[image: image1.png]

[image: image3.jpg]Creating A Single Global Electronic Market

ebXML Messaging (2.0) Conformance Test Suite

Committee Specification Version 1.0

OASIS ebXML Implementation, Interoperability and Conformance Technical Committee

27 June, 2003

Document identifier:

ebxml-iic-basic-interop-test-suite-10

Location:

 http://www.oasis-open.org/committees/documents.php?wg_abbrev=ebxml-iic
Authors/Editors:

Michael Kass, NIST <michael.kass@nist.gov>

Matthew MacKenzie, Individual <matt@mac-kenzie.net>

Monica Martin, Sun Microsystems <monica.martin@sun.com>

Jacques Durand, Fujitsu <jdurand@fsw.fujitsu.com>

Contributors:

Eric VanLydegraf, < ericv@kinzan.com>

Serm Kulvatunyou, NIST <serm@nist.gov>
See in Appendix C the complete list of IIC members having contributed.
Abstract:

This document specifies a basic test suite for ebXML Messaging conformance, used for the testing of global conformance between of ebXML Messaging Services business users.

Status:

This document has been approved as a committee specification, and is updated periodically on no particular schedule.
Committee members should send comments on this specification to the ebxml-iic@lists.oasis-open.org list. Others should subscribe to and send comments to the ebxml-iic-comment@lists.oasis-open.org list. To subscribe, send an email message to ebxml-iic-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

For more information about this work, including any errata and related efforts by this committee, please refer to our home page at http://www.oasis-open.org/committees/ebxml-iic.

This version

V1.0

Errata to this version

None
Table of Contents

51
Introduction

51.1 Summary of Contents of this Document

51.2 Document Conventions

51.3 Audience

61.4 Caveats and Assumptions

61.5 Related Documents

61.6 Objectives and Methodology

71.6.1 Conformance Profiles

71.6.2 Related Initiatives and Contributing Parties

81.7 Concept of Operation

81.7.1 Driving the Tests

81.7.2 Conformance vs. Interoperability

81.7.3 Conformance Test Results

91.7.4 Conformance Testing at “Wire Level”

102
Harness for MS Conformance Testing

102.1 Architecture

122.2 The Test Service and its Actions

122.2.1 Test Service Actions

133
The MS Conformance Test Suite

133.1 Overview

133.2 Configuration of the Candidate MSH

133.2.1 The Candidate MSH Configuration Parameter Table

153.3 Abstract MS Conformance Test Cases

153.3.1 Test Case Material

184
The ebXML MS 2.0 Abstract Conformance Test Suite

194.1 The ebXML MS 2.0 Abstract Test Cases

19Test Object

19ID

19Requirement

19Description

19Abstract Message Content

854.2 Two Instances of the ebXML Conformance Test Suite

854.2.1 Using HTTP/1.1 Transport

854.2.2 Using SMTP Transport

865
Details of Test Material

865.1 Configuration of the Test Harness and MSH Implementation

865.1.1 Test Harness and MSH Settings

865.1.2 Test-specific MSH Configuration Parameters

905.1.3 Generated Message Headers

905.1.4 Key Message Parameters

905.1.5 Sample Headers

945.1.6 Message Payloads

945.2 Non-normative MS Conformance Test Requirements

955.2.1 The ebXML MS 2.0 Conformance Test Requirements Table

955.2.2 Name

1225.3 Normative ebXML MS Conformance Executable Test Suite

123Appendix A References

123A.1 Non-Normative References

124Appendix B Acknowledgments

124B.1 IIC Committee Members

125Appendix C Notices

126Appendix D Revision History

1 Introduction

1.1 Summary of Contents of this Document

This specification defines a test suite for ebXML Messaging conformance. The testing procedure design and naming conventions follow the format specified in the Standard for Software Test Documentation IEEE Std 829-1998.

This specification is organized around the following topics:

· Conformance testing architecture

· Test cases for conformance

· Test data materials

1.2 Document Conventions

Terms in Italics are defined in the ebXML Glossary of Terms in the TestFramework specification [ebTestFramework]. Terms listed in Bold Italics represent the element and/or attribute content. Terms listed in Courier font relate to test data. Notes are listed in Times New Roman font and are informative (non-normative). Attribute names begin with lowercase. Element names begin with Uppercase.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY and OPTIONAL, when they appear in this document, are to be interpreted as described in [RFC2119] as quoted here:

· MUST: This word, or the terms "REQUIRED" or "SHALL", means that the definition is an absolute requirement of the specification.

· MUST NOT: This phrase, or the phrase "SHALL NOT", means that the definition is an absolute prohibition of the specification.

· SHOULD: This word, or the adjective "RECOMMENDED", means that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications MUST be understood and carefully weighed before choosing a different course.

· SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that there may exist valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this label.

· MAY: This word, or the adjective "OPTIONAL", means that an item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because the vendor feels that it enhances the product while another vendor may omit the same item. An implementation that does not include a particular option MUST be prepared to interoperate with another implementation which does include the option, though perhaps with reduced functionality. In the same vein an implementation that does include a particular option MUST be prepared to interoperate with another implementation which does not include the option (except, of course, for the feature the option provides).

1.3 Audience

The target audience for this specification is:

· The community of software developers who implement and/or deploy the ebXML Messaging Service (ebMS),

· The testing or verification authority, which will implement and deploy conformance testing for ebXML Messaging implementations.

1.4 Caveats and Assumptions

It is assumed the reader has an understanding of communications protocols, MIME, XML, SOAP, SOAP Messages with Attachments and security technologies.

1.5 Related Documents

The following set of related specifications are developed independent of this specification as part of the ebXML initiative, they can be found on the OASIS web site (http://www.oasis-open.org).

· ebXML Collaboration Protocol Profile and Agreement Specification [ebCPP] – CPP defines one business partner's technical capabilities to engage in electronic business collaborations with other partners by exchanging electronic messages. A CPA documents the technical agreement between two (or more) partners to engage in electronic business collaboration. The MS Test Requirements and Test Cases will refer to CPA documents or data as part of their material, or context of verification.

· ebXML Messaging Service Specification [ebMS] – defines the messaging protocol and service for ebXML, which provide a secure and reliable method for exchanging electronic business transactions using the Internet.

· ebXML Test Framework [ebTestFramework]– describes the test architecture, procedures and material that are used to implement the MS Interoperability Test Suite, as well as the test harness for this suite.

· ebXML MS Basic Interoperability Profile Test Suite [ebMSBIPTestSuite]– describes the interoperabilty test suite and material for Messaging Services.

1.6 Objectives and Methodology

The IIC approach is to clearly separate test suites for conformance, and test suites for interoperability. Conformance is the fundamental basis of IIC Testing. Interoperabilty testing follows conformance testing, after it is established that that two or more candidate applications are conformant.

The testing methodology supported in the ebXML MS conformance testing is "falsification testing". Falsification testing, as defined in [ConfTesting], subjects an ebXML implementation to various combinations of legal and illegal request messages, and compares the resulting response messages to a set of corresponding expected results. In ebXML application testing, the input and output are ebXML messages and their payloads. The ebXML Test Framework applies this testing methodology to all implementations, including ebXML Messaging Services, Business Process Specification Schema, Registry and Collaboration Protocol Profile and Agreement.

Development of Test Cases begins with defining Test Requirements and their associated Test Assertions. In conformance testing, Test Requirements are derived from the specification document through its conformance clause and/or from its normative content. A Test Assertion is a narrowly focused axiomatic assertion of expected behavior, given a set of set of preconditions that exercises that particular Test Requirement. In interoperability testing, Test Requirements are not derived from the specification, but are based upon agreed-upon scenarios and assertions that define interoperability between implementations.

The executable Test Case is the actual implementation of test preconditions and test assertions to verify that an implementation satisfies a Test Requirement. An implementation is said to "pass" a given Test Case if all of its sequential Test Steps area successfully executed and return a boolean value of "true". Within those Test Steps are Test Operations, which consist of message sending, message receiving, and message content verification and validation directives. Verification and validation of received message content may exercise a test precondition, or a test assertion. In all cases, these operations must evaluate to "true" (or pass) in order for the particular Test Step to be considered successful. Otherwise, the Test Step evaluates to "false" (or fail), and the implementation does not pass that Test Step, and consequently fails the Test Case and its corresponding Test Assertion.

In the case of conformance testing, if a Test Case fails, one can correctly deduce that the implementation does not conform to the specification; however, the absence of Test Case failure does not necessarily imply that it is 100% conformant. Falsification testing can only demonstrate non-conformance. Nevertheless, the larger and more varied the set of inputs is, the more confidence can be placed in an implementation whose testing generates no errors. Moreover, conformance does not necessarily indicate that an implementation is interoperable with other implementations.

In the case of interoperability testing, if a Test Case fails, one can correctly deduce that the implementation does not interoperate with the implementation it was tested with. Absence of Test Case failure in an interoperability scenario implies that the implementation is interoperable within the scope of its test requirement only. Also, interoperability does not necessarily mean that an implementation is conformant. Two implementations may interoperate while both being non-conformant with the specification.
1.6.1 Conformance Profiles

Functioinal profiles are not defined in the ebXML MS 2.0 Specification. Therefore, no specified testing profiles exist. However, the ebXML Test Framework allows for the creation of arbitrary testing profiles by anyone wishing to define a particular set of testing requirements they wish to exercise against an ebXML MS 2.0 implementation.

Profiles are created by supplying a list of unique Test Requirement IDs defined in the ebXML MS 2.0 Conformance Test Requirements document. The Test Driver reads those ID,s and executes any conformance tests that reference those Ids.
1.6.2 Related Initiatives and Contributing Parties

In accordance with the notion that interoperability testing - more than conformance testing - should be aligned with business requirements –, the IIC TC has consulted some user communities in order to establish a minimal, yet universal set of messaging interoperability requirements.

· In the United States – To be written

· In Asia – To be written

· In Europe – To be written

1.7 Concept of Operation

1.7.1 Driving the Tests

The MS conformance test harness described in this document is based on the ebXML Test Framework [ebTestFramework]. This test harness is used for implementation conformance to the specification, and has been designed to achieve the following objectives:

· The MS Comformance Test Suite is be run entirely and validated from one component of the framework, called the Test Driver. This means that all test outputs will be generated - and test conditions verified - by the Test Driver, even if the test harness involves several – possibly remote – components of the framework. Significant events occurring in such components are communicated back to the Test Driver.

The verification of each Test Case can be done at run-time by the Test Driver itself, as soon as the test case is completed. The report of the verification can be generated immediately as the Test Suite has been completed.

1.7.2 Conformance vs. Interoperability

All the tests defined in the ebXML Messaging conformance test suite must be passed prior to undergoing interoperability tests. If only from a logistic perspective, it is preferable to do as many verifications as possible during conformance testing, which typically involves a single message service handler (MSH), and is much easier to set-up than interoperability testing.

Conformance testing as a first step may likely eliminate problems that might be observed when testing for the Basic Interoperability Profile, when in fact such problems are caused by a lack of conformance to the ebMS specification.

Any MSH behavior that can be verified in a test harness that includes a single MSH (plus a test driver simulating another MSH) is relevant to conformance. Testing of such behaviors should only be found conformance test suite. MSH behaviors, which necessitate exchanges between two MSH’s for verification, should be tested in interoperability mode.

1.7.3 Conformance Test Results

Having passed a round of conformance testing only ensures conformance with the MS specification. It does not necessarily imply interoperability with other MS implementations, although the likelihood of interoperability is increased if an implementation passes all conformance tests.

There are two major reasons for this:

· Specific implementation options defined by a testing body or the participants may affect interoperability. For example, because there are different ways to implement digital signatures, this can cause a MSH to reject a message as invalid. Where possible, this documents makes recommendations on these implementation options.

· Interoperability is not transferable (or transitive). In other words, if MSH A interoperates with MSH B, and MSH B interoperates with MSH C, this does not guarantee that MSH A interoperates with MSH C (although there is a high probability that it will).

1.7.4 Conformance Testing at “Wire Level”

The test suites described here – in their current version - conformance tests at the “wire” level. This means that the combination:

{ MSH1 + communication medium(transport) + MSH2 }

is exposed to the Test Driver for evaluation of message content

This means that all MIME, SOAP and ebXML message content is exposed and available to the Test Driver for verification (content checking) and validation (structure and semantic checking).

2 Harness for MS Conformance Testing

2.1 Architecture

This section describes how to configure the Test Framework elements for conformance testing

The Test Driver MUST be able to control the inputs and outputs of an MSH at transport level. This can be achieved by using an embedded transport adapter. This adapter has transport knowledge, and can format message material into the right transport envelope. Independently from the way to achieve this, the Test Driver MUST be able to:

Create a message envelope for the transports authorized by ebXML MS 2.0, and generate fully formed messages for this transport.

Parse a message envelope for the transports authorized by ebXML MS 2.0, and extract header data from a message, as well as from the message payload in case it is an XML document.

Open a message communication channel (connection) with a remote ebXML message handler. In that case the Test Driver is said to operate in connection mode.

· The Test Driver acts as a transport end-point that can receive or send messages with an envelope consistent with the transport protocol (e.g. HTTP or SMTP). The interaction between the MSH and the Test Service is of same nature as the interaction between the MSH and an application (as the Test Service simulates an application), i.e. it involves the MSH API, and/or a callback mechanism. Figure 3 illustrates how the Test Driver operates in connection mode.
[image: image2.png]Host 1 (or test center) Host 2
————————————— - Test target e e EE T

.

! Test Framework
@ ! SR peR

.

.

.

.

.

.

ebXML Message

Service

Test

Driver
« Handler

ius

Conformancel
Interoperability
report

Figure 3 shows an example of conformance test harness with Test Driver used in connection mode.

The typical conformance test case procedure will consists of a sequence of test steps. The Test Driver will control each of these steps. These steps will be:

· Sending messages – the content of which is specified in the test case – to some action of the responder’s Test Service.

· Receiving messages from the responder’s Test Service.

· Analyzing the content of received messages, possibly in correlation with other message data, received or sent during the same test case, in order to validate the requirement of the test case.

· Reporting on the test case outcome.

Optionally (and prior to executing a test case), configure the MSH(s) for the message conversation(s) that will be generated by the Test Case(s), with CPA data. Normally, the installation of CPAs to be used for a test suite is supposed to be done prior to executing the test suite. However, the Configurator action of a Test Service may be invoked – either locally by the Test Driver on the driver party, or remotely by a message, with new CPA data. The expected effect is the dynamic creation and installation of a new CPA, on the MSH associated with this Test Service.

2.2 The Test Service and its Actions

The IIC ebXML Test Service name MUST be: urn:ebXML:iic:test

A Test Case is described as a sequence of Test Steps. These Test Steps will consist of atomic operations executed by the components of the test Framework, e.g. sending a message, verifying a condition on a received message, etc. Most operations about messages are supported by the Test Service component, described in the Test Framework specification.

2.2.1 Test Service Actions

The standard test actions are completely described in the ebXML Test Framework specification [ebTestFramework]. They include:

· Mute action

· Dummy action

· Reflector action

· Initiator action

· PayloadVerify action

· ErrorAppNotify action
· ErrorURLNotify action
· Configurator action
3 The MS Conformance Test Suite

3.1 Overview

The MS Conformance Test Suite consists of an Abstract Conformance Test Suite, an Executable Conformance Test Suite, and accompanying Test Material (MSH Configuration tables and Message Payloads).

The MS Conformance Test Suite verifies MSH conformance in the following areas:

· Message Packaging

· Core Extension Elements

· Error Handling

· Sync Reply

· Reliable Messaging

· Message Ordering

· Security and Communication Channels

· Message Status

· Ping

3.2 Configuration of the Candidate MSH

A candidate MSH is configured for testing through the use of the CPAId reference present in an incoming message. There are 13 CPAIds (and 13 unique MSH configurations) identified for this Conformance Test Suite. These configurations are defined (as a set of instance tables), in section 4.1.2 of this document.

The recommended CPA parameter values in table 1 below reflect the most common (or expected) options, or those recommended by the Messaging specification [ebMS]. This representative set includes a subset of configuration options for an ebMS implementation and a subset of relevant attributes of a Collaboration Protocol Agreement (CPA) between the partners or endpoints. In addition, some parameters fall outside the scope of a CPA, but are nevertheless critical messaging features that must be set to correctly run a test or a test suite. The table contains a column with an XPath reference to the location within a CPA that a parameter refers (if it is defined in a CPA)
3.2.1 The Candidate MSH Configuration Parameter Table
The parameters below identify the MSH configuration for a single Test Case, or a group of Test Cases.

They are represented in a Test Case throught the “CPAId” element value expressed in a message. These parameters can be used to “profile” an MSH configuration under test, and provide a context for test reporting. In addition, such a set of parameters may (in a future versions of the ebXML Test Framework Specification) be used as metadata to “tag” conformance or interoperability tests, and permit filtering of test cases based upon these parameter values. Currently, these parameters serve only as an MSH configuration context under which tests may be executed.

