The OpenXchange Transaction manager controls and monitors the signalling around the transaction patterns that are defined in a BPSS. Controlling collaborations in this configuration is still the responsibility of the application. To and from the application a transaction identification accompanies the messages. In the envelope of external messages the transaction is identified by means of the CoversationID element.

[image: image12.wmf]TRANSACTION TIME

OX Messaging service

openXchange

Message

Handler

Service

Transaction log file

XML

Mutual Agreed CPA

BPSS

CPA defined

Document definitions

Documents

Signals

Transaction

Administration

Manager

DocStore

 IN

DocStore

OUT

Application

SMTP server

POP3 server

POP3 client

SMTP client

Xpath server

X

P

a

t

h

OX security

manager

OX Transaction

manager

Xpath server

DocStore

 IN

DocStore

OUT

Requests responses exceptions

OX Process

monitor

EB

Message

Store IN

EB

Message

Store

OUT

Figure 13
OpenXchange Process monitoring13TC “Figure
OpenXchange Process monitoring” \f F \l 2

Process monitoring

A next step in configuration advancement is the monitoring of the process against the defined BPSS. The OpenXchange Process monitor checks whether invoked transactions are in the right sequence and issue error messages to the Administration Manager if they aren’t. Guards and conditions in BPSS are defined either on envelope data or on payload data using a specified language (for XML payload the language is XPath). As document definitions and document management are not a part of this configuration, it is assumed that only envelope data is used, if document management is not installed. During Agreement time then a BPSS should be chosen or constructed that does not include payload-data based conditions.

[image: image13.wmf]TRANSACTION TIME

OX Messaging service

openXchange

Message

Handler

Service

Transaction log file

XML

Mutual Agreed CPA

BPSS

CPA defined

Document definitions

Documents

Signals

Transaction

Administration

Manager

DocStore

 IN

DocStore

OUT

Application1

SMTP server

POP3 server

POP3 client

SMTP client

Xpath server

X

P

a

t

h

OX security

manager

OX Transaction

manager

Xpath server

DocStore1

 IN

DocStore1

OUT

Requests responses exceptions

OX Process

monitor

OX Process

manager

DocStore2

 IN

DocStore2

OUT

Application2

EB

Message

Store IN

EB

Message

Store

OUT

Figure 14
OpenXchange Process management14TC “Figure
OpenXchange Process management” \f F \l 2

Process management

The OpenXchange Process Manager actively manages processes. Several related BPSS’s are managed in combination and transactions are routed to different applications, if necessary. Still decisions can only be made on the value of envelope data. Each (request or response) document that passes the Process manager is assessed for its relevance to a running process or processes to be invoked. So a document can be relevant to more than one process.

[image: image14.wmf]TRANSACTION TIME

OX Process service

OX Messaging service

openXchange

Message

Handler

Service

Transaction log file

XML

Mutual Agreed CPA

BPSS

CPA defined

Document definitions

Transaction

Administration

Manager

DocStore

 IN

DocStore

OUT

Application1

SMTP server

POP3 server

POP3 client

SMTP client

Xpath server

X

P

a

t

h

OX security

manager

OX Transaction

manager

Xpath server

DocStore1

 IN

DocStore1

OUT

OX Process

monitor

OX Process

manager

DocStore2

 IN

DocStore2

OUT

Application2

OX Document validator

EB

Message

Store IN

EB

Message

Store

OUT

Figure 15
OpenXchange Document validation15TC “Figure
OpenXchange Document validation” \f F \l 2

Document validation

The next configurable module in the OpenXchange architecture is the OpenXchange XML document validator. Both documents that are received from external partners and documents that were assembled by internal applications are validated against agreed document definitions (schema).

[image: image15.wmf]TRANSACTION TIME

OX Process service

OX Messaging service

openXchange

Message

Handler

Service

Transaction log file

XML

Mutual Agreed CPA

BPSS

CPA defined

Document definitions

Transaction

Administration

Manager

DocStore

 IN

DocStore

OUT

Application1

SMTP server

POP3 server

POP3 client

SMTP client

Xpath server

X

P

a

t

h

OX security

manager

OX Transaction

manager

Xpath server

DocStore1

 IN

DocStore1

OUT

OX Process

monitor

OX Process

manager

DocStore2

 IN

DocStore2

OUT

Application2

OX Document validator

OX Doc

content

Service

EB

Message

Store IN

EB

Message

Store

OUT

Figure 16
OpenXchange Document content services16TC “Figure
OpenXchange Document content services” \f F \l 2

Document content server

The module that offers the service to the Process Manager to access the content of documents for process management purposes (e.g. routing conditions) is the OpenXchange document content server. This module includes an XPath server. XPath expressions, present in the BPSS guards and conditions are resolved by this module.

