Test Case Coverage of ebXML MS 2.0 Conformance Test Requirements

August 8, 2003

The table below lists those conformance testing requirements whos disposition must be determined in order to classify them as testable or not testable. The “Test Coverage” column indicates the reason that a test requirement is labeled either untestable (red) or partially-testable (orange). A (white) background indicatest “full coverage”.

The “Resolution Status” column indicates (based upon discussion of the last conference call, plus additional examination of requirements not covered during the call) an updated testing status for each conformance requirement.

	ID
	Name
	Spec Ref
	Precondition
	Req Level
	Assertion
	Test
Coverage
	Resolution

Status

	req_id_1
	Global Requirements

For All Tests
	#1.3
	
	
	
	
	

	funreq_id_1
	SchemaValidation
	#1.3
	(For each generated message)
	REQ
	Supports all mandatory syntax defined in Core plus Additional Features
	 This broad requirement is partially tested individually by all other tests in the conformance test suite
	This requirement is tested “as a whole” through other requirements in this list.

	req_id_2
	PackagingSpecification
	#2
	
	
	
	
	

	funreq_id_9
	GenerateSpecificSOAPMessageCharacterSet
	#2.1.3.1
	(For each generated message)
	REQ
	The MIME Content-Type header of each generated SOAP Message specifies the character set used to generate the message.
	 Test Harness does not define a way to determine actual encoding of message
	Will writeh the “abstract test”, but not the “executable test”. SUGGEST that Test Driver developers scan SOAP message and set and compare with MIME Content-Type. Result can be set as a “true/false” parameter.

	funreq_id_27
	GenerateIdAttributeToExtensionElements
	#2.3.7
	(For each generated message)
	OPT
	An XML ID attribute is supplied for each generated ebXML element (to assist with such tasks as specifying elements included in a digital signature).
	Partially Tested - Only MessageHeader element tested
	Will also test Acknowledgment, StatusResponse, ErrorList, Manifest

	funreq_id_29
	GenerateCorrectSOAPMustUnderstandNamespace
	#2.3.9
	(For each generated message)
	REQ
	All ebXML extensions of the SOAP Header element (MessageHeader, SyncReply, MessageOrder, ...) contain the mustUnderstand attribute namespace qualified to the SOAP namespace (http://schemas.xmlsoap.org/soap/envelope).
	Partially Tested - Only MessageHeader element tested
	Will also test Acknowledgment, ErrorList, and

	req_id_3
	CoreExtensionElements
	#3.1.1
	
	
	
	
	

	funreq_id_31
	GenerateUniquePartyId
	#3.1.1
	(For each generated message, unless a single type value refers to multiple identification systems)
	REQ
	The value of any given type attribute must be unique within the list of PartyId elements contained within either the From or To element.
	 This is application level testing
	This will NOT be tested

	funreq_id_46
	GenerateDistinctLangValuesForDescription
	#3.1.8
	(For each generated message)
	REC
	No two Description elements must have the same xml:lang attribute value
	 This is application level testing
	This will NOT be tested

	funreq_id_47
	GenerateNoPayloadOrApplicationDataInBodyOrManifest
	#3.2
	(For each generated message)
	REC
	No payload/application data is present in generated SOAP Body /element.
	 Any XML content is allowed in a SOAP body, so no way to determine if application data is present
	Will test that only Manifest or StatusResponse element is present

	funreq_id_50
	GenerateResolvableHREFInManifest
	#3.2.2
	(For each generated message)
	OPT
	The xlink:href element of a Manifest/Reference element on an inbound message specifies a URI that is a content id ("cid:"), and can be resolved
	 This is application-level testing
	This will NOT be tested

	req_id_4
	ErrorHandling
	#4.2
	
	
	
	
	

	funreq_id_52
	ProcessUpstreamSOAPFault
	#4.2
	(For each received message)
	REQ
	The MSH can accept and process SOAP Fault values from a downstream SOAP processor.
	 Spec does not say how downstream SOAP faults should be handled
	This will NOT be tested

	funreq_id_53
	GenerateCompliantSOAPFaults
	#4.2
	(For each generated message, if an MSH returns a SOAP Fault message to the sender of a SOAP message)
	REQ
	The returned message conforms to the SOAP specification guidelines for SOAP Fault values.
	 This is SOAP conformance testing, and specific SOAP fault generation by MSH is not defined in [ebMS]
	This can be partially tested

for VersionMismatch, MustUnderstandand fault codes.