	Name
	Commonly Used Values
	Equivalent CPA field(s) (using XPath notation)

	Transport Protocol
	HTTP 1.1 | SMTP
	CollaborationProtocolAgreement/PartyInfo/Transport//TransportProtocol

	Canonicalization Algorithm
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	N/A – explicitly defined in individual message declaration

	Signature Algorithm
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	 CollaborationProtocolAgreement/PartyInfo/DocExchange//SenderNonRepudiation/SignatureAlgorithm

	Signed Message
	true|false
	CollaborationProtocolAgreement/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isNonRepudiationRequired

	Signed Acknowledgment
	true|false
	CollaborationProtocolAgreement/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isNonRepudiationReceiptRequired

	Confidentiality (not required for Conformance testing)
	none | transient | persistent | transient-and-persistent
	CollaborationProtocolAgreement/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isConfidential

	Authentication (not required for Conformance testing)
	none | transient | persistent | transient-and-persistent
	CollaborationProtocolAgreement/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isAuthenticated

	Retries
	An integer value
	CollaborationProtocolAgreement/PartyInfo/DocExchange//ReliableMessaging/Retries

	RetryInterval
	PT30S (a typical value)
	CollaborationProtocolAgreement/PartyInfo/DocExchange//ReliableMessaging/RetryInterval

	AckRequested
	always | never | perMessage
	CollaborationProtocolAgreement/PartyInfo/DeliveryChannel/AckRequested

	PersistDuration

	P10D (a typical value)

	CollaborationProtocolAgreement/PartyInfo/DocExchange// ReliableMessaging/ReliableMessaging/PersistDuration

	duplicateElimination
	always | never | perMessage
	CollaborationProtocolAgreement/PartyInfo/DeliveryChannel/MessagingCharacteristics/@duplicateElimination

	MessageOrder Semantics
	Guaranteed|NotGuaranteed
	CollaborationProtocolAgreement/PartyInfo/DocExchange// ReliableMessaging/MessageOrderSemantics

	HTTP Timeouts

	PT5M (a typical value)
	N/A – explicitly defined in Test Suite ConfigurationGroup XML

	syncReplyMode

	mshSignalsOnly | responseOnly | signalsAndResponse | signalsOnly | none
	CollaborationProtocolAgreement/PartyInfo/DeliveryChannel/syncReplyMode

	ErrorURL
	URL of driver party MSH
	CollaborationProtocolAgreement/PartyInfo/Transport/Endpoint/uri

	NotifyURL
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	N/A –explicitly defined in Test Suite ConfigurationGroup XML

Table 1 provides a list of CPA parameters (and additional MSH configuration parameters) for configuration of a candidate MSH

3.3 Abstract MS Conformance Test Cases

Abstract test cases represent the semantic requirements necessary to generate actual, executable test cases. The following abstract Test Cases are specified using test material (MSH configuration parameters described above and message payloads) in a sequence of Test Steps. The format of the Test Cases described below can not be used by the ebXML Test Framework to execute the tests (their executable versions exist in [ebXMLExeConfTestSuite].

3.3.1 Test Case Material

This Abstract Test Case Specification provides the necessary information for a test developer to write a an executable conformance test suite against the listed Requirement ID in the table. The Test Cases described in the table below reference test material in the form of:

· MSH configuration settings
· MIME, SOAP and ebXML message content

· Run time message parameters

· Test Driver configuration parameters

· Message payload content

Candidate MSH configuration settings are represented in this test suite by the CPAId of a MessageHeader. The CPAId represents a particular MSH configuration that MUST be used by the candidate MSH in order to successfully run a particular Test Case. The 13 MSH configuration parameter groups referenced by this Test Suite are described in section 4.1.2 of this specification.

MIME, SOAP and ebXML message content is represented in the Abstract Message Content column in the table 2. The message content appears as an XPath argument to a Test Step operation. In all operations, whether they be sending, receiving, verifying or validating message content, the XPath expression represents an expected message, the XPath expression represents the required message or message fragment to be sent, received or examined. The syntax and semantic rules for the XPath expression conform to the [XPath] specification.

Run time message parameters are parameter values “known” by the Test Driver at run time, and are “inserted” by the Test Driver into messages in their appropriate location prior to message transmission, and can be used in XPath expressions to filter the content of received messages. For illustration purposes, these parameters are preceded witih a ‘$’ symbol in the Abstract Message Content. are either generated by the Test Driver during Test Case Execution, or are globally defined in a It should be noted that ANY of the parameters below may be “overriden” through explicit declaration of a “user-defined” value in an XPath statement.

	Parameter Name
	Description
	Set in

ConfigurationGroup
	Dynamically set

by Test Driver

	$CPAId
	Reference to one of 13 CPA configurations for a candidate MSH
	Yes
	

	$ConversationId
	Dynamic
	
	Yes

	$Service
	urn:iic:test
	Yes
	

	$Action
	
	Yes
	

	$SenderParty
	The From/PartyId message value
	Yes
	

	$ReceiverParty
	The To/PartyId message value
	Yes
	

	$MessageId
	As defined in [ebMS]
	
	Yes

	$RefToMessageId
	As defined in [ebMS]
	
	Yes

	$PayloadDigests
	Set of name/value pairs corresponding to content-id/digest value for payloads known to Test Driver
	Yes
	

	$ConfigurationItem
	Wildcard name/value pair for arbitrary inclusion in XPath expressions
	Yes
	

Table 2 provides a list of parameters “known” to a Test Driver for construction or examination of message content
Additional Test Driver Specific Parameters are defined as ConfigurationGroup content. Thes parameters are specific only to Test Driver configuration and execution. They include:

	Parameter Name
	Description
	Set in

ConfigurationGroup
	Dynamically set

by Test Driver

	$Mode
	Operational parameter used to switch between “connection” or “reporting”
	Yes
	

	$TransportProtocol
	HTTP 1.1 or SMTP
	Yes
	

	$StepDelay
	Time between execution of Test Steps
	Yes
	

Table 3 provides a list of parameters “known” to a Test Driver for operation of the Test Driver only for the purpose of Test Driver operation
4 The ebXML MS 2.0 Abstract Conformance Test Suite

The Test Cases in this Abstract Test Suite are grouped according to functionality. The abstract Test Cases below cover the following ebXML MS functional categories (with test case numbers):

· Message Packaging (2-30)

· Core Extension Elements (31-51)

· Error Handling (52-69)

· Sync Reply (70-72)

· Reliable Messaging (73-145)

· Message Ordering (146-157)

· Security and Communication Channels (158-181)

· Message Status (182-195)

· Ping (196-198)

The Abstract Test Suite does not necessarily reflect the content of the Executable Test Suite. Some tests can be described in an abstract sense, but due to limitations in the ebXML Test Framework, or due to the broad scope of a testing requirement, the actual Executable Test Cases may not exist. The actual Executable Test Requirement Coverage of ebXML MS, as defined in section 5.4 of [ebTestFramework] is available as a separate document for examination in [ebMSTestReqCoverage].

4.1 The ebXML MS 2.0 Abstract Test Cases

	Test Object
	ID
	Requirement
	Description
	Abstract Message Content

	
	
	
	
	

	Test Case
	testcase_2
	funreq_id_2
	SOAP message must be in root part of MIME message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that an SOAP Message is found in the root part of the MIME message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelop])

	Test Case
	testcase_3
	funreq_id_3
	All MIME parts must have a CID or Content-Location
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with manifest reference to payload
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Reflector’]] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:payload_1']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:payload_1'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Check if MIME Content-type is multipart/mime or not text/xml
	Verify_Received_Message_Filter(/mime:Message[@Content-Type = 'multipart/mime' or @Content-Type != 'text/xml'])

	Assertion
	
	
	Verify that CID or Content-Location exists for both Message Package MIME part
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1] and (@Content-Location or @contentId)])

	Assertion
	
	
	Verify that CID or Content-Location exists for Payload MIME part
	Verify_Received_Message_Filter(/mime:Message [mime:MessageContainer[2] and (@Content-Location or @contentId)])

	Test Case
	testcase_4
	funreq_id_4
	Message package Content-Type is text/xml
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify message package Content-type
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[0] and (@Content-Type = 'text/xml)')])

	Test Case
	testcase_5
	funreq_id_5
	Start attribute present in MIME message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Check for presence of 'start' attribute in MIME message
	Verify_Received_Message_Filter(/mime:Message[@start])

	Test Case
	testcase_6
	funreq_id_6
	Process non-multipart messages
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[@mime:contentType = 'text/xml' mime:MessageContainer[2] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Check for a returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader])

	Assertion
	
	
	Verify that no Error messages were generated
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[not eb:ErrorList]])

	Test Case
	testcase_7
	funreq_id_7
	Process multipart/no payload messages
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[@mime:contentType = 'multipart-related' mime:MessageContainer[2] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Check for a returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader])

	Assertion
	
	
	Verify that no Error messages were generated
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[not eb:ErrorList]])

	Test Case
	testcase_8
	funreq_id_8
	Soap message package Content-Type is 'text/xml'
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify message package Content-type is 'text/xml'
	Verify_Received_Message_Filter(/mime:Messag[mime:MessageContainer[1][@Content-Type = 'text/xml']])

	Test Case
	testcase_10
	funreq_id_10
	Header container charset is equal to SOAP message encoding
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Check if header container charset is present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/@charset])

	Precondition
	
	
	Check if SOAP encoding attribute is present
	Verify_Received_Message_Filter($SOAPEncoding!='')

	Assertion
	
	
	Compare header container charset and SOAP message encoding values
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1][@charset = $SOAPEncoding]])

	Test Case
	testcase_12
	funreq_id_12
	Payloads should be enclosed in MIME container
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Reflector’]] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:payload_1']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:payload_1'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicandeb:ConversationId=$ConversationId and eb:RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Check for returned payload
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Body/eb:Manifest/eb:Reference[@xlink:href='cid:payload_1']])

	Test Case
	testcase_13
	funreq_id_13
	If no manifest entry, no MIME payloads
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify no payloads are present
	Verify_Received_Message_Filter(/mime:Message[not (mime:MessageContainer[2])])

	Test Case
	testcase_14
	funreq_id_14
	Must be a matching payload for each manifest reference
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Reflector’]] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:payload_1']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:payload_1'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify a Manifest reference to payload
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[2]/soap:Envelope/soap:Header/eb:Manifest/eb:Reference[@xlink:href='cid:payload_1']])

	Test Case
	testcase_15
	funreq_id_15
	Process unrecognized MIME headers
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with an unrecognized header included
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Reflector’]] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:payload_1']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:payload_1' /ebTest:MimeHeader ='wildcard' /ebTest:MimeHeaderValue ='bar'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify a Manifest reference to payload
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[2]/soap:Envelope/soap:Header/eb:Manifest/eb:Reference[@xlink:href='cid:payload_1']])

	Test Case
	testcase_19
	funreq_id_19
	ebXML extension elements properly namespace qualified
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that extension elements are properly namespace qualified
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/*[namespace-uri()='http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd']])

	Test Case
	testcase_20
	funreq_id_20
	SOAP Envelope elements namespace qualified
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that SOAP envelope element is properly namespace qualified
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope[namespace-uri()='http://schemas.xmlsoap.org/soap/envelope/']])

	Test Case
	testcase_21
	funreq_id_21
	SOAP Header and Body attributes contain correct schemaLocation
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that schemaLocation is correct
	Verify_Received_Message_Filter($SOAPHeaderSchemaLocation="http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd and $SOAPBodySchemaLocation="http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd)

	Test Case
	testcase_22
	funreq_id_22
	SOAP Header element contains proper namespace
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that SOAP Header element is properly namespace qualified
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header[namespace-uri()='http://schemas.xmlsoap.org/soap/envelope/']])

	Test Case
	testcase_23
	funreq_id_23
	SOAP Body element contains proper namespace
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that SOAP Body element is properly namespace qualified
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Body[namespace-uri()='http://schemas.xmlsoap.org/soap/envelope/']])

	Test Case
	testcase_24
	funreq_id_
	MessageHeader element must be in SOAP Header
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that a MessageHeader element is present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader])

	Test Case
	testcase_26
	funreq_id_26
	Ignore wildcard elements
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with additional wildcard element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Check for a returned message
	Verify_Received_Message_Filter(/mime:Message)

	Assertion
	
	
	Verify that no Error messages were generated
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[not eb:ErrorList]])

	Test Case
	testcase_27
	funreq_id_27
	ID attribute is assigned to each ebXML extension element
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that an ID attribute exists for extension elements
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/*[@id]])

	Test Case
	testcase_28
	funreq_id_28
	MessageHeader version attribute is '2.0'
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that correct version is present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[@eb:version='2.0']])

	Test Case
	testcase_29
	funreq_id_29
	MustUnderstand attribute set to correct namespace
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that a 'mustUnderstand' attribute is present in SOAP Header extension elements and it is properly namespace qualified
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/@mustUnderstand[namespace-uri='http://schemas.xmlsoap.org/soap/envelope']])

	Test Case
	testcase_30
	funreq_id_30
	Not understood SOAP Header extension elements are rejected
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	MessageHeader mustUnderstand set to 'true'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’ eb:ExtensionLement [@soap:mustUnderstand = 'true']]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Test if Error is generated
	Verify_Received_Message_Filter(mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Body/soap:Fault/soap:Code[soap:Value='MustUnderstand']])

	Test Case
	testcase_32
	funreq_id_32
	Generate error when PartyId is not a URI and type is not defined
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Load message template and To PartyId set to 'null'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’ eb:To]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that Error message is generated
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'Inconsistent' and @eb:severity = 'Error']])

	Test Case
	testcase_33
	funreq_id_33
	If type is present, it is a valid URI
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Test if type attribute is present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:To/eb:PartyId[@eb:type]])

	Assertion
	
	
	Validate 'type' attribute
	Validate_Received_Message_Filter(/mime:Message/mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:To/eb:PartyId/eb:@type)

	Test Case
	testcase_34
	funreq_id_34
	If type is not present, PartyId is a valid URI
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Test if type attribute is NOT present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:To/eb:PartyId[not (@eb:type)]])

	Assertion
	
	
	Test if PartyId is a URI
	Validate_Received_Message_Filter(/mime:Message/mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:To/eb:PartyId)

	Test Case
	testcase_35
	funreq_id_35
	If CPAId cannot be resolved, respond with ValueNotRecognized Error
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Load message template and CPAId set to 'null'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ eb:CPAId=’null’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that Error is returned
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'ValueNotRecognized' and @eb:severity = 'Error']])

	Test Case
	testcase_36
	funreq_id_36
	ConversationId is always present
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic Dummy message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that Conversation Id is not present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:ConversationId])

	Test Case
	testcase_38
	funreq_id_37
	If type not set, and Service is not a URI, generate Inconsistent Error
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an Service that is not a URI
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’ ebTest:Service]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that Error is returned
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'Inconsistent' and @eb:severity = 'Error']])

	Test Case
	testcase_40
	funreq_id_40
	If Service and Action not recognized, generate Error
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message with unrecognized Service and Action
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_BasicebTest:Service and eb:Action ='null']]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that Error is returned
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'ValueNotRecognized' and @eb:severity = 'Error']])

	Test Case
	testcase_41
	funreq_id_41
	Generate RefToMessageId correctly
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Check for a returned message
	Verify_Received_Message_Filter(/mime:Message)

	Test Case
	testcase_42
	funreq_id_42
	Generate no RefToMessageId if first message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Initiate a message from the candidate MSH
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action ='Initiator']] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:initiator_message1']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:initiator_message1'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$InitConversationId]])

	Assertion
	
	
	Verify that a RefToMessageId element is not present in message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:MessageData[not (RefToMessageId)]])

	Test Case
	testcase_43
	funreq_id_43
	Generate RefToMessageId for Error
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Load message and erroneous To PartyId value
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’ eb:To]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that a RefToMessageId element is generated for Error
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList and eb:MessageHeader[eb:MessageData/RefToMessageId=$RefToMessageId]])

	Test Case
	testcase_44
	funreq_id_44
	Generate TimeToLiveExpired Error
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Load message template and an expired TimeToLive
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’ eb:MessageData]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that TimeToLiveExpired Error is returned
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'TimeToLiveExpired' and @eb:severity = 'Error']])

	Test Case
	testcase_45
	funreq_id_45
	TimeToLive conforms to schema DateTime format
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that a TimeToLive element is valid
	Validate_Received_Message_Filter(//eb:TimeToLive)

	Test Case
	testcase_48
	funreq_id_48
	Generate Error for missing payload
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Load message template and a payload CID
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Reflector’]] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:payload_1']]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that MIMEProblem Error is returned
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:ErrorList/eb:Error/@eb:errorCode = 'MIMEProblem' and @eb:severity = 'Error']])

	Test Case
	testcase_49
	funreq_id_49
	Generate Error for unresolvable CID
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an unresolvable Manifest Reference
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Reflector’]] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:payload_1']/eb:Reference[@xlink:href = 'cid:null']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:payload_1'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that MIMEProblem Error is returned
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'MIMEProblem' and eb:Error/@eb:severity = 'Error']])

	Test Case
	testcase_50
	funreq_id_50
	Generate resolvable CID in Manifest
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send message with payload
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Reflector’]] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:payload_1']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:payload_1' payloadRef=" payload_1"])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that CID or Content-Location exists for MIME part
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Body/eb:Manifest/eb:Reference[@xlink:href='cid:payload_1']])

	Test Case
	testcase_51
	funreq_id_51
	Discard unreferenced payloads
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with no Manifest Reference
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:payload_1' payloadRef=" payload_1"])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Check for a returned message
	Verify_Received_Message_Filter(/mime:Message)

	Assertion
	
	
	Verify that no Error messages were generated
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[not eb:ErrorList]])

	Test Case
	testcase_57
	funreq_id_53
	Generate compliant SOAP faults
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with unresolvable To/PartyId
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’ eb:To]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Verify that ErrorList highestSeverity is 'Error'
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList[@eb:highestServerity='Error']])

	Precondition
	
	
	Verify SOAP Fault is present
	Validate_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Body/soap:Fault]])

	Assertion
	
	
	Validate SOAP content
	Validate_Received_Message_Filter(/mime:Message/mime:MessageContainer[1]/soap:Envelope/soap:Body/soap:Fault)

	Test Case
	testcase_54
	funreq_id_54
	Do not generate warnings as SOAP faults
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message with AckRequested element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Verify that Error is returned after candidate failure to receive acknowledgment
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'DeliveryFailure' and eb:Error/@eb:severity = 'Warning']])

	Assertion
	
	
	Verify that no SOAP fault is generated for warnings
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Body[not (soap:Fault)]])

	Test Case
	testcase_57
	funreq_id_57
	Generate correct highestSeverity for Errorlist
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with unresolvable To/PartyId
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’ eb:To]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that ErrorList highestSeverity is 'Error'
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList[@eb:highestServerity='Error']])

	Test Case
	testcase_58
	funreq_id_58
	Error codeContext is a URI
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Load message template and a payload CID
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action ='null']]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Test if an Error element is present
	Verify_Received_Message_Filter(/mime:Message/mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:ErrorList/eb:Error)

	Assertion
	
	
	Test if codeContext attribute is present
	Validate_Received_Message_Filter(/mime:Message/mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:ErrorList/eb:Error/@eb:codeContext)

	Test Case
	testcase_59
	funreq_id_59
	Namespace for codeContext is correct
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with unresolvable To/PartyId
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’ eb:To]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Test if codeContext attribute is present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:ErrorList/eb:Error])

