Writing Test Requirements for a Specification

OASIS ebXML IIC Technical Committee

Authors:

Michael Kass – NIST

Jacques Durand - Fujitsu Software Corporation

Monica Martin – DrakeCertivo

1. Test Requirements

A Test Requirement is a different way to express a requirement of the target specification. The reference to the specification (SpecRef) is included in each Test Requirement, and is typically one or more section numbers in the original (target) specification document. There is no one-to-one mapping between sections of a specification document and the Test Requirement items:

· A specification section usually maps to more than one Test Requirements.

· A Test Requirement item may also cover (partially or not) more than one section or sub-section.

A Test Requirement item may then cover a subset of the requirements that are specified in a section.

For these reasons, it is important to determine to which degree the requirements of each section of a specification, are fully satisfied by the set of Test Requirements listed in the test suite document. This is done by establishing the specification coverage by the Test Requirements.

2. Specification Coverage

The specification coverage can be defined by annotating the original specification document. Each statement of the original specification can be annotated with:

· A coverage qualifier.

· A list of references to Test Requirements that map to this section.

For each specification item, the coverage qualifier may have values:

· Full: The annotated specification item is fully covered by the [associated set of] Test Requirements. These test requirement(s) are a clear indicator of conformance to the specification item, i.e. if a candidate implementation passes a test case that implements this test requirement(s) in a verifiable manner, there is a strong indication that it will behave similarly in all situations identified by the specification item.
· Partial: The annotated specification item is partially covered by the associated (set of) Test Requirement(s). This means that if each one of these Test Requirements is satisfied by an implementation, then it cannot be asserted that all the requirements of the corresponding document section are fulfilled: only a subset of all situations identified by the specification item are addressed. Reasons may be:

· (1) the pre-condition(s) of the test requirement(s) ignore(s) on purpose a subset of situations, that cannot be reasonably tested under the Test Framework.

· (2) the occurrence of situations that match the pre-condition of a Test Requirement is known to be under control of the implementation (e.g. implementation-dependent) or of external factors, and out of the control of the testbed. (see contingent run-time coverage definition, ebXML Test Framework specification, Section 6).

The associated set of test requirement(s) are then a weak indicator of conformance to the specification item. A negative test result will indicate non-conformance of the implementation.

· None: The annotated specification item is not covered at all. This the default also for any part of the target specification that is not annotated at all. Either there is no associated set of Test Requirements, or it is known that the test requirements cannot be tested even partially, at least with the Test Framework on which the test suite is to be implemented, and under the test conditions that are defined.
Example: (from ebMS specification)

The coverage level is color-coded: green=full, yellow=partial. Each statement is prefixed with the test requirement ID that covers it.

“ Message Package

All MIME header elements of the Message Package are in conformance with the SOAP Messages with Attachments [SOAPAttach] specification. In addition, <r1.1.3> the Content-Type MIME header in the Message Package contain a type attribute matching the MIME media type of the MIME body part containing the SOAP Message document. In accordance with the [SOAP] specification, the MIME media type of the SOAP Message has the value "text/xml".
It is strongly RECOMMENDED the initial headers contain a Content-ID MIME header structured in accordance with MIME [RFC2045], and in addition to the required parameters for the Multipart/Related media type, <r1.1.2.3> the start parameter (OPTIONAL in MIME Multipart/Related [RFC2387]) always be present. This permits more robust error detection. The following fragment is an example of the MIME headers for the multipart/related Message Package:…..”

3. Test Requirements Table
Table Fields

· ID: A unique Test Requirement identifier for the MS Conformance Test Suite.

· Name: A unique name for the Test Requirement.

· Spec Ref: A reference to the section or subsection number in the target specification document, that is covered by this Test Requirement item.

· Pre-condition: The pre-condition defines the context or situation under which this test item applies. It should help a reader understand in which case the corresponding specification requirement applies. In order to verify this Test Requirement, the test harness will attempt to create such a situation, or at the very least to identify when it occurs. If for some reason the pre-condition is not satisfied when doing testing, then it does not mean that the outcome of this test is negative – only that the situation in which it applies did not occur. In that case, the corresponding specification requirement could simply not be verified, and the subsequent Assertion will not be tested.

· RequirementLevel: (or Degree) Qualifies the degree of requirement in the specification, as indicated by such keywords as RECOMMENDED, SHOULD, MUST, MAY. Typically, we identify three degrees: (1) “required” (MUST, SHALL), (2) “recommended” (RECOMMENDED, SHOULD), (3) “optional” (MAY, OPTIONAL). Any degree lower than “required” qualifies a Test Requirement that is not mandatory for Conformance testing. Yet, lower requirement degrees may be critical to interoperability tests.

· Assertion: The assertion defines the specification requirement, as usually qualified by a MUST or SHALL keyword. In the test harness, the verification of an assertion will be attempted only if the pre-condition is itself satisfied. When doing testing, if the assertion cannot be verified while the pre-condition was, the outcome of this test item is negative.

Recommendation:

It is recommended that the Pre-condition and Assertion parts of a test requirement be written in a way that the test case that will implement the test requirement can operate in a black-box manner. The Assertion should state an observable fact on the output of the implementation under test. The Pre-condition should state a property of an input provided to the implementation under test.

