[image: image1.png]

[image: image3.jpg]
ebXML Messaging (2.0) Conformance Test Suite (DRAFT)

Committee Specification Version 0.9

OASIS ebXML Implementation, Interoperability and Conformance Technical Committee

23 July, 2003

Document identifier:

ebxml-iic-basic-interop-test-suite-10

Location:

 http://www.oasis-open.org/committees/documents.php?wg_abbrev=ebxml-iic
Authors/Editors:

Michael Kass, NIST <michael.kass@nist.gov>

Matthew MacKenzie, Individual <matt@mac-kenzie.net>

Monica Martin, Sun Microsystems <monica.martin@sun.com>

Jacques Durand, Fujitsu jdurand@fsw.fujitsu.com
Eric van Lydegraf, Kinzan <ericv@kinzan.com>

Pete Wenzel, SeeBeyond <pete@seebeyond.com>

Steven Yung, Sun Microsystems <steven.yung@sun.com>

Boonserm Kulvatunyou, NIST <serm@nist.gov>

Mike Dillon, Drummond Group Inc. <mike@drummondgroup.com>

Rik Drummond, Drummond Group Inc. <rvd2@drummondgroup.com>
Serm Kulvatunyou, NIST <serm@nist.gov>

Contributors:

Eric VanLydegraf, < ericv@kinzan.com>
Aaron Gomez, Drummond Group Inc. <aaron@drummondgroup.com>

Tim Sakach, Drake Certivo <tsakach@certivo.net>

Jeff Turpin, Cyclone Commerce <jturpin@cyclonecommerce.com>
See in Appendix C the complete list of IIC members having contributed.
Abstract:

This document specifies a basic test suite for ebXML Messaging conformance, used for the testing of global conformance between of ebXML Messaging Services business users.

Status:

This document has been approved as a committee specification, and is updated periodically on no particular schedule.
Committee members should send comments on this specification to the ebxml-iic@lists.oasis-open.org list. Others should subscribe to and send comments to the ebxml-iic-comment@lists.oasis-open.org list. To subscribe, send an email message to ebxml-iic-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

For more information about this work, including any errata and related efforts by this committee, please refer to our home page at http://www.oasis-open.org/committees/ebxml-iic.

This version

V1.0

Errata to this version

None
Table of Contents

51
Introduction

51.1 Summary of Contents of this Document

51.2 Document Conventions

51.3 Audience

61.4 Caveats and Assumptions

61.5 Related Documents

61.6 Objectives and Methodology

71.7 Conformance Profiles

81.7.1 Sample Conformance Test Profile

101.8 Concept of Operation

101.8.1 Driving the Tests

101.8.2 Conformance vs. Interoperability

101.8.3 Conformance Test Results

101.8.4 Conformance Testing at “Wire Level”

122
Harness for MS Conformance Testing

122.1 Architecture

142.2 The Test Service and its Actions

142.2.1 Test Service Name

142.2.2 Test Service Action Name

153
The MS Conformance Test Suite

153.1 Overview

153.2 Conformance Test Requirements

153.2.1 The ebXML MS 2.0 Conformance Test Requirements Table

163.2.2 ebXML MS 2.0 Conformance Test Case Coverage of Requirements

393.3 Abstract MS Conformance Test Suite

393.3.1 Abstract Test Case Description

403.3.2 ebXML MS 2.0 Abstract Test Cases

1243.4 Executable Conformance Test Suite (Normative)

1243.5 Test Material

1243.5.1 Test Material for Test Driver Configuration

1253.5.2 Test Material for Message Content

1263.5.3 A Sample Generated Message Header using message parameters

1273.5.4 Test Material for MSH Configuration

1293.5.5 Instances of Candidate MSH Configuration CPA Data

1323.5.6 Message Payloads

133Appendix A. References

133Non-Normative References

134Appendix B. Acknowledgments

134IIC Committee Members

136Appendix C. Notices

137Appendix D. Revision History

1 Introduction

1.1 Summary of Contents of this Document

This specification defines a test suite for ebXML Messaging conformance. The testing procedure design and naming conventions follow the format specified in the Standard for Software Test Documentation IEEE Std 829-1998.

This specification is organized around the following topics:

1. Conformance testing architecture

2. Test cases for conformance

3. Test data materials

1.2 Document Conventions

Terms in Italics are defined in the ebXML Glossary of Terms in the Test Framework specification [ebTestFramework]. Terms listed in Bold Italics represent the element and/or attribute content. Terms listed in Courier font relate to test data. Notes are listed in Times New Roman font and are informative (non-normative). Attribute names begin with lowercase. Element names begin with Uppercase.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY and OPTIONAL, when they appear in this document, are to be interpreted as described in [RFC2119] as quoted here:

4. MUST: This word, or the terms "REQUIRED" or "SHALL", means that the definition is an absolute requirement of the specification.

5. MUST NOT: This phrase, or the phrase "SHALL NOT", means that the definition is an absolute prohibition of the specification.

6. SHOULD: This word, or the adjective "RECOMMENDED", means that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications MUST be understood and carefully weighed before choosing a different course.

7. SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that there may exist valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this label.

8. MAY: This word, or the adjective "OPTIONAL", means that an item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because the vendor feels that it enhances the product while another vendor may omit the same item. An implementation that does not include a particular option MUST be prepared to interoperate with another implementation which does include the option, though perhaps with reduced functionality. In the same vein an implementation that does include a particular option MUST be prepared to interoperate with another implementation which does not include the option (except, of course, for the feature the option provides).

1.3 Audience

The target audience for this specification is:
· The community of software developers who implement and/or deploy the ebXML Messaging Service (ebMS),

· The testing or verification authority, which will implement and deploy conformance testing for ebXML Messaging implementations.

1.4 Caveats and Assumptions

It is assumed the reader has an understanding of communications protocols, MIME, XML, SOAP, SOAP Messages with Attachments and security technologies.

1.5 Related Documents

The following set of related specifications are developed independent of this specification as part of the ebXML initiative, they can be found on the OASIS web site (http://www.oasis-open.org).

· ebXML Collaboration Protocol Profile and Agreement Specification [ebCPP] – CPP defines one business partner's technical capabilities to engage in electronic business collaborations with other partners by exchanging electronic messages. A CPA documents the technical agreement between two (or more) partners to engage in electronic business collaboration. The MS Test Requirements and Test Cases will refer to CPA documents or data as part of their material, or context of verification.

· ebXML Messaging Service Specification [ebMS] – defines the messaging protocol and service for ebXML, which provide a secure and reliable method for exchanging electronic business transactions using the Internet. This is the specification against which MSH implementations are tested.
· ebXML Test Framework [ebTestFramework]– describes the test architecture, procedures and material that are used to implement the MS Interoperability Test Suite, as well as the test harness for this suite.

· ebXML MS Basic Interoperability Profile Test Suite [ebMSBIPTestSuite]– describes the interoperabilty test suite and material for Messaging Services. This document is not a part of the ebXML MS 2.0 Conformance Test Suite, but uses the ebXML Test Framework as a basis for interoperability testing.

1.6 Objectives and Methodology

The IIC approach is to clearly separate test suites for conformance, and test suites for interoperability. Conformance is the fundamental basis of IIC Testing. Interoperabilty testing follows conformance testing, after it is established that that two or more candidate applications are conformant.

The testing methodology supported in the ebXML MS conformance testing is "falsification testing". Falsification testing, as defined in [ConfTesting], subjects an ebXML implementation to various combinations of legal and illegal request messages, and compares the resulting response messages to a set of corresponding expected results. In ebXML application testing, the input and output are ebXML messages and their payloads. The ebXML Test Framework applies this testing methodology to all implementations, including ebXML Messaging Services, Business Process Specification Schema, Registry and Collaboration Protocol Profile and Agreement.

Development of Test Cases begins with defining Test Requirements and their associated Test Assertions. In conformance testing, Test Requirements are derived from the specification document through its conformance clause and/or from its normative content. A Test Assertion is a narrowly focused axiomatic assertion of expected behavior, given a set of set of preconditions that exercises that particular Test Requirement. In interoperability testing, Test Requirements are not derived from the specification, but are based upon agreed-upon scenarios and assertions that define interoperability between implementations.

The executable Test Case is the actual implementation of test preconditions and test assertions to verify that an implementation satisfies a Test Requirement. An implementation is said to "pass" a given Test Case if all of its sequential Test Steps area successfully executed and return a boolean value of "true". Within those Test Steps are Test Operations, which consist of message sending, message receiving, and message content verification and validation directives. Verification and validation of received message content may exercise a test precondition, or a test assertion. In all cases, these operations must evaluate to "true" (or pass) in order for the particular Test Step to be considered successful. Otherwise, the Test Step evaluates to "false" (or fail), and the implementation does not pass that Test Step, and consequently fails the Test Case and its corresponding Test Assertion.

In the case of conformance testing, if a Test Case fails, one can correctly deduce that the implementation does not conform to the specification; however, the absence of Test Case failure does not necessarily imply that it is 100% conformant. Falsification testing can only demonstrate non-conformance. Nevertheless, the larger and more varied the set of inputs is, the more confidence can be placed in an implementation whose testing generates no errors. Moreover, conformance does not necessarily indicate that an implementation is interoperable with other implementations.
 Likewise, interoperability does not necessarily indicate conformance. Two implementations may interoperate, but do it in a non-conformant manner.
1.7 Conformance Profiles

The ebXML Test Framework facilitates the creation of arbitrary testing profiles by anyone wishing to define a particular set of testing requirements they wish to exercise against an ebXML MS 2.0 implementation.

Conformance Profiles are created by creating a Conformance Profile XML document, validating to the schema defined in [ebTestFramework]. There are 3 Conformance Testing Profiles defined by the IIC. The rational for 3 Profiles is based upon the recognition of 3 distinct functional areas in which ebXML Messaging Services will exist: as a basic A to A protocol, as a B to B protocol and as a multi-hop message routing protocol. Therefore, the Conformance Testing Profiles defined by the IIC are:

· Profile 1: Core Modules

· Packaging

· Security
· Error Handling

· SyncReply

· Profile 2: Profile 1 modules plus:

· AckReqeusted/Acknowledgment

· DuplicatElimination

· MessageOrder

· Reliable Messaging Parameters/Behavior

· Retries

· Retry Interval

· TimeToLive

· PersistDuration

· Profile 3: Profile 1 and 2 modules plus:

· Status Request

· Multi-hop
· Ping

· Pong

1.7.1 Sample Conformance Test Profile

The Test Profile document below would be used to drive a Test Harness, by executing all Test Cases that point (via ID) to the listed Test Requirements. A Test Profile XML Document can be a list of Test Requirement elements and their IDs, a list of Functional Requirement elements and their IDs or a combination of both. Test Requirement elements are containers for their child Functional Requirement elements. The containers content corresponds to the test requirements that together completely describe a conforming MSH implementation for that particular module or function.

The three XML documents below represent the normative profiles described above:

1.7.1.1 Profile 1 – Packaging and Core Functionality

<?xml version="1.0" encoding="UTF-8" ?>
<TestProfile xmlns="http://www.oasis-open.org/tc/ebxml-iic/test-profile" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.oasis-open.org/tc/ebxml-iic/test-profile http://www.oasis-open.org/tc/ebxml-iic/test-profile/test-profile.xsd" requirementsLocation="ebxml-iic-msg-v20-conformance_reqs.xml" name="ebXML MS v2.0 Conformance Test Requirements" description="Core conformance testing profile for ebXML MS v2.0 implementations”>

 <TestRequirementRef id="req_id_2" /> <!—Execute all Test Cases that reference any child Functional Requirements of the Message Packaging Test Requirement(
 <TestRequirementRef id="req_id_3" /> <!—Execute all Test Cases that reference any child Functional Requirements of the Core Extensions Element Test Requirement(<TestRequirementRef id="req_id_4" /> <!—Execute all Test Cases that reference any child Functional Requirements of the Error Handling Module Test Requirement(
 <TestRequirementRef id="req_id_5" /> <!—Execute all Test Cases that reference any child Functional Requirements of the SyncReply Module Test Requirement(
 <TestRequirementRef id="req_id_8" /> <!—Execute all Test Cases that reference any child Functional Requirements of the Security Test Requirement(
</TestProfile>
1.7.1.2 Profile 2 – (Profile 1 Plus) Reliable Messaging

<?xml version="1.0" encoding="UTF-8" ?>
<TestProfile xmlns="http://www.oasis-open.org/tc/ebxml-iic/test-profile" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.oasis-open.org/tc/ebxml-iic/test-profile http://www.oasis-open.org/tc/ebxml-iic/test-profile/test-profile.xsd" requirementsLocation="ebxml-iic-msg-v20-conformance_reqs.xml" name="ebXML MS v2.0 Conformance Test Requirements" description="Core conformance testing profile for ebXML MS v2.0 implementations”>

 <TestRequirementRef id="req_id_6" /> <!—Execute all Test Cases that reference any child Functional Requirements of the Reliable Messaging Test Requirement(
 <TestRequirementRef id="req_id_7" /> <!—Execute all Test Cases that reference any child Functional Requirements of the Message Ordering Test Requirement(

</TestProfile>
1.7.1.3 Profile 3 – (Profiles 1 and 2 Plus)

<?xml version="1.0" encoding="UTF-8" ?>
<TestProfile xmlns="http://www.oasis-open.org/tc/ebxml-iic/test-profile" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.oasis-open.org/tc/ebxml-iic/test-profile http://www.oasis-open.org/tc/ebxml-iic/test-profile/test-profile.xsd" requirementsLocation="ebxml-iic-msg-v20-conformance_reqs.xml" name="ebXML MS v2.0 Conformance Test Requirements" description="Core conformance testing profile for ebXML MS v2.0 implementations”>

 <TestRequirementRef id="req_id_9" /> <!—Execute all Test Cases that reference any child Functional Requirements of the Message Status Test Requirement(
 <TestRequirementRef id="req_id_10" /> <!—Execute all Test Cases that reference any child Functional Requirements of the Ping/Pong Test Requirement(

<TestRequirementRef id="req_id_11" /> <!—Execute all Test Cases that reference any child Functional Requirements of the Multi-Hop Test Requirement(
</TestProfile>
1.8 Concept of Operation

1.8.1 Driving the Tests

The MS conformance test harness described in this document is based on the ebXML Test Framework [ebTestFramework]. This test harness is used for testing implementation conformance to the specification, and has been designed to be run entirely and validated from one component of the framework, called the Test Driver. This means that all test outputs will be generated - and test conditions verified - by the Test Driver, even if the test harness involves several – possibly remote – components of the framework. Significant events occurring in such components are communicated back to the Test Driver.

The verification of each Test Case can be done at run-time by the Test Driver itself, as soon as the test case is completed. The report of the verification can be generated immediately as the Test Suite has been completed.

1.8.2 Conformance vs. Interoperability

All the tests defined in the ebXML Messaging conformance test suite (relevant to the features intended to be tested by an interoperability test) SHOULD be passed prior to undergoing interoperability tests. If only from a logistic perspective, it is preferable to do as many verifications as possible during conformance testing, which typically involves a single message service handler (MSH), and is much easier to set-up than interoperability testing.

Conformance testing as a first step may aid in eliminating problems that might be observed when testing for the Basic Interoperability Profile. Problems that appear to be interoperability related may at times be conformance related.

Any MSH behavior that can be verified in a test harness that includes a single MSH (plus a test driver simulating another MSH) is relevant to conformance. Testing of such behaviors SHOULD only be found conformance test suite. MSH behaviors, which necessitate exchanges between two MSH for verification, SHOULD be tested in interoperability mode.

1.8.3 Conformance Test Results

Having passed a round of conformance testing only ensures conformance with the MS specification. It does not necessarily imply interoperability with other MS implementations, although the likelihood of interoperability is increased if an implementation passes all conformance tests.

There are two major reasons for this:

· Specific implementation options defined by a testing body or the participants may affect interoperability. For example, because there are different ways to implement digital signatures, this can cause a MSH to reject a message as invalid. Where possible, this documents makes recommendations on these implementation options.

· Interoperability is not transferable (or transitive). In other words, if MSH A interoperates with MSH B, and MSH B interoperates with MSH C, this does not guarantee that MSH A interoperates with MSH C (although there is a high probability that it will).