	Precondition
	
	
	Verify that namespace is default value
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:ErrorList/eb:Error[@eb:codeContext="urn:oasis:names:tc:ebxml-msg:service:errors"]])

	Test Case
	testcase_60
	funreq_id_60
	Generate correct severity values
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with unresolvable To/PartyId
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’ eb:To]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that severity is 'Error'
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:severity='Error']])

	Test Case
	testcase_64
	funreq_id_64
	If error reporting location is known, send error message back to originating MSH
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send message with unknown 'From' partyId to ErrorAppNotify action
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basiceb:From and eb:Action ='ErrorAppNotify']]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify returned error
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error])

	Test Case
	testcase_65
	funreq_id_65
	If reporting location unknown, log Error
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send message with unknown 'From' partyId to ErrorAppNotify action
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ eb:From/eb:PartyId=’null’ eb:CPAId=‘mshc_1’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_NoErrorLocation' and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Test Case
	testcase_66
	funreq_id_66
	If ErrorURI is implied in CPA, use it
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send message with unknown 'To' partyId to ErrorAppNotify action, and unknown From PartyId
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic and eb:To/eb:PartyId=’null’ and eb:Action ='ErrorAppNotify']]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify returned Error message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error])

	Test Case
	testcase_67
	funreq_id_67
	If reporting location not specified in CPA, use From Party location in message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send message with unknown Action name
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action ='null']]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_NoErrorLocation' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify returned Error message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error])

	Test Case
	testcase_67
	funreq_id_68
	Test for corrrect Service and Action of an independent Errorlist
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send message with unknown Action name
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action ='null']]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Verify returned Error message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error])

	Assertion
	
	
	Verify Service and Action values
	Verify_Received_Message_Filter(/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Service="urn:oasis:names:tc:ebxml-msg:service" and eb:Action="MessageError"])

	Test Case
	testcase_70
	funreq_id_70
	Keep connection open for SyncReply
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SyncReplySignalsAndResponse’] and eb:SyncReply]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and and eb:CPAId=‘mshc_SyncReplySignalsAndResponse’and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Check for a returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader])

	Test Case
	testcase_71
	funreq_id_71
	Inconsistent CPA and message SyncReply
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send a message with a SyncReply element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:SyncReply]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that an Error is returned
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList[eb:Error/@eb:errorCode = 'Inconsistent' and @eb:severity = 'Error']])

	Test Case
	testcase_72
	funreq_id_72
	SyncReply must not be present if CPA syncReplyMode is set to 'none'
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send message with CPA syncReplyMode set to 'none
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:SyncReply]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that no SyncReply element is returned in message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:SyncReply[count() = 0]])

	Test Case
	testcase_73
	funreq_id_73
	Resent until Acknowledgment is received
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Candidate initiates conversation with AckRequest
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action =‘ Initiator’] and eb:AckRequested] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:initiator_AckRequested']/eb:FileName]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:initiator_2'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_Basic']])

	Assertion
	
	
	Verify number of AckRequests sent
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:AckRequested][count()=2])

	Test Case
	testcase_76
	funreq_id_76
	Resend until delivery failure
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message with AckRequested element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘ mshc_Basic’’ and eb:Action=‘Dummy’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘ mshc_Basic’’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Test for multiple retries
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:AckRequested][count() > 1])

	Assertion
	
	
	Verify returned error
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'DeliveryFailure' and @eb:severity = 'Warning']])

	Test Case
	testcase_74
	funreq_id_74
	Resend Acknowledgment until maximum retry limit reached
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message with AckRequested element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=’mshc_Basic’’ and eb:AckRequested] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘ mshc_Basic’’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify maximum retries were sent
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:AckRequested][count() = $MaxRetries]])

	Test Case
	testcase_75
	funreq_id_75
	Resume after Acknowledgment
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Candidate initiates conversation with AckRequest
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action =‘ Initiator’] and eb:AckRequested] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:initiator_2']/eb:FileName]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:initiator_2'])

	Test Step
	2
	
	Send message to MSH
	

	
	
	
	Send Acknowledgment
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘ mshc_Basic’’ and eb:Action ='Mute' and eb:Acknowledgment]]]])

	Test Step
	3
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:AckRequested]])

	Assertion
	
	
	Verify no new AckRequests were sent
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:AckRequested][count()=2])

	Test Case
	testcase_76
	funreq_id_76
	Resend until delivery failure
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Candidate initiates conversation with AckRequest
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId eb:CPAId=‘mshc_Basic’ and eb:Action =‘ Initiator’] and eb:AckRequested] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:initiator_2']/eb:FileName]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:initiator_2'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Test for multiple retries
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:AckRequested][count() > 1])

	Assertion
	
	
	Verify returned error
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'DeliveryFailure' and @eb:severity = 'Warning']])

	Test Case
	testcase_90
	funreq_id_90
	Target AckRequested to NextMSH or ToParty
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Initiate a message with AckRequested element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘ mshc_Basic’’ and eb:Action =‘ Initiator’] and eb:AckRequested] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:initiator_3']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:initiator_3'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:AckRequested]])

	Assertion
	
	
	Verify AckRequested target in message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:AckRequested[soap:Actor=$TestDriver or soap:Actor=$NextMSH]])

	Test Step
	3
	
	Send message to MSH
	

	
	
	
	Send Acknowledgment to Mute action
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action =' Mute'] and eb:Acknowledgment]]])

	Test Case
	testcase_91:1
	funreq_id_91
	Return unsigned Acknowledgment, no Signature in CPA
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested unsigned element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ eb:And eb:CPAId=‘mshc_Basic’] and eb:AckRequested @eb:signed = 'false']]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_AckRequested’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify returned Acknowledgment is not signed
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[not ds:Signature and eb:Acknowledgment/@eb:signed='false']])

	Test Case
	testcase_91:2
	funreq_id_91
	Return unsigned Acknowledgment, Signature present in CPA
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested signed element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ eb:And eb:CPAId=‘mshc_Basic’] and eb:AckRequested @eb:signed = 'true']]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedAck’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify returned Error message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'Inconsistent' and eb:ErrorList/eb:Error/@eb:severity = 'Warning']])

	Test Case
	testcase_92
	funreq_id_92
	Return unsigned Acknowledgment, Signature present in CPA
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Request unsigned Acknowledgment
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:Acknowledgment]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedAck’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify returned Acknowledgment is not signed
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[not ds:Signature]] and eb:Acknowledgment/@eb:signed='false']])

	Test Case
	testcase_93
	funreq_id_93
	Return Warning if Signature not supported and consistent with CPA
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested signed element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’] and eb:AckRequested @eb:signed = 'true']]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify returned Error message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'Inconsistent' and eb:ErrorList/eb:Error/@eb:severity = 'Warning']])

	Test Case
	testcase_95
	funreq_id_95
	Return Acknowledgment to From party
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested unsigned element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested @eb:signed = 'false']]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_AckRequested’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that message contains correct name in To party
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:To[eb:PartyebTest:id=$FromPartyId]])

	Test Case
	testcase_96
	funreq_id_96
	No Payload present with AckRequested
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message with AckRequested element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=’mshc_Basic’] and eb:AckRequested @eb:signed = 'false']]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘ mshc_Basic’’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify no AckRequested element is present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[not (eb:AckRequested)]])

	Assertion
	
	
	Verify no payload is present
	Verify_Received_Message_Filter(/mime:Message[not (mime:MessageContainer[2])])

	Test Case
	testcase_97
	funreq_id_97
	No AckRequested with ErrorList
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message to generate an Inconsistent Error message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ ebTest:Serviceand eb:CPAId=‘mshc_Basic’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_AckRequested’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Verify an ErrorList is present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList])

	Assertion
	
	
	Verify no AckRequested element is present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[not eb:(AckRequested)]])

	Test Case
	testcase_98
	funreq_id_98
	Default target is To Party for Acknowledgment if no SOAP actor present
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_AckRequested’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Verify SOAP actor attribute is not present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header[not (@soap:actor)]])

	Assertion
	
	
	Verify To PartyId is the Test Driver
	Verify_Received_Message_Filter(mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:To/[eb:PartyebTest:id=$FromParty]])

	Test Case
	testcase_99
	funreq_id_99
	SOAP actor value is same as AckRequested actor attribute value
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_AckRequested’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Verify SOAP actor attribute is present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header[@soap:actor]])

	Assertion
	
	
	Verify that the actor attribute is identical
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment[@soap:actor=$actor]])

	Test Case
	testcase_100
	funreq_id_100
	Test valid TimeStamp format
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Validate messageTimestamp
	Validate_Received_Message_Filter(//eb:Timestamp)

	Test Case
	testcase_101
	funreq_id_101
	RefToMessageId must reference appropriate message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that a message was found that points to previous message
	Verify_Received_Message_Filter(/mime:Message)

	Test Case
	testcase_102
	funreq_id_102
	Acknowledgment From PartyId value is Candidate MSH
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=’mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘ mshc_Basic’’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that From PartyId is correct'
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment/From[PartyebTest:id=$ToPartyId]])

	Test Case
	testcase_103
	funreq_id_103
	From PartyID of MessageHeader used if not present in Acknowledgment
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_AckRequested’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Verify that From PartyId is not present in Acknowledgment'
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment/From[not(PartyId)]])

	Assertion
	
	
	Verify that From PartyId is correct'
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/From[PartyebTest:id=$ToPartyId]])

	Test Case
	testcase_104
	funreq_id_104
	Reference element(s) present in a signed Acknowledgment
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested message with signed = 'true'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=’mshc_Basic’] and eb:AckRequested @eb:signed = 'true']]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘ mshc_Basic’’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that a Reference element is present'
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment/eb:Reference])

	Test Case
	testcase_105
	funreq_id_105
	Reference element(s) are correctly namespace qualified
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested message with signed = 'true'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=’mshc_SignedAck’] and eb:AckRequested @eb:signed = 'true']]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘ mshc_SignedAck’’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify namespace of Reference element(s)'
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment/eb:Reference[namespace-uri()='http://www.w3.org/2000/09/xmldsig#']])

	Test Case
	testcase_107
	funreq_id_107
	Ignore multiple Acknowledgments of same message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Candidate initiates conversation with AckRequest
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘ mshc_Basic’’ and eb:Action =‘ Initiator’] and eb:AckRequested] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:initiator_AckRequested']/eb:FileName]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:initiator_2'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_AckRequested’]])

	Assertion
	
	
	Verify AckRequested elemente is present'
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:AckRequested])

	Test Step
	3
	
	Send message to MSH
	

	
	
	
	Send 3 Acknowledgment messages
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:Acknowledgment]]])

	Test Step
	4
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_AckRequested’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Test if Error is generated
	Verify_Received_Message_Filter(mime:Message/mime:MessageContainer[1]/soap:Envelope/soap:Header[not eb:ErrorList])

	Test Case
	testcase_108
	funreq_id_108
	If no Errors or Payload, Acknowledgment uses default Service/Action
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message with AckRequested element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=’mshc_”AckRequested’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘ mshc_Basic’’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Verify no payload is present
	Verify_Received_Message_Filter(/mime:Message[not(mime:MessageContainer[2])])

	Precondition
	
	
	Verify no ErrorList is present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header[not(eb:ErrorList)]])

	Assertion
	
	
	Verify default Service is used
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Service='urn:oasis:names:tc:ebxml-msg:service']])

	Assertion
	
	
	Verify default Service is used
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action='Acknowledgment']])

	Test Case
	testcase_109
	funreq_id_109
	CPA DuplicateElimination requires presence in messages
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with CPA having DuplicateElimination set to 'true'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=’mshc_DuplicationAlways’ and eb:DuplicateElimination]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_DuplicateElilmination_Always' and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that DuplicateElimination element is in returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:DuplicateElimination]])

	Test Case
	testcase_110
	funreq_id_110
	CPA DuplicateElimination set to 'never' means no presence in messages
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with CPA having DuplicateElimination set to 'never'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=’mshc_DupliateElimination_Never’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘ mshc_Basic_Never’’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that DuplicateElimination element is not in returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[not(eb:DuplicateElimination)]])

	Test Case
	testcase_111
	funreq_id_111
	CPA DuplicateElimination set to 'per message' in CPA means presence is variable per message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with DuplicateElimination element present and CPA DuplicateElimination set to 'per message'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_DuplicateEliminationPerMessage’='mshc_BasicPerMessage' and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that no 'Inconsistent' Error is present in returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Errorlist/eb:Error[not(@errorCode='Inconsistent')]])

	Test Case
	testcase_112
	funreq_id_112
	CPA DuplicateElimination set to 'always' means presence is required always, else generate Inconsistent Error
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with NO DuplicateElimination element present and CPA DuplicateElimination set to 'always'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_DuplicateEliminationAlways’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_DuplicateEliminationAlways’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that 'Inconsistent' Error is present in returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Errorlist/eb:Error[@errorCode='Inconsistent']])

	Test Case
	testcase_113
	funreq_id_113
	CPA DuplicateElimination set to 'never' means Inconsistent Error if present
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with NO DuplicateElimination element present and CPA DuplicateElimination set to 'never'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_DuplicateEliminationNever’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_DuplicateEliminationNever’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that 'Inconsistent' Error is present in returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Errorlist/eb:Error[@errorCode='Inconsistent']])

	Test Case
	testcase_114
	funreq_id_114
	CPA DuplicateElimination present, message is presented 'at-most-once'
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with DuplicateElimination element present and CPA DuplicateElimination set to 'always'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’ and eb:DuplicateElimination]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Verify that no 'Inconsistent' Error is present in returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Errorlist/eb:Error[@errorCode='Inconsistent']])

	Assertion
	
	
	Verify that a Dummy message is returned
	Verify_Received_Message_Filter(/mime:Message)

	Test Step
	3
	
	Send message to MSH
	

	
	
	
	Repeat Step 1'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’ and eb:DuplicateElimination]]]])

	Test Step
	4
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that a Dummy message is NOT returned
	Verify_Received_Message_Filter([not mime:Message])

	Test Case
	testcase_117
	funreq_id_117
	CPA DuplicateElimination is 'always', but DuplicateElimination element not present in message, result is Inconsistent Error
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with NO DuplicateElimination element present and CPA DuplicateElimination set to 'always'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_DuplicateEliminationAlways’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_DuplicateEliminationAlways’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that an 'Inconsistent' Error is present in returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Errorlist/eb:Error[@errorCode='Inconsistent']])

	Test Case
	testcase_119
	funreq_id_119
	Resend until maximum retry limit reached
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message to Dummy action
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify maximum retries were sent
	Verify_Received_Message_Filter(/mime:Message][count() = $MaxRetries])

	Test Case
	testcase_120
	funreq_id_120
	Verify minimum time between resends
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send AckRequest to Dummy action
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’ and eb:AckRequested]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId] and ../eb:AckRequested]])

	Assertion
	
	
	Verify minimum time between resends
	Verify_Received_Message_Filter([/mime:Message[last()]/mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:MessageData/eb:Timestamp - mime:Message[last()-1]/mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:MessageData/eb:Timestamp >= $RetryInterval])

	Test Case
	testcase_121
	funreq_id_121
	Verify TimeToLive
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message to Dummy action
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and PAId=‘mshc_Basic and eb:AckRequested]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId] and ../AckRequested]])

	Assertion
	
	
	Verify time delta between first and last message is less than TimeToLive
	Verify_Received_Message_Filter([/mime:Message[last()]/mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:MessageData/eb:Timestamp - mime:Message[1]/mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:MessageData/eb:Timestamp <= $TimeToLive])

	Test Case
	testcase_122
	funreq_id_122
	Verify Once and Only Once
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message with element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify only one Dummy message is received
	Verify_Received_Message_Filter(/mime:Message[count()=1])

	Test Case
	testcase_123
	funreq_id_123
	Verify Acknowledgment with PersistDuration
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send Dummy message with AckRequested element and PersistDuration in CPA
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId] and eb:Acknowledgment]])

	Assertion
	
	
	Verify Acknowledgment is received
	Verify_Received_Message_Filter(/mime:Message)

	Test Case
	testcase_124
	funreq_id_124
	Verify PersistDuration expiration
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send Dummy message 5 times with PersistDuration set to '0'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_PersistDurationExpired’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_PersistDurationExpired' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify five reponses
	Verify_Received_Message_Filter(/mime:Message[count()=5])

	Test Case
	testcase_125
	funreq_id_125
	Verify DeliveryFailureError upon PersistDuration expiration
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic Dummy message with PersistDuration set to '0'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_PersistDurationExpired’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_PersistDurationExpired' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId] and eb:AckRequested]])

	Assertion
	
	
	Verify DeliveryFailure Error
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'DeliveryFailure' and @eb:severity = 'Error']])

	Test Case
	testcase_126
	funreq_id_126
	Verify TimeStamp + PersistDuration greater than TimeToLive
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send Dummy message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId] and eb:AckRequested]])

	Assertion
	
	
	Verify PersistDuration plus Timestamp is greater than TimeToLive
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:MessageData[TimeStamp + $PersistDuration > TimeToLive]])

	Test Case
	testcase_127
	funreq_id_127
	SyncReplyMode is ignored for asyncronous communications
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SyncReplySignalsAndResponse’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SyncReplySignalsAndResponse’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that a message is returned in asyncronous fashion
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope])

	Test Case
	testcase_128
	funreq_id_128
	Verify CPPA and SyncReply integrity
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SyncReplySignalsAndResponse’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SyncReplySignalsAndResponse’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that a SyncReply element is present in returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header[eb:SyncReply]])

	Test Case
	testcase_129
	funreq_id_129
	Verify syncronous communication
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SyncReplySignalsAndResponse’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SyncReplySignalsAndResponse’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that a message is returned in asyncronous fashion
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope])

	Test Case
	testcase_130
	funreq_id_130
	Return Acknowledgment
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=’mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘ mshc_Basic’’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify returned Acknowledgment
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment[RefToMessageId=$RefToMessageId]])

	Test Case
	testcase_132
	funreq_id_132
	Check if Acknowledgment is returned as part of normal response
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested unsigned element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId] and ../eb:Acknowledgment]])

	Assertion
	
	
	Check if returned Acknowledgment is returned with response message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Acknowledgment]])