Examples (subset of ebMS Conformance Test Requirements)

Note:

In test requirements below, the pre-condition usually states “for each generated message”, or “for each received message”. A generated message is a message produced by the implementation under test. A received message is a message sent to the implementation under test.

	ID
	Name
	Spec Ref
	Precondition
	Requirmt

Level
	Assertion

	urn:req:id:1
	Global Requirements for All Tests
	
	ebMS-2#1.3
	
	

	urn:semreq:id:1
	SchemaValidation
	ebMS-2#1.3
	(For each generated message)
	REQUIRED
	Supports all mandatory syntax defined in Core plus Additional Features

	urn:req:id:2
	PackagingSpecification
	
	ebMS-2#2
	
	

	urn:semreq:id:2
	GenerateConformantSOAPWithAttachMIMEHeaders
	ebMS-2#2.1.2
	(For each generated mesage, if it is multipart MIME or not text/xml)
	REQUIRED
	The primary SOAP message is carried in the root body part of the message.

	urn:semreq:id:3
	GenerateConformantSOAPWithAttachMIMEHeaders
	ebMS-2#2.1.2
	(For each generated mesage, if it is multipart MIME or not text/xml)
	REQUIRED
	The type parameter of the Multipart/Related media header is "text/xml", the MIME parts must contain a CID MIME header or a Content-Location MIME header structured in accordanced with RFC 2557

	urn:semreq:id:4
	GenerateCorrectMessagePackageContent-Type
	ebMS-2#2.1.2
	(For each generated message)
	REQUIRED
	The Content-Type MIME header in the Message Package contains a type attribute of "text/xml".

	urn:semreq:id:5
	GenerateContent-IDStartValues
	ebMS-2#2.1.2
	(For each generated message)
	RECOMMENDED
	The Content-ID MIME header in any generated Message Package contains a start attribute identifying the first MIME part.

	urn:semreq:id:6
	ProcessNon-MultipartMessages
	ebMS-2#2.1.2
	(For each received message, if the message is not multipart MIME)
	REQUIRED
	The MSH accepts the message.

	urn:semreq:id:7
	ProcessMultipartNoPayloadMessages
	ebMS-2#2.1.2
	(For each received message, if the message is multipart MIME AND the message has no payload)
	REQUIRED
	The MSH accepts the message.

	urn:semreq:id:8
	GenerateCorrectSOAPMessageContentType
	ebMS-2#2.1.3.1
	(For each generated message)
	REQUIRED
	The MIME Content-Type header for each generated SOAP Message has the value "text/xml".

	urn:semreq:id:9
	GenerateSpecificSOAPMessageCharacterSet
	ebMS-2#2.1.3.1
	(For each generated message)
	REQUIRED
	The MIME Content-Type header of each generated SOAP Message specifies the character set used to generate the message.

	urn:semreq:id:10
	GenerateSameEncodingAndCharacterSetValue
	ebMS-2#2.1.3.1
	(For each generated message, if both the MIME charset and SOAP message encoding declaration are present)
	REQUIRED
	They shall have the same value.

	urn:semreq:id:11
	GenerateDefaultSOAPMessageCharacterSet
	ebMS-2#2.1.3.2
	(For each generated message)
	RECOMMENDED
	The UTF-8 character set is used by default when encoding each SOAP Message.

	urn:semreq:id:12
	GeneratePayloadContainer
	ebMS-2#2.1.4
	(For each generated message, if the Message Package contains an application payload)
	RECOMMENDED
	It should be enclosed in a Payload Container.

	urn:semreq:id:13
	ProvideEmptyManifestAndPayloadIntegrity
	ebMS-2#2.1.4
	(For each generated message, if there are no application payloads identified in the message header manifest᾿)
	REQUIRED
	There must not be any payload MIME parts

	urn:semreq:id:14
	ProvideManifestAndPayloadIntegrity
	ebMS-2#2.1.4
	(For each generated message)
	REQUIRED
	The contents of each payload MIME part are identified in the Manifest element within any generated SOAP body

	urn:semreq:id:15
	ProcessUnrecognizedMIMEHeaders
	ebMS-2#2.1.5
	(For each received message containing unrecognized MIME headers)
	REQUIRED
	Unrecognized MIME headers in a MIME part are ignored and no Error message is returned.

	urn:semreq:id:16
	GeneratePrologXMLDeclaration
	ebMS-2#2
	(For each generated message, if an XML Prolog is present in the SOAP message)
	OPTIONAL
	The Prolog contains an XML declaration.

	urn:semreq:id:17
	GenerateXMLVersionInProlog
	ebMS-2#2.2.1
	(For each generated message, if the XML Prolog exists in the SOAP message)
	REQUIRED
	XML version is declared

	urn:semreq:id:18
	ProvideXMLPrologEncodingAndMIMEContent-TypeIntegrity
	ebMS-2#2.2.2
	(For each generated message, if the XML Prolog exists in SOAP message AND Encoding is declared in the XML Prolog AND charset attribute is present in SOAP header container)
	REQUIRED
	The encoding declaration matches the charset attribute of the Content-Type MIME header in the Header Container.