1.8.4 Conformance Testing at “Wire Level”

The test suites described here test at the “wire” level. This means that the combination:

{ MSH1 + communication medium(transport) + MSH2 }

is exposed to the Test Driver for evaluation of message content

This means that all MIME, SOAP and ebXML message content is exposed and available to the Test Driver for verification (content checking) and validation (structure and semantic checking).

2 Harness for MS Conformance Testing

2.1 Architecture

This section describes how to configure the Test Framework elements for conformance testing

The Test Driver MUST be able to control the inputs and outputs of an MSH at transport level. This can be achieved by using an embedded transport adapter. This adapter has transport knowledge, and can format message material into the right transport envelope. Independently from the way to achieve this, the Test Driver MUST be able to:

· Create a message envelope for the transports authorized by ebXML MS 2.0, and generate fully formed messages for this transport.

· Parse a message envelope for the transports authorized by ebXML MS 2.0, and extract header data from a message, as well as from the message payload in case it is an XML document.

· Open a message communication channel (connection) with a remote ebXML message handler. In that case the Test Driver is said to operate in connection mode.

The Test Driver acts as a transport end-point that can receive or send messages with an envelope consistent with the transport protocol (e.g. HTTP or SMTP). The interaction between the MSH and the Test Service is of same nature as the interaction between the MSH and an application (as the Test Service simulates an application), i.e. it involves the MSH API, and/or a callback mechanism. Figure 3 illustrates how the Test Driver operates in connection mode.
[image: image2.png]
Figure 1 shows an example of conformance test harness with Test Driver used in connection mode.

The typical conformance test case procedure will consists of a sequence of test steps. The Test Driver will control each of these steps. These steps will be:

9. Sending messages – the content of which is specified in the test case – to some action of the responder’s Test Service.

10. Receiving messages from the responder’s Test Service.

11. Analyzing the content of received messages, possibly in correlation with other message data, received or sent during the same test case, in order to validate the requirement of the test case.

12. Reporting on the test case outcome.

2.2 The Test Service and its Actions

A Test Case is described as a sequence of Test Steps. These Test Steps will consist of atomic operations executed by the components of the test Framework, e.g. sending a message, verifying a condition on a received message, etc. Messages sent to a candidate MSH include references to a Service and Action.

2.2.1 Test Service Name

The Test Service name contained in messages in this Conformance Test Suite MUST be:

urn:ebXML:iic:test

2.2.2 Test Service Action Name

The standard test actions are completely described in the ebXML Test Framework specification [ebTestFramework]. They include:

· Mute

· Dummy

· Reflector

· Initiator

· PayloadVerify

· ErrorAppNotify

· ErrorURLNotify

· Configurator

3 The MS Conformance Test Suite

3.1 Overview

 The ebXML MS 2.0 Conformance Test Suite consists of:

· Conformance Test Requirements
· An Abstract Conformance Test Suite
· Test Material
· An Executable Conformance Test Suite

3.2 Conformance Test Requirements

The table below defines the testing requirement for an ebXML Messaging Services Specification V2.0 compliant Messaging Service Handler. This table values map to the semantic definition of Test Requirements defined in [ebTestFramework]. The XML instance of the test requirements, conforming to the schema defined in the ebXML Test Framework Specification, can be found in [ebMSExeConfTestSuite].

These Test Requirements map directly to the ebXML Messaging Services V2.0 Specification. A graphical mapping of these requirements to the specification itself (using an annotated version of the MS specification) is available in [ebMSAnnotatedSpec].

3.2.1 The ebXML MS 2.0 Conformance Test Requirements Table

This table provides a non-normative list of conformance test requirements for ebXML MS 2.0 MSH implementations. The fundamental items making up each test requirement are provided in a tabular format. They include:

· ID – A unique identifier for each Test Requirement (highlighted in grey), and its aggregate functional requirements, each of which requiring testing

· Name – A short name describing the requirement

· Spec Ref – Location within the ebXML MS specification where Test Requirement is derived

· Precondition – An axiomatic expression that must first evaluate to “true” in order to test the Assertion

· Req Level – Indicator describing whether a particular feature is required (REQ), recommended (REC) or optional (OPT). REC and OPT test requirements are also highlighted in green.

· Assertion – An expression of expected behavior for a candidate MSH, given any test Preconditions (note that Assertions highlighted in green are optional for an implementation)
· Test Coverage – An indicator of how well Executable Test Cases exercise a Functional Test Requirement. If a Test Assertion is “Fully Tested”, there is no comment in this column. If the Assertion is “Partially Tested”, it is highlighted in orange and a reason for partial Executable Test coverage is given. Assertions with no matching Executable Test Cases are highlighted in red, with an accompanying explanation.
3.2.2 Conformance Test Requirements and Test Case Coverage
	ID
	Name
	Spec Ref
	Precondition
	Req Level
	Assertion
	Test
Coverage

	req_id_1
	Global Requirements

For All Tests
	#1.3
	
	
	
	

	funreq_id_1
	SchemaValidation
	#1.3
	(For each generated message)
	REQ
	Supports all mandatory syntax defined in Core plus Additional Features
	This requirement is tested “as a whole” through other requirements in this list.

	req_id_2
	PackagingSpecification
	#2
	
	
	
	

	funreq_id_2
	GenerateConformantSOAPWithAttachMIMEHeaders
	#2.1.2
	(For each generated message, if it is multipart MIME OR if it is not text/xml)
	REQ
	The primary SOAP message is carried in the root body part of the message.
	

	funreq_id_3
	GenerateConformantSOAPWithAttachMIMEHeaders
	#2.1.2
	(For each generated message, if it is multipart MIME or not text/xml)
	REQ
	The type parameter of the Multipart/Related media header is "text/xml", the MIME parts must contain a CID MIME header or a Content-Location MIME header structured in accordance with RFC 2557
	

	funreq_id_4
	GenerateCorrectMessagePackageContent-Type
	#2.1.2
	(For each generated message)
	REQ
	The Content-Type MIME header in the Message Package contains a type attribute of "text/xml".
	

	funreq_id_5
	GenerateContent-IDStartValues
	#2.1.2
	(For each generated message)
	REC
	The Content-ID MIME header in any generated Message Package contains a start attribute identifying the first MIME part.
	

	funreq_id_6
	ProcessNon-MultipartMessages
	#2.1.2
	(For each received message, if the message is not multipart MIME)
	REQ
	The MSH accepts the message and passes it to the client application without generating an Error.
	

	funreq_id_7
	ProcessMultipartNoPayloadMessages
	#2.1.2
	(For each received message, if the message is multipart MIME and the message has no payload)
	REQ
	The MSH accepts the message and passes it to the client application without generating an Error.
	

	funreq_id_8
	GenerateCorrectSOAPMessageContentType
	#2.1.3.1
	(For each generated message)
	REQ
	The MIME Content-Type header for each generated SOAP Message has the value "text/xml".
	

	funreq_id_9
	GenerateSpecificSOAPMessageCharacterSet
	#2.1.3.1
	(For each generated message)
	REQ
	The MIME Content-Type header of each generated SOAP Message specifies the character set used to generate the message.
	Will writeh the “abstract test”, but not the “executable test”. Recommend (in next version of Test Framework)that Test Driver developers scan SOAP message and compare with MIME Content-Type. Result can be set as a “true/false” parameter evaluated in XPath statement

	funreq_id_10
	GenerateSameEncodingAndCharacterSetValue
	#2.1.3.1
	(For each generated message, if both the MIME charset and SOAP message encoding declaration are present)
	REQ
	They shall have the same value.
	

	funreq_id_11
	GenerateDefaultSOAPMessageCharacterSet
	#2.1.3.2
	(For each generated message)
	REC
	The UTF-8 character set is used by default when encoding each SOAP Message.
	

	funreq_id_12
	GeneratePayloadContainer
	#2.1.4
	(For each generated message, if the Message Package contains an application payload)
	REC
	It should be enclosed in a Payload Container.
	

	funreq_id_13
	ProvideEmptyManifestAndPayloadIntegrity
	#2.1.4
	(For each generated message, if there are no application payloads identified in the message header manifest)
	REQ
	There must not be any payload MIME parts
	

	funreq_id_14
	ProvideManifestAndPayloadIntegrity
	#2.1.4
	(For each generated message)
	REQ
	The contents of each payload MIME part are identified in the Manifest element within any generated SOAP body
	

	funreq_id_15
	ProcessUnrecognizedMIMEHeaders
	#2.1.5
	(For each received message containing unrecognized MIME headers)
	REQ
	Unrecognized MIME headers in a MIME part are ignored and no Error message is returned.
	

	funreq_id_16
	GeneratePrologXMLDeclaration
	#2
	(For each generated message, if an XML Prolog is present in the SOAP message)
	OPT
	The Prolog contains an XML declaration.
	

	funreq_id_17
	GenerateXMLVersionInProlog
	#2.2.1
	(For each generated message, if the XML Prolog exists in the SOAP message)
	REQ
	The XML version is declared
	

	funreq_id_19
	GenerateCorrectExtensionElementNamespace
	#2.3
	(For each generated message)
	REQ
	All ebXML extension elements included within generated SOAP Envelope, Header and Body elements are namespace qualified to: "http://www.oasis-open.org/committees/ebxmlmsg/schema/msg-header-2_0.xsd"
	

	funreq_id_20
	GenerateCorrectEnvelopeSchemaLocation
	#2.3.2
	(For each generated message)
	REC
	SOAP Envelope elements include the XMLSchema-instance namespace qualified schemaLocation attribute indicating the extended ebXML envelope schema: "http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd"
	

	funreq_id_21
	GenerateCorrectSOAPHeaderAndBodySchemaLocation
	#2.3.2
	(For each generated message)
	REC
	SOAP Header and Body attributes both include a XMLSchema-instance namespace qualified schemaLocation attribute indicating the extended ebXML MessageHeader schema "http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"
	

	funreq_id_22
	GenerateCorrectSOAPHeaderNamespace
	#2.3.4
	(For each generated message)
	REQ
	A SOAP Header element is namespace qualified as per the SOAP namespace declaration in the SOAP Envelope element with the namespace "http://schemas.xmlsoap.org/soap/envelope/”.
	

	funreq_id_23
	GenerateCorrectSOAPBodyNamespace
	#2.3.4
	(For each generated message)
	REQ
	A SOAP Body element is namespace qualified as per the SOAP namespace declaration in the SOAP Envelope element with the namespace "http://schemas.xmlsoap.org/soap/envelope/”.
	

	funreq_id_24
	GenerateMessageHeaderInSOAPHeader
	#2.3.5.1
	(For each generated message)
	REQ
	A SOAP Header element always contains an ebXML MessageHeader element.
	

	funreq_id_25
	GenerateCorrectForeignElementNamespaces
	#2.3.6
	(For each generated message)
	REQ
	Any foreign namespace qualified elements present within generated ebXML extension elements are namespace qualified with a namespace that is not "http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd".
	

	funreq_id_26
	GenerateCorrectForeignElementNamespaces
	#2.3.6
	(For each received message)
	OPT
	The candidate MSH ignores the namespace-qualified #wildcard element
	

	funreq_id_27
	GenerateIdAttributeToExtensionElements
	#2.3.7
	(For each generated message)
	OPT
	An XML ID attribute is supplied for each generated ebXML element (to assist with such tasks as specifying elements included in a digital signature).
	Will also test Acknowledgment, AckRequested, ErrorList, Manifest, MessageOrder, StatusRequest and StatusResponse

	funreq_id_28
	GenerateCorrectMessageHeaderVersion
	ebXML-2#2.3.8
	(For each generated message)
	REC
	An ebXML MessageHeader element always contains a version attribute with a value of "2.0"
	

	funreq_id_29
	GenerateCorrectSOAPMustUnderstandNamespace
	#2.3.9
	(For each generated message)
	REQ
	All ebXML extensions of the SOAP Header element (MessageHeader, SyncReply, MessageOrder, ...) contain the mustUnderstand attribute namespace qualified to the SOAP namespace (http://schemas.xmlsoap.org/soap/envelope).
	Will also test Acknowledgment, AckRequested, ErrorList, Manifest, MessageOrder, StatusRequest and StatusResponse

	funreq_id_30
	ProcessMustUnderstand
	#2.3.9
	(For each received message containing a SOAP Header extension with a mustUnderstand attribute set to "1" and not understood by the MSH.)
	REQ
	The message is rejected and is not passed to the client application. A SOAP Error with an error code of ‘MustUnderstand’ is returned to the sending party.
	

	funreq_id_30.1
	ProcessMustUnderstand
	#2.3.9
	(For each received message containing a SOAP Header extension with a mustUnderstand attribute set to "0" and not understood by the MSH.)
	REQ
	The element is ignored, and the MSH accepts the message and passes it to the client application without generating an SOAP Error with an error code of ‘MustUnderstand’
	

	req_id_3
	CoreExtensionElements
	#3.1.1
	
	
	
	

	funreq_id_31
	GenerateUniquePartyId
	#3.1.1
	(For each generated message, unless a single type value refers to multiple identification systems)
	REQ
	The value of any given type attribute must be unique within the list of PartyId elements contained within either the From or To element.
	Not Tested - This is application level testing

	funreq_id_32
	ReportInconsistentPartyIdContent
	#3.1.1.1
	(For each received message, PartyId does not contain a type attribute and PartyId text node is not a URI)
	REC
	MSH responds with an error (Inconsistent/Error)
	

	funreq_id_33
	GenerateValidPartyIdContent
	#3.1.1.1
	(For each generated message, if generated PartyId contains a type attribute)
	REC
	Its value is a URI
	

	funreq_id_34
	GenerateValidPartyIdContent
	#3.1.1.1
	(For each generated message, if generated PartyId does not contain a type attribute)
	REQ
	Text content of the PartyId element must be a URI
	

	funreq_id_35
	ReportFailedCPAIDResolution
	#3.1.2
	(For each received message, if value of the CPAId element on an inbound message cannot be resolved)
	REQ
	The MSH responds with an error (ValueNotRecognized/Error).
	

	funreq_id_36
	ProvideConversationIdIntegrity
	#3.1.3
	(For each generated message within the context of the specified CPAId)
	REQ
	The generated ConversationId will be present in all messages pertaining to the given conversation.
	

	funreq_id_38
	ReportInconsistentServiceElementContent
	#3.1.4.1
	(For each received message, if the received "type" attribute is not set. and If the Service element content is not a URI.)
	REQ
	MSH Responds with an error (Inconsistent/Error)
	

	funreq_id_39
	GenerateConsistentServiceElementContent
	#3.1.4.1
	(For each generated message, if the generated Service element "type" attribute is not set.)
	REQ
	Generated Service element content must be a URI
	

	funreq_id_40
	ReportUnrecognizedServiceAndOrAction
	#3.1.5
	(For each received message, if the receiving MSH does not recognize both the Service and Action values of an incoming message)
	REQ
	It responds with an error (ValueNotRecognised/Error).
	

	funreq_id_41
	ProvideRefToMessageIdIntegrity
	#3.1.6.3
	(For each generated message, if the RefToMessageId element within the MessageData element is present)
	REQ
	It contains the MessageId value of an earlier ebXML Message to which this message relates.
	

	funreq_id_42
	GenerateNoRefToMessageId
	#3.1.6.3
	(For each generated message, if there is no earlier related message)
	REQ
	The RefToMessageId element is never present.
	

	funreq_id_43
	GenerateErrorRefToMessageId
	#3.1.6.3
	(For each generated message, if a previous message generated an error)
	REQ
	The RefToMessageId element is always present with a value indicating the message in error.
	

	funreq_id_44
	ProcessTimeToLive
	#3.1.6.4
	(For each received message, if the MSH receives a message for which it is the To Party MSH and the time of the internal clock is greater than TimeToLive (adjusted to UTC))
	REQ
	An error message is returned to the From Party MSH (TimeToLiveExpired/Error).
	

	funreq_id_45
	GenerateValidUTCTime
	#3.1.6.4
	(For each generated message, if a TimeToLive element is present in a generated message.)
	REQ
	The TimeToLive element expresses time in UTC, and conforms to the XML Schema dateTime.
	