	Test Case
	testcase_133
	funreq_id_133
	Verify seperate Acknowledgment Service name
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested unsigned element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId] and ../eb:Acknowledgment]])

	Assertion
	
	
	Verify Service element value
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[Service='urn:oasis:names:tc:ebxml-msg:service']])

	Assertion
	
	
	Verify Action element value
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[Action='Acknowledgment']])

	Test Case
	testcase_134
	funreq_id_134
	Verify Acknowledgment RefToMessageId value
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested unsigned element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId] and ../eb:Acknowledgment]])

	Assertion
	
	
	Verify RefToMessageId value
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[RefToMessageId=$RefToMessageId]])

	Test Case
	testcase_135
	funreq_id_135
	Verify From value of seperate Acknowledgment message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested unsigned element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId] and ../eb:Acknowledgment]])

	Assertion
	
	
	Verify From value
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/From[PartyebTest:id=$ToPartyId]])

	Test Case
	testcase_136
	funreq_id_136
	Verify To value of seperate Acknowledgment message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested unsigned element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_AckRequested’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId] and ../eb:Acknowledgment]])

	Assertion
	
	
	VerifyTo value
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/To[PartyebTest:id=$FromPartyId]])

	Test Case
	testcase_137
	funreq_id_137
	Verify Max Retries reached
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Candidate initiates conversation with AckRequest
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action =‘ Dummy’]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:Action=’Mute’]])

	Assertion
	
	
	Verify number of AckRequests sent
	Verify_Received_Message_Filter(/mime:Message[count()=$MaxRetries])

	Test Case
	testcase_138
	funreq_id_138
	Notify application when maximum retry limit reached
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Make candidate MSH send basic message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=’mshc_Basic’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action='ErrorAppNotify' and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Test Case
	testcase_140
	funreq_id_140
	Verify original Acknowledgment is resent for duplicate requests
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message with AckRequested element (5 times)
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ eb:CPAId=‘mshc_AckRequested’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_AckRequested’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify 5 Acknowledgments are received
	Verify_Received_Message_Filter(/mime:Message[count()=5])

	Test Case
	testcase_144
	funreq_id_144
	Generate DeliveryFailure Error and Warning if AckRequested is delivered, bot no Acknowledgment is received
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send Reflector message with AckRequested element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that Error is returned after candidate failure to receive acknowledgment
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'DeliveryFailure' and eb:Error/@eb:severity = 'Warning']])

	Test Case
	testcase_147
	funreq_id_147
	Messages must be processed by MSH in MessageOrder
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_MessageOrder’ and eb:DuplicateElimination] and eb:MessageOrdereb:SequenceNumber]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_MessageOrder’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that message was not processed
	Verify_Received_Message_Filter(/mime:Message[count()=0])

	Test Step
	3
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_MessageOrder’ and eb:DuplicateElimination] and eb:MessageOrdereb:SequenceNumber]]])

	Test Step
	4
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_MessageOrder’ and eb:ConversationId=$ConversationId]])

	Assertion
	
	
	Verify both messages were processed processed
	Verify_Received_Message_Filter(mime:message[count()=2])

	Test Case
	testcase_150
	funreq_id_150
	First ordered message has a sequenceNumber of '0'
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send initiator message to candidate MSH
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_MessageOrder’ and eb:Action ='Initiator']] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:initiator4']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:initiator4'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_MessageOrder']])

	Assertion
	
	
	Verify that Signature Reference points to payload location
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header[eb:MessageOrder='0'])

	Test Case
	testcase_151
	funreq_id_151
	MessageOrder status is 'Reset' for first ordered message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send initiator message to candidate MSH
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_MessageOrder’ and eb:Action ='Initiator']] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:initiator4']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:initiator4'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_MessageOrder']])

	Assertion
	
	
	Verify that Signature Reference points to payload location
	Verify_Received_Message_Filter(mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageOrder[@status='reset'])

	Test Case
	testcase_152
	funreq_id_152
	SequenceNumber is reset to '0' after a Reset instruction
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_MessageOrder’ and eb:DuplicateElimination] and eb:MessageOrdereb:SequenceNumber]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_MessageOrder’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Verify that first message is processed
	Verify_Received_Message_Filter(/mime:Message)

	Test Step
	3
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’’ and eb:CPAId=‘mshc_MessageOrder’ and eb:DuplicateElimination] and eb:MessageOrdereb:SequenceNumber [@eb:status = 'Continue']]]])

	Test Step
	4
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ eb:CPAIdeb:DuplicateElimination] and eb:MessageOrdereb:SequenceNumber [@eb:status = 'Reset']]]])

	Test Step
	5
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_MessageOrder’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Verify message was processed
	Verify_Received_Message_Filter(mime:message)

	Test Step
	6
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’and eb:CPAId=‘mshc_MessageOrder’ and eb:DuplicateElimination] and eb:MessageOrdereb:SequenceNumber]]])

	Test Step
	7
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_MessageOrder’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that first message is processed
	Verify_Received_Message_Filter(/mime:Message[count()=0])

	Test Case
	testcase_157
	funreq_id_157
	If both MessageOrder and SyncReply are present, generate Inconsistent/Error
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Load message with both elements present'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=’mshc_MessageOrderSyncReply’ and eb:DuplicateElimination] and eb:MessageOrdereb:SequenceNumber [@eb:status = 'Reset']and eb:SyncReply]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=’mshc_MessageOrderSyncReply’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify that Error is returned
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'Inconsistent' and @eb:severity = 'Error']])

	Test Case
	testcase_158
	funreq_id_158
	Verify that Signature element is child of SOAP header
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify returned Acknowledgment is signed
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header[ds:Signature]])

	Test Case
	testcase_159
	funreq_id_159
	Verify namespace of XMLDSIG
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested signed element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify returned Acknowledgment is signed
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Headerds:Signature[namespace-uri()='http://www.w3.org/2000/09/xmldsig#']])

	Test Case
	testcase_160
	funreq_id_160
	Verify valid XMLDSIG structure
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Validate signature
	Validate_Received_Message_Filter(/mime:Message/mime:MessageContainer[1]/soap:Envelope/soap:Header/ds:Signature)

	Test Case
	urn:TestCase:162
	funreq_id_162
	Signature required for entire message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify Signature element with Reference URI = '' is present
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/ds:Signature[Reference=""]])

	Test Case
	urn:TestCase:164
	funreq_id_164
	SignedInfo has CanonicalizationMethod, SignatureMethod and one or more Reference elements
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify SignedInfo element has required sub-elements
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/ds:Signature/ds:SignedInfo[ds:CanonicalizationMethod and ds:SignatureMethod and ds:Reference]])

	Test Case
	urn:TestCase:164
	funreq_id_164
	SignatureMethod Algorithm attribute is present
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify SignedInfo element has required sub-elements
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/XMLDSIG:Signature/XMLDSIG:SignedInfo[XMLDSIG:CanonicalizationMethod and XMLDSIG:SignatureMethod and XMLDSIG:Reference]])

	Test Case
	urn:TestCase:165
	funreq_id_165
	SignatureMethod Algorithm attribute is present
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify SignedInfo element has required sub-elements
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/XMLDSIG:Signature/XMLDSIG:SignedInfo/ XMLDSIG:SignatureMethod[@algorithm]])

	Test Case
	urn:TestCase:168
	funreq_id_168
	Signature is validated and message is passed to the application
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:Action="Mute" and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify message was passed to application
	Verify_Received_Message_Filter(/mime:Message)

	Test Case
	urn:TestCase:169
	funreq_id_169
	Verify Type attribute of Reference
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify SignedInfo element has required sub-elements
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/ds:Signature/ds:SignedInfo/Reference[@Type='http://www.w3.org/2000/09/xmldsig#Object"']])

	Test Case
	urn:TestCase:170
	funreq_id_170
	Verify Transform sub-element of Reference
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify Reference element has required sub-elements
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/ds:Signature/ds:SignedInfo/Reference/Transforms/Transform/Transform[@Algorithm='http://www.w3.org/2000/09/xmldsig#enveloped-signature']])

	Test Case
	urn:TestCase:171
	funreq_id_171
	Generate Transform XPath element excluding SOAP nextMSH or next SOAP node
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify Reference element has required sub-elements
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/ds:Signature/ds:SignedInfo/Reference/Transforms/Transform/Transform/XPath='not (ancestor-or-self::node()[@SOAP:actor="urn:oasis:names:tc:ebxml-msg:actor:nextMSH"] | ancestor-or-self::node()[@SOAP:actor="http://schemas.xmlsoap.org/soap/actor/next"]) ')

	Test Case
	urn:TestCase:172
	funreq_id_172
	Verify last Transform Algorithm attribute value
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify last Transform Algorithm value
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/ds:Signature/ds:SignedInfo/Reference/Transforms/Transform[last()][@Algorithm='http://www.w3.org/TR/2001/REC-xml-c14n-20010315']])

	Test Case
	testcase_173
	funreq_id_173
	Digitally signed payloads have appropriate Reference URI
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send initiator message to candidate MSH
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action ='Initiatorr']] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:initiator4']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:initiator4'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Check for returned payload
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Body/eb:Manifest/eb:Reference[@xlink:href='cid:payload_1']])

	Assertion
	
	
	Verify that Signature Reference points to payload location
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/ds:Signature/ds:SignedInfo/Reference[@URI='cid:payload_1']])

	Test Case
	testcase_174
	funreq_id_174
	Digitally signed payloads have appropriate Reference URI that match URI of payload
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with CPA that defines signed payload
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Reflector’ and eb:CPAId=‘mshc_SignedMessage’]] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:payload_1']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:payload_1'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:RefToMessageId=$RefToMessageId]])

	Precondition
	
	
	Check for returned payload
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Body/eb:Manifest/eb:Reference[@xlink:href='cid:payload_1']])

	Assertion
	
	
	Verify that Signature Reference points to payload location
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/ds:Signature/ds:SignedInfo/Reference[@URI='cid:payload_1']])

	Test Case
	urn:TestCase:176
	funreq_id_176
	Digitally signed inbound message gets a digitally signed Acknowledgment
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessageSignedAck’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_SignedMessageSignedAck' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify last Transform Algorithm value
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment/ds:Reference)

	Test Case
	testcase_182
	funreq_id_182
	Test StatusResponse for reliably sent message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message t
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Send message to MSH
	

	
	
	
	Send basic message with StatusRequest element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested] and soap:Body/eb:StatusRequest/eb:RefToMessageId ='$RefToMessageId']])

	Test Step
	3
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Check for a returned StatusResponse
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:StatusResponse])

	Test Case
	testcase_183
	funreq_id_183
	Test StatusResponse for unreliably sent message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Send message to MSH
	

	
	
	
	Send basic message with StatusRequest element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’and eb:Action=‘Dummy’]] and soap:Body/eb:StatusRequest/eb:RefToMessageId ='$RefToMessageId']])

	Test Step
	3
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Check for a returned StatusResponse
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:StatusResponse])

	Test Case
	testcase_184
	funreq_id_184
	Generate 'NotSupported' Error for StatusRequest
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send Dummy message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Send message to MSH
	

	
	
	
	Send basic message with StatusRequest element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’and eb:Action=‘Dummy’] and eb:AckRequested] and soap:Body/eb:StatusRequest/eb:RefToMessageId ='$MessageId']])

	Test Step
	3
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Check for a returned 'NotSupported' Error
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'NotSupported' and @eb:severity = 'Error']])

	Test Case
	testcase_185
	funreq_id_185
	Generate a valid StatusRequest
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send initiator message to candidate MSH
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’and eb:Action ='Initiator']] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:StatusRequestMessage']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:StatusRequestMessage'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’and eb:ConversationId=$ConversationId]])

	Precondition
	
	
	Check for StatusRequest
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Body/eb:StatusRequest)

	Assertion
	
	
	Validate the content of the StatusRequest
	Validate_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Body/eb:StatusRequest)

	Test Case
	testcase_186
	funreq_id_186
	Generate 'UnAuthorized' Error for StatusRequest
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message t
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Send message to MSH
	

	
	
	
	Send basic message with StatusRequest element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:Frome/eb:PartyId=’UnauthorizedParty’ and b:CPAId=’mshc_Basic’]] and soap:Body/eb:StatusRequest/eb:RefToMessageId ='$RefToMessageId']])

	Test Step
	3
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Check for a returned 'UnAuthorized' StatusResponse
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:StatusResponse[@eb:MessageStatus='UnAuthorized']])

	Test Case
	testcase_187
	funreq_id_187
	StatusResponse RefToMessageId points to correct MessageId
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message t
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Send message to MSH
	

	
	
	
	Send basic message with StatusRequest element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested] and soap:Body/eb:StatusRequest/eb:RefToMessageId ='$RefToMessageId']])

	Test Step
	3
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify correct RefToMessageId
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:StatusResponse/eb:RefToMessageId=$RefToMessageId])

	Test Case
	testcase_188
	funreq_id_188
	StatusResponse includes received Timestamp for recognized message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message t
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Send message to MSH
	

	
	
	
	Send basic message with StatusRequest element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested] and soap:Body/eb:StatusRequest/eb:RefToMessageId ='$RefToMessageId']])

	Test Step
	3
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify Timestamp is present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:StatusResponse/eb:Timestamp])

	Test Case
	testcase_189
	funreq_id_189
	StatusResponse does not include Timestamp for unrecognized message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message t
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Send message to MSH
	

	
	
	
	Send basic message with StatusRequest element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested] and soap:Body/eb:StatusRequest/eb:RefToMessageId ='null']])

	Test Step
	3
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify Timestamp is not present
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:StatusResponse[not eb:Timestamp]])

	Test Case
	testcase_190
	funreq_id_190
	StatusResponse does not include Timestamp for Unauthorized StatusRequest message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message t
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Send message to MSH
	

	
	
	
	Send basic message with StatusRequest element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ eb:Fromand eb:CPAId=‘mshc_Basic’] and eb:AckRequested] and soap:Body/eb:StatusRequest/eb:RefToMessageId ='$RefToMessageId']])

	Test Step
	3
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify Timestamp is not present
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:StatusResponse [not eb:Timestamp]])

	Test Case
	testcase_192
	funreq_id_192
	StatusResponse includes NotRecognized status for unrecognized message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send Dummy message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’]]]])

	Test Step
	2
	
	Send message to MSH
	

	
	
	
	Send basic message with StatusRequest element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’] and eb:AckRequested] and soap:Body/eb:StatusRequest/eb:RefToMessageId ='null']])

	Test Step
	3
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Check for a returned 'NotRecognized' StatusResponse
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:StatusResponse[@eb:MessageStatus='NotRecognized']])

	Test Case
	testcase_196
	funreq_id_195
	Unsupported Ping service returns 'NotSupported' Error
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic Ping message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action ='Ping']]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Check for a returned 'Received' StatusResponse
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList[eb:Error='NotSupported' and @eb:highestSeverity='Error']])

	Test Case
	testcase_198
	funreq_id_197
	Return valid Pong message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basicand eb:Action ='Ping']]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basicand eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])

	Assertion
	
	
	Verify Pong Action element is present
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action='Pong']])

	Assertion
	
	
	Verify that no payload is attached
	Verify_Received_Message_Filter(/mime:Messagenot mime:MessageContainer[2]])

Table 4 is a tabular representation of all ebXML MS 2.0 Abstract Conformance Test Cases
4.2 Two Instances of the ebXML Conformance Test Suite

4.2.1 Using HTTP/1.1 Transport

The test suite includes synchronous and asynchronous test cases (a total of XX) which exercise the capabilities of HTTP/1.1. The Test Cases include (XX-XX)
4.2.2 Using SMTP Transport

The test suite includes only asynchronous test cases (a total of XX), which exercise the capabilities of SMTP. The Test Cases include (XX-XX)

5 Details of Test Material

5.1 Configuration of the Test Harness and MSH Implementation

5.1.1 Test Harness and MSH Settings

As described in [ebTestFramework], Test Harness and MSH settings are defined through either:

· Explicit declaration of MSH parameters in a Test Suite ConfigurationGroup declaration

MSH configuration through CPA (or CPA-like) methods

Explicit declaration of message content value in message declarations
5.1.2 Test-specific MSH Configuration Parameters

The table below contains the recommended and required MSH configuration parameters defined for the Conformance Test Suite. The configuration groups are identified using the corresponding CPAId specified in individual Test Cases in the Test Suite.Required (bold/highlighted) and Recommended Parameter Values for all test MSH configurations
	Parameter Name
	mshc_Basic
	mshc_Signed

Message
	mshc_Signed

Ack
	mshc_Signed

MessageSigned

Ack
	mshc_Sync

ReplySignals

Only

	Transport Protocol
	HTTP 1.1 or SMTP
	HTTP 1.1 or SMTP
	HTTP 1.1 or SMTP
	HTTP 1.1 or SMTP
	HTTP 1.1 or SMTP

	Canonicalization Algorithm
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)

	Signature Algorithm
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)

	Signed Message
	false
	true
	false
	true
	false

	Signed Acknowledgment
	false
	false
	true
	true
	false

	Confidentiality (not required for Conformance testing)
	none
	none
	none
	none
	none

	Authentication (not required for Conformance testing)
	none
	none
	none
	none
	none

	Retries
	3
	3
	3
	3
	3

	RetryInterval
	PT30S
	PT30S
	PT30S
	PT30S
	PT30S

	AckRequested
	perMessage
	perMessage
	perMessage
	perMessage
	perMessage

	PersistDuration

	P10D

	P10D

	P10D

	P10D

	P10D

	duplicateElimination
	perMessage
	perMessage
	perMessage
	perMessage
	perMessage

	MessageOrder Semantics
	NotGuaranteed
	NotGuaranteed
	NotGuaranteed
	NotGuaranteed
	NotGuaranteed

	HTTP Timeouts

	PT5M (if HTTP)
	PT5M (if HTTP)
	PT5M (if HTTP)
	PT5M (if HTTP)
	PT5M (if HTTP)

	SyncReply (used to globally define all messages are sent witih a SyncReply element)
	false (if HTTP)
	false (if HTTP)
	false (if HTTP)
	false (if HTTP)
	 true (if HTTP)

	syncReplyMode

	none
	none
	none
	none
	mshSignalsOnly

	ErrorURL
	URL of driver party MSH
	URL of driver party MSH
	URL of driver party MSH
	URL of driver party MSH
	URL of driver party MSH