[image: image16.wmf]TRANSACTION TIME

OX Process service

OX Messaging service

openXchange

Message

Handler

Service

Transaction log file

XML

Mutual Agreed CPA

BPSS

CPA defined

Document definitions

Transaction

Administration

Manager

DocStore

 IN

DocStore

OUT

Application1

SMTP server

POP3 server

POP3 client

SMTP client

Xpath server

X

P

a

t

h

OX security

manager

OX Transaction

manager

Xpath server

DocStore1

 IN

DocStore1

OUT

OX Process

monitor

OX Process

manager

DocStore2

 IN

DocStore2

OUT

Application2

OX Document validator

OX Doc

content

Service

DocStore

history

OX Doc

content

Filter

StyleSheets

mapping and

filtering

EB

Message

Store IN

EB

Message

Store

OUT

Figure 17
OpenXchange Document filtering17TC “Figure
OpenXchange Document filtering” \f F \l 2

Document mapping and filtering

The OpenXchange process manager doesn’t change the documents. It only routes them. The OpenXchange Document Filter service offers the Document Validator the possibility to alter documents before they are sent to applications or external parties. The mapping and filtering service is controlled by a set of stylesheets. It has access to documents that were exchanged previously or that contain master data (like code resolutions). Only XML documents may be filtered. Application content mapping is also performed by this module.

[image: image17.wmf]TRANSACTION TIME

OX

Cartridges

OX Document service

OX Process service

OX Messaging service

openXchange

Message

Handler

Service

Transaction log file

XML

Mutual Agreed CPA

BPSS

CPA defined

Document definitions

Transaction

Administration

Manager

DocStore

 IN

DocStore

OUT

Application1

SMTP server

POP3 server

POP3 client

SMTP client

Xpath server

X

P

a

t

h

OX security

manager

OX Transaction

manager

Xpath server

DocStore

 IN

DocStore

OUT

OX Process

monitor

OX Process

manager

E-mail client

OX Document validator

OX Doc

content

Service

DocStore

history

OX Doc

content

Filter

StyleSheets

mapping and

filtering

OX syntax

Cartridge

OX web

service

OX mail

service

Browser

Application2

OX web

presen

tation

service

EB

Message

Store IN

EB

Message

Store

OUT

Figure 18
OpenXchange Cartridges18TC “Figure
OpenXchange Cartridges” \f F \l 2

Cartridges

As content mapping is performed by the OX Document Filter, the OpenXchange Interface Cartridges only need to offer an interface to various syntaxes and networking mechanisms, like DCOM, Corba, SAP E-Docs, Webservices, etc. Also cartridges will be provided that present the documents (and the possible responses as webforms) on a browser or in an E-mail client.

Conclusion

Although some modules have interdependencies (one module cannot always be configured if another one is missing) different combinations of the above described modules can be configured.

[image: image18.wmf]TRANSACTION TIME

OX

Cartridges

OX Document service

OX Process service

OX Messaging service

openXchange

Message

Handler

Service

Transaction log file

XML

Mutual Agreed CPA

BPSS

CPA defined

Document definitions

Transaction

Administration

Manager

DocStore

 IN

DocStore

OUT

Application1

SMTP server

POP3 server

POP3 client

SMTP client

Xpath server

X

P

a

t

h

OX security

manager

OX Transaction

manager

Xpath server

DocStore

 IN

DocStore

OUT

OX Process

monitor

OX Process

manager

E-mail client

OX Document validator

OX Doc

content

Service

DocStore

history

OX Doc

content

Filter

StyleSheets

mapping and

filtering

OX syntax

Cartridge

OX web

service

OX mail

service

Browser

Application2

OX web

presen

tation

service

EB

Message

Store IN

EB

Message

Store

OUT

Figure 19
OpenXchange Total configuration19TC “Figure
OpenXchange Total configuration” \f F \l 2

13 Copyright Statement

Copyright © UN/CEFACT 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to UN/CEFACT except as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by UN/CEFACT or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and UN/CEFACT DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
SMTP/POP3

HTTP

Page 30 of 32

_1094736151.vsd

_1094736511.vsd

_1094737839.vsd

_1094736075.vsd