	funreq_id_46
	GenerateDistinctLangValuesForDescription
	#3.1.8
	(For each generated message)
	REC
	No two Description elements must have the same xml:lang attribute value
	Not Tested - This is application level testing

	funreq_id_47
	GenerateNoPayloadOrApplicationDataInBodyOrManifest
	#3.2
	(For each generated message)
	REC
	No payload/application data is present in generated SOAP Body / ebXML Manifest elements.
	Will test that (in addition to Manifest) only StatusRequest or StatusResponse is present

	funreq_id_48
	ReportNon-ExistentMIMEPartForManifestReference
	#3.2.2
	(For each received message, if there is not a matching payload for the xlink:href element of a generated Manifest/Reference element)
	REQ
	An error message is directed to the From Party MSH (MimeProblem/Error).
	

	funreq_id_49
	ReportUnresolvableHREFInManifest
	#3.2.2
	(For each received message, if the xlink:href element of a Manifest/Reference element on an inbound message specifies a URI that is not a content id (not "cid:"), and that cannot be resolved)
	OPT
	The MSH reports an error to the From Party MSH (MimeProblem/Error)
	

	funreq_id_50
	GenerateResolvableHREFInManifest
	#3.2.2
	(For each generated message)
	OPT
	The xlink:href element of a Manifest/Reference element on an inbound message specifies a URI that is a content id ("cid:"), and can be resolved
	This will be tested

	funreq_id_51
	ProcessUnreferencedPayloads
	#3.2.2
	(For each received message, if a MIME payload part exists on an incoming message that is not referenced by a Manifest/Reference element)
	REC
	The MIME payload is discarded, the message is passed to the client application and no Error message is generated.
	

	req_id_4
	ErrorHandling
	#4.2
	
	
	
	

	funreq_id_52
	ProcessUpstreamSOAPFault
	#4.2
	(For each received message)
	REQ
	The MSH can accept and process SOAP Fault values from a downstream SOAP processor.
	Not Tested - Spec does not say how downstream SOAP faults should be handled

	funreq_id_53
	GenerateCompliantSOAPFaults
	#4.2
	(For each generated message, if an MSH returns a SOAP Fault message to the sender of a SOAP message)
	REQ
	The returned message conforms to the SOAP specification guidelines for SOAP Fault values.
	This can be partially tested

for VersionMismatch, MustUnderstandand fault codes.

	funreq_id_54
	GenerateWarnings
	#4.2
	(For each generated message, when an ebXML message is reporting an error with a highestSeverity value of 'Warning')
	REC
	It is not reported or returned as a SOAP Fault.
	This can be partially tested using DeliveryFailure

Error

	funreq_id_55
	ReportDataCommunicationErrors
	#4.2.2
	(For each received message)
	REC
	Errors associated with data communications protocols are detected and reported using the standard mechanisms supported by that protocol and does not use ebXML reporting mechanisms.
	Not Tested - This Test Framework does not support HTTP or SMTP conformance testing

	funreq_id_56
	GenerateNoErrorList
	#4.2.3
	(For each generated message)
	REQ
	The ErrorList extension element of the SOAP Header element is never present if there are no errors to be reported.
	This will NOT be tested, but unexpected errors will be “reported” in next version of Test Framework

	funreq_id_57
	ProvideErrorAndHighestSeverityIntegrity
	#4.2.3.1
	(For each generated message)
	REQ
	For each generated message, the highestSeverity attribute contains the highest severity of any Error elements generated in an outbound message.
	This will be tested for DeliveryFailure, Inconsistent and NotSupported errors

	funreq_id_58
	GenerateCorrectCodeContextValue
	#4.2.3.2.2
	(For each generated message)
	REQ
	The codeContext attribute of any generated Error element is always a URI.
	This will be tested for DeliveryFailure, Inconsistent and NotSupported errors

	funreq_id_59
	GenerateCorrectCodeContextNamespaceValue
	#4.2.3.2.2
	(For each generated message)
	REC
	The namespace/scheme specified by codeContext for identifying errorCodes is the default value of urn:oasis:names:tc:ebxml-msg:service:errors.
	This will be tested for DeliveryFailure, Inconsistent and NotSupported errors

	funreq_id_60
	GenerateCorrectErrorSeverityValue
	#4.2.3.2.4
	(For each generated message)
	REQ
	Each Error element severity attribute has the value of Warning or Error indicating the severity of the error.
	This will be tested for DeliveryFailure, Inconsistent and NotSupported errors

	funreq_id_61
	ProvideXPointerAndErrorIntegrity
	#4.2.3.2.5
	(For each generated message, if an error exists in an ebXML element)
	REQ
	The location attribute of the Error element is an XPointer to the erroneous element.
	This will be tested for Inconsistent, NotSupported, and only if an Xpointer is returned, not its value.

	funreq_id_62
	GenerateReferencedMIMEPartErrorsWithCID
	#4.2.3.2.5
	(For each generated message, if an error exists in a generated payload MIME part)
	REQ
	The location attribute of the generated Error element contains the content-id (via a well-formed "cid:") of the erroneous MIME part.
	This will NOT be tested until Test Framework supports generation of ANY type of MIME header

	funreq_id_63
	GenerateErrorCodesUsingLongDescription
	#4.2.3.4
	(For each generated message)
	REQ
	The "Short Description" text for each error code provided by the Message Service Specification does not appear in any relevant Error element.
	This will NOT be tested until it is determine what exactly should appear in the error description

	funreq_id_64
	ReportErrorToMessageOrigin
	#4.2.4.1
	(For each received message, when an MSH detects an error in a message and · the Error Reporting Location (see section 4.2.4.2) to which the message reporting the error should be sent can be determined and the message in error does not have an ErrorList element with highestSeverity set to Error)
	REC
	The error is reported to the MSH that sent the original message in error.
	This will be tested for DeliveryFailure, Inconsistent and NotSupported errors

	funreq_id_65
	ProcessWithNoErrorReportLocation
	#4.2.4.1
	(For each received message, if the error reporting location cannot be found)
	REC
	The error is: Logged; Resolved by other means; and, No further action is taken.
	

	funreq_id_66
	ProcessCPPAErrorURI
	#4.2.4.2
	(For each received message, if the ErrorURI is implied in the relevant CPPA)
	OPT
	Then this is used as the Error Report Location.
	

	funreq_id_67
	ProcessWithNoCPPAErrorURIPresent
	#4.2.4.2
	(For each received message, if the ErrorURI is unavailable in the relevant CPPA)
	OPT
	A URI specified in the From Party of the message is used as the Error Report Location.
	

	funreq_id_68
	GenerateServiceAndActionForErrorsFromIndependentMessage
	#4.2.4.3
	(For each generated message, if an ErrorList is included as part of an independent message)
	REQ
	The values of Service and Action are; Service: urn:oasis:names:tc:ebxml-msg:service Action: MessageError
	

	funreq_id_69
	ProcessErrorListWhereHighestSeverityEqualsError
	#4.2.4.1
	(For each received message, if the message in error has an ErrorList element with highestSeverity set to Error)
	REC
	The error is: Logged; Resolved by other means; and, No further action is taken.
	

	req_id_5
	SyncReply
	4.3
	
	
	
	

	funreq_id_70
	ProcessSyncReply
	#4.3.1
	(For each received message, if a SyncReply element is present in a message received over a synchronous communications protocol)
	OPT
	That connection is kept open in expectation of the response message using the same connection.
	

	funreq_id_71
	ReportMessageAndCPASyncReplyConflict
	#4.3.1
	(For each received message, if the CPPA syncReplyMode is set to none and SyncReply element is present in an inbound message)
	OPT
	The MSH issues an error (Inconsistent/Error).
	

	funreq_id_72
	GenerateAgreeingMessageAndCPASyncReply
	#4.3.1
	(For each generated message, if the CPPA syncReplyMode is set to none)
	OPT
	SyncReply must not be present in generated message.
	

	req_id_6
	ReliableMsg
	#6
	
	
	
	

	funreq_id_73
	ResendToAckReceived
	#6
	(For each reliably generated message, if the candidate MSH fails to receive an Acknowledgment message from a receiving MSH)
	REC
	The candidate sends successive retries until an Acknowledgment is received
	

	funreq_id_74
	ResendToRetriesExceeded
	#6
	(For each reliably generated message, if the candidate MSH fails to receive an Acknowledgment message from a receiving MSH)
	REC
	The candidate sends successive retries until a predetermined number of retries is exceeded.
	

	funreq_id_75
	ResumeAfterAckReceived
	#6
	(For each reliably generated message, if the candidate MSH receives an Acknowledgment from a receiving MSH)
	REC
	The MSH stops resending the message and behaves as if the message was successfully delivered.
	

	funreq_id_76
	NotifyDeliveryFailureOnExceed
	#6
	(For each reliably generated message, if the MSH is configured to resend and the Sending MSH fails to receive any Acknowledgment message from the receiving MSH)
	REQ
	The Sending MSH sends successive retries at expected time intervals, then notifies the From party of delivery failure
	

	funreq_id_77
	PersistReliableSentMsg
	#6.1
	(For each reliably sent message, after a system interruption and the system recovers within the TimeToLive window)
	REQ
	The message is processed as if the interruption had not occurred.
	This will be described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

	funreq_id_78
	PersistReliableSentMsgNoAck
	#6.1
	(For each reliably sent message, after a system interruption and no Ack was received prior to the interruption and the system recovers within the TimeToLive window.)
	REQ
	The message is kept in persistent storage and processed as if the interruption had not occurred.
	This will be described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

	funreq_id_79
	PersistReliableSentMsgAfterInterrupt
	#6.1
	(For each reliably sent message, after a system interruption)
	REQ
	The message is kept in persistent storage.
	This will be described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

	funreq_id_80
	PersistReliableReceivedMsgAfterInterrupt
	#6.1
	(For each reliably received message, after a system interruption and the system recovers within the TimeToLive window.)
	REQ
	The message processed as if the interruption had not occurred.
	This will be described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

	funreq_id_81
	PersistReliableReceivedMsgNoAck
	#6.1
	(For each reliably received message, after a system interruption and no Ack was sent prior to the interruption and the system recovers within the TimeToLive window.)
	REQ
	The message is kept in persistent storage and processed as if the interruption had not occurred.
	This will be described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

	funreq_id_82
	PersistReliableReceivedMsg
	#6.1
	(For each reliably received message, after a system interruption)
	REQ
	The message is kept in persistent storage.
	This will be described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

	funreq_id_83
	PersistReliableSentMsgAfterSystemFailure
	#6.1
	(For each reliably sent message, after a system failure and the system recovers within the TimeToLive window.)
	REQ
	The message is kept in persistent storage and processed as if the interruption had not occurred.
	This will be described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

	funreq_id_84
	PersistReliableSenTMsgAfterSystemFailureAndNoAck
	#6.1
	(For each reliably sent message, after a system failure and no Ack was received prior to the interruption and the system recovers within the TimeToLive window.)
	REQ
	The message is kept in persistent storage and processed as if the interruption had not occurred.
	This will be described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

	funreq_id_85
	PersistReliableReceivedMsg
	#6.1
	(For each reliably received message)
	REQ
	The complete message is kept in persistent storage.
	This requirement is really an “implementation guideline”. MSH persistent store cannot be examined by this Test Framework, therefore this requirement will not be tested.

	funreq_id_86
	PersistReceivedMsgID
	#6.1
	(For each reliably received message, in order to support the filtering of duplicate messages)
	REQ
	The MessageId of the received messaged is recorded in persistent storage.
	This requirement is really an “implementation guideline”. MSH persistent store cannot be examined by this Test Framework, therefore this requirement will not be tested.

	funreq_id_87
	PersistRecdMsg
	#6.1
	(For each reliably received message)
	REC
	The received message is recorded in its entirety at least until the information in the message has been passed to the application needing to process it.
	This requirement is really an “implementation guideline”. MSH persistent store cannot be examined by this Test Framework, therefore this requirement will not be tested.

	funreq_id_88
	PersistReceivedMsgTimestamp
	#6.1
	(For each reliably received message)
	REC
	The time at which a message is received is recorded in persistent storage.
	This requirement is really an “implementation guideline”. MSH persistent store cannot be examined by this Test Framework, therefore this requirement will not be tested.

	funreq_id_89
	PersistResponseMsg
	#6.1
	(For each reliably received message)
	REC
	Each response message is stored in its entirety in persistent storage.
	This requirement is really an “implementation guideline”. MSH persistent store cannot be examined by this Test Framework, therefore this requirement will not be tested.

	funreq_id_90
	TargetAckRequestedToOrNextMSH
	#6.3.1.1
	(For each generated non-multi-hop message)
	REQ
	The AckRequested element is targeted at the Next MSH or the To Party
	

	funreq_id_91
	SetAckRequestedUnSigned
	#6.3.1.2
	(For each received message with an AckRequested with the Signed attribute set to False and consistent with the CPPA,)
	REQ
	The Acknowledgment message is unsigned.
	

	funreq_id_92
	SetSignedAttributeAfterVerifyReceivingMSHAckSupport
	#6.3.1.2
	(For each received message with an AckRequested with the Signed attribute set to True consistent with the CPPA, if the Receiving MSH supports signed acknowledgment messages of the type requested)
	REQ
	The Sending MSH sends back a signed Acknowledgment.
	

	funreq_id_93
	SetSignedAttributeAfterVerifyReceivingMSHAckSupport
	#6.3.1.2
	(For each received message with an AckRequested with the Signed attribute set to True consistent with the CPPA, if the Receiving MSH does not support signed acknowledgment messages of the type requested)
	REQ
	The MSH generates an Error of type Inconsistent, and severity = Warning.
	Will only test sha-1 signature conformance

	funreq_id_94
	SetSignedAttributeAfterVerifyReceivingMSHAckSupport
	#6.3.1.2
	(For each received message with an AckRequested with the Signed attribute set to True and NOT consistent with the CPPA and requirementType="REQ"> if the Receiving MSH supports signed acknowledgment messages of the type requested)
	REQ
	The MSH generates an Error of type Inconsistent and an Error severity = Error.
	

	funreq_id_95
	SendAckToFromParty
	#6.3.1.3
	(For each Acknowledgment request message, If an Acknowledgment is requested of the MSH node acting in the role of To Party)
	REQ
	The Acknowledgment element generated is targeted to the MSH node acting in the role of From Party.
	

	funreq_id_96
	GenererateAckWithNoPayloadAndNoAckRequested
	#6.3.1.4
	(For each generated Acknowledgment message, if the message contains no payloads)
	REQ
	The message does not include an AckRequested element.
	

	funreq_id_97
	ReportErrorWithoutAckRequeseted
	#6.3.1.4
	(For each Acknowledgment message, if the message contains an ErrorList element)
	REQ
	The message does not include an AckRequested element.
	This will be tested for DeliveryFailure, Inconsistent, NotSupported errors

	funreq_id_98
	SpecifyNoSOAPActorToPartyAck
	#6.3.2.1
	(For each generated Acknowledgment message, if there is no SOAP actor attribute present on an Acknowledgement element)
	REC
	The default target is the ToParty MSH.
	This is "application level" testing, not testable in existing framework

	funreq_id_99
	SpecifySOAPActorToPartyAck
	#6.3.2.1
	(For each Acknowledgment message)
	REC
	The SOAP actor attribute in a generated Acknowledgment element has a value corresponding to the AckRequested element of the message being acknowledged.
	

	funreq_id_100
	GenerateAckMsgTimestamp
	#6.3.2.2
	(For each generated Acknowledgment message, if the From element is present)
	REQ
	The Timestamp element is present within any generated Acknowledgment element. The value is in XML Schema dateTime format in the UTC time zone and represents the time at which the MSH generating the Acknowledgement Message received the message being acknowledged.
	

	funreq_id_101
	GenerateAckUsingMsgIDInRefToMessageID
	#6.3.2.3
	(For each generated Acknowledgment message)
	REQ
	The RefToMessageId element contains the MessageId of the message whose delivery is being acknowledged.
	

	funreq_id_102
	IdentifyPartyWithAckFromElement
	#6.3.2.4
	(For each generated Acknowledgment message, if the From element is present in an inbound message)
	REQ
	The From element in a generated Acknowledgment element contains an identifier of the party sending the Acknowledgment Message.
	