	NotifyURL
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)

Table 5 is a tabular representation of candidate MSH conformance testing configurations
	Parameter Name
	mshc_Sync

ReplySignals

AndResponse
	mshc_NoError

Location
	mshc_Duplicate

Elimination

Never
	mshc_Duplicate

Elimination

Always
	mshc_PersistDuration

Expired

	Transport Protocol
	HTTP 1.1 or SMTP
	HTTP 1.1 or SMTP
	HTTP 1.1 or SMTP
	HTTP 1.1 or SMTP
	HTTP 1.1 or SMTP

	Canonicalization Algorithm
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)

	Signature Algorithm
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)

	Signed Message
	false
	false
	false
	false
	false

	Signed Acknowledgment
	false
	false
	false
	false
	false

	Confidentiality (not required for Conformance testing)
	none
	none
	none
	none
	none

	Authentication (not required for Conformance testing)
	none
	none
	none
	none
	none

	Retries
	3
	3
	3
	3
	3

	RetryInterval
	PT30S
	PT30S
	PT30S
	PT30S
	PT30S

	AckRequested
	perMessage
	perMessage
	perMessage
	perMessage
	perMessage

	PersistDuration

	P10D

	P10D

	P10D

	P10D

	P0D

	duplicateElimination
	perMessage
	perMessage
	never
	always
	perMessage

	MessageOrder Semantics
	NotGuaranteed
	NotGuaranteed
	NotGuaranteed
	NotGuaranteed
	NotGuaranteed

	HTTP Timeouts

	PT5M (if HTTP)
	PT5M (if HTTP)
	PT5M (if HTTP)
	PT5M (if HTTP)
	PT5M (if HTTP)

	SyncReply (used to globally define all messages are sent witih a SyncReply element)
	false (if HTTP)
	false (if HTTP)
	false (if HTTP)
	false (if HTTP)
	false (if HTTP)

	syncReplyMode

	signalsAndResponse
	none
	none
	none
	none

	ErrorURL
	URL of driver party MSH
	none
	URL of driver party MSH
	URL of driver party MSH
	URL of driver party MSH

	NotifyURL
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)

Table 6 is a tabular representation of candidate MSH conformance testing configurations
	Parameter Name
	mshc_Ack

Requested

Always
	mshc_Ack

Requested

Never
	mshc_Message

Order

	Transport Protocol
	HTTP 1.1 or SMTP
	HTTP 1.1 or SMTP
	HTTP 1.1 or SMTP

	Canonicalization Algorithm
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)

	Signature Algorithm
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)

	Signed Message
	false
	false
	false

	Signed Acknowledgment
	false
	false
	false

	Confidentiality (not required for Conformance testing)
	none
	none
	none

	Authentication (not required for Conformance testing)
	none
	none
	none

	Retries
	3
	3
	3

	RetryInterval
	PT30S
	PT30S
	PT30S

	AckRequested
	always
	never
	perMessage

	PersistDuration

	P10D

	P10D

	P10D

	duplicateElimination
	perMessage
	perMessage
	perMessage

	MessageOrder Semantics
	NotGuaranteed
	NotGuaranteed
	Guaranteed

	HTTP Timeouts

	PT5M (if HTTP)
	PT5M (if HTTP)
	PT5M (if HTTP)

	SyncReply (used to globally define all messages are sent witih a SyncReply element)
	false (if HTTP)
	false (if HTTP)
	false (if HTTP)

	syncReplyMode

	none
	none
	none

	ErrorURL
	URL of driver party MSH
	URL of driver party MSH
	URL of driver party MSH

	NotifyURL
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)

Table 7 is a tabular representation of candidate MSH conformance testing configurations
5.1.3 Generated Message Headers

The ebXML Message Headers below are dynamically generated by the Test Harness, using the declarative message syntax described in [ebTestFramework]. Key message content value is supplied by the Test Harness, either through configuration parameters or through interpretation of the values provided in the message declaration itself.

5.1.4 Key Message Parameters

The default values for these run-time parameters should be set in the test suite ConfigurationGroup element when the test suite XML file is deployed:

$SenderParty (set to the Test Driver MSH host)

$ReceiverParty (set to the remote MSH host)

The values of the parameters below must be set (either by the Test Harness or through explicit declaration in a message) for each test case:

$CPA

$ConversationId

The value of this parameter may vary (in the MessageDeclaration element) for each test step:

$Action

The value of these parameters is not under control of the Test Driver, and will be set by the MSH implementation at run-time:

$MessageId

$TimeStamp

5.1.5 Sample Headers

5.1.5.1 mhdr_0

This sample header is constructed for messages with no payload. The parameters will be instantiated by the Test Driver or the MSH implementation.

<SOAP:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<SOAP:Header>

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId> $SenderParty</eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>$ReceiverParty </eb:PartyId>

</eb:To>

<eb:CPAId>$CPA </eb:CPAId>

<eb:ConversationId> $ConversationId</eb:ConversationId>

<eb:Service> urn:ebXML:iic:test</eb:Service>

<eb:Action>$Action </eb:Action>

<eb:MessageData>

<eb:MessageId>$MessageId </eb:MessageId>

<eb:Timestamp>$Timestamp </eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

</SOAP:Body>

</SOAP:Envelope>

5.1.5.2 mhdr_1

This sample header is constructed for messages with one payload, before instantiation of parameters.

<SOAP:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<SOAP:Header>

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId>$SenderParty </eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>$ReceiverParty </eb:PartyId>

</eb:To>

<eb:CPAId>$CPA </eb:CPAId>

<eb:ConversationId>$ConversationId </eb:ConversationId>

<eb:Service> urn:ebXML:iic:test</eb:Service>

<eb:Action>$Action </eb:Action>

<eb:MessageData>

<eb:MessageId>$MessageId </eb:MessageId>

<eb:Timestamp>$Timestamp </eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

<eb:Manifest eb:version="2.0">

<eb:Reference xlink:href="cid: payload_1"

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 1</eb:Description>

</eb:Reference>

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

5.1.5.3 mhdr_2

This sample header is constructed for messages with two payloads, before instantiation of parameters.

<SOAP:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<SOAP:Header>

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId>$SenderParty </eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>$ReceiverParty </eb:PartyId>

</eb:To>

<eb:CPAId>$CPA </eb:CPAId>

<eb:ConversationId>$ConversationId </eb:ConversationId>

<eb:Service> urn:ebXML:iic:test</eb:Service>

<eb:Action>$Action </eb:Action>

<eb:MessageData>

<eb:MessageId>$MessageId </eb:MessageId>

<eb:Timestamp>$Timestamp </eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

<eb:Manifest eb:version="2.0">

<eb:Reference xlink:href="cid:payload_1 "

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 1</eb:Description>

</eb:Reference>

<eb:Reference xlink:href="cid:payload_2 "

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">CPPA</eb:Description>

</eb:Reference>

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

5.1.5.4 mhdr_3

This sample header is constructed for messages with three payloads, before instantiation of parameters.

<SOAP:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<SOAP:Header>

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId>$SenderParty </eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>$ReceiverParty </eb:PartyId>

</eb:To>

<eb:CPAId>$CPA </eb:CPAId>

<eb:ConversationId>$ConversationId </eb:ConversationId>

<eb:Service> urn:ebXML:iic:test</eb:Service>

<eb:Action>$Action </eb:Action>

<eb:MessageData>

<eb:MessageId>$MessageId </eb:MessageId>

<eb:Timestamp>$Timestamp </eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

<eb:Manifest eb:version="2.0">

<eb:Reference xlink:href="cid:payload_1 "

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 1</eb:Description>

</eb:Reference>

<eb:Reference xlink:href="cid:payload_2 2"

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">CPPA</eb:Description>

</eb:Reference>

<eb:Reference xlink:href="cid:payload_3 "

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Binary Document</eb:Description>

</eb:Reference>

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

5.1.6 Message Payloads

Message payloads for the Conformance Test Suite are supplied in the normative Conformance Test Suite described in section 4.3. There are three payloads used for testing in this test suite. They include:

5.1.6.1 Payload_1

 Payload_1 is representative of a “small XML payload”. This payload is

 embedded in the Test Suite and is included in the message using an ID reference. The code for this payload is:

<purchase_order>

<po_number>1</po_number>

<part_number>123</part_number>

<price_currency=”USD”>500.00</price>

</purchase_order>

5.1.6.2 Payload_2

This payload represents an “average size” (22KB) XML business document. This payload is included in the test message through a file reference. The XML code used for this payload is the OASIS ebXML CPP/A example 2.0b on the OASIS CPPA Technical Committee web page.

5.1.6.3 Payload_3

This payload represents a “large” (1.236MB) binary document payload. This Test Suite uses the OASIS/ebXML Messaging Services Specification V2.0 document, available on the OASIS ebXML MS Technical Committee web page to represent a large binary ebXML message payload

5.2 Non-normative MS Conformance Test Requirements

The table below defines the testing requirement for the ebXML MS V2.0 Messaging Services. These data values map to the test requirements schema defined in [ebTestFramework] and its semantic test requirement model. The XML version of the test requirements, conforming to the schema defined in the ebXML Test Framework Specification, can be found in [ebMSInteropReqs].

These Test Requirements map directly to the ebXML Messaging Services V2.0 Specification. A graphical mapping of these requirements to the specification itself (using an annotated version of the specification) is availabel in [ebMSAnnotatedSpec].

5.2.1 The ebXML MS 2.0 Conformance Test Requirements Table

	ID
	5.2.2 Name
	Spec Ref
	Precondition
	Req

Level
	Assertion

	req_id_1
	Global Requirements

for All Tests
	#1.3
	
	
	

	funreq_id_1
	SchemaValidation
	#1.3
	(For each generated

message)
	REQ
	Supports all mandatory syntax defined in Core plus

Additional Features

	req_id_2
	PackagingSpecification
	#2
	
	
	

	funreq_id_2
	GenerateConformant

SOAPWithAttachMIMEHeaders
	#2.1.2
	(For each generated

mesage, if it is multipart

MIME OR if it is not

text/xml)
	REQ
	The primary SOAP message is carried in the root body

part of the message.

	funreq_id_3
	GenerateConformant

SOAPWithAttachMIMEHeaders
	#2.1.2
	(For each generated

mesage, if it is multipart

MIME or not text/xml)
	REQ
	The type parameter of the Multipart/Related media header

is "text/xml", the MIME parts must contain a CID MIME

 header or a Content-Location MIME header structured in

accordanced with RFC 2557

	funreq_id_4
	GenerateCorrect

MessagePackageContent-Type
	#2.1.2
	(For each generated

message)
	REQ
	The Content-Type MIME header in the Message Package

 contains a type attribute of "text/xml".

	funreq_id_5
	GenerateContent-ID

StartValues
	#2.1.2
	(For each generated

message)
	REC
	The Content-ID MIME header in any generated Message

Package contains a start attribute identifying the first

 MIME part.

	funreq_id_6
	ProcessNon-MultipartMessages
	#2.1.2
	(For each received

message, if the

message is not

multipart MIME)
	REQ
	The MSH accepts the message.

	funreq_id_7
	ProcessMultipartNo

PayloadMessages
	#2.1.2
	(For each received

message, if the

message is multipart

MIME AND the

message has no

payload)
	REQ
	The MSH accepts the message.

	funreq_id_8
	GenerateCorrectSOAP

MessageContentType
	#2.1.3.1
	(For each generated

message)
	REQ
	The MIME Content-Type header for each generated

SOAP Message has the value "text/xml".

	funreq_id_9
	GenerateSpecificSOAP

MessageCharacterSet
	#2.1.3.1
	(For each generated

message)
	REQ
	The MIME Content-Type header of each generated

SOAP Message specifies the character set used to

generate the message.

	funreq_id_10
	GenerateSameEncoding

AndCharacterSetValue
	#2.1.3.1
	(For each generated

message, if both the

MIME charset and

SOAP message

encoding declaration

are present)
	REQ
	They shall have the same value.

	funreq_id_11
	GenerateDefaultSOAP

MessageCharacterSet
	#2.1.3.2
	(For each generated

message)
	REC
	The UTF-8 character set is used by default when

 encoding each SOAP Message.

	funreq_id_12
	GeneratePayload

Container
	#2.1.4
	(For each generated

message, if the

Message Package

contains an application

payload)
	REC
	It should be enclosed in a Payload Container.

	funreq_id_13
	ProvideEmptyManifest

AndPayloadIntegrity
	#2.1.4
	(For each generated

message, if there are

no application payloads

identified in the

message header

 manifest)
	REQ
	There must not be any payload MIME parts

	funreq_id_14
	ProvideManifestAnd

PayloadIntegrity
	#2.1.4
	(For each generated

message)
	REQ
	The contents of each payload MIME part are identified in

the Manifest element within any generated SOAP body

	funreq_id_15
	ProcessUnrecognized

MIMEHeaders
	#2.1.5
	(For each received

message containing

unrecognized MIME

 headers)
	REQ
	Unrecognized MIME headers in a MIME part are ignored

 and no Error message is returned.

	funreq_id_16
	GenerateProlog

XMLDeclaration
	#2
	(For each generated

message, if an XML

Prolog is present in the

SOAP message)
	OPT
	The Prolog contains an XML declaration.

	funreq_id_17
	GenerateXML

VersionInProlog
	#2.2.1
	(For each generated

message, if the XML

Prolog exists in the

SOAP message)
	REQ
	XML version is declared

	funreq_id_19
	GenerateCorrect

ExtensionElement

Namespace
	#2.3
	(For each generated

message)
	REQ
	All ebXML extension elements included within generated

SOAP Envelope, Header and Body elements are

namespace qualified

 to: "http://www.oasis-open.org/committees/ebxml-msg/

schema/msg-header-2_0.xsd"

	funreq_id_20
	GenerateCorrect

EnvelopeSchemaLocation
	#2.3.2
	(For each generated

message)
	REC
	SOAP Envelope elements include the

XMLSchema-instance namespace qualified

schemaLocation attribute indicating the extended

ebXML envelope schema:

"http://www.oasis-open.org/committees/ebxml-msg/

schema/envelope.xsd"

	funreq_id_21
	GenerateCorrectSOAPHeader

AndBodySchemaLocation
	#2.3.2
	(For each generated

message)
	REC
	SOAP Header and Body attributes both include a

XMLSchema-instance namespace qualified

schemaLocation attribute indicating the extended

ebXML Msg Header schema "http://www.oasis-open.org/

committees/ebxml-msg/schema/msg-header-2_0.xsd"

	funreq_id_22
	GenerateCorrectSOAP

HeaderNamespace
	#2.3.4
	(For each generated

message)
	REQ
	A SOAP Header element is namespace qualified as per

 the SOAP namespace declaration in the SOAP Envelope

 element with the namespace

 "http://schemas.xmlsoap.org/soap/envelope/" .

	funreq_id_23
	GenerateCorrectSOAP

BodyNamespace
	#2.3.4
	(For each generated

message)
	REQ
	A SOAP Body element is namespace qualified as per the

 SOAP namespace declaration in the SOAP Envelope

element with the namespace "http://schemas.xmlsoap.org/

soap/envelope/" .

	funreq_id_24
	GenerateMessage

HeaderInSOAPHeader
	#2.3.5.1
	(For each generated message)
	REQ
	A SOAP Header element always contains an ebXML

 MessageHeader element.

	funreq_id_25
	GenerateCorrectForeign

ElementNamespaces
	#2.3.6
	(For each generated message)
	REQ
	Any foreign namespace qualified elements present

within generated ebXML extension elements are

namespace qualified with a namespace that is not

 "http://www.oasis-open.org/committees/ebxml-msg/

schema/msg-header-2_0.xsd".

	funreq_id_26
	GenerateCorrectForeign

ElementNamespaces
	#2.3.6
	(For each received

message)
	OPT
	The candidate MSH ignores the namespace-qualified

 #wildcard element

	funreq_id_27
	GenerateIdAttributeTo

ExtensionElements
	#2.3.7
	(For each generated

message)
	OPT
	An XML ID attribute is supplied for each generated

ebXML element (to assist with such tasks as specifying

 elements included in a digital signature).

	funreq_id_28
	GenerateCorrect

MessageHeaderVersion
	ebXML-2#2.3.8
	(For each generated

message)
	REC
	An ebXML MessageHeader element always contains a

version attribute with a value of "2.0"

	funreq_id_29
	GenerateCorrect

SOAPMustUnderstand

Namespace
	#2.3.9
	(For each generated

 message)
	REQ
	All ebXML extensions of the SOAP Header element

 (MessageHeader, SyncReply, MessageOrder, ...)

contain the mustUnderstand attribute namespace

qualified to the SOAP namespace

 (http://schemas.xmlsoap.org/soap/envelope).

	funreq_id_30
	ProcessMustUnderstand
	#2.3.9
	(For each received

message containing a

SOAP Header extension with a mustUnderstand attribute set to "1" and not understood by the MSH.)
	REQ
	The message is rejected in accordance with SOAP.

	req_id_3
	CoreExtensionElements
	#3.1.1
	
	
	

	funreq_id_31
	GenerateUniquePartyId
	#3.1.1
	(For each generated

message, unless a

single type value refers

to multiple identification

systems)
	REQ
	The value of any given type attribute must be unique within the list of PartyId elements contained within either the From or To element.

	funreq_id_32
	ReportInconsistent

PartyIdContent
	#3.1.1.1
	(For each received

message, PartyId does

 not contain a type

attribute AND PartyId

text node is not a URI)
	REC
	MSH responds with an error (Inconsistent/Error)

	funreq_id_33
	GenerateValidPartyId

Content
	#3.1.1.1
	(For each generated

message, if generated

 PartyId contains a type

attribute)
	REC
	Its value is a URI

	funreq_id_34
	GenerateValidPartyId

Content
	#3.1.1.1
	(For each generated

message, if generated

 PartyId does not

contain a type attribute)
	REQ
	Text content of the PartyId element must be a URI

	funreq_id_35
	ReportFailedCPAID

Resolution
	#3.1.2
	(For each received

message, if value of the

 CPAId element on an

 inbound message

cannot be resolved)
	REQ
	The MSH responds with an error

(ValueNotRecognized/Error).