	funreq_id_54
	GenerateWarnings
	#4.2
	(For each generated message, when an ebXML message is reporting an error with a highestSeverity value of 'Warning')
	REC
	It is not reported or returned as a SOAP Fault.
	Partially Tested - Not tested for all possible "warning" errors
	This can be partially tested usign DeliveryFailure

Error

	funreq_id_55
	ReportDataCommunicationErrors
	#4.2.2
	(For each received message)
	REC
	Errors associated with data communications protocols are detected and reported using the standard mechanisms supported by that protocol and does not use ebXML reporting mechanisms.
	 This Test Framework does not support HTTP or SMTP conformance testing
	This will NOT be tested - Test Framework would have to be extended to support HTTP or SMTP error testing

	funreq_id_56
	GenerateNoErrorList
	#4.2.3
	(For each generated message)
	REQ
	The ErrorList extension element of the SOAP Header element is never present if there are no errors to be reported.
	 This is not a testable requirement as written in specification
	This will NOT be tested

	funreq_id_57
	ProvideErrorAndHighestSeverityIntegrity
	#4.2.3.1
	(For each generated message)
	REQ
	For each generated message, the highestSeverity attribute contains the highest severity of any Error elements generated in an outbound message.
	Partially Tested - Not tested for all possible ebXML errors
	This will be tested for DeliveryFailure, Inconsistent and NotSupported errors

	funreq_id_58
	GenerateCorrectCodeContextValue
	#4.2.3.2.2
	(For each generated message)
	REQ
	The codeContext attribute of any generated Error element is always a URI.
	Partially Tested - Not tested for all possible ebXML errors
	This will be tested for DeliveryFailure, Inconsistent, and NotSupported errors

	funreq_id_59
	GenerateCorrectCodeContextNamespaceValue
	#4.2.3.2.2
	(For each generated message)
	REC
	The namespace/scheme specified by codeContext for identifying errorCodes is the default value of urn:oasis:names:tc:ebxml-msg:service:errors.
	Partially tested for one Error only
	This can be partically tested for DeliveryFailure, Inconsistent, and NotSupported errors

	funreq_id_60
	GenerateCorrectErrorSeverityValue
	#4.2.3.2.4
	(For each generated message)
	REQ
	Each Error element severity attribute has the value of Warning or Error indicating the severity of the error.
	Partially Tested - Not tested for all "warning" errors
	This will be tested for DeliveryFailure, Inconsistent and NotSupported errors

	funreq_id_61
	ProvideXPointerAndErrorIntegrity
	#4.2.3.2.5
	(For each generated message, if an error exists in an ebXML element)
	REQ
	The location attribute of the Error element is an XPointer to the erroneous element.
	Partially Tested - Only tests if XPointer is returned, not its value
	This will be tested for DeliveryFailure, Inconsistent, NotSupported

	funreq_id_62
	GenerateReferencedMIMEPartErrorsWithCID
	#4.2.3.2.5
	(For each received message, if an error exists in a generated payload MIME part)
	REQ
	The location attribute of the generated Error element contains the content-id (via a well-formed "cid:") of the erroneous MIME part.
	Not Tested - This is "application level" testing
	This will NOT be tested

	funreq_id_63
	GenerateErrorCodesUsingLongDescription
	#4.2.3.4
	(For each generated message)
	REQ
	The "Short Description" text for each error code provided by the Message Service Specification does not appear in any relevant Error element.
	Not Tested - Spec never defines what "should" be in the Description
	This will NOT be tested

	funreq_id_64
	ReportErrorToMessageOrigin
	#4.2.4.1
	(For each received message, when an MSH detects an error in a message and · the Error Reporting Location (see section 4.2.4.2) to which the message reporting the error should be sent can be determined and the message in error does not have an ErrorList element with highestSeverity set to Error)
	REC
	The error is reported to the MSH that sent the original message in error.
	Partially Tested - Not tested for all possible ebXML errors
	This will be tested for DeliveryFailure, Inconsistent and NotSupported errors

	req_id_6
	ReliableMsg
	#6
	
	
	