	funreq_id_103
	IdentifyPartyWithoutAckFromElement
	#6.3.2.4
	(For each generated Acknowledgment message, if the From element is omitted in an inbound message)
	REQ
	The value of the From element in the MessageHeader is used to identify the party sending the acknowledgment.
	

	funreq_id_104
	UseSignedAckMustContainRef
	#6.3.2.5
	(For each generated Acknowledgment message, if the message being acknowledged contains an AckRequested element with the signed attribute set to "true")
	REQ
	One or more Reference elements are included in the generated Acknowledgment element.
	

	funreq_id_105
	QualifyRefElementByNamespace
	#6.3.2.5
	(For each generated Acknowledgment message)
	REQ
	Any Reference elements included in a generated Acknowledgment element are namespace qualified to the XML Signature namespace and conform to the XML Signature specification.
	

	funreq_id_106
	NotifyClientOfAckDelivery
	#6.3.2.5
	(For each received Acknowledgment message)
	OPT
	The From Party MSH notifies the client application of successful delivery of the referenced message.
	This will NOT be tested – Test Framework does not support testing this

	funreq_id_107
	IgnoreDuplicateRefToMessageID
	#6.2.2.5
	(For each received Acknowledgment message, if any subsequent Error or Acknowledgment messages with a RefToMessageId value equal to an already received Acknowledgment Message are received)
	OPT
	The messages are ignored and the MSH takes no action.
	Not testeed - Test Framework does not support system interruptions

	funreq_id_108
	SetAckServiceActionValues
	#6.3.2.7
	(For each generated Acknowledgment message, If no errors were detected in the message received and the Acknowledgment Message is being sent with no payload data)
	REQ
	The Service and Action values are: Service - urn:oasis:names:tc:ebxml-msg:service Action - Acknowledgment
	

	funreq_id_109
	SetDuplicateEliminationAlways
	#6.4.1
	(For each generated message, if the CPPA DuplicateElimination element = "always")
	REQ
	The DuplicateElimination element is included to indicate to a Receiving MSH that it must eliminate duplicates.
	

	funreq_id_110
	SetDuplicateEliminationtoNever
	#6.4.1
	(For each generated message, if the CPPA DuplicateElimination element = "never")
	REQ
	The DuplicateElimination element is not present in the generated message.
	

	funreq_id_111
	SetDuplicateEliminationPerMessage
	#6.4.1
	(For each generated message, if the CPPA DuplicateElimination element = "per message" and the party requires duplicate elimination)
	REQ
	The DuplicateElimination element is present in the SOAP header of the message.
	

	funreq_id_112
	ReceiveDuplicateEliminationAlways
	#3.1.2
	(For each received message, if the CPPA DuplicateElimination element = "always" and the received message does not contain a DuplicateElimination element)
	REC
	The receiving MSH generates an Error message with an errorCode of Inconsistent and a Severity of Error.
	

	funreq_id_113
	ReceiveDuplicateEliminationtoNever
	#3.1.2
	(For each received message, if the CPPA DuplicateElimination element = "never" and the received message contains a DuplicateElimination element)
	REQ
	The receiving MSH generates an Error message with an errorCode of Inconsistent and a Severity of Error.
	

	funreq_id_114
	PersistMsgWithDuplicateElimination
	#6.4.1
	(For each reliably sent message, if Duplication element is present on an inbound message)
	REQ
	The message is presented to the To Party Application at-most-once.
	

	funreq_id_115
	PersistMsgWithDuplicateEliminationAndInterruption
	#6.4.1
	(For each reliably sent message, if Duplication element is present on an inbound message and the system recovers from an interruption within the TimeToLive window.)
	REQ
	The message is presented to the To Party Application at-most-once.
	This will NOT be tested (framework does not support interrupts) Test will be described in Abstract Test Suite only

	funreq_id_116
	ReportErrorIfDuplicateEliminationUnsupported
	#3.1.2
	(For each received message containing a DuplicationElimination element, if duplicate elimination is not supported)
	REC
	An Inconsistent/Error is reported to the From Party.
	

	funreq_id_117
	ReportErrorDuplicateEliminationMsgToCPPA
	#3.1.2
	(For each reliably received message, if the value of duplicateElimination in the CPPA is "always" and a DuplicateElimination element is not present in the message)
	REC
	An Inconsistent/Error is reported to the From Party.
	

	funreq_id_118
	ReportErrorDuplicateEliminationMsgToCPPA
	#3.1.2
	(For each reliably received message, if the value of duplicateElimination in the CPPA is "never" and a DuplicateElimination element is present in the message)
	REC
	An Inconsistent/Error is reported to the From Party.
	

	funreq_id_119
	RedeliveryMsgbyRetries
	#6.4.3
	(For each generated message, if the message that requested acknowledgment is not acknowledged within the RetryInterval)
	OPT
	The message is redelivered up to a maximum number of retries as specified by the Retries parameter in the relevant CPA.
	

	funreq_id_120
	RetryIntervalMinLapseTime
	#6.4.4
	(For each reliably re-sent message, if the RetryInterval is present in the CPPA)
	OPT
	The minimum time elapsed between re-sends of the same message is equal to the RetryInterval.
	

	funreq_id_121
	SetTimeToLive
	#6.4.5
	(For each reliably re-sent message, if the RetryInterval element is present in the CPPA)
	REQ
	The TimeToLive for the message satisfies the equation: TimeToLive > Timestamp + ((Retries + 1) * RetryInterval)
	

	funreq_id_122
	PersistSentMsgLength
	#6.4.6
	(For each reliably received message, if the PersistDuration parameter is present in the CPPA and DuplicationElimination element is present in the message and the same message is received again by the MSH before PersistDuration expires)
	REQ
	The message is presented only once to the application.
	

	funreq_id_123
	PersistSentMsgLength
	#6.4.6
	(For each reliably received message, if the PersistDuration parameter is present in the CPPA and AckRequested element is present in the message and the same message is received again by the MSH before PersistDuration expires)
	REQ
	An Acknowledgement message is sent back to the sending MSH.
	

	funreq_id_124
	SendNoMsgWithLapsePersistDurationMsgID
	#6.4.6
	(For each generated message, if the length of time specified by the PersistDuration parameter in the relevant CPA has passed since a message was first sent)
	OPT
	A message with the same MessageId will not be sent again.
	

	funreq_id_125
	ReptDeliveryFailureIfPersistDurationExpired
	#6.4.6
	(For each reliably received message, if a message cannot be successfully delivered before expiry of the PersistDuration period)
	OPT
	An Error message with an ErrorCode of ‘DeliveryFailure’ is returned to the Sending Party.
	

	funreq_id_126
	TimestampPersistDurationGreaterThanTimeToLive
	#6.4.4
	(For each reliably sent message)
	REQ
	For each reliably sent message, the message satisfies the equation: PersistDuration > TimeStamp + TimeToLive.
	

	funreq_id_127
	IgnoreSyncReplyMode
	#6.4.7
	(For each reliably sent message, if the communications protocol is not synchronous)
	REQ
	The value of the syncReplyMode in the relevant CPA is ignored.
	

	funreq_id_128
	ReturnSyncReplyElementInResponsePayload
	#6.4.7
	(For each reliably sent message, if (in the context of the CPPA) the syncReplyMode is not none)
	REQ
	A SyncReply element is present in the message.
	

	funreq_id_129
	ReturnSyncReplyResponsePayload
	#6.4.7
	(For each reliably sent message, if (in the context of the CPPA) the syncReplyMode is not none)
	REQ
	The MSH returns the response on the same synchronous connection.
	

	funreq_id_130
	GenerateAckWhenAckRequested
	#6.5.3
	(For each reliably received message, if the AckRequested element that has a SOAP actor URI targeting the MSH)
	REQ
	An Acknowledgement Message is generated with RefToMessageId having the MessageId value of the message being acknowledged.
	Not Tested - The Test Framework does not support capture of system administrator notifications.

	funreq_id_131
	PersistAckWithOriginalMsg
	#6.5.3
	(For each received Acknowledgment message)
	REQ
	The message is placed in persistent storage with the same PersistDuration as the original message.
	Not Tested - The Test Framework does not support generation of protocol errors

	funreq_id_132
	DeliverAckWithResponse
	#6.5.3
	(For each Acknowledgment message)
	REQ
	The message can be delivered as part of the normal response to the received message.
	

	funreq_id_133
	DeliverSeperatelAckServiceAndAction
	#6.5.3
	(For each Acknowledgment message, if the Acknowledgment element is sent separately from the response to the received message)
	REQ
	The Service element value is "urn:oasis:names:tc:ebxml-msg:service" and the Action element value is "Acknowledgment"
	

	funreq_id_134
	DeliverSeperateAckRefToMessageId
	#6.5.3
	(For each Acknowledgment message, if the Acknowledgment element is sent separately from the response to the received message)
	REQ
	The RefToMessageId element is set to the MessageId of the message received.
	

	funreq_id_135
	DeliverSeperateAckFromValue
	#6.5.3
	(For each Acknowledgment message, if the Acknowledgment element is sent separately from the response to the received message)
	OPT
	The From element MAY be populated with the To element extracted from the message received and all child elements from the To element received SHOULD be included in this From element.
	

	funreq_id_136
	DeliverSeperateAckToValue
	#6.5.3
	(For each Acknowledgment message, if the Acknowledgment element is sent separately from the response to the received message)
	OPT
	The To element MAY be populated with the From element extracted from the message received and all child elements from the From element received SHOULD be included in this To element.
	

	funreq_id_137
	AckNotReceivedResend
	#6.5.3
	(For each generated message containing an AckRequested element, and if an Acknowledgment message has not been received and the time specified in the RegryInterval parameter has passed since the last message was sent AND the message has been resent less than the number of times specified in the Retries parameter)
	REQ
	The Sending MSH resends the original message.
	Not Tested -
 This is an untestable requirement as written in the specification

	funreq_id_138
	AckNotReceivedMaxRetriesExceeded
	#6.5.3
	(For each generated message containing an AckRequested element, and an Acknowledgment message has not been received after the maximum number of retries)
	REQ
	The Sending MSH notifies the application and/or system administrator of the failure to receive an Acknowledgment Message.
	This will NOT be tested. Test Framework must include specification of error to be included in possible ErrorAppNotify message

	funreq_id_139
	ResendMsgOnCommError
	#6.5.4
	(For each reliably sent message, if there is a communications protocol error during a message send)
	REQ
	The message is resent as if the MSH had not received an Acknowledgment Message.
	This will NOT be tested, but will be described in the Abstract Test Suite

	funreq_id_140
	SendOriginalAckOnDuplicateMsg
	#6.5.5
	(For each reliably received message, if a duplicate message is received and the original acknowledgment is still present in the persistent store)
	OPT
	This original Acknowledgment Message is resent.
	

	funreq_id_141
	GenerateSyncResponseOnDuplicateMsg
	#6.5.5
	(For each reliably received message, If a duplicate message is received and the original acknowledgment is not present in the persistent store and the syncReplyMode is not set to none and The CPA indicates that an application response is included)
	OPT
	Response from the application is gathered by the MSH and returned synchronously.
	Not Tested -Not testable in this framework

	funreq_id_142
	GenerateAckMsgOnNonSyncDuplicateMsg
	#6.5.5
	(For each reliably received message, if a duplicate message is received and the original acknowledgment is not present in the persistent store and the syncReplyMode is not set to none)
	OPT
	A new Acknowledgment Message is generated and sent.
	Not Tested -Specification ambiguity prohibits testing

	funreq_id_143
	ReportErrorOnMsgWithAckReqNoTransmit
	#6.5.7
	(For each reliably received message, if the message contains an AckRequested element and the message cannot be delivered because the message could not be transmitted)
	REC
	An error message is sent to the From Party. The reported error is DeliveryFailure/Error.
	

	funreq_id_144
	GenerateWarningErrorOnMsgWithAckRequested
	#6.5.7
	(For each reliably received message, if the message contains an AckRequested element and the message was transmitted but no acknowledgement was received)
	REC
	An error message is sent to the From Party. The reported error is DeliveryFailure/Warning.
	

	funreq_id_145
	NotifyFailureByAlternateMeans
	#6
	(For each reliably received message, if an Error Message is generated with an error code set to DeliveryFailure and an Error Message cannot be delivered successfully)
	REQ
	The ultimate destination of the error message is informed of the failure by some undefined means.
	This will NOT be tested.. untestable as written in specification

	req_id_7
	MsgOrder
	#9
	
	
	
	

	funreq_id_146
	EnableMsgOrderWithReliableMsg
	#9
	(For each received message, if the message contains a MessageOrder element)
	REQ
	The DuplicateElimination is present and AckRequested directed to the To Party MSH and absence of a SyncReply element.
	Not Tested -This is application testing

	funreq_id_147
	ProcessSequenceMsg
	#9.1.1
	(For each received message, when two messages are received, each with a MessageOrder element, and the same conversationID)
	REQ
	The MSH processes messages only in the sequence indicated by the SequenceNumber element.
	Not Tested -This is application testing

	funreq_id_148
	PassOrderedMsgToApplication
	#9.1.1
	(For each received message, if the message contains a MessageOrder element and when receiving ordered messages with the same conversationID out of sequence)
	REQ
	The message is not passed to the destination applicationuntil all messages with a lower (earlier) SequenceNumber have previously been passed.
	This is testable. While passing to application may not be visible, end result of a returned message is.

	funreq_id_149
	GenerateDeliveryFailureOnOutOfSequMsg
	#9.1.1
	(For each received message, if the message contains a MessageOrder element and if the maximum number of out-of-sequence ordered messages have been received)
	REQ
	The Sending MSH is sent an error and the error code is DeliveryFailure and severity set to Error.
	 This will NOT be tested – spec ambiguity (implementation dependent) makes this untestable

	funreq_id_150
	UseZeroSequenceNoForFirstOrderedMsgForConversation
	#9.1.1
	(For each received message, if the message contains a MessageOrder element and if this is the first ordered message for the ConversationID)
	REQ
	The SequenceNumber element has value of 0."
	

	funreq_id_151
	UseStatusResetForFirstOrderedMsgForConversation
	#9.1.1
	(For each received message, if the message contains a MessageOrder element and if this is the first ordered message for the ConversationID)
	REQ
	The status value is set to Reset"
	

	funreq_id_152
	UseZeroSequenceNoForFirstOrderedMsgAfterReset
	#9.1.1
	(For each received message, if the message contains a MessageOrder element and this is the first ordered message after a reset instruction is sent by the Sending MSH)
	REQ
	The SequenceNumber element has value of 0.
	

	funreq_id_153
	UseZeroSequenceNoAndStatusResetForFirstOrderedMsgAfterReset
	#9.1.1
	(For each received message, if the message contains a MessageOrder element and this is the first ordered message after a reset instruction is sent by the Sending MSH)
	REQ
	The status value is set to Reset
	

	funreq_id_154
	UseZeroSequenceNoAndSatusContinueForFirstOrderedMsgAfterWrap
	#9.1.1
	(For each generated message, if the message contains a MessageOrder element and this is the first ordered message after the sequence wrapped at value 99999999)
	REQ
	The SequenceNumber element has value of 0 and a status Value of Continue
	This will NOT be tested because of the impracticality of generating such a large number of messages

	funreq_id_155
	ResetMsgSeqForConversation
	#9.1.1
	(For each generated message, when sending a message with the MessageOrder element and if the status attribute is set to "Reset")
	REQ
	All previous sent messages for this conversation must have been accounted for.
	This will NOT be tested – application level testing

	funreq_id_156
	SyncReplyMsgNotIncludeMsgOrder
	#9.2
	(For each generated message, if the message contains a SyncReply element)
	REQ
	A MessageOrder element is never included in the same message as a SyncReply element.
	This will NOT be tested – application level testing

	funreq_id_157
	ReportErrorMsgOrderSyncReply
	#9.2
	(If a message is received in which the MessageOrder element is included with a SyncReply element)
	REC
	An error is reported. The error is Inconsistent/Error.
	

	req_id_8
	SecurityAndCommunicationChannels
	#4
	
	
	
	

	funreq_id_158
	SignatureElementIsChildOfSoapHeader
	#4.1
	(For each generated message, when one or more Signature elements is present)
	REQ
	It is the child of the SOAP Header.
	