	funreq_id_36
	ProvideConversation

IdIntegrity
	#3.1.3
	(For each generated

message within the

context of the specified

CPAId)
	REQ
	The generated ConversationId will be present in all

messages pertaining to the given conversation.

	funreq_id_38
	ReportInconsistent

ServiceElementContent
	#3.1.4.1
	(For each received

 message, if the

received "type" attribute

 is not set. AND If the

Service element

content is not a URI.)
	REQ
	MSH Responds with an error

(Inconsistent/Error)

	funreq_id_39
	GenerateConsistent

ServiceElementContent
	#3.1.4.1
	(For each generated

message, if the

generated Service

element "type" attribute

 is not set.)
	REQ
	Generated Service element content must be a URI

	funreq_id_40
	ReportUnrecognized

ServiceAndOrAction
	#3.1.5
	(For each received

message, if the

receiving MSH does

not recognize both the

Service and Action

values of an incoming

 message)
	REQ
	It responds with an error (ValueNotRecognised/Error).

	funreq_id_41
	ProvideRefToMessage

IdIntegrity
	#3.1.6.3
	(For each generated

 message, if the

RefToMessageId

element within the

MessageData element

is present)
	REQ
	It contains the MessageId value of an earlier ebXML

 Message to which this message relates.

	funreq_id_42
	GenerateNoRefTo

MessageId
	#3.1.6.3
	(For each generated

message, if there is no earlier related message)
	REQ
	The RefToMessageId element is never present.

	funreq_id_43
	GenerateErrorRef

ToMessageId
	#3.1.6.3
	(For each generated

message, if a previous message generated an error)
	REQ
	The RefToMessageId element is always present with a

value indicating the message in error.

	funreq_id_44
	ProcessTimeToLive
	#3.1.6.4
	(For each received

message, if the MSH

 receives a message for

 which it is the To Party

 MSH and the time of

 the internal clock is

 greater than

TimeToLive

 (adjusted to UTC))
	REQ
	An error message is returned to the From Party MSH

(TimeToLiveExpired/Error).

	funreq_id_45
	GenerateValidUTCTime
	#3.1.6.4
	(For each generated

 message, if a

TimeToLive element is

present in a generated

message.)
	REQ
	The TimeToLive element expresses time in UTC, and

 conform to the XML Schema dateTime.

	funreq_id_46
	GenerateDistinctLang

ValuesForDescription
	#3.1.8
	(For each generated

message)
	REC
	No two Description elements must have the same

 xml:lang attribute value

	funreq_id_47
	GenerateNoPayloadOr

ApplicationDataInBodyOrManifest
	#3.2
	(For each generated

message)
	REC
	No payload/application data is present in generated

SOAP Body / ebXML Manifest elements.

	funreq_id_48
	ReportNon-ExistentMIME

PartForManifestReference
	#3.2.2
	(For each received

message, if there is not

a matching payload for

 the xlink:href element

of a generated

Manidfest/Reference

element)
	REQ
	An error message is directed to the From Party MSH

(MimeProblem/Error).

	funreq_id_49
	ReportUnresolvableHREF

InManifest
	#3.2.2
	(For each received

message, if the

xlink:href element of a

Manifest/Reference

element on an inbound

message specifies a

URI that is not a content

 id (not "cid:"), and that

cannot be resolved)
	OPT
	The MSH reports an error to the From Party MSH

 (MimeProblem/Error)

	funreq_id_50
	GenerateResolvableHREF

InManifest
	#3.2.2
	(For each generated

message)
	OPT
	The xlink:href element of a Manifest/Reference element on

 an inbound message specifies a URI that is a content id

 ("cid:"), and can be resolved

	funreq_id_51
	ProcessUnreferenced

Payloads
	#3.2.2
	(For each received

message, if a MIME

payload part exists on

an incoming message

 that is not referenced

 by a

 Manifest/Reference

 element)
	REC
	It is discarded.

	req_id_4
	ErrorHandling
	#4.2
	
	
	

	funreq_id_52
	ProcessUpstream

SOAPFault
	#4.2
	(For each received

 message)
	REQ
	The MSH can accept and process SOAP Fault values

 from a downstream SOAP processor.

	funreq_id_53
	GenerateCompliant

SOAPFaults
	#4.2
	(For each generated

message, if an MSH

returns a SOAP Fault message to the sender of a SOAP message)
	REQ
	The returned message conforms to the SOAP

specification guidelines for SOAP Fault values.

	funreq_id_54
	GenerateWarnings
	#4.2
	(For each generated

message, when an ebXML message is reporting an error with a highestSeverity value of 'Warning')
	REC
	It is not reported or returned as a SOAP Fault.

	funreq_id_55
	ReportData

CommunicationErrors
	#4.2.2
	(For each received

message)
	REC
	Errors associated with data communications protocols

 are detected and reported using the standard

 mechanisms supported by that protocol and do not

use ebXML reporting mechanisms.

	funreq_id_56
	GenerateNo

ErrorList
	#4.2.3
	(For each generated

message)
	REQ
	The ErrorList extension element of the SOAP Header

 element is never present if there are no errors to be

reported.

	funreq_id_57
	ProvideErrorAnd

HighestSeverityIntegrity
	#4.2.3.1
	(For each generated

message)
	REQ
	For each generated message, the highestSeverity

 attribute contains the highest severity of any Error

elements generated in an outbound message.

	funreq_id_58
	GenerateCorrect

CodeContextValue
	#4.2.3.2.2
	(For each generated

message)
	REQ
	The codeContext attribute of any generated Error

element is always a URI.

	funreq_id_59
	GenerateCorrect

CodeContextNamespaceValue
	#4.2.3.2.2
	(For each generated

message)
	REC
	The namespace/scheme specified by codeContext for

identifying errorCodes is the default value of

urn:oasis:names:tc:ebxml-msg:service:errors.

	funreq_id_60
	GenerateCorrect

ErrorSeverityValue
	#4.2.3.2.4
	(For each generated

message)
	REQ
	Each Error element severity attribute has the value of

 Warning or Error indicating the severity of the error.

	funreq_id_61
	ProvideXPointer

AndErrorIntegrity
	#4.2.3.2.5
	(For each generated

message, if an error exists in an ebXML element)
	REQ
	The location attribute of the Error element is an Xpointer

 to the erroneous element.

	funreq_id_62
	GenerateReferenced

MIMEPartErrorsWithCID
	#4.2.3.2.5
	(For each generated

message, if an error exists in a generated payload MIME part)
	REQ
	The location attribute of the generated Error element contains the content-id (via a well-formed "cid:") of the erroroneous MIME part.

	funreq_id_63
	GenerateErrorCodes

UsingLongDescription
	#4.2.3.4
	(For each generated

 message)
	REQ
	The "Short Description" text for each error code provided

by the Message Service Specification does not appear in

any relevant Error element.

	funreq_id_64
	ReportErrorToMessage

Origin
	#4.2.4.1
	(For each received

message, when an

MSH detects an error

in a message AND · the

 Error Reporting

Location (see section

4.2.4.2) to which the

message reporting the

error should be sent

can be determined AND

 the message in error

does not have an ErrorList element with highestSeverity set to Error)
	REC
	The error is reported to the MSH that sent the original

message in error.

	funreq_id_65
	ProcessWithNoError

ReportLocation
	#4.2.4.1
	(For each received

message, if the error

reporting location

cannot be found)
	REC
	The error is: Logged; Resolved by other means; and,

 No further action is taken.

	funreq_id_66
	ProcessCPPAErrorURI
	#4.2.4.2
	(For each received

message, if the ErrorURI

 is implied in the relevant

 CPPA)
	OPT
	Then this is used as the Error Report Location.

	funreq_id_67
	ProcessWithNoCPPA

ErrorURIPresent
	#4.2.4.2
	(For each received

message, if the ErrorURI

 is unavailable in the

relevant CPPA)
	OPT
	A URI specified in the From Party of the message is used

 as the Error Report Location.

	funreq_id_68
	GenerateServiceAnd

ActionForErrorsFrom

IndependentMessage
	#4.2.4.3
	(For each generated

message, if an ErrorList

 is included as part of

an independent

message)
	REQ
	The values of Service and Action are;

Service: urn:oasis:names:tc:ebxml-msg:service

Action: MessageError

	funreq_id_69
	ProcessErrorList

WhereHighestSeverityEqualsError
	#4.2.4.1
	(For each received message, if the message in error has an ErrorList element with highestSeverity

 set to Error)
	REC
	The error is: Logged; Resolved by other means; and,

 No further action is taken.

	req_id_5
	SynchReply
	4.3
	
	
	

	funreq_id_70
	ProcessSyncReply
	#4.3.1
	(For each received

message, if a SyncReply element is present in a message received over a synchronous

communications

protocol)
	OPT
	That connection is kept open in expectation of the

 response message using the same connection.

	funreq_id_71
	ReportMessageAnd

CPASyncReplyConflict
	#4.3.1
	(For each received

message, if the CPPA

syncReplyMode is set to none AND SyncReply element is present in an inbound message)
	OPT
	The MSH issues an error (Inconsistent/Error).

	funreq_id_72
	GenerateAgreeing

MessageAndCPA

SyncReply
	#4.3.1
	(For each generated

message, if the CPPA

syncReplyMode is set

to none)
	OPT
	SyncReply must not be present in generated message.

	req_id_6
	ReliableMsg
	#6
	
	
	

	funreq_id_73
	ResendToAck

Received
	#6
	(For each reliably

generated message, if the candidate MSH fails to receive an Acknowledgment message from a

receiving MSH)
	REC
	The candidate sends successive retries until an

 Acknowledgment is received

	funreq_id_74
	ResendToRetries

Exceeded
	#6
	(For each reliably

generated message, if

the candidate MSH fails

 to receive an

Acknowledgment

mesage from a

 receiving MSH)
	REC
	The candidate sends successive retries until a

predetermined number of retries is exceeded.

	funreq_id_75
	ResumeAfterAck

Received
	#6
	(For each reliably

generated message, if

the candidate MSH

receives an

Acknowledgment from a

 receiving MSH)
	REC
	The MSH stops resending the message and behaves

as if the message was successfully delivered.

	funreq_id_76
	NotifyDeliveryFailure

OnExceed
	#6
	(For each reliably

generated message, if

 the MSH is configured

to resend AND the Sending MSH fails to receive any Acknowledgment message from the

receiving MSH)
	REQ
	The Sending MSH sends successive retries at

expected time intervals, then notifies the From party of

delivery failure

	funreq_id_77
	PersistReliable

SentMsg
	#6.1
	(For each reliably sent

 message, after a system interruption AND the system recovers within the TimeToLive window)
	REQ
	The message is processsed as if the interruption had

 not occurred.

	funreq_id_78
	PersistReliable

SentMsgNoAck
	#6.1
	(For each reliably sent

message, after a system interruption AND no Ack was received prior to the interruption AND the

system recovers within

the TimeToLive window.)
	REQ
	The message is kept in persistent storage and

processsed as if the interruption had not occurred.

	funreq_id_79
	PersistReliable

SentMsgAfterInterrupt
	#6.1
	(For each reliably sent

 message, after a

system interruption)
	REQ
	The message is kept in persistent storage.

	funreq_id_80
	PersistReliable

ReceivedMsgAfterInterrupt
	#6.1
	(For each reliably

 received message, after a system interruption AND the system recovers within the TimeToLive

window.)
	REQ
	The message processsed as if the interruption had

not occurred.

	funreq_id_81
	PersistReliable

ReceivedMsgNoAck
	#6.1
	(For each reliably

received message, after a system interruption AND no Ack was sent prior to the interruption AND the

 system recovers within

 the TimeToLive window.

)
	REQ
	The message is kept in persistent storage and

 processsed as if the interruption had not occurred.

	funreq_id_82
	PersistReliabl

eReceivedMsg
	#6.1
	(For each reliably

 received message, after

 a system interruption)
	REQ
	The message is kept in persistent storage.

	funreq_id_83
	PersistReliableSent

MsgAfterSystemFailure
	#6.1
	(For each reliably sent

message, after a system failure AND the system recovers within the TimeToLive window.)
	REQ
	The message is kept in persistent storage and

processsed as if the interruption had not occurred.

	funreq_id_84
	PersistReliableSen

TMsgAfterSystemFailure

AndNoAck
	#6.1
	(For each reliably sent

message, after a system failure AND no Ack was received prior to the interruption AND the system

recovers within the

TimeToLive window.)
	REQ
	The message is kept in persistent storage and

 processsed as if the interruption had not occurred.

	funreq_id_85
	PersistReliable

ReceivedMsg
	#6.1
	(For each reliably

received message)
	REQ
	The complete message is kept in persistent storage.

	funreq_id_86
	PersistReceived

MsgID
	#6.1
	(For each reliably

received message, in

order to support the

 filtering of duplicate

 messages)
	REQ
	The MessageId of the received messaged is

recorded in persistent storage.

	funreq_id_87
	PersistRecdMsg
	#6.1
	(For each reliably

 received message)
	REC
	The received message is recorded in its entirety at least

until the information in the message has been passed to

the application needing to process it.

	funreq_id_88
	PersistReceived

MsgTimestamp
	#6.1
	(For each reliably

 received message)
	REC
	The time at which a message is received is recorded in

persistent storage.

	funreq_id_89
	PersistResponseMsg
	#6.1
	(For each reliably

 received message)
	REC
	Each response message is stored in its entirety in

 persistent storage.

	funreq_id_90
	TargetAckRequested

ToOrNextMSH
	#6.3.1.1
	(For each generated

 non-multi-hop message)
	REQ
	The AckRequested element is targeted at the Next MSH

 or the To Party

	funreq_id_91
	SetAckRequested

UnSigned
	#6.3.1.2
	(For each received

message with an

AckRequested with the

 Signed attribute set to

 False and consistent

with the CPPA,)
	REQ
	The Acknowledgment message is unsigned.

	funreq_id_92
	SetSignedAttribute

AfterVerifyReceiving

MSHAckSupport
	#6.3.1.2
	(For each received

 message with an

AckRequested with the

 Signed attribute set to

True consistent with the

 CPPA, if the Receiving

 MSH supports signed

 acknowledgment

messages of the type

requested)
	REQ
	The Sending MSH sends back a signed Acknowledgment.

	funreq_id_93
	SetSignedAttribute

AfterVerifyReceiving

MSHAckSupport
	#6.3.1.2
	(For each received

message with an

AckRequested with the

Signed attribute set to

True consistent with the

 CPPA, if the Receiving

 MSH does not support

 signed

acknowledgment

messages of the type

requested)
	REQ
	The MSH generates an Error of type Inconsistent,

 and severity = Warning .

	funreq_id_94
	SetSignedAttribute

AfterVerifyReceiving

MSHAckSupport
	#6.3.1.2
	(For each received message with an AckRequested with the Signed attribute set to True AND and

 NOT consistent with the CPPA AND requirementType="REQ"> if the Receiving MSH supports signed

acknowledgment

messages of the type

requested)
	REQ
	The MSH generates an Error of type Inconsistent

and an Error severity = Error .

	funreq_id_95
	SendAckTo

FromParty
	#6.3.1.3
	(For each

Acknowledgment request message, If an Acknowledgment is requested of the MSH node acting in

 the role of To Party)
	REQ
	The Acknowledgment element generated is targeted

 to the MSH node acting in the role of From Party.

	funreq_id_96
	GenererateAckWith

NoPayloadAndNo

AckRequested
	#6.3.1.4
	(For each generated

Acknowledgment

message, if the

message contains no

 payloads)
	REQ
	The message does not include an AckRequested element.

	funreq_id_97
	ReportErrorWithout

AckRequeseted
	#6.3.1.4
	(For each

Acknowledgment

message, if the

 message contains an

 ErrorList element)
	REQ
	The message does not include an AckRequested element.

	funreq_id_98
	SpecifyNoSOAP

ActorToPartyAck
	#6.3.2.1
	(For each generated

Acknowledgment

message, if there is no

SOAP actor atrribute

present on an

Acknowledgement

 element)
	REC
	The default target is the ToParty MSH.

	funreq_id_99
	SpecifySOAP

ActorToPartyAck
	#6.3.2.1
	(For each

Acknowledgment

message)
	REC
	The SOAP actor attribute in a generated Acknowledgment

 element has a value corresponding to the AckRequested

 element of the message being acknowledged.

	funreq_id_100
	GenerateAck

MsgTimestamp
	#6.3.2.2
	(For each generated

Acknowledgment

message, if the From

 element is present)
	REQ
	The Timestamp element is present within any generated

Acknowledgment element. The value is in XML Schema

 dateTime format in the UTC timezone and represents the

 time at which the message being acknowledged was

 received by the MSH generating the Ackowledgement

Message.

	funreq_id_101
	GenerateAckUsing

MsgIDInRefTo

MessageID
	#6.3.2.3
	(For each generated

Acknowledgment

 message)
	REQ
	The RefToMessageId element contains the MessageId of

the message whose delivery is being acknowledged.

	funreq_id_102
	IdentifyPartyWith

AckFromElement
	#6.3.2.4
	(For each generated

Acknowledgment

message, if the From

element is present in an

 inbound message)
	REQ
	The From element in a generated Acknowledgment

element contains an identifier of the party sending the

Acknowledgment Message.

	funreq_id_103
	IdentifyPartyWithou

tAckFromElement
	#6.3.2.4
	(For each generated

Acknowledgment

message, if the From

 element is omitted in an

 inbound message)
	REQ
	The value of the From element in the MessageHeader is

used to identify the party sending the acknowledgment.

	funreq_id_104
	UseSignedAck

MustContainRef
	#6.3.2.5
	(For each generated

Acknowledgment

 message, if the

 message being

acknowledged contains

 an AckRequested

element with the signed

attribute set to "true")
	REQ
	One or more Reference elements are included in the

 generated Acknowledgment element.

	funreq_id_105
	QualifyRefElemen

tByNamespace
	#6.3.2.5
	(For each generated

Acknowledgment

message)
	REQ
	Any Reference elements included in a generated

 Acknowledgment element are namespace qualified to the

XML Signature namespace and conform to the XML

Signature specification.