	urn:semreq:id:19
	GenerateCorrectExtensionElementNamespace
	ebMS-2#2.3
	(For each generated message)
	REQUIRED
	All ebXML extension elements included within generated SOAP Envelope, Header and Body elements are namespace qualified to: "http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

	urn:semreq:id:20
	GenerateCorrectEnvelopeSchemaLocation
	ebMS-2#2.3.2
	(For each generated message)
	RECOMMENDED
	SOAP Envelope elements include the XMLSchema-instance namespace qualified schemaLocation attribute indicating the extended ebXML envelope schema: "http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd"

	urn:semreq:id:21
	GenerateCorrectSOAPHeaderAndBodySchemaLocation
	ebMS-2#2.3.2
	(For each generated message)
	RECOMMENDED
	SOAP Header and Body attributes both include a XMLSchema-instance namespace qualified schemaLocation attribute indicating the extended ebXML Msg Header schema "http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

	urn:semreq:id:22
	GenerateCorrectSOAPHeaderNamespace
	ebMS-2#2.3.4
	(For each generated message)
	REQUIRED
	A SOAP Header element is namespace qualified as per the SOAP namespace declaration in the SOAP Envelope element with the namespace "http://schemas.xmlsoap.org/soap/envelope/" .

	urn:semreq:id:23
	GenerateCorrectSOAPBodyNamespace
	ebMS-2#2.3.4
	(For each generated message)
	REQUIRED
	A SOAP Body element is namespace qualified as per the SOAP namespace declaration in the SOAP Envelope element with the namespace "http://schemas.xmlsoap.org/soap/envelope/" .

	urn:semreq:id:24
	GenerateMessageHeaderInSOAPHeader
	ebMS-2#2.3.5.1
	(For each generated message)
	REQUIRED
	A SOAP Header element always contains an ebXML MessageHeader element.

	urn:semreq:id:30
	ProcessMustUnderstand
	ebMS-2#2.3.9
	(For each received message containing a SOAP Header extension with a mustUnderstand attribute set to "1" and not understood by the MSH.)
	REQUIRED
	The message is rejected in accordance with SOAP.

	urn:req:id:3
	CoreExtensionElements
	
	ebMS-2#3.1.1
	
	

	urn:semreq:id:31
	GenerateUniquePartyId
	ebMS-2#3.1.1
	(For each generated message, unless a single type value refers to multiple identification systems)
	REQUIRED
	The value of any given type attribute must be unique within the list of PartyId elements contained within either the From or To element.

	urn:semreq:id:32
	ReportInconsistentPartyIdContent
	ebMS-2#3.1.1.1
	(For each received message, PartyId does not contain a type attribute AND PartyId text node is not a URI)
	STRONGLY RECOMMENDED
	MSH responds with an error (Inconsistent/Error)

	urn:semreq:id:33
	GenerateValidPartyIdContent
	ebMS-2#3.1.1.1
	(For each generated message, if generated PartyId contains a type attribute)
	RECOMMENDED
	Its value is a URI

	urn:semreq:id:34
	GenerateValidPartyIdContent
	ebMS-2#3.1.1.1
	(For each generated message, if generated PartyId does not contain a type attribute)
	REQUIRED
	Text content of the PartyId element must be a URI

	urn:semreq:id:35
	ReportFailedCPAIDResolution
	ebMS-2#3.1.2
	(For each received message, if value of the CPAId element on an inbound message cannot be resolved)
	REQUIRED
	The MSH responds with an error (ValueNotRecognized/Error).

	urn:semreq:id:36
	ProvideConversationIdIntegrity
	ebMS-2#3.1.3
	(For each generated message within the context of the specified CPAId)
	REQUIRED
	The generated ConversationId will be present in all messages pertaining to the given conversation.

	urn:semreq:id:37
	ReportConversationIdIntegrity
	ebMS-2#3.1.3
	(For each received message, if a message is received that is outside of the context of the specified CPAId)
	RECOMMENDED
	An Error message is generated.

	urn:semreq:id:38
	ReportInconsistentServiceElementContent
	ebMS-2#3.1.4.1
	(For each received message, if the received "type" attribute is not set. AND If the Service element content is not a URI.)
	REQUIRED
	MSH Responds with an error (Inconsistent/Error)

	urn:semreq:id:39
	GenerateConsistentServiceElementContent
	ebMS-2#3.1.4.1
	(For each generated message, if the generated Service element "type" attribute is not set.)
	REQUIRED
	Generated Service element content must be a URI

	urn:semreq:id:40
	ReportUnrecognizedServiceAndOrAction
	ebMS-2#3.1.5
	(For each received message, if the receiving MSH does not recognize both the Service and Action values of an incoming message)
	REQUIRED
	It responds with an error (ValueNotRecognised/Error).

	urn:semreq:id:41
	ProvideRefToMessageIdIntegrity
	ebMS-2#3.1.6.3
	(For each generated message, if the RefToMessageId element within the MessageData element is present)
	REQUIRED
	It contains the MessageId value of an earlier ebXML Message to which this message relates.