	funreq_id_159
	SignatureIsNamespaceQualified
	#4.1
	(For each generated message, when one or more Signature elements is present)
	REQ
	It is namespace qualified with http://www.w3.org/2000/09/xmldsig#"
	

	funreq_id_160
	SignatureConformsToXMLDSIG
	#4.1
	(For each generated message, when one or more Signature elements is present)
	REQ
	Its structure and content conform to the XML Signature specification available at http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/.
	

	funreq_id_161
	AttributeSignatureElement
	#4.1
	(If there is more than one Signature element within the SOAP Header)
	REQ
	It is the first signature that represents digital signing of the message by the From Party MSH.
	

	funreq_id_162
	ApplySecurityBasedOnTransportOfCPA
	#4.1.3
	(For each generated message if, based upon the Transport section of the relevant CPA, a signature is REQ for the entire message)
	REQ
	A Signature element must be present, and its SignedInfo element contains a Reference element to the SOAP envelope which has a URI attribute value of ""
	

	funreq_id_163
	GenerateSignToXMLDSIG
	#4.1.3
	(For each signed message)
	REQ
	Digital signatures are generated and rendered according the XML Signature specification (XMLDSIG).
	

	funreq_id_164
	GenerateSignChildElements
	#4.1.3
	(For each signed message)
	REQ
	The SignedInfo element has a CanonicalizationMethod, SignatureMethod and one or more Reference elements.
	

	funreq_id_165
	GenerateSignAlgorithmAttribute
	#4.1.3
	(For each signed message)
	REQ
	The SignatureMethod element is present and has an Algorithm attribute on any generated digitally signed message.
	

	funreq_id_166
	SignCanonicalMethod
	#4.1.3
	(For each generated message with one or more Signature elements)
	REC
	The canonicalization method applied to the data to be signed is Agorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"
	

	funreq_id_167
	SignatureMethodAlgorithmAttribute
	#4.1.3
	(For each generated message with one or more Signature elements)
	REC
	The value of the Algorithm attribute is Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"
	

	funreq_id_168
	SupportDSA-SHA1SignAlgorithm
	#4.1.3
	(For each generated message with one or more Signature elements)
	REQ
	The MSH supports the signature algorithm DSA-SHA1, validates the signature and passes the message to the application.
	

	funreq_id_169
	AddOptionalReferenceAttribute
	#4.1.3
	(For each generated message with one or more Signature elements)
	REC
	The MSH supports the optional addition of the informative Type attribute with value "http://www.w3.org/2000/09/xmldsig#Object" on the XML Signature Reference element.
	

	funreq_id_170
	IncludeMandatoryTransformElementToEnvelopedSign
	#4.1.3
	(For each generated message with one or more Signature elements)
	REQ
	The generated XML Signature Reference element includes a child Transform element which in turn includes a first Transform element with an Algorithm attribute of value "http://www.w3.org/2000/09/xmldsig#enveloped-signature".
	

	funreq_id_171
	GenerateMandatoryTransformWithExcludeSOAPActor
	#4.1.3
	(For each generated message with one or more Signature elements, (CPA, Transport section) that requires signature)
	REQ
	A second Transform element is generated with the requisite XPath element excluding all elements with SOAP actor attributes targeting the nextMSH or next SOAP node.
	

	funreq_id_172
	CanonicalizationTransformElementAlgorithmAttribute
	#4.1.3
	(For each generated message with one or more Signature elements)
	OPT
	The last generated Transform element has an Algorithm attribute with a value of "http://www.w3.org/TR/2001/REC-xml-c14n-20010315".
	

	funreq_id_173
	XMLSignReferenceURIForPayload
	#4.1.3
	(For each generated message with one or more Signature elements)
	REQ
	Any payload data requiring digital signature is identified by an XML Signature Reference element that has a URI attribute resolving to the location of that data.
	

	funreq_id_174
	MapSignReferenceURIToManifestPayload
	#4.1.3
	(For each generated message with one or more Signature elements)
	REC
	The value of the URI attribute of a generated XML Signature Reference element matches the xlink:href URI value present in the Manifest/Reference element corresponding to that same payload.
	

	funreq_id_175
	GenerateSignPriorToTransferEncoding
	#4.1.3
	(For each generated message with one or more Signature elements, and with transfer encoding)
	REQ
	Signature generation takes place before any transfer encoding (e.g. base64) is applied to the SOAP Envelope or payload MIME parts.
	

	funreq_id_176
	SignAckReferenceElementList
	#4.1.3.2
	(For each received signed message)
	REQ
	A digitally signed inbound message may be acknowledged with a digitally signed acknowledgement. Any such acknowledgement message contains an XML Signature Reference element list corresponding to the Reference elements contained in the original message.
	

	funreq_id_177
	AuthenticatePartyByCommunicationChannel
	#4.1.4.3
	(For each generated message)
	OPT
	The communication channel used to transport the ebXML message can be used to provide uni or bi-directional party authentication (e.g. TLS over TCP/IP).
	This will NOT be tested, but query of protocol security parameters will be recommended for next version of Test Framework

	funreq_id_178
	ProvideMsgContentDataIntegrityByCommunicationChannel
	#4.1.4.4
	(For each generated message)
	OPT
	The communication channel used to transport the ebXML message can be used to provide data integrity of the message content (e.g. TLS over TCP/IP).
	This will NOT be tested, but query of protocol security parameters will be recommended for next version of Test Framework

	funreq_id_179
	SignMsgPriorToEncryption
	#4.1.4.5
	(For each generated message if, based upon the Transport section of the relevant CPA, a signature is Required for entire message and if signature and encryption of a message component is requested of the MSH)
	OPT
	Signing takes place prior to encryption.
	

	funreq_id_180
	ProvideMsgContentDataConfidentialityByCommunicationChannel
	#4.1.4.6
	(For each generated message)
	REQ
	The communication channel used to transport the ebXML message can be used to provide data confidentiality for the message content (e.g. TLS over TCP/IP).
	This will NOT be tested, but query of protocol security parameters will be recommended for next version of Test Framework

	funreq_id_181
	AuthorizeMsgWithBilateralAuthenticationByNetworkProtocol
	#4.1.4.8
	(For each generated message)
	OPT
	The source of an ebXML message can be authorized by using a secure network protocol for bilateral authentication of certificates prior to establishing a session (e.g. TLS over TCP/IP).
	This will NOT be tested, but query of protocol security parameters will be recommended for next version of Test Framework

	req_id_9
	MessageStatusService
	#7
	
	
	
	

	funreq_id_182
	GenerateStatusResponseWithReliableMessaging
	#7
	(For each received message, if the message contains a StatusRequest element and the RefToMessageId child element references a previously received message that had been sent reliably and is present in persistent storage)
	REC
	A Message Status Response Message is returned.
	

	funreq_id_183
	GenerateStatusResponseWithoutReliableMessaging
	#7
	(For each received message, if the message contains a StatusRequest element and the RefToMessageId child element references a previously received message that had not been sent reliably)
	OPT
	A Message Status Response is returned.
	

	funreq_id_184
	ReportUnsupportedService
	#7
	(For each received message, if the message contains a StatusRequest element and the message is received for a service that is not supported)
	REC
	An Error Message is returned with an errorCode of "NotSupported".
	

	funreq_id_185
	GenerateValidStatusRequestMessage
	#7.1.1
	(For each received message, If the MessageHeader child Action element is equal to "StatusRequest")
	REQ
	The message consists of no payload and the MessageHeader/StatusRequest elements configured as specified in the Message Service Specification and are not included along with any of the Manifest, StatusResponse, or ErrorList elements.
	Not Tested - This is application-level testing

	funreq_id_186
	ProcessUnauthorizedStatusRequest
	#7.1.3
	(For each received message, if the message contains a StatusRequest element and the StatusRequest child RefToMessageId element value is recognized by the MSH and the message is received from a party deemed to be unauthorised)
	OPT
	A response is sent with the messageStatus attribute set to "UnAuthorized".
	Not Tested - This is application-level testing

	funreq_id_187
	ProvideRefToMessageIdAndMessageIdIntegrity
	#7.3.1
	(For each received message, if the message contains a StatusRequest element and the StatusRequest child RefToMessageId element value is recognized by the MSH and a StatusResponse is generated for this request)
	REC
	In the returned StatuResponse element, the RefToMessageId element child of the MessageData element specifies the MessageId of the message containing the associated StatusRequest element. In addition, the RefToMessageId element child of the StatusResponse elements always contains the MessageId of the message whose status is being queried.
	

	funreq_id_188
	SetTimestampRecognizedAndAuthorized
	#7.3.2
	(For each received message, if the message contains a StatusRequest element and the StatusRequest child RefToMessageId element value is recognized)
	REQ
	In the response message, the Timestamp child element of the StatusResponse element contains the time at which the message being reported on was originally received.
	

	funreq_id_189
	SetTimestampNotRecognized
	#7.3.2
	(For each received message, if the message contains a StatusRequest element and the StatusRequest child RefToMessageId element value is not recognized)
	REQ
	The Timestamp child element of the StatusResponse element is not present in the response message.
	

	funreq_id_190
	SetTimestampNotAuthorized
	#7.3.2
	(For each received message, if the message contains a StatusRequest element and the StatusRequest child RefToMessageId element value is not authorized.)
	REQ
	The Timestamp child element of the StatusResponse element is not present in the response message.
	Not Tested , This is application level testing

	funreq_id_191
	GenerateUnauthorizedMessageStatus
	#7.3.3
	(For each received message, if the message contains a StatusRequest element and the message is recognized)
	REQ
	The messageStatus attribute in the StatusResponse element has a value of 'UnAuthorized'.
	

	funreq_id_192
	GenerateNotRecognizedMessageStatus
	#7.3.3
	(For each received message, if the message contains a StatusRequest element and the StatusRequest child RefToMessageId element value is not recognized)
	REQ
	The messageStatus attribute in the StatusResponse element has a value of 'NotRecognized'.
	

	funreq_id_193
	GenerateReceivedMessageStatus
	#7.3.3
	(For each received message, if the message contains a StatusRequest element and the StatusRequest child RefToMessageId element value is recognized and the RefToMessageId element value is recognized and not yet processed)
	REQ
	The messageStatus attribute in the StatusResponse element has a value of 'Received'.
	This will NOT be tested. Test Framework does not support this particular test.

	funreq_id_194
	GenerateProcessedMessageStatus
	#7.3.3
	(For each received message, if the message contains a StatusRequest element and the StatusRequest child RefToMessageId element value is recognized and the RefToMessageId element value is recognized and processed)
	REQ
	The messageStatus attribute in the StatusResponse element has a value of 'Processed'.
	

	funreq_id_195
	GenerateReceivedMessageStatus
	#7.3.3
	(For each received message, if the message contains a StatusRequest element and the StatusRequest child RefToMessageId element value is recognized and the message identified by the RefToMessageId element in the StatusRequest element has been forwarded by the MSH)
	REQ
	A StatusResponse with a 'Forwarded' messageStatus is present in the returned message.
	

	req_id_10
	PingService
	#8
	
	
	
	

	funreq_id_196
	ReportServiceNotSupported
	#8
	(For each received message, if the message header Action element contains a child Ping element and the requested service is not supported)
	REC
	A message with an Error element is returned with an errorCode of "NotSupported" and a highestSeverityattribute set to "Error".
	

	funreq_id_197
	GenerateValidPingMessageStructure
	#8.1
	(For each generated message, if the message header Action element contains a child Ping element)
	REQ
	The message consists of no payload and the MessageHeader and Signature elements (if present) are configured as specified in the Message Service Specification.
	

	funreq_id_198
	GeneratePongResponse
	#8.2
	(For each received message, if the message header Action element contains a child Ping element and the requested service is supported and The Ping request is occurring under normally expected conditions, and the received message is authorized and not interpreted by the Receiving party as part of an attack.)
	OPT
	A message header Action element containing a child Pong element is returned. The message contains no payload and the MessageHeader & Signature elements (if present) are configured as specified in the Message Service Specification.
	

	req_id_11
	MultiHopModule
	#10
	
	
	
	

	funreq_id_199
	SetMultiHopIntermediaryNextMSH
	#10.1
	(For each generated multi-hop message)
	OPT
	The AckRequested and Acknowledgment elements have the SOAP actor attribute set to NextMSH (urn:oasis:names:tc:ebxml-msg:actor:nextMSH).
	

	funreq_id_200
	RemoveIntermediaryAckRequested
	#10.1.1
	(For each received multi-hop message, when a node acts as an intermediary)
	REQ
	The node removes any AckRequested element with a SOAP actor attribute of NextMSH.
	

	funreq_id_201
	InsertIntermediaryAckRequested
	#10.1.1
	(For each received multi-hop message, when a node acts as an intermediary)
	OPT
	The node can insert a single AckRequested element with a SOAP actor attribute of NextMSH.
	

	funreq_id_202
	GenerateSingleAckRequestedForNextMSH
	#10.1.1
	(For each generated multi-hop message with the SOAP actor attribute value targeting the NextMSH)
	REQ
	There will not be two AckRequested elements in the same message.
	

	funreq_id_203
	SyncReplyNoAckRequestedForNextMSH
	#10.1.1
	(For each generated multi-hop message, if a SyncReply element is present in a message)
	REQ
	An AckRequested element with SOAP actor attribute targeting the NextMSH is never included.
	Not tested - Application level testing

	funreq_id_204
	GenerateErrorWithSyncReplyAckRequested
	#10.1.1
	(For each received multi-hop message, if the SyncReply and AckRequested elements is received in one message and the AckRequested element is received in the same message)
	REQ
	An error is reported with an errorCode of "Inconsistent".
	Not tested - Application level testing

	funreq_id_205
	GenerateIntermediaryAckMsgIfNoSyncReply
	#10.1.1
	(For each received multi-hop message, when a node acts in the role of intermediary and no SyncReply element is specified)
	OPT
	A node may synchronously return an intermediate Acknowledgment Message to the Sending MSH.
	Not tested - Application level testing

	funreq_id_206
	GenerateAckBasedOnActor
	#10.1.3
	(For each received multi-hop message, if an inbound message contains two AckRequested elements where one addresses NextMSH and another AckRequest addresses the ToParty MSH and the receiving MSH is the ToParty MSH)
	REQ
	The MSH node is in the combined role of Next and ToParty MSH, and will send two Acknowledgments
	

	funreq_id_207
	GenerateIntermediaryAckMsgAtComplete
	#10.1.3
	(For each received multi-hop message, a reliable message received by an MSH node in the role of intermediary)
	REQ
	The message is not acknowledged until the message is both persisted and delivered to the Next MSH.
	

	funreq_id_208
	GenerateIntermediarySignedAck
	#10.1.4
	(For each received multi-hop message, when a signed Acknowledgment Message is requested by an intermediate node)
	REQ
	The message is only generated as a standalone message and is not bundled with any other data (payload).
	

	funreq_id_209
	NoMsgOrderProcessForIntermediary
	#10.2
	(For each received multi-hop message, when the MSH acts in the role of intermediary)
	REQ
	The MSH does not attempt to participate in Message Order processing.
	

	funreq_id_210
	RequestDownstreamAck
	#6.3.1
	(For a downstream (Next) processor, if an AckRequested element is received)
	REQ
	An acknowledgment is returned.
	

	funreq_id_211
	GenerateMultipleAckRequested
	#6.3.1
	(For each generated multi-hop message, if there are two AckRequested elements in a generated message Header)
	REQ
	The two AckRequested elements do not specify the same value for their respective SOAP actor attributes.
	This will NOT be tested – application level testing

	funreq_id_212
	TargetAtMostOneAckNextMSH
	#6.3.1
	(For each generated multi-hop message)
	REQ
	At most one AckRequested element may be targeted at the actor URI for the Next MSH.
	This will NOT be tested – application level testing

	funreq_id_213
	TargetAtMostOneAckToPartyMSH
	#6.3.1
	(For each generated multi-hop message)
	REQ
	At most one AckRequested element may be targeted at the actor URI for the To Party MSH in a given message.
	This will NOT be tested – applictaion level testing

	funreq_id_214
	IgnoreIntermediaryDuplicates
	#6.5.2
	(For each reliably received message, when the MSH acts as an intermediary node)
	REQ
	The MSH does not filter out perceived duplicate messages.
	

	funreq_id_215
	ControlIntermediaryMSHHandling
	#4.1.3
	(For each received multi-hop message, when a node acts as an intermediary)
	REQ
	The MSH does not change, format or in any way modify any element not targeted at that intermediary MSH. The MSH does not add or delete white space.
	

	funreq_id_216
	TargetAckRequestedToOrNextMSH
	#6.3.1.1
	(For each generated multi-hop message)
	REQ
	The AckRequested element is targeted at the NextMSH
	

	
	
	
	
	
	
	

Table 1 is a tabular representation of the ebXML MS 2.0 Conformance Test Requirements

3.3 Abstract MS Conformance Test Suite

Abstract test cases represent (in an informal way) the semantics necessary to generate actual, executable conformance test cases. The following abstract Test Cases are specified using test material (MSH configuration parameters, Test Driver configuration parameters and run-time generated message content and message payloads) in a sequence of Test Cases. Each Test Case consists of a sequence of Test Steps. Test Steps, in turn, may be a sequence of test operations performed on a message to be sent, or on a received message. The full description of the structure of a Test Case can be found in [ebTestFramework].