	
	

	funreq_id_77
	PersistReliableSentMsg
	#6.1
	(For each reliably sent message, after a system interruption and the system recovers within the TimeToLive window)
	REQ
	The message is processed as if the interruption had not occurred.
	 System interrupts are not possible using existing framework
	This will be described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

	funreq_id_78
	PersistReliableSentMsgNoAck
	#6.1
	(For each reliably sent message, after a system interruption and no Ack was received prior to the interruption and the system recovers within the TimeToLive window.)
	REQ
	The message is kept in persistent storage and processed as if the interruption had not occurred.
	Not Tested -System interrupts are not possible using existing framework
	This will be described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

	funreq_id_79
	PersistReliableSentMsgAfterInterrupt
	#6.1
	(For each reliably sent message, after a system interruption)
	REQ
	The message is kept in persistent storage.
	System interrupts are not possible using existing framework
	This will be described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

	funreq_id_80
	PersistReliableReceivedMsgAfterInterrupt
	#6.1
	(For each reliably received message, after a system interruption and the system recovers within the TimeToLive window.)
	REQ
	The message processed as if the interruption had not occurred.
	System interrupts are not possible using existing framework
	This will be described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

	funreq_id_81
	PersistReliableReceivedMsgNoAck
	#6.1
	(For each reliably received message, after a system interruption and no Ack was sent prior to the interruption and the system recovers within the TimeToLive window.)
	REQ
	The message is kept in persistent storage and processed as if the interruption had not occurred.
	System interrupts are not possible using existing framework
	This will be described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

	funreq_id_82
	PersistReliableReceivedMsg
	#6.1
	(For each reliably received message, after a system interruption)
	REQ
	The message is kept in persistent storage.
	System interrupts are not possible using existing framework
	This will be described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

	funreq_id_83
	PersistReliableSentMsgAfterSystemFailure
	#6.1
	(For each reliably sent message, after a system failure and the system recovers within the TimeToLive window.)
	REQ
	The message is kept in persistent storage and processed as if the interruption had not occurred.
	System interrupts are not possible using existing framework
	This will be described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

	funreq_id_84
	PersistReliableSenTMsgAfterSystemFailureAndNoAck
	#6.1
	(For each reliably sent message, after a system failure and no Ack was received prior to the interruption and the system recovers within the TimeToLive window.)
	REQ
	The message is kept in persistent storage and processed as if the interruption had not occurred.
	System interrupts are not possible using existing framework
	This will be described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

	funreq_id_85
	PersistReliableReceivedMsg
	#6.1
	(For each reliably received message)
	REQ
	The complete message is kept in persistent storage.
	Examination of persistent store not possible with with this framework
	This requirement is really an “implementation guideline”. MSH persistent store cannot be examined by this Test Framework, therefore this requirement will not be tested.

	funreq_id_86
	PersistReceivedMsgID
	#6.1
	(For each reliably received message, in order to support the filtering of duplicate messages)
	REQ
	The MessageId of the received messaged is recorded in persistent storage.
	Examination of persistent store not possible with this framework
	This requirement is really an “implementation guideline”. MSH persistent store cannot be examined by this Test Framework, therefore this requirement will not be tested.

	funreq_id_87
	PersistRecdMsg
	#6.1
	(For each reliably received message)
	REC
	The received message is recorded in its entirety at least until the information in the message has been passed to the application needing to process it.
	Examination of persistent store not possible with this framework
	This requirement is really an “implementation guideline”. MSH persistent store cannot be examined by this Test Framework, therefore this requirement will not be tested.

	funreq_id_88
	PersistReceivedMsgTimestamp
	#6.1
	(For each reliably received message)
	REC
	The time at which a message is received is recorded in persistent storage.
	Examination of persistent store not possible with this framework
	This requirement is really an “implementation guideline”. MSH persistent store cannot be examined by this Test Framework, therefore this requirement will not be tested.

	funreq_id_89
	PersistResponseMsg
	#6.1
	(For each reliably received message)
	REC
	Each response message is stored in its entirety in persistent storage.
	Examination of persistent store not possible with this framework
	This requirement is really an “implementation guideline”. MSH persistent store cannot be examined by this Test Framework, therefore this requirement will not be tested.

	funreq_id_93
	SetSignedAttributeAfterVerifyReceivingMSHAckSupport
	#6.3.1.2
	(For each received message with an AckRequested with the Signed attribute set to “true” consistent with the CPPA, if the Receiving MSH does not support signed acknowledgment messages of the type requested)
	REQ
	The MSH generates an Error of type Inconsistent, and severity = Warning.
	Partially Tested - Only tested for sha-1 signature algorithm
	Will only test sha-1 signature conformance

	funreq_id_97
	ReportErrorWithoutAckRequeseted
	#6.3.1.4
	(For each generated Acknowledgment message, if the message contains an ErrorList element)
	REQ
	The message does not include an AckRequested element.
	Partially Tested - Not tested for all possible errors
	This will be tested for DeliveryFailure, Inconsistent, NotSupported errors

	funreq_id_106
	NotifyClientOfAckDelivery
	#6.3.2.5
	(For each received Acknowledgment message)
	OPT
	The From Party MSH notifies the client application of successful delivery of the referenced message.
	This is "application level" testing, not testable in existing framework
	This will NOT be tested.