	funreq_id_106
	NotifyClientOf

AckDelivery
	#6.3.2.5
	(For each received

Acknowledgment

message)
	OPT
	The From Party MSH notifies the client application of

successful delivery of the referenced message.

	funreq_id_107
	IgnoreDuplicate

RefToMessageID
	#6.2.2.5
	(For each received

Acknowledgment

message, if any

subsequent Error or

Acknowledgment

messages with a

RefToMessageId value

 equal to an already

received

Acknowledgment

Message are

received)
	OPT
	The messages are ignored.

	funreq_id_108
	SetAckService

ActionValues
	#6.3.2.7
	(For each generated

Acknowledgment

message, If no errors were detected in the message received AND the Acknowledgment Message

 is being sent with no

payload data)
	REQ
	The Service and Action values

are: Service - urn:oasis:names:tc:ebxml-msg:service

Action - Acknowledgment

	funreq_id_109
	SetDuplicate

EliminationAlways
	#6.4.1
	(For each generated

message, if the CPPA

DuplicateElimination

element = "always")
	REQ
	The DuplicateElimination element is included to indicate to

 a Receiving MSH that it must eliminate duplicates.

	funreq_id_110
	SetDuplicate

EliminationtoNever
	#6.4.1
	(For each generated

message, if the CPPA

 DuplicateElimination

element = "never")
	REQ
	The DuplicateElimination element is not present.

	funreq_id_111
	SetDuplicateElimination

PerMessage
	#6.4.1
	(For each generated

message, if the CPPA

DuplicateElimination

element = "per message

" AND the party requires

 duplicate elimination)
	REQ
	The DuplicateElimination element is present in the header

 of the message.

	funreq_id_112
	ReceiveDuplicate

EliminationAlways
	#3.1.2
	(For each received

message, if the CPPA

DuplicateElimination

element = "always" AND

 the received message

does not contain a

 DuplicateElimination

element)
	REC
	The receiving MSH generates an Error message with an

errorCode of Inconsistent and a Severity of Error.

	funreq_id_113
	ReceiveDuplicate

EliminationtoNever
	#3.1.2
	(For each received

message, if the CPPA

DuplicateElimination

element = "never" AND

 the received message

contains a

DuplicateElimination

element)
	REQ
	The receiving MSH generates an Error message with an

errorCode of Inconsistent and a Severity of Error.

	funreq_id_114
	PersistMsgWith

DuplicateElimination
	#6.4.1
	(For each reliably sent

 message, if Duplication

element is present on

an inbound message)
	REQ
	The message is presented to the To Party Application

at-most-once.

	funreq_id_115
	PersistMsgWith

DuplicateElimination

AndInterruption
	#6.4.1
	(For each reliably sent

message, if Duplication

 element is present on

an inbound message

AND the system

recovers from an

 interruption within the

TimeToLive window.)
	REQ
	The message is presented to the To Party Application

 at-most-once.

	funreq_id_116
	ReportErrorIfDuplicate

EliminationUnsupported
	#3.1.2
	(For each received

message containing a

 DuplicationElimination

element, if duplicate

elimination is not

supported)
	REC
	An Inconsistent/Error is reported to the From Party.

	funreq_id_117
	ReportErrorDuplicate

EliminationMsgToCPPA
	#3.1.2
	(For each reliably

received message, if

 the value of

duplicateElimination in

the CPPA is "always"

AND a

 DuplicateElimination

element is not present

 in the message)
	REC
	An Inconsistent/Error is reported to the From Party.

	funreq_id_118
	ReportErrorDuplicate

EliminationMsgToCPPA
	#3.1.2
	(For each reliably

received message, if

 the value of

duplicateElimination in

 the CPPA is "never"

AND a

DuplicateElimination

element is present in

 the message)
	REC
	An Inconsistent/Error is reported to the From Party.

	funreq_id_119
	RedeliveryMsgb

yRetries
	#6.4.3
	(For each generated

message, if the

message that requested

 acknowledgment is not

 acknowledged within

 the RetryInterval)
	OPT
	The message is redelivered up to a maximum number of

retries as specified by the Retries parameter in the

 relevent CPA.

	funreq_id_120
	RetryInterval

MinLapseTime
	#6.4.4
	(For each reliably

re-sent message, if the

 RetryInterval is

present in the CPPA)
	OPT
	The minimum time elapsed between re-sends of the same

 message is equal to the RetryInterval..

	funreq_id_121
	SetTimeToLive
	#6.4.5
	(For each reliably

re-sent message, if the

 RetryInterval element is

 present in the CPPA)
	REQ
	The TimeToLive for the message satisfies the equation:

TimeToLive > Timestamp + ((Retries + 1) * RetryInterval)

	funreq_id_122
	PersistSentMsgLength
	#6.4.6
	(For each reliably

received message, if the

 PersistDuration

parameter is present in

the CPPA AND

DuplicationElimination

element is present in

the messsage AND the

same message is

 received again by the

 MSH before

PersistDuration expires)
	REQ
	The message is presented only once to the application.

	funreq_id_123
	PersistSentMsgLength
	#6.4.6
	(For each reliably

received message, if

 the PersistDuration

parameter is present in

 the CPPA AND

AckRequested element

 is present in the

messsage AND the

same message is

 received again by the

 MSH before

 PersistDuration expires)
	REQ
	An Acknowledgement message is sent back to the

 sending MSH.

	funreq_id_124
	SendNoMsgWith

LapsePersistDuration

MsgID
	#6.4.6
	(For each generated

message, if the length

 of time specified by the

 PersistDuration

 parameter in the

relevant CPA has

passed since a

message was first sent)
	OPT
	A message with the same MessageId will not be sent

 again.

	funreq_id_125
	ReptDeliveryFailureIf

PersistDurationExpired
	#6.4.6
	(For each reliably

 received message, if a

 message cannot be

successfully delivered

 before expiry of the

 PersistDuration period)
	OPT
	A delivery failure is reported.

	funreq_id_126
	TimestampPersist

DurationGreater

ThanTimeToLive
	#6.4.4
	(For each reliably sent

message)
	REQ
	For each reliably sent message, the message satisfies

the equation: PersistDuration > TimeStamp + TimeToLive.

	funreq_id_127
	IgnoreSyncReplyMode
	#6.4.7
	(For each reliablly sent

messsage, if the

communications

 protocol is not

synchronous)
	REQ
	The value of the syncReplyMode in the relevant CPA is

 ignored.

	funreq_id_128
	ReturnSyncReply

ElementInResponse

Payload
	#6.4.7
	(For each reliably sent

 message, if (in the

 context of the CPPA)

 the syncReplyMode is

 not none)
	REQ
	A SyncReply element is present in the message.

	funreq_id_129
	ReturnSyncReply

ResponsePayload
	#6.4.7
	(For each reliably sent

 message, if (in the

context of the CPPA)

 the syncReplyMode is

 not none)
	REQ
	The MSH returns the response on the same synchronous

 connection.

	funreq_id_130
	GenerateAckWhenAckRequested
	#6.5.3
	(For each reliably

 received message, if

 the AckRequested

element that has a

SOAP actor URI

targeting the MSH)
	REQ
	An Acknowledgement Message is generated with

 RefToMessageId having the MessageId value of the

message being acknowledged.

	funreq_id_131
	PersistAckWithOriginalMsg
	#6.5.3
	(For each received

Acknowledgment

message)
	REQ
	The message is placed in persistent storage with the

same PersistDuration as the original message.

	funreq_id_132
	DeliverAckWithResponse
	#6.5.3
	(For each

Acknowledgment

message)
	REQ
	The message can be delivered as part of the normal

 response to the received message.

	funreq_id_133
	DeliverSeperatel

AckServiceAndAction
	#6.5.3
	(For each

Acknowledgment

message, if the

Acknowledgment

 element is sent

seperately from the

response to the

received message)
	REQ
	The Service element value is

 "urn:oasis:names:tc:ebxml-msg:service" and the Action

element value is "Acknowledgment"

	funreq_id_134
	DeliverSeperate

AckRefToMessageId
	#6.5.3
	(For each

Acknowledgment

message, if the

Acknowledgment

element is sent s

eperately from the

 response to the

received message)
	REQ
	The RefToMessageId element is set to the MessageId

of the message received.

	funreq_id_135
	DeliverSeperate

AckFromValue
	#6.5.3
	(For each

Acknowledgment

message, if the

Acknowledgment

 element is sent

seperately from the

response to the

received message)
	OPT
	The From element MAY be populated with the To element

extracted from the message received and all child

 elements from the To element received SHOULD be

included in this From element.

	funreq_id_136
	DeliverSeperate

AckToValue
	#6.5.3
	(For each

Acknowledgment

message, if the

Acknowledgment

element is sent

seperately from the

response to the

received message)
	OPT
	The To element MAY be populated with the From element

extracted from the message received and all child

elements from the From element received SHOULD be

 included in this To element.

	funreq_id_137
	AckNotReceivedResend
	#6.5.3
	(For each generated

message containing an

 AckRequested element,

 AND if an

Acknowledgment

message has not been

 received AND the time

specified in the

RegryInterval parameter

 has passed since the

 last message was sent
AND the message has

been resent less than

 the number of times

 specified in the Retries

 parameter)
	REQ
	The Sending MSH resends the original message.

	funreq_id_138
	AckNotReceived

MaxRetriesExceeded
	#6.5.3
	(For each generated

 message containing an

 AckRequested element,

 AND an

Acknowledgment

message has not been

received after the

 maximum number of

retries)
	REQ
	The Sending MSH notifies the application and/or

system administrator of the failure to receive an A

cknowledgment Message.

	funreq_id_139
	ResendMsgOn

CommError
	#6.5.4
	(For each reliably sent

 message, if there is a

 communications

 protocol error during a

 message send)
	REQ
	The message is resent as if the MSH had not received an

 Acknowledgment Message.

	funreq_id_140
	SendOriginalAck

OnDuplicateMsg
	#6.5.5
	(For each reliably

received message, if a

 duplicate message is

 received AND the

original

acknowledgment is still

present in the persistent

 store)
	OPT
	This original Acknowledgment Message is resent.

	funreq_id_141
	GenerateSyncResponse

OnDuplicateMsg
	#6.5.5
	(For each reliably

received message, If a

 duplicate message is

 received AND the

original acknowledgment

 is not present in the

 persistent store AND

 the syncReplyMode is

not set to none AND

 The CPA indicates that

 an application response

 is included)
	OPT
	response from the application is gathered by the MSH and

 returned synchronously.

	funreq_id_142
	GenerateAckMsgOn

NonSyncDuplicateMsg
	#6.5.5
	(For each reliably

received message, if a

 duplicate message is received AND the original acknowledgment is not present in the

 persistent store AND

 the syncReplyMode is

 not set to none)
	OPT
	A new Acknowledgment Message is generated and sent.

	funreq_id_143
	ReportErrorOnMsg

WithAckReqNoTransmit
	#6.5.7
	(For each reliably

received message, if the

 message contains an

AckRequested element

AND the message

cannot be delivered

because the message

 could not be transmitted)
	REC
	An error message is sent to the From Party.

The reported error is DeliveryFailure/Error.

	funreq_id_144
	GenerateWarning

ErrorOnMsgWithAck

Requested
	#6.5.7
	(For each reliably

received message, if

 the message contains

 an AckRequested

 element AND the

message was

 transmitted but no

acknowledgement was

 received)
	REC
	An error message is sent to the From Party.

 The reported error is DeliveryFailure/Warning.

	funreq_id_145
	NotifyFailureBy

AlternateMeans
	#6
	(For each reliably

received message, if an

 Error Message is

generated with an error

code set to

DeliveryFailure AND an

 Error Message cannot

 be delivered

 successfully)
	REQ
	The ultimate destination of the error message is informed

 of the failure by some undefined means.

	req_id_7
	MsgOrder
	#9
	
	
	

	funreq_id_146
	EnableMsgOrder

WithReliableMsg
	#9
	(For each received

message, if the

 message contains a

MessageOrder element)
	REQ
	The DuplicateElimination is present and AckRequested

 directed to the To Party MSH and absence of a

SyncReply element.

	funreq_id_147
	ProcessSequenceMsg
	#9.1.1
	(For each received

message, when two

 messages are received, each with a MessageOrder element, and the same conversationID)
	REQ
	The MSH processes messages only in the sequence

 indicated by the SequenceNumber element.

	funreq_id_148
	PassOrdered

MsgToApplication
	#9.1.1
	(For each received

message, if the

 message contains a

 MessageOrder element

 AND when receiving

 ordered messages with

 the same

conversationID out of

 sequence)
	REQ
	The message is not passed to the destination application

until all messages with a lower (earlier) SequenceNumber

 have previously been passed.

	funreq_id_149
	GenerateDelivery

FailureOnOutOfSequ

Msg
	#9.1.1
	(For each received

message, if the

message contains a

MessageOrder element

AND if the maximum

number of

 out-of-sequence

ordered messages have

 been received)
	REQ
	The Sending MSH is sent an error and the error code is

 DeliveryFailure and severity set to Error.

	funreq_id_150
	UseZeroSequence

NoForFirstOrderedMsg

ForConversation
	#9.1.1
	(For each received

message, if the

message contains a

MessageOrder element

AND if this is the first

ordered message for

 the ConversationID)
	REQ
	The SequenceNumber element has value of 0."

	funreq_id_151
	UseStatusResetFor

FirstOrderedMsgFor

Conversation
	#9.1.1
	(For each received

 message, if the

message contains a

 MessageOrder element

 AND if this is the first

ordered message for

 the ConversationID)
	REQ
	The status value is set to Reset"

	funreq_id_152
	UseZeroSequence

NoForFirstOrdered

MsgAfterReset
	#9.1.1
	(For each received

 message, if the

message contains a

MessageOrder element

AND this is the first

 ordered message after

 a reset instruction is

 sent by the Sending

MSH)
	REQ
	The SequenceNumber element has value of 0.

	funreq_id_153
	UseZeroSequence

NoAndStatusReset

ForFirstOrderedMsgAfter

Reset
	#9.1.1
	(For each received

 message, if the

 message contains a

 MessageOrder element

 AND this is the first

ordered message after

a reset instruction is

 sent by the Sending

 MSH)
	REQ
	The status value is set to Reset

	funreq_id_154
	UseZeroSequence

NoAndSatusContinue

ForFirstOrderedMsg

AfterWrap
	#9.1.1
	(For each received

message, if the

message contains a

 MessageOrder element

 AND this is the first

 ordered message after

 the sequence wrapped

 at value 99999999)
	REQ
	The SequenceNumber element has value of 0 and a

status Value of Continue

	funreq_id_155
	ResetMsgSeq

ForConversation
	#9.1.1
	(For each generated

 message, when

sending a message with

 the MessageOrder

element AND if the

status attribute is set to

 "Reset")
	REQ
	All previous sent messages for this conversation must

 have been accounted for.

	funreq_id_156
	SyncReplyMsgNot

IncludeMsgOrder
	#9.2
	(For each received

 message, if the

message contains a

SyncReply element)
	REQ
	A MessageOrder element is never included in the same

message as a SyncReply element.

	funreq_id_157
	ReportErrorMsgOrder

SyncReply
	#9.2
	(If a message is

received in which the

 MessageOrder element

 is included with a

SyncReply element)
	REC
	An error is reported. The error is Inconsistent/Error.

	req_id_8
	SecurityAnd

CommunicationChannels
	#4
	
	
	

	funreq_id_158
	SignatureElement

IsChildOfSoapHeader
	#4.1
	(For each generated

 message, when one or

 more Signature

 elements is present)
	REQ
	It is the child of the SOAP Header.

	funreq_id_159
	SignatureIsNamespace

Qualified
	#4.1
	(For each generated

 message, when one or

 more Signature

 elements is present)
	REQ
	It is namespace qualified witih

 http://www.w3.org/2000/09/xmldsig#"

	funreq_id_160
	SignatureConforms

ToXMLDSIG
	#4.1
	(For each generated

message, when one or

more Signature

elements is present)
	REQ
	Its structure and content conform to the XML Signature

 specification available at

 http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/.

	funreq_id_161
	AttributeSignature

Element
	#4.1
	(If there is more than

one Signature element

 within the SOAP Header)
	REQ
	It is the first signature that represents digital signing of the

 message by the From Party MSH.

	funreq_id_162
	ApplySecurityBased

OnTransportOfCPA
	#4.1.3
	(For each generated

message if,based upon

 the Transport section

 of the relevent CPA, a

signature is REQ for the

 entire message)
	REQ
	A Signature element must be present, and its

SignedInfo element contains a Reference element to the

SOAP envelope which has a URI attribute value of ""

	funreq_id_163
	GenerateSign

ToXMLDSIG
	#4.1.3
	(For each signed

message)
	REQ
	Digital signatures are generated and rendered according

the XML Signature specification (XMLDSIG).

	funreq_id_164
	GenerateSign

ChildElements
	#4.1.3
	(For each signed

 message)
	REQ
	The SignedInfo element has a CanonicalizationMethod,

SignatureMethod and one or more Reference elements.

	funreq_id_165
	GenerateSign

AlgorithmAttribute
	#4.1.3
	(For each signed

message)
	REQ
	The SignatureMethod element is present and has an

Algorithm attribute on any generated digitally signed

 message.

	funreq_id_166
	SignCanonical

Method
	#4.1.3
	(For each generated

message with one or

more Signature

 elements)
	REC
	The canonicalization method applied to the data to be

signed is

Agorithm="http://www.w3.org/TR/2001/

REC-xml-c14n-20010315"

	funreq_id_167
	SignatureMethod

AlgorithmAttribute
	#4.1.3
	(For each generated

message with one or

more Signature

elements)
	REC
	The value of the Algorithm attribute is

Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"

	funreq_id_168
	SupportDSA-SHA1

SignAlgorithm
	#4.1.3
	(For each generated

message with one or

more Signature elements)
	REQ
	The MSH supports the signature algorithm DSA-SHA1, validates the signature and passes the message to the application.

	funreq_id_169
	AddOptionalReference

Attribute
	#4.1.3
	(For each generated

message with one or

more Signature

 elements)
	REC
	The MSH supports the optional addition of the informative

 Type attribute with value

 "http://www.w3.org/2000/09/xmldsig#Object" on the

XML Signature Reference element.