 The format of the Test Cases described below cannot be used by the ebXML Test Framework to execute the tests. The executable versions can be found in [ebXMLExeConfTestSuite].

3.3.1 Abstract Test Case Description

This Abstract Test Case Specification provides the necessary information for a test developer to write an executable conformance test suite against the listed Requirement ID in the table.

The Abstract Test Cases contain references to:

· MSH configuration settings
· MIME, SOAP and ebXML message content

· Message construction and verification parameters

· Test Driver configuration parameters

· Message payload content

Candidate MSH configuration settings are represented in this test suite by the CPAId of a MessageHeader. The CPAId represents a particular MSH configuration that MUST be used by the candidate MSH in order to successfully run a particular Test Case. The 13 MSH configuration parameter groups referenced by this Test Suite are described in section 4.1.2 of this specification.

MIME, SOAP and ebXML message content is represented in the Abstract Message Content column in the table 2. The message content appears as an XPath argument to a Test Step operation. In all operations, whether they be sending, receiving, verifying or validating message content, the XPath expression represents an expected message, the XPath expression represents the required message or message fragment to be sent, received or examined. The syntax and semantic rules for the XPath expression conform to the [XPath] specification.

Run time message parameters are parameter values “known” by the Test Driver at run time. Parameter values are inserted by the Test Driver into messages in their appropriate location prior to message transmission, and are used in XPath expressions to filter the content of received messages. For illustration purposes, these parameters are preceded with a ‘$’ symbol in the Abstract Message Content. The actual values of these parameters are either generated by the Test Driver during Test Case Execution, or are globally defined through Test Driver configuration.

3.3.2 ebXML MS 2.0 Abstract Test Cases

The Test Cases in this Abstract Test Suite are grouped according to functionality. The abstract Test Cases below cover the following ebXML MS functional categories (with test case numbers):

13. Message Packaging (2-30)

14. Core Extension Elements (31-51)

15. Error Handling (52-69)

16. Sync Reply (70-72)

17. Reliable Messaging (73-145)

18. Message Ordering (146-157)

19. Security and Communication Channels (158-181)

20. Message Status (182-195)

21. Ping (196-198)

22. Multi-hop (199-215)
*NOTE: The test suite includes a few tests that can only be run synchronously. Those test cases are (70, 71, 128, 157), and should not be run by MSH implementations that run in asynchronous mode only (e.g. using SMTP transport protocol)
The Abstract Test Suite does not necessarily reflect a “1 to 1” relationship with functional test requirements. If a Conformance Test Requirement is too broad in scope, or ambiguous in its description, then an Abstract Test Case(s) may not exist for that requirement.

Also, the Abstract Test Cases does not necessarily have a “1 to 1” relationship with the Executable Test Cases. Some tests can be described in an abstract sense, but due to restrictions in the ebXML Test Framework the corresponding Executable Test Case(s) may not exist.

	Test Object
	ID
	Requirement
	Description
	Abstract Message Content

	Test Case
	testcase_2
	funreq_id_2
	SOAP message must be in root part of MIME message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that an SOAP Message is found in the root part of the MIME message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelop])

	Test Case
	testcase_3
	funreq_id_3
	All MIME parts must have a CID or Content-Location
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with manifest reference to payload
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Reflector’]] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:payload_1']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:payload_1'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Precondition
	
	
	Check if MIME Content-type is multipart/mime or not text/xml
	Verify_Received_Message_Filter(/mime:Message[@Content-Type = 'multipart/mime' or @Content-Type != 'text/xml'])

	Assertion
	
	
	Verify that CID or Content-Location exists for both Message Package MIME part
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1] and (@Content-Location or @contentId)])

	Assertion
	
	
	Verify that CID or Content-Location exists for Payload MIME part
	Verify_Received_Message_Filter(/mime:Message [mime:MessageContainer[2] and (@Content-Location or @contentId)])

	Test Case
	testcase_4
	funreq_id_4
	Message package Content-Type is text/xml
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify message package Content-type
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[0] and (@Content-Type = 'text/xml)')])

	Test Case
	testcase_5
	funreq_id_5
	Start attribute present in MIME message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Check for presence of 'start' attribute in MIME message
	Verify_Received_Message_Filter(/mime:Message[@start])

	Test Case
	testcase_6
	funreq_id_6
	Process non-multipart messages
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[@mime:contentType = 'text/xml' mime:MessageContainer[2] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Check for a returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader])

	Assertion
	
	
	Verify that no Error messages were generated
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[not eb:ErrorList]])

	Test Case
	testcase_7
	funreq_id_7
	Process multipart/no payload messages
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[@mime:contentType = 'multipart-related' mime:MessageContainer[2] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Check for a returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader])

	Assertion
	
	
	Verify that no Error messages were generated
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[not eb:ErrorList]])

	Test Case
	testcase_8
	funreq_id_8
	Soap message package Content-Type is 'text/xml'
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify message package Content-type is 'text/xml'
	Verify_Received_Message_Filter(/mime:Messag[mime:MessageContainer[1][@Content-Type = 'text/xml']])

	Test Case
	testcase_9
	funreq_id_9
	Soap message encoding matches Content-Type
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify message package Content-type is 'text/xml'
	Verify_Received_Message_Filter(/mime:Messag[mime:MessageContainer[1][@Content-Type = 'text/xml']])

	Precondition
	
	
	Check if SOAP encoding attribute is present
	Verify_Received_Message_Filter($SOAPEncoding!='')

	Assertion
	
	
	Compare header container charset and SOAP message encoding values
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1][@charset = $SOAPEncoding]])

	Test Case
	testcase_11
	funreq_id_11
	SOAP message is encoded in UTF-8
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=’mshc_Basdc’ and eb:Action=‘Dummy’]] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action='Mute' and eb:CPAId='mshc_Basic' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Precondition
	
	
	Check if SOAP encoding attribute is present
	Verify_Received_Message_Filter($SOAPEncoding!='')

	Assertion
	
	
	Verify that message encoding is 'UTF-8'
	Verify_Received_Message_Filter($SOAPEncoding = 'UTF-8')

	Test Case
	testcase_12
	funreq_id_12
	Payloads should be enclosed in MIME container
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Reflector’]] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:payload_1']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:payload_1'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ andeb:ConversationId=$ConversationId and eb:RefToMessageId=$MessageId]])

	Precondition
	
	
	Check for returned payload
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Body/eb:Manifest/eb:Reference[@xlink:href='cid:payload_1']])

	Test Case
	testcase_13
	funreq_id_13
	If no manifest entry, no MIME payloads
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify no payloads are present
	Verify_Received_Message_Filter(/mime:Message[not (mime:MessageContainer[2])])

	Test Case
	testcase_14
	funreq_id_14
	Must be a matching payload for each manifest reference
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Reflector’]] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:payload_1']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:payload_1'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify a Manifest reference to payload
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[2]/soap:Envelope/soap:Header/eb:Manifest/eb:Reference[@xlink:href='cid:payload_1']])

	Test Case
	testcase_15
	funreq_id_15
	Process unrecognized MIME headers
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with an unrecognized header included
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Reflector’]] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:payload_1']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:payload_1' /ebTest:MimeHeader ='wildcard' /ebTest:MimeHeaderValue ='bar'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify a Manifest reference to payload
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[2]/soap:Envelope/soap:Header/eb:Manifest/eb:Reference[@xlink:href='cid:payload_1']])

	Test Case
	testcase_16
	funreq_id_16
	Prolog may contain XML declaration
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action='Dummy']] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_Basic' and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Precondition
	
	
	Verify that prolog exists in SOAP message
	Verify_Received_Message_Filter($prolog='true')

	Assertion
	
	
	Verify that XML declaration exists in SOAP message
	Verify_Received_Message_Filter($declaration='true')

	Test Case
	testcase_17
	funreq_id_17
	Version number present in prolog
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Precondition
	
	
	Verify that prolog exists in SOAP message
	Verify_Received_Message_Filter($prolog='true')

	Assertion
	
	
	Verify that prolog version exists
	Verify_Received_Message_Filter($prologVersion = 'true')

	Test Case
	testcase_19
	funreq_id_19
	ebXML extension elements properly namespace qualified
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that extension elements are properly namespace qualified
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/*[namespace-uri()='http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd']])

	Test Case
	testcase_20
	funreq_id_20
	SOAP Envelope elements namespace qualified
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that SOAP envelope element is properly namespace qualified
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope[namespace-uri()='http://schemas.xmlsoap.org/soap/envelope/']])

	Test Case
	testcase_21
	funreq_id_21
	SOAP Header and Body attributes contain correct schemaLocation
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that schemaLocation is correct
	Verify_Received_Message_Filter($SOAPHeaderSchemaLocation="http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd and $SOAPBodySchemaLocation="http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd)

	Test Case
	testcase_22
	funreq_id_22
	SOAP Header element contains proper namespace
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that SOAP Header element is properly namespace qualified
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header[namespace-uri()='http://schemas.xmlsoap.org/soap/envelope/']])

	Test Case
	testcase_23
	funreq_id_23
	SOAP Body element contains proper namespace
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that SOAP Body element is properly namespace qualified
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Body[namespace-uri()='http://schemas.xmlsoap.org/soap/envelope/']])

	Test Case
	testcase_24
	funreq_id_24
	MessageHeader element must be in SOAP Header
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that a MessageHeader element is present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader])

	Test Case
	testcase_26
	funreq_id_26
	Ignore wildcard elements
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with additional wildcard element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Check for a returned message
	Verify_Received_Message_Filter(/mime:Message)

	Assertion
	
	
	Verify that no Error messages were generated
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[not eb:ErrorList]])

	Test Case
	testcase_27
	funreq_id_27
	ID attribute is assigned to each ebXML extension element
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that an ID attribute exists for extension elements
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/*[@id]])

	Test Case
	testcase_28
	funreq_id_28
	MessageHeader version attribute is '2.0'
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that correct version is present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[@eb:version='2.0']])

	Test Case
	testcase_29
	funreq_id_29
	MustUnderstand attribute set to correct namespace
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that a 'mustUnderstand' attribute is present in SOAP Header extension elements and it is properly namespace qualified
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/@mustUnderstand[namespace-uri='http://schemas.xmlsoap.org/soap/envelope']])

	Test Case
	testcase_30
	funreq_id_30
	Not understood SOAP Header extension elements are rejected

If mustUnderstand = ‘1’
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	MessageHeader mustUnderstand set to '1'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’ eb:ExtensionLement [@soap:mustUnderstand = '1']]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Test if Error is generated
	Verify_Received_Message_Filter(mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Body/soap:Fault/soap:Code[soap:Value='MustUnderstand']])

	Test Case
	testcase_30.1
	funreq_id_30.1
	Not understood SOAP Header extension elements are ignored

If mustUnderstand = ‘0’
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	MessageHeader mustUnderstand set to '0'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’ eb:ExtensionLement [@soap:mustUnderstand = '0']]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Test if no Error is generated
	Verify_Received_Message_Filter(mime:Message[not mime:MessageContainer[1]/soap:Envelope/soap:Body/soap:Fault/soap:Code[soap:Value='MustUnderstand']])

	Test Case
	testcase_32
	funreq_id_32
	Generate error when PartyId is not a URI and type is not defined
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Load message template and To PartyId set to 'null'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’ eb:To]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that Error message is generated
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'Inconsistent' and @eb:severity = 'Error']])

	Test Case
	testcase_33
	funreq_id_33
	If type is present, it is a valid URI
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Precondition
	
	
	Test if type attribute is present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:To/eb:PartyId[@eb:type]])

	Assertion
	
	
	Validate 'type' attribute
	Validate_Received_Message_Filter(/mime:Message/mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:To/eb:PartyId/eb:@type)

	Test Case
	testcase_34
	funreq_id_34
	If type is not present, PartyId is a valid URI
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Precondition
	
	
	Test if type attribute is NOT present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:To/eb:PartyId[not (@eb:type)]])

	Assertion
	
	
	Test if PartyId is a URI
	Validate_Received_Message_Filter(/mime:Message/mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:To/eb:PartyId)

	Test Case
	testcase_35
	funreq_id_35
	If CPAId cannot be resolved, respond with ValueNotRecognized Error
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Load message template and CPAId set to 'null'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ eb:CPAId=’null’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that Error is returned
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'ValueNotRecognized' and @eb:severity = 'Error']])

	Test Case
	testcase_36
	funreq_id_36
	ConversationId is always present
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic Dummy message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that Conversation Id is not present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:ConversationId])

	Test Case
	testcase_38
	funreq_id_37
	If type not set, and Service is not a URI, generate Inconsistent Error
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an Service that is not a URI
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’ ebTest:Service]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that Error is returned
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'Inconsistent' and @eb:severity = 'Error']])

	Test Case
	testcase_38
	funreq_id_38
	If type not set, and Service is not a URI, generate Inconsistent Error
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an Service that is not a URI
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=$CPAId and eb:Action='Dummy' ebTest:Service]] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_Basic' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that Error is returned
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'Inconsistent' and @eb:severity = 'Error']])

	Test Case
	testcase_39
	funreq_id_39
	If type not set, and Service must be a URI
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an Service that is not a URI
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=$CPAId and eb:Action='Dummy']] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_Basic' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Precondition
	
	
	Verify that type attribute is not present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Service[not @type]])

	Assertion
	
	
	Verify that Service is a URI
	Validate_Received_Message_Filter(/mime:Message/mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Service/@type)

	Test Case
	testcase_40
	funreq_id_40
	If Service and Action not recognized, generate Error
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message with unrecognized Service and Action
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_BasicebTest:Service and eb:Action ='null']]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that Error is returned
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'ValueNotRecognized' and @eb:severity = 'Error']])

	Test Case
	testcase_41
	funreq_id_41
	Generate RefToMessageId correctly
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Check for a returned message
	Verify_Received_Message_Filter(/mime:Message)

	Test Case
	testcase_42
	funreq_id_42
	Generate no RefToMessageId if first message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Initiate a message from the candidate MSH
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action ='Initiator']] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:initiator_message1']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:initiator_message1'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$InitConversationId]])

	Assertion
	
	
	Verify that a RefToMessageId element is not present in message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:MessageData[not (RefToMessageId)]])

	Test Case
	testcase_43
	funreq_id_43
	Generate RefToMessageId for Error
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Load message and erroneous To PartyId value
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’ eb:To]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that a RefToMessageId element is generated for Error
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList and eb:MessageHeader[eb:MessageData/RefToMessageId=$MessageId]])

	Test Case
	testcase_44
	funreq_id_44
	Generate TimeToLiveExpired Error
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Load message template and an expired TimeToLive
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’ eb:MessageData]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that TimeToLiveExpired Error is returned
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'TimeToLiveExpired' and @eb:severity = 'Error']])

	Test Case
	testcase_45
	funreq_id_45
	TimeToLive conforms to schema DateTime format
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that a TimeToLive element is valid
	Validate_Received_Message_Filter(//eb:TimeToLive)