	funreq_id_115
	PersistMsgWithDuplicateEliminationAndInterruption
	#6.4.1
	(For each reliably sent message, if Duplication element is present on an inbound message and the system recovers from an interruption within the TimeToLive window.)
	REQ
	The message is presented to the To Party Application at-most-once.
	Test Framework does not support system interruptions
	This will NOT be tested. Test will be described in Abstract Test Suite only

	funreq_id_138
	AckNotReceivedMaxRetriesExceeded
	#6.5.3
	(For each generated message containing an AckRequested element, and an Acknowledgment message has not been received after the maximum number of retries)
	REQ
	The Sending MSH notifies the application and/or system administrator of the failure to receive an Acknowledgment Message.
	 The Test Framework does not support capture application or system administrator notifications.
	This will NOT be tested. Test Framework must include specification of error to be included in possible ErrorAppNotify message

	funreq_id_139
	ResendMsgOnCommError
	#6.5.4
	(For each reliably sent message, if there is a communications protocol error during a message send)
	REQ
	The message is resent as if the MSH had not received an Acknowledgment Message.
	 The Test Framework does not support generation of protocol errors
	This will NOT be tested

	funreq_id_145
	NotifyFailureByAlternateMeans
	#6
	(For each reliably received message, if an Error Message is generated with an error code set to DeliveryFailure and an Error Message cannot be delivered successfully)
	REQ
	The ultimate destination of the error message is informed of the failure by some undefined means.
	
 This is an untestable requirement as written in the specification
	This will NOT be tested

	req_id_7
	MsgOrder
	#9
	
	
	
	
	

	funreq_id_146
	EnableMsgOrderWithReliableMsg
	#9
	(For each generated message, if the message contains a MessageOrder element)
	REQ
	The DuplicateElimination is present and AckRequested directed to the To Party MSH and absence of a SyncReply element.
	This is "application level" testing
	This will NOT be tested

	funreq_id_148
	PassOrderedMsgToApplication
	#9.1.1
	(For each received message, if the message contains a MessageOrder element and when receiving ordered messages with the same conversationID out of sequence)
	REQ
	The message is not passed to the destination applicationuntil all messages with a lower (earlier) SequenceNumber have previously been passed.
	Not testable in this framework
	This is testable. While passing to application may not be visible, end result of a returned message is.

	funreq_id_149
	GenerateDeliveryFailureOnOutOfSequMsg
	#9.1.1
	(For each received message, if the message contains a MessageOrder element and if the maximum number of out-of-sequence ordered messages have been received)
	REQ
	The Sending MSH is sent an error and the error code is DeliveryFailure and severity set to Error.
	Specification ambiguity – maximum saved out-of-sequence messages is implementation dependent.
	This will NOT be tested

	funreq_id_154
	UseZeroSequenceNoAndSatusContinueForFirstOrderedMsgAfterWrap
	#9.1.1
	(For each received message, if the message contains a MessageOrder element and this is the first ordered message after the sequence wrapped at value 99999999)
	REQ
	The SequenceNumber element has value of 0 and a status Value of Continue
	This is application testing
	This will NOT be tested

	funreq_id_155
	ResetMsgSeqForConversation
	#9.1.1
	(For each generated message, when sending a message with the MessageOrder element and if the status attribute is set to "Reset")
	REQ
	All previous sent messages for this conversation must have been accounted for.
	This is application testing
	This will NOT be tested

	funreq_id_156
	SyncReplyMsgNotIncludeMsgOrder
	#9.2
	(For each generated message, if the message contains a SyncReply element)
	REQ
	A MessageOrder element is never included in the same message as a SyncReply element.
	This is application testing
	This will NOT be tested

	req_id_8
	SecurityAndCommunicationChannels
	#4
	
	
	