	funreq_id_170
	IncludeMandatory

TransformElementTo

EnvelopedSign
	#4.1.3
	(For each generated

message with one or

 more Signature

 elements)
	REQ
	The generated XML Signature Reference element

includes a child Transform element which in turn includes

a first Transform element with an Algorithm attribute of

value

 "http://www.w3.org/2000/09/xmldsig#enveloped-signature".

	funreq_id_171
	GenerateMandatory

TransformWithExclude

SOAPActor
	#4.1.3
	(For each generated

 message with one or

 more Signature

 elements, (CPA,

Transport section) that

 requires signature)
	REQ
	A second Transform element is generated with the

requisite XPath element excluding all elements with

SOAP actor attributes targetting the nextMSH or next

 SOAP node.

	funreq_id_172
	Canonicalization

TransformElement

AlgorithmAttribute
	#4.1.3
	(For each generated

message with one or

 more Signature

elements)
	OPT
	The last generated Transfom element has an Algorithm

attribute with a value of

 "http://www.w3.org/TR/2001/REC-xml-c14n-20010315".

	funreq_id_173
	XMLSignReference

URIForPayload
	#4.1.3
	(For each generated

message with one or

 more Signature

 elements)
	REQ
	Any payload data requiring digital signature is identified by

 an XML Signature Reference element that has a URI

attribute resolving to the location of that data.

	funreq_id_174
	MapSignReferenceURI

ToManifestPayload
	#4.1.3
	(For each generated

 message with one or

more Signature

 elements)
	REC
	The value of the URI attribute of a generated XML

Signature Reference element matches the xlink:href URI

value present in the Manifest/Reference element

corresponding to that same payload.

	funreq_id_175
	GenerateSignPriorTo

TransferEncoding
	#4.1.3
	(For each generated

 message with one or

more Signature

elements, and with

 transfer encoding)
	REQ
	Signature generation takes place before any transfer

encoding (eg base64) is applied to the SOAP Envelope or

 payload MIME parts.

	funreq_id_176
	SignAckReference

ElementList
	#4.1.3.2
	(For each received

signed message)
	REQ
	A digitally signed inbound message may be acknowledged

 with a digitally signed acknowledgement. Any such

acknowledgement message contains an XML Signature

 Reference element list corresponding to the Reference

elements contained in the original message.

	funreq_id_177
	AuthenticatePartyBy

CommunicationChannel
	#4.1.4.3
	(For each generated

message)
	OPT
	The communication channel used to transport the ebXML

 message can be used to provide uni or bi-directiona

l party authentication (eg TLS over TCP/IP).

	funreq_id_178
	ProvideMsgContent

DataIntegrityByCommunication

Channel
	#4.1.4.4
	(For each generated

message)
	OPT
	The communication channel used to transport the ebXML

message can be used to provide data integrity of the

 message content (eg TLS over TCP/IP).

	funreq_id_179
	SignMsgPriorToEncryption
	#4.1.4.5
	(For each generated

message if,based

upon the Transport

section of the relevent

CPA, a signature is

Required for entire

 message AND if

signature and

encryption of a

message component

 is requested of the MSH)
	OPT
	Signing takes place prior to encryption.

	funreq_id_180
	ProvideMsgContentData

ConfidentialityBy

CommunicationChannel
	#4.1.4.6
	(For each generated

message)
	REQ
	The communication channel used to transport the ebXML

 message can be used to provide data confidentiality for

 the message content (eg TLS over TCP/IP).

	funreq_id_181
	AuthorizeMsgWith

BilateralAuthentication

ByNetworkProtocol
	#4.1.4.8
	(For each generated

message)
	OPT
	The source of an ebXML message can be authorised by

 using a secure network protocol for bilateral authentication

 of certificates prior to establishing a session

 (eg TLS over TCP/IP).

	req_id_9
	MessageStatusService
	#7
	
	
	

	funreq_id_182
	GenerateStatusResponse

WithReliableMessaging
	#7
	(For each received

message, if the message

contains a StatusRequest

element AND the

RefToMessageId child

element references a

previously received

message that had

been sent reliably and

is present in persistent

storage)
	REC
	A Message Status Response Message is returned.

	funreq_id_183
	GenerateStatus

ResponseWithoutReliable

Messaging
	#7
	(For each received message,

 if the message contains a

StatusRequest element AND

 the RefToMessageId child

element references a

previously received message

 that had not been sent reliably)
	OPT
	A Message Status Response is returned.

	funreq_id_184
	ReportUnsupported

Service
	#7
	(For each received message,

 if the message contains a

StatusRequest element AND

 the message is received for

 a service that is not supported)
	REC
	An Error Message is returned with an errorCode of

 "NotSupported".

	funreq_id_185
	GenerateValidStatus

RequestMessage
	#7.1.1
	(For each received message,

 If the MessageHeader child

Action element is equal to

 "StatusRequest")
	REQ
	The message consists of no payload and the

MessageHeader/StatusRequest elements configured as

specified in the Message Service Specification and is

not included along with any of the Manifest,

StatusResponse, or ErrorList elements.

	funreq_id_186
	ProcessUnauthorized

StatusRequest
	#7.1.3
	(For each received message,

 if the message contains a

StatusRequest element AND

the StatusRequest child

 RefToMessageId element

value is recognized by the

 MSH AND the message is

 received from a party deemed

 to be unauthorised)
	OPT
	A response is sent with the messageStatus attribute set

 to "UnAuthorized".

	funreq_id_187
	ProvideRefToMessageId

AndMessageIdIntegrity
	#7.3.1
	(For each received message,

if the message contains a

StatusRequest element AND

the StatusRequest child

RefToMessageId element

value is recognized by the

 MSH AND a StatusResponse

 is generated for this request)
	REC
	In the returned StatuResponse element, the

RefToMessageId element child of the MessageData

element specifies the MessageId of the message

 containing the associated StatusRequest element. I

n addition, the RefToMessageId element child of the

 StatusResponse elements always contains the

MessageId of the message whose status is being queried.

	funreq_id_188
	SetTimestampRecognized

AndAuthorized
	#7.3.2
	(For each received message,

if the message contains a

StatusRequest element AND

 the StatusRequest child

RefToMessageId element value

 is recognized)
	REQ
	In the response message, the Timestamp child element of

 the StatusResponse element contains the time at which

 the message being reported on was originally received.

	funreq_id_189
	SetTimestampNot

Recognized
	#7.3.2
	(For each received message,

 if the message contains a

StatusRequest element

AND the StatusRequest

child RefToMessageId

element value is not r

ecognized)
	REQ
	The Timestamp child element of the StatusResponse

 element is not present in the response message.

	funreq_id_190
	SetTimestampNotAuthorized
	#7.3.2
	(For each received message,

if the message contains a

StatusRequest element AND

 the StatusRequest child

RefToMessageId element

value is not authorized.)
	REQ
	The Timestamp child element of the StatusResponse

element is not present in the response message.

	funreq_id_191
	GenerateUnauthorized

MessageStatus
	#7.3.3
	(For each received message,

if the message contains a

StatusRequest element

AND the message is recognized)
	REQ
	The messageStatus attribute in the StatusResponse

element has a value of 'UnAuthorized'.

	funreq_id_192
	GenerateNotRecognized

MessageStatus
	#7.3.3
	(For each received message,

if the message contains a

StatusRequest element AND

 the StatusRequest child

RefToMessageId element

value is not recognized)
	REQ
	The messageStatus attribute in the StatusResponse

 element has a value of 'NotRecognized'.

	funreq_id_193
	GenerateReceived

MessageStatus
	#7.3.3
	(For each received message,

 if the message contains a

StatusRequest element AND

 the StatusRequest child

 RefToMessageId element

 value is recognized AND

 the RefToMessageId element

 value is recognized and not yet

 processed)
	REQ
	The messageStatus attribute in the StatusResponse

element has a value of 'Received'.

	funreq_id_194
	GenerateProcessed

MessageStatus
	#7.3.3
	(For each received message,

 if the message contains a

StatusRequest element AND

the StatusRequest child

 RefToMessageId element

value is recognized AND the

RefToMessageId element value

 is recognized and processed)
	REQ
	The messageStatus attribute in the StatusResponse

 element has a value of 'Processed'.

	funreq_id_195
	GenerateReceived

MessageStatus
	#7.3.3
	(For each received message,

if the message contains a

StatusRequest element AND

the StatusRequest child

 RefToMessageId element

value is recognized AND

 the message identified

by the RefToMessageId

 element in the StatusRequest

element has been forwarded

 by the MSH)
	REQ
	A StatusResponse with a 'Forwarded' messageStatus is

 be present in the returned message.

	req_id_10
	PingService
	#8
	
	
	

	funreq_id_196
	ReportServiceNot

Supported
	#8
	(For each received message,

if the message header Action

 element contains a child Ping

element AND the requested

 service is not supported)
	REC
	A message with an Error element is returned with an

 errorCode of "NotSupported" and a highestSeverity

attribute set to "Error".

	funreq_id_197
	GenerateValidPing

MessageStructure
	#8.1
	(For each generated message,

if the message headerAction

element contains a child Ping

 element)
	REQ
	The message consists of no payload and the MessageHeader and Signature elements (if present) are configured as specified in the Message Service Specification.

	funreq_id_198
	GeneratePongResponse
	#8.2
	(For each received message,

 if the message header Action

element contains a child Ping

 element AND the requested

service is supported AND The

 Ping request is occurring under

 normally expected conditions,

 and the received message is

authorized and not interpreted

 by the Receiving party as part

of an attack.)
	OPT
	A message header Action element containing a child

Pong element is returned. The message contains no

 payload and the MessageHeader & Signature elements

(if present) are configured as specified in the Message

 Service Specification.

	req_id_11
	MultiHopModule
	#10
	
	
	

	funreq_id_199
	SetMultiHopIntermediary

NextMSH
	#10.1
	(For each generated multi-hop

 message)
	OPT
	The AckRequested and Acknowledgment elements have

 the SOAP actor attribute set to NextMSH

 (urn:oasis:names:tc:ebxml-msg:actor:nextMSH).

	funreq_id_200
	RemoveIntermediary

AckRequested
	#10.1.1
	(For each received multi-hop

message, when a node acts

 as an intermediary)
	REQ
	The node removes any AckRequested element with a

SOAP actor attribute of NextMSH.

	funreq_id_201
	InsertIntermediary

AckRequested
	#10.1.1
	(For each received multi-hop

message, when a node acts

 as an intermediary)
	OPT
	The node can insert a single AckRequested element with

 a SOAP actor attribute of NextMSH.

	funreq_id_202
	GenerateSingleAck

RequestedForNextMSH
	#10.1.1
	(For each generated multi-hop

 message with the SOAP actor

attribute value targetting the

NextMSH)
	REQ
	There will not be two AckRequested elements in the same

 message.

	funreq_id_203
	SyncReplyNoAck

RequestedForNextMSH
	#10.1.1
	(For each generated multi-hop

message, if a SyncReply

element is present in a message)
	REQ
	An AckRequested element with SOAP actor attribute

targetting the NextMSH is never included.

	funreq_id_204
	GenerateErrorWith

SyncReplyAckRequested
	#10.1.1
	(For each received multi-hop

message, if the SyncReply and

AckRequested elements is received

 in one message AND the

AckRequested element is

received in the same message)
	REQ
	An error is reported with an errorCode of "Inconsistent".

	funreq_id_205
	GenerateIntermediary

AckMsgIfNoSyncReply
	#10.1.1
	(For each received multi-hop

message, when a node acts in

the role of intermediary AND

no SyncReply element is specified)
	OPT
	A node may synchronously return an intermediate

Acknowledgment Message to the Sending MSH.

	funreq_id_206
	GenerateAckBasedOnActor
	#10.1.3
	(For each received multi-hop

message, if an inbound message

contains two AckRequested

elements where one addresses

NextMSH AND another

 AckRequest addresses the

 ToParty MSH AND the

receving MSH is the ToParty MSH)
	REQ
	The MSH node is in the combined role of Next and

 ToParty MSH, and will send two Acknowledgments

	funreq_id_207
	GenerateIntermediary

AckMsgAtComplete
	#10.1.3
	(For each received multi-hop

 message, a reliable message

received by an MSH node in the

 role of intermediary)
	REQ
	The message is not acknowledged until the message is

both persisted and delivered to the Next MSH.

	funreq_id_208
	GenerateIntermediary

SignedAck
	#10.1.4
	(For each received multi-hop

message, when a signed

Acknowledgment Message is

requested by an intermediate node)
	REQ
	The message is only generated as a standalone message

and is not bundled with any other data (payload).

	funreq_id_209
	NoMsgOrderProcess

ForIntermediary
	#10.2
	(For each received multi-hop

message, when the MSH acts

 in the role of intermediary)
	REQ
	The MSH does not attempt to participate in Message

 Order processing.

	funreq_id_210
	RequestDownstreamAck
	#6.3.1
	(For a downstream (Next)

 processor , if an AckRequested

 element is received)
	REQ
	An acknowledgment is returned.

	funreq_id_211
	GenerateMultiple

AckRequested
	#6.3.1
	(For each generated multi-hop

message, if there are two

AckRequested elements in a

generated message Header)
	REQ
	The two AckRequested elements do not specify the same

 value for their respective SOAP actor attributes.

	funreq_id_212
	TargetAtMostOne

AckNextMSH
	#6.3.1
	(For each generated multi-hop

message)
	REQ
	At most one AckRequested element may be targeted at

 the actor URI for the Next MSH.

	funreq_id_213
	TargetAtMostOne

AckToPartyMSH
	#6.3.1
	(For each generated multi-hop

 message)
	REQ
	At most one AckRequested element may be targeted at

the actor URI for the To Party MSH in a given message.

	funreq_id_214
	IgnoreIntermediary

Duplicates
	#6.5.2
	(For each reliably received

message, when the MSH acts

 as an intermediary node)
	REQ
	The MSH does not filter out perceived duplicate messages.

	funreq_id_215
	ControlIntermediary

MSHHandling
	#4.1.3
	(For each received multi-hop

message, when a node acts as

an intermediary)
	REQ
	The MSH does not change, format or in any way modify

 any element not targetted at that intermediary MSH.

The MSH does not add or delete white space.

	funreq_id_216
	TargetAckRequested

ToOrNextMSH
	#6.3.1.1
	(For each generated multi-hop

 message)
	REQ
	The AckRequested element is targeted at the NextMSH

Table 8 is a tabular representation of the ebXML MS 2.0 Conformance Test Requirements

5.3 Normative ebXML MS Conformance Executable Test Suite

[ebMSExeConfTests] is an XML document containing the executable ebXML MS V2.0 Conformance Suite. The XML document consists of a “bootstrap” ConfigurationGroup data, Test Case, Test Step and Test Operation XML content that provides the necessary information for the execution of the Test Suite by the Test Driver. The syntax and semantics of this Test Suite are described in detail in the [ebTestFramework].

Appendix A References

A.1 Non-Normative References

[ebTestFramework]
ebXML Test Framework specification, Version 1.0, Technical Committee Specification, March 4, 2003,
http://www.oasis-open.org/committees/documents.php?wg_abbrev=ebxml-iic
[ebMS]

ebXML Messaging Service Specification, Version 2.0,
http://www.oasis-open.org/committees/documents.php?wg_abbrev=ebxml-iic
[ebMSInteropTests]
ebXML MS V2.0 Basic Interoperability Profile Test Cases,
http://www.oasis-open.org/committees/documents.php?wg_abbrev=ebxml-iic
[ebMSConfTestSuite]
ebXML MS V2.0 Conformance Test Suite,
http://www.oasis-open.org/committees/documents.php?wg_abbrev=ebxml-iic
[ebMSExeConfTests] ebXML MS V2.0 Executable Conformance Test Suite

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-iic
[ebMSInteropReqs]
ebXML MS V2.0 Interoperability Test Requirements,

http://www.oasis-open.org/committees/documents.php?wg_abbrev=ebxml-iic
[ebMSConfReqs]
ebXML MS V2.- Conformance Test Requirements,

http://www.oasis-open.org/committees/documents.php?wg_abbrev=ebxml-iic
[XMLSchema]
W3C XML Schema Recommendation,
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
[ebCPP]
ebXML Collaboration Protocol Profile and Agreement specification, Version 1.0, published 10 May, 2001,
http://www.ebxml.org/specs/ebCCP.doc
[ebBPSS]
ebXML Business Process Specification Schema, version 1.0, published 27 April 2001,
http://www.ebxml.org/specs/ebBPSS.pdf.

[XPath]
XML Path Language (XPath), Version 1.0, published 16 November 1999,

http://www.w3.org/TR/xpath.html
Appendix B Acknowledgments

The authors wish to acknowledge the support of the members of the OASIS ebXML IIC TC who contributed ideas, comments and text to this specification by the group’s discussion eMail list, on conference calls and during face-to-face meetings.

B.1 IIC Committee Members

Jacques Durand, Fujitsu <jdurand@fsw.fujitsu.com>

Jeffery Eck, Global Exchange Services <Jeffery.Eck@gxs.ge.com>

Hatem El Sebaaly, IPNet Solutions <hatem@ipnetsolutions.com>

Aaron Gomez, Drummond Group Inc. <aaron@drummondgroup.com>

Michael Kass, NIST <michael.kass@nist.gov>

Matthew MacKenzie, Individual <matt@mac-kenzie.net>

Monica Martin, Sun Microsystems <monica.martin@sun.com>

Tim Sakach, Drake Certivo <tsakach@certivo.net>

Jeff Turpin, Cyclone Commerce <jturpin@cyclonecommerce.com>

Eric van Lydegraf, Kinzan <ericv@kinzan.com>

Pete Wenzel, SeeBeyond <pete@seebeyond.com>

Steven Yung, Sun Microsystems <steven.yung@sun.com>

Boonserm Kulvatunyou, NIST <serm@nist.gov>

Mike Dillon, Drummond Group Inc. <mike@drummondgroup.com>

Rik Drummond, Drummond Group Inc. <rvd2@drummondgroup.com>

Appendix C Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2003. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Appendix D Revision History

	Rev
	Date
	By Whom
	What

	cs-10
	2003-06-27
	Michael Kass
	Initial version

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]
April 2002. All Rights Reserved.
ebxml-iic-basic-interop-test-suite-10

03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved.

Page 8 of 126