	Test Case
	testcase_48
	funreq_id_48
	Generate Error for missing payload
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Load message template and a payload CID
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Reflector’]] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:payload_1']]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that MIMEProblem Error is returned
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:ErrorList/eb:Error/@eb:errorCode = 'MIMEProblem' and @eb:severity = 'Error']])

	Test Case
	testcase_49
	funreq_id_49
	Generate Error for unresolvable CID
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an unresolvable Manifest Reference
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Reflector’]] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:payload_1']/eb:Reference[@xlink:href = 'cid:null']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:payload_1'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that MIMEProblem Error is returned
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'MIMEProblem' and eb:Error/@eb:severity = 'Error']])

	Test Case
	testcase_50
	funreq_id_50
	Generate resolvable CID in Manifest
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send message with payload
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Reflector’]] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:payload_1']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:payload_1' payloadRef=" payload_1"])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that CID or Content-Location exists for MIME part
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Body/eb:Manifest/eb:Reference[@xlink:href='cid:payload_1']])

	Test Case
	testcase_51
	funreq_id_51
	Discard unreferenced payloads
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with no Manifest Reference
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:payload_1' payloadRef=" payload_1"])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Check for a returned message
	Verify_Received_Message_Filter(/mime:Message)

	Assertion
	
	
	Verify that no Error messages were generated
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[not eb:ErrorList]])

	Test Case
	testcase_53
	funreq_id_53
	Generate compliant SOAP faults
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with unresolvable To/PartyId
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’ eb:To]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Precondition
	
	
	Verify that ErrorList highestSeverity is 'Error'
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList[@eb:highestServerity='Error']])

	Precondition
	
	
	Verify SOAP Fault is present
	Validate_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Body/soap:Fault]])

	Assertion
	
	
	Validate SOAP content
	Validate_Received_Message_Filter(/mime:Message/mime:MessageContainer[1]/soap:Envelope/soap:Body/soap:Fault)

	Test Case
	testcase_54
	funreq_id_54
	Do not generate warnings as SOAP faults
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message with AckRequested element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Precondition
	
	
	Verify that Error is returned after candidate failure to receive acknowledgment
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'DeliveryFailure' and eb:Error/@eb:severity = 'Warning']])

	Assertion
	
	
	Verify that no SOAP fault is generated for warnings
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Body[not (soap:Fault)]])

	Test Case
	testcase_57
	funreq_id_57
	Generate correct highestSeverity for Errorlist
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with unresolvable To/PartyId
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’ eb:To]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that ErrorList highestSeverity is 'Error'
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList[@eb:highestServerity='Error']])

	Test Case
	testcase_58
	funreq_id_58
	Error codeContext is a URI
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Load message template and a payload CID
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action ='null']]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Precondition
	
	
	Test if an Error element is present
	Verify_Received_Message_Filter(/mime:Message/mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:ErrorList/eb:Error)

	Assertion
	
	
	Test if codeContext attribute is present
	Validate_Received_Message_Filter(/mime:Message/mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:ErrorList/eb:Error/@eb:codeContext)

	Test Case
	testcase_59
	funreq_id_59
	Namespace for codeContext is correct
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with unresolvable To/PartyId
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’ eb:To]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Precondition
	
	
	Test if codeContext attribute is present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:ErrorList/eb:Error])

	Precondition
	
	
	Verify that namespace is default value
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:ErrorList/eb:Error[@eb:codeContext="urn:oasis:names:tc:ebxml-msg:service:errors"]])

	Test Case
	testcase_60
	funreq_id_60
	Generate correct severity values
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with unresolvable To/PartyId
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’ eb:To]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that severity is 'Error'
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:severity='Error']])

	Test Case
	testcase_61
	funreq_id_61
	Generate correct XPointer for Error in message
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Send basic message with unrecognized Service and Action
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=$CPAId ebTest:Service and eb:Action ='null']] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_Basic' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that Error codeContext attribute is returned
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:codeContext]])

	Test Case
	testcase_64
	funreq_id_64
	If error reporting location is known, send error message back to originating MSH
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send message with unknown 'From' partyId to ErrorAppNotify action
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basiceb:From and eb:Action ='ErrorAppNotify']]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify returned error
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error])

	Test Case
	testcase_65
	funreq_id_65
	If reporting location unknown, log Error
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send message with unknown 'From' partyId to ErrorAppNotify action
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ eb:From/eb:PartyId=’null’ eb:CPAId=‘mshc_1’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_NoErrorLocation' and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Test Case
	testcase_66
	funreq_id_66
	If ErrorURI is implied in CPA, use it
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send message with unknown 'To' partyId to ErrorAppNotify action, and unknown From PartyId
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic and eb:To/eb:PartyId=’null’ and eb:Action ='ErrorAppNotify']]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify returned Error message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error])

	Test Case
	testcase_67
	funreq_id_67
	If reporting location not specified in CPA, use From Party location in message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send message with unknown Action name
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action ='null']]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_NoErrorLocation' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify returned Error message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error])

	Test Case
	testcase_68
	funreq_id_68
	Test for corrrect Service and Action of an independent Errorlist
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send message with unknown Action name
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action ='null']]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Precondition
	
	
	Verify returned Error message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error])

	Assertion
	
	
	Verify Service and Action values
	Verify_Received_Message_Filter(/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Service="urn:oasis:names:tc:ebxml-msg:service" and eb:Action="MessageError"])

	Test Case
	testcase_69
	funreq_id_69
	Log if HighestSeverity equals Error
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Send message with unknown 'From' partyId to ErrorAppNotify action
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action='Dummy' eb:Fromeb:CPAId]] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_Basic' and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify no messages are returned
	Verify_Received_Message_Filter(/mime:Message[count()=0])

	Test Case
	testcase_70
	funreq_id_70
	Keep connection open for SyncReply
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SyncReplySignalsAndResponse’] and eb:SyncReply]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and and eb:CPAId=‘mshc_SyncReplySignalsAndResponse’and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Check for a returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader])

	Test Case
	testcase_71
	funreq_id_71
	Inconsistent CPA and message SyncReply
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send a message with a SyncReply element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:SyncReply]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that an Error is returned
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList[eb:Error/@eb:errorCode = 'Inconsistent' and @eb:severity = 'Error']])

	Test Case
	testcase_72
	funreq_id_72
	SyncReply must not be present if CPA syncReplyMode is set to 'none'
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send message with CPA syncReplyMode set to 'none
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:SyncReply]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that no SyncReply element is returned in message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:SyncReply[count() = 0]])

	Test Case
	testcase_73
	funreq_id_73
	Resent until Acknowledgment is received
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Candidate initiates conversation with AckRequest
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action =‘ Initiator’] and eb:AckRequested] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:initiator_AckRequested']/eb:FileName]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:initiator_2'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_Basic']])

	Assertion
	
	
	Verify number of AckRequests sent
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:AckRequested][count()=2])

	Test Case
	testcase_74
	funreq_id_74
	Resend Acknowledgment until maximum retry limit reached
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Candidate initiates conversation with AckRequest
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=$CPAId and eb:Action =' Initiator'] and eb:AckRequested] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:initiator_AckRequested']/eb:FileName]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:initiator_2'])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_Basic' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify maximum retries were sent
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:AckRequested][count() = $MaxRetries]])

	Test Case
	testcase_75
	funreq_id_75
	Resume after Acknowledgment
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Candidate initiates conversation with AckRequest
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId eb:CPAId and eb:Action =' Initiator'] and eb:AckRequested] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:initiator_2']/eb:FileName]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:initiator_2'])

	TestStep
	2
	
	Send message to MSH
	

	
	
	
	Send Acknowledgment
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=$CPAId and eb:Action ='Mute' and eb:Acknowledgment]] and soap:Body]])

	TestStep
	3
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:AckRequested]])

	Assertion
	
	
	Verify no new AckRequests were sent
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:AckRequested][count()=2])

	Test Case
	testcase_76
	funreq_id_76
	Resend until delivery failure
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Candidate initiates conversation with AckRequest
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId eb:CPAId=‘mshc_Basic’ and eb:Action =‘ Initiator’] and eb:AckRequested] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:initiator_2']/eb:FileName]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:initiator_2'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Precondition
	
	
	Test for multiple retries
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:AckRequested][count() > 1])

	Assertion
	
	
	Verify returned error
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'DeliveryFailure' and @eb:severity = 'Warning']])

	Test Case
	testcase_90
	funreq_id_90
	Target AckRequested to NextMSH or ToParty
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Initiate a message with AckRequested element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘ mshc_Basic’’ and eb:Action =‘ Initiator’] and eb:AckRequested] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:initiator_3']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:initiator_3'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:AckRequested]])

	Assertion
	
	
	Verify AckRequested target in message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:AckRequested[soap:Actor=$TestDriver or soap:Actor=$NextMSH]])

	Test Step
	3
	
	Send message to MSH
	

	
	
	
	Send Acknowledgment to Mute action
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action =' Mute'] and eb:Acknowledgment]]])

	Test Case
	testcase_91:1
	funreq_id_91
	Return unsigned Acknowledgment, no Signature in CPA
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested unsigned element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ eb:And eb:CPAId=‘mshc_Basic’] and eb:AckRequested @eb:signed = 'false']]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_AckRequested’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify returned Acknowledgment is not signed
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[not ds:Signature and eb:Acknowledgment/@eb:signed='false']])

	Test Case
	testcase_91:2
	funreq_id_91
	Return unsigned Acknowledgment, Signature present in CPA
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested signed element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ eb:And eb:CPAId=‘mshc_Basic’] and eb:AckRequested @eb:signed = 'true']]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedAck’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify returned Error message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'Inconsistent' and eb:ErrorList/eb:Error/@eb:severity = 'Warning']])

	Test Case
	testcase_92
	funreq_id_92
	Return unsigned Acknowledgment, Signature present in CPA
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Request unsigned Acknowledgment
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:Acknowledgment]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedAck’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify returned Acknowledgment is not signed
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header[ds:Signature and eb:Acknowledgment]])

	Test Case
	testcase_93
	funreq_id_93
	Return Warning if Signature not supported and consistent with CPA
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested signed element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’] and eb:AckRequested @eb:signed = 'true']]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify returned Error message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'Inconsistent' and eb:ErrorList/eb:Error/@eb:severity = 'Warning']])

	Test Case
	testcase_94
	funreq_id_94
	Return Error if Signature not supported and not consistent with CPA
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested signed element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action='Dummy' eb:CPAId] and eb:AckRequested @eb:signed = 'true'] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_Basic' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify returned Error message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'Inconsistent' and eb:ErrorList/eb:Error/@eb:severity = 'Warning']])

	Test Case
	testcase_95
	funreq_id_95
	Return Acknowledgment to From party
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested unsigned element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested @eb:signed = 'false']]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_AckRequested’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that message contains correct name in To party
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:To[eb:PartyebTest:id=$FromPartyId]])

	Test Case
	testcase_96
	funreq_id_96
	No Payload present with AckRequested
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message with AckRequested element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=’mshc_Basic’] and eb:AckRequested @eb:signed = 'false']]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘ mshc_Basic’’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify no AckRequested element is present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[not (eb:AckRequested)]])

	Assertion
	
	
	Verify no payload is present
	Verify_Received_Message_Filter(/mime:Message[not (mime:MessageContainer[2])])

	Test Case
	testcase_97
	funreq_id_97
	No AckRequested with ErrorList
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message to generate an Inconsistent Error message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ ebTest:Serviceand eb:CPAId=‘mshc_Basic’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_AckRequested’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Precondition
	
	
	Verify an ErrorList is present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList])

	Assertion
	
	
	Verify no AckRequested element is present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[not eb:(AckRequested)]])

	Test Case
	testcase_98
	funreq_id_98
	Default target is To Party for Acknowledgment if no SOAP actor present
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_AckRequested’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Precondition
	
	
	Verify SOAP actor attribute is not present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header[not (@soap:actor)]])

	Assertion
	
	
	Verify To PartyId is the Test Driver
	Verify_Received_Message_Filter(mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:To/[eb:PartyebTest:id=$FromParty]])

	Test Case
	testcase_99
	funreq_id_99
	SOAP actor value is same as AckRequested actor attribute value
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_AckRequested’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Precondition
	
	
	Verify SOAP actor attribute is present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header[@soap:actor]])

	Assertion
	
	
	Verify that the actor attribute is identical
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment[@soap:actor=$actor]])

	Test Case
	testcase_100
	funreq_id_100
	Test valid TimeStamp format
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Validate messageTimestamp
	Validate_Received_Message_Filter(//eb:Timestamp)

	Test Case
	testcase_101
	funreq_id_101
	RefToMessageId must reference appropriate message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that a message was found that points to previous message
	Verify_Received_Message_Filter(/mime:Message)

	Test Case
	testcase_102
	funreq_id_102
	Acknowledgment From PartyId value is Candidate MSH
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=’mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘ mshc_Basic’’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that From PartyId is correct'
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment/From[PartyebTest:id=$ToPartyId]])

	Test Case
	testcase_103
	funreq_id_103
	From PartyID of MessageHeader used if not present in Acknowledgment
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_AckRequested’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Precondition
	
	
	Verify that From PartyId is not present in Acknowledgment'
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment/From[not(PartyId)]])

	Assertion
	
	
	Verify that From PartyId is correct'
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/From[PartyebTest:id=$ToPartyId]])

	Test Case
	testcase_104
	funreq_id_104
	Reference element(s) present in a signed Acknowledgment
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested message with signed = 'true'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=’mshc_Basic’] and eb:AckRequested @eb:signed = 'true']]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘ mshc_Basic’’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that a Reference element is present'
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment/eb:Reference])

	Test Case
	testcase_105
	funreq_id_105
	Reference element(s) are correctly namespace qualified
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested message with signed = 'true'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=’mshc_SignedAck’] and eb:AckRequested @eb:signed = 'true']]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘ mshc_SignedAck’’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify namespace of Reference element(s)'
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment/eb:Reference[namespace-uri()='http://www.w3.org/2000/09/xmldsig#']])

	Test Case
	testcase_107
	funreq_id_107
	Ignore multiple Acknowledgments of same message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Candidate initiates conversation with AckRequest
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘ mshc_Basic’’ and eb:Action =‘ Initiator’] and eb:AckRequested] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:initiator_AckRequested']/eb:FileName]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:initiator_2'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_AckRequested’]])

	Assertion
	
	
	Verify AckRequested elemente is present'
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:AckRequested])

	Test Step
	3
	
	Send message to MSH
	

	
	
	
	Send 3 Acknowledgment messages
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:Acknowledgment]]])

	Test Step
	4
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_AckRequested’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Test if Error is generated
	Verify_Received_Message_Filter(mime:Message/mime:MessageContainer[1]/soap:Envelope/soap:Header[not eb:ErrorList])

	Test Case
	testcase_108
	funreq_id_108
	If no Errors or Payload, Acknowledgment uses default Service/Action
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message with AckRequested element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=’mshc_”AckRequested’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘ mshc_Basic’’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Precondition
	
	
	Verify no payload is present
	Verify_Received_Message_Filter(/mime:Message[not(mime:MessageContainer[2])])

	Precondition
	
	
	Verify no ErrorList is present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header[not(eb:ErrorList)]])

	Assertion
	
	
	Verify default Service is used
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Service='urn:oasis:names:tc:ebxml-msg:service']])

	Assertion
	
	
	Verify default Service is used
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action='Acknowledgment']])

	Test Case
	testcase_109
	funreq_id_109
	CPA DuplicateElimination requires presence in messages
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with CPA having DuplicateElimination set to 'true'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=’mshc_DuplicationAlways’ and eb:DuplicateElimination]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_DuplicateElilmination_Always' and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that DuplicateElimination element is in returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:DuplicateElimination]])

	Test Case
	testcase_110
	funreq_id_110
	CPA DuplicateElimination set to 'never' means no presence in messages
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with CPA having DuplicateElimination set to 'never'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=’mshc_DupliateElimination_Never’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘ mshc_Basic_Never’’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that DuplicateElimination element is not in returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[not(eb:DuplicateElimination)]])

	Test Case
	testcase_111
	funreq_id_111
	CPA DuplicateElimination set to 'per message' in CPA means presence is variable per message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with DuplicateElimination element present and CPA DuplicateElimination set to 'per message'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_DuplicateEliminationPerMessage’='mshc_BasicPerMessage' and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that no 'Inconsistent' Error is present in returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Errorlist/eb:Error[not(@errorCode='Inconsistent')]])