	
	

	funreq_id_161
	AttributeSignatureElement
	#4.1
	(If there is more than one Signature element within the SOAP Header)
	REQ
	It is the first signature that represents digital signing of the message by the From Party MSH.
	 This is application-level testing
	This will be tested

	funreq_id_163
	GenerateSignToXMLDSIG
	#4.1.3
	(For each signed message)
	REQ
	Digital signatures are generated and rendered according the XML Signature specification (XMLDSIG).
	Partially Tested - for suggested DSIG parameters only
	This will be tested

	funreq_id_175
	GenerateSignPriorToTransferEncoding
	#4.1.3
	(For each generated message with one or more Signature elements, and with transfer encoding)
	REQ
	Signature generation takes place before any transfer encoding (e.g. base64) is applied to the SOAP Envelope or payload MIME parts.
	 Framework cannot verify signing before encoding
	This will be tested

	funreq_id_177
	AuthenticatePartyByCommunicationChannel
	#4.1.4.3
	(For each generated message)
	OPT
	The communication channel used to transport the ebXML message can be used to provide uni or bi-directional party authentication (e.g. TLS over TCP/IP).
	 Not supported by test framework
	This will NOT be tested

	funreq_id_178
	ProvideMsgContentDataIntegrityByCommunicationChannel
	#4.1.4.4
	(For each generated message)
	OPT
	The communication channel used to transport the ebXML message can be used to provide data integrity of the message content (e.g. TLS over TCP/IP).
	 Not supported by test framework
	This will NOT be tested

	funreq_id_179
	SignMsgPriorToEncryption
	#4.1.4.5
	(For each generated message if, based upon the Transport section of the relevant CPA, a signature is Required for entire message and if signature and encryption of a message component is requested of the MSH)
	OPT
	Signing takes place prior to encryption.
	 Framework cannot verify signing before encryption
	This will be tested

	funreq_id_180
	ProvideMsgContentDataConfidentialityByCommunicationChannel
	#4.1.4.6
	(For each generated message)
	REQ
	The communication channel used to transport the ebXML message can be used to provide data confidentiality for the message content (e.g. TLS over TCP/IP).
	 Framework cannot verify message confidentiality
	This will NOT be tested

	funreq_id_181
	AuthorizeMsgWithBilateralAuthenticationByNetworkProtocol
	#4.1.4.8
	(For each generated message)
	OPT
	The source of an ebXML message can be authorized by using a secure network protocol for bilateral authentication of certificates prior to establishing a session (e.g. TLS over TCP/IP).
	 Framework cannot verify authorization
	This will NOT be tested

	req_id_9
	MessageStatusService
	#7
	
	
	
	
	

	funreq_id_193
	GenerateReceivedMessageStatus
	#7.3.3
	(For each received message, if the message contains a StatusRequest element and the StatusRequest child RefToMessageId element value is recognized and the RefToMessageId element value is recognized and not yet processed)
	REQ
	The messageStatus attribute in the StatusResponse element has a value of 'Received'.
	 This is application-level testing
	This will NOT be tested. Test Framework does not support this particular test.

	funreq_id_194
	GenerateProcessedMessageStatus
	#7.3.3
	(For each received message, if the message contains a StatusRequest element and the StatusRequest child RefToMessageId element value is recognized and the RefToMessageId element value is recognized and processed)
	REQ
	The messageStatus attribute in the StatusResponse element has a value of 'Processed'.
	 This is application-level testing
	This will be tested

	req_id_10
	PingService
	#8
	
	
	
	
	

	funreq_id_197
	GenerateValidPingMessageStructure
	#8.1
	(For each generated message, if the message header Action element contains a child Ping element)
	REQ
	The message consists of no payload and the MessageHeader and Signature elements (if present) are configured as specified in the Message Service Specification.
	This is application level testing
	This will NOT be tested

	req_id_11
	MultiHopModule
	#10
	
	
	
	
	

	funreq_id_211
	GenerateMultipleAckRequested
	#6.3.1
	(For each generated multi-hop message, if there are two AckRequested elements in a generated message Header)
	REQ
	The two AckRequested elements do not specify the same value for their respective SOAP actor attributes.
	 This is application level testing
	This will NOT be tested

	funreq_id_212
	TargetAtMostOneAckNextMSH
	#6.3.1
	(For each generated multi-hop message)
	REQ
	At most one AckRequested element may be targeted at the actor URI for the Next MSH.
	 This is application level testing
	This will NOT be tested

	funreq_id_213
	TargetAtMostOneAckToPartyMSH
	#6.3.1
	(For each generated multi-hop message)
	REQ
	At most one AckRequested element may be targeted at the actor URI for the To Party MSH in a given message.
	 This is application level testing
	This will NOT be tested