	Test Case
	testcase_112
	funreq_id_112
	CPA DuplicateElimination set to 'always' means presence is required always, else generate Inconsistent Error
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with NO DuplicateElimination element present and CPA DuplicateElimination set to 'always'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_DuplicateEliminationAlways’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_DuplicateEliminationAlways’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that 'Inconsistent' Error is present in returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Errorlist/eb:Error[@errorCode='Inconsistent']])

	Test Case
	testcase_113
	funreq_id_113
	CPA DuplicateElimination set to 'never' means Inconsistent Error if present
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with NO DuplicateElimination element present and CPA DuplicateElimination set to 'never'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_DuplicateEliminationNever’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_DuplicateEliminationNever’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that 'Inconsistent' Error is present in returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Errorlist/eb:Error[@errorCode='Inconsistent']])

	Test Case
	testcase_114
	funreq_id_114
	CPA DuplicateElimination present, message is presented 'at-most-once'
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with DuplicateElimination element present and CPA DuplicateElimination set to 'always'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’ and eb:DuplicateElimination]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Precondition
	
	
	Verify that no 'Inconsistent' Error is present in returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Errorlist/eb:Error[@errorCode='Inconsistent']])

	Assertion
	
	
	Verify that a Dummy message is returned
	Verify_Received_Message_Filter(/mime:Message)

	Test Step
	3
	
	Send message to MSH
	

	
	
	
	Repeat Step 1'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’ and eb:DuplicateElimination]]]])

	Test Step
	4
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that a Dummy message is NOT returned
	Verify_Received_Message_Filter([not mime:Message])

	Test Case
	testcase_116
	funreq_id_116
	CPA DuplicateElimination not supported' means Inconsistent Error if present
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with DuplicateElimination element present and CPA DuplicateElimination set to 'always'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action='Dummy' eb:CPAId]] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_DuplicateEliminationAlways' and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that an 'Inconsistent' Error is present in returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Errorlist/eb:Error[@errorCode='Inconsistent']])

	Test Case
	testcase_117
	funreq_id_117
	CPA DuplicateElimination is 'always', but DuplicateElimination element not present in message, result is Inconsistent Error
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with NO DuplicateElimination element present and CPA DuplicateElimination set to 'always'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_DuplicateEliminationAlways’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_DuplicateEliminationAlways’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that an 'Inconsistent' Error is present in returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Errorlist/eb:Error[@errorCode='Inconsistent']])

	Test Case
	testcase_119
	funreq_id_119
	Resend until maximum retry limit reached
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message to Dummy action
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify maximum retries were sent
	Verify_Received_Message_Filter(/mime:Message][count() = $MaxRetries])

	Test Case
	testcase_120
	funreq_id_120
	Verify minimum time between resends
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send AckRequest to Dummy action
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’ and eb:AckRequested]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId] and ../eb:AckRequested]])

	Assertion
	
	
	Verify minimum time between resends
	Verify_Received_Message_Filter([/mime:Message[last()]/mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:MessageData/eb:Timestamp - mime:Message[last()-1]/mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:MessageData/eb:Timestamp >= $RetryInterval])

	Test Case
	testcase_121
	funreq_id_121
	Verify TimeToLive
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message to Dummy action
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and PAId=‘mshc_Basic and eb:AckRequested]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId] and ../AckRequested]])

	Assertion
	
	
	Verify time delta between first and last message is less than TimeToLive
	Verify_Received_Message_Filter([/mime:Message[last()]/mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:MessageData/eb:Timestamp - mime:Message[1]/mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:MessageData/eb:Timestamp <= $TimeToLive])

	Test Case
	testcase_122
	funreq_id_122
	Verify Once and Only Once
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message with element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify only one Dummy message is received
	Verify_Received_Message_Filter(/mime:Message[count()=1])

	Test Case
	testcase_123
	funreq_id_123
	Verify Acknowledgment with PersistDuration
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send Dummy message with AckRequested element and PersistDuration in CPA
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId] and eb:Acknowledgment]])

	Assertion
	
	
	Verify Acknowledgment is received
	Verify_Received_Message_Filter(/mime:Message)

	Test Case
	testcase_124
	funreq_id_124
	Verify PersistDuration expiration
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send Dummy message 5 times with PersistDuration set to '0'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_PersistDurationExpired’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_PersistDurationExpired' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify five reponses
	Verify_Received_Message_Filter(/mime:Message[count()=5])

	Test Case
	testcase_125
	funreq_id_125
	Verify DeliveryFailureError upon PersistDuration expiration
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic Dummy message with PersistDuration set to '0'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_PersistDurationExpired’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_PersistDurationExpired' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId] and eb:AckRequested]])

	Assertion
	
	
	Verify DeliveryFailure Error
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'DeliveryFailure' and @eb:severity = 'Error']])

	Test Case
	testcase_126
	funreq_id_126
	Verify TimeStamp + PersistDuration greater than TimeToLive
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send Dummy message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId] and eb:AckRequested]])

	Assertion
	
	
	Verify PersistDuration plus Timestamp is greater than TimeToLive
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/eb:MessageData[TimeStamp + $PersistDuration > TimeToLive]])

	Test Case
	testcase_127
	funreq_id_127
	SyncReplyMode is ignored for asyncronous communications
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SyncReplySignalsAndResponse’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SyncReplySignalsAndResponse’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that a message is returned in asyncronous fashion
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope])

	Test Case
	testcase_128
	funreq_id_128
	Verify CPPA and SyncReply integrity
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SyncReplySignalsAndResponse’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SyncReplySignalsAndResponse’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that a SyncReply element is present in returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header[eb:SyncReply]])

	Test Case
	testcase_129
	funreq_id_129
	Verify syncronous communication
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SyncReplySignalsAndResponse’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SyncReplySignalsAndResponse’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that a message is returned in asyncronous fashion
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope])

	Test Case
	testcase_130
	funreq_id_130
	Return Acknowledgment
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=’mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘ mshc_Basic’’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify returned Acknowledgment
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment[RefToMessageId=$MessageId]])

	Test Case
	testcase_132
	funreq_id_132
	Check if Acknowledgment is returned as part of normal response
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested unsigned element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId] and ../eb:Acknowledgment]])

	Assertion
	
	
	Check if returned Acknowledgment is returned with response message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Acknowledgment]])

	Test Case
	testcase_133
	funreq_id_133
	Verify seperate Acknowledgment Service name
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested unsigned element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId] and ../eb:Acknowledgment]])

	Assertion
	
	
	Verify Service element value
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[Service='urn:oasis:names:tc:ebxml-msg:service']])

	Assertion
	
	
	Verify Action element value
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[Action='Acknowledgment']])

	Test Case
	testcase_134
	funreq_id_134
	Verify Acknowledgment RefToMessageId value
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested unsigned element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId] and ../eb:Acknowledgment]])

	Assertion
	
	
	Verify RefToMessageId value
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[RefToMessageId=$MessageId]])

	Test Case
	testcase_135
	funreq_id_135
	Verify From value of seperate Acknowledgment message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested unsigned element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId] and ../eb:Acknowledgment]])

	Assertion
	
	
	Verify From value
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/From[PartyebTest:id=$ToPartyId]])

	Test Case
	testcase_136
	funreq_id_136
	Verify To value of seperate Acknowledgment message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested unsigned element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_AckRequested’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId] and ../eb:Acknowledgment]])

	Assertion
	
	
	VerifyTo value
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader/To[PartyebTest:id=$FromPartyId]])

	Test Case
	testcase_137
	funreq_id_137
	Verify Max Retries reached
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Candidate initiates conversation with AckRequest
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action =‘ Dummy’]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:Action=’Mute’]])

	Assertion
	
	
	Verify number of AckRequests sent
	Verify_Received_Message_Filter(/mime:Message[count()=$MaxRetries])

	Test Case
	testcase_138
	funreq_id_138
	Notify application when maximum retry limit reached
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Make candidate MSH send basic message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=’mshc_Basic’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action='ErrorAppNotify' and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Test Case
	testcase_140
	funreq_id_140
	Verify original Acknowledgment is resent for duplicate requests
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message with AckRequested element (5 times)
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ eb:CPAId=‘mshc_AckRequested’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_AckRequested’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify 5 Acknowledgments are received
	Verify_Received_Message_Filter(/mime:Message[count()=5])

	Test Case
	testcase_141
	funreq_id_141
	Verify syncronously returned application payload for duplicate messages and non-persistent Acknowledgment
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with DuplicateElimination element present and CPA DuplicateElimination set to 'always'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ eb:CPAIdeb:DuplicateElimination]] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_DuplicateEliminationAlways’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Precondition
	
	
	Verify that no 'Inconsistent' Error is present in returned message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Errorlist/eb:Error[@errorCode='Inconsistent']])

	Assertion
	
	
	Verify that a Dummy message is returned
	Verify_Received_Message_Filter(/mime:Message)

	TestStep
	3
	
	Send message to MSH
	

	
	
	
	Repeat Step 1'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action='Dummy' eb:CPAIdeb:DuplicateElimination]] and soap:Body]])

	TestStep
	4
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_DuplicateEliminationAlways' and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that a Dummy message is returned
	Verify_Received_Message_Filter(/mime:Message)

	Test Case
	testcase_142
	funreq_id_142
	Verify Acknowledgment for duplicate messages and non-persistent Acknowledgment
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with DuplicateElimination element present and CPA DuplicateElimination set to 'always'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action='Dummy' eb:CPAIdeb:DuplicateElimination]] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_DuplicateEliminationAlways' and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that a Dummy message is returned
	Verify_Received_Message_Filter(/mime:Message)

	TestStep
	3
	
	Send message to MSH
	

	
	
	
	Repeat Step 1'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action='Dummy' eb:CPAIdeb:DuplicateElimination]] and soap:Body]])

	TestStep
	4
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_DuplicateEliminationAlways' and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that an Acknowledgment message is returned
	Verify_Received_Message_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:Acknowledgment)

	Test Case
	testcase_143
	funreq_id_143
	If no Delivery, generate DeliveryFailure error
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Send Dummy message with AckRequested element to non-existent SOAP Service
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action='Dummy' eb:Toeb:CPAId] and eb:AckRequested] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_Basic' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that Error is returned after candidate failure to receive acknowledgment
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'DeliveryFailure' and eb:Error/@eb:severity = 'Warning']])

	Test Case
	testcase_144
	funreq_id_144
	Generate DeliveryFailure Error and Warning if AckRequested is delivered, bot no Acknowledgment is received
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send Reflector message with AckRequested element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that Error is returned after candidate failure to receive acknowledgment
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'DeliveryFailure' and eb:Error/@eb:severity = 'Warning']])

	Test Case
	testcase_147
	funreq_id_147
	Messages must be processed by MSH in MessageOrder
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_MessageOrder’ and eb:DuplicateElimination] and eb:MessageOrdereb:SequenceNumber]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_MessageOrder’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that message was not processed
	Verify_Received_Message_Filter(/mime:Message[count()=0])

	Test Step
	3
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_MessageOrder’ and eb:DuplicateElimination] and eb:MessageOrdereb:SequenceNumber]]])

	Test Step
	4
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_MessageOrder’ and eb:ConversationId=$ConversationId]])

	Assertion
	
	
	Verify both messages were processed processed
	Verify_Received_Message_Filter(mime:message[count()=2])

	Test Case
	testcase_150
	funreq_id_150
	First ordered message has a sequenceNumber of '0'
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send initiator message to candidate MSH
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_MessageOrder’ and eb:Action ='Initiator']] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:initiator4']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:initiator4'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_MessageOrder']])

	Assertion
	
	
	Verify that Signature Reference points to payload location
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header[eb:MessageOrder='0'])

	Test Case
	testcase_151
	funreq_id_151
	MessageOrder status is 'Reset' for first ordered message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send initiator message to candidate MSH
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_MessageOrder’ and eb:Action ='Initiator']] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:initiator4']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:initiator4'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_MessageOrder']])

	Assertion
	
	
	Verify that Signature Reference points to payload location
	Verify_Received_Message_Filter(mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageOrder[@status='reset'])

	Test Case
	testcase_152
	funreq_id_152
	SequenceNumber is reset to '0' after a Reset instruction
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_MessageOrder’ and eb:DuplicateElimination] and eb:MessageOrdereb:SequenceNumber]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_MessageOrder’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Precondition
	
	
	Verify that first message is processed
	Verify_Received_Message_Filter(/mime:Message)

	Test Step
	3
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’’ and eb:CPAId=‘mshc_MessageOrder’ and eb:DuplicateElimination] and eb:MessageOrdereb:SequenceNumber [@eb:status = 'Continue']]]])

	Test Step
	4
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ eb:CPAIdeb:DuplicateElimination] and eb:MessageOrdereb:SequenceNumber [@eb:status = 'Reset']]]])

	Test Step
	5
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_MessageOrder’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Precondition
	
	
	Verify message was processed
	Verify_Received_Message_Filter(mime:message)

	Test Step
	6
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’and eb:CPAId=‘mshc_MessageOrder’ and eb:DuplicateElimination] and eb:MessageOrdereb:SequenceNumber]]])

	Test Step
	7
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_MessageOrder’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that first message is processed
	Verify_Received_Message_Filter(/mime:Message[count()=0])

	Test Case
	testcase_157
	funreq_id_157
	If both MessageOrder and SyncReply are present, generate Inconsistent/Error
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Load message with both elements present'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=’mshc_MessageOrderSyncReply’ and eb:DuplicateElimination] and eb:MessageOrdereb:SequenceNumber [@eb:status = 'Reset']and eb:SyncReply]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=’mshc_MessageOrderSyncReply’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that Error is returned
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'Inconsistent' and @eb:severity = 'Error']])

	Test Case
	testcase_158
	funreq_id_158
	Verify that Signature element is child of SOAP header
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify returned Acknowledgment is signed
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header[ds:Signature]])

	Test Case
	testcase_159
	funreq_id_159
	Verify namespace of XMLDSIG
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Create simple MessageHeader with an AckRequested signed element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify returned Acknowledgment is signed
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Headerds:Signature[namespace-uri()='http://www.w3.org/2000/09/xmldsig#']])

	Test Case
	testcase_160
	funreq_id_160
	Verify valid XMLDSIG structure
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Validate signature
	Validate_Received_Message_Filter(/mime:Message/mime:MessageContainer[1]/soap:Envelope/soap:Header/ds:Signature)

	Test Case
	testcase_162
	funreq_id_162
	Signature required for entire message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify Signature element with Reference URI = '' is present
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/ds:Signature[Reference=""]])

	Test Case
	testcase_163
	funreq_id_163
	Signature is rendered according to XMLDSIG specification
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Request unsigned Acknowledgment
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedAck’] and eb:Acknowledgment]]])

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedAck’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Precondition
	
	
	Verify returned Acknowledgment is not signed
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header[ds:Signature and eb:Acknowledgment]])

	Assertion
	
	
	Validate Signature
	Validate_Received_Message_Filter(/mime:Message/mime:MessageContainer[1]/soap:Envelope/soap:Header/XMLDSIG:Signature)

	Test Case
	testcase_165
	funreq_id_165
	SignatureMethod Algorithm attribute is present
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify SignedInfo element has required sub-elements
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/XMLDSIG:Signature/XMLDSIG:SignedInfo/ XMLDSIG:SignatureMethod[@algorithm]])

	Test Case
	testcase_168
	funreq_id_168
	Signature is validated and message is passed to the application
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:Action="Mute" and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify message was passed to application
	Verify_Received_Message_Filter(/mime:Message)

	Test Case
	testcase_169
	funreq_id_169
	Verify Type attribute of Reference
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify SignedInfo element has required sub-elements
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/ds:Signature/ds:SignedInfo/Reference[@Type='http://www.w3.org/2000/09/xmldsig#Object"']])

	Test Case
	testcase_170
	funreq_id_170
	Verify Transform sub-element of Reference
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify Reference element has required sub-elements
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/ds:Signature/ds:SignedInfo/Reference/Transforms/Transform/Transform[@Algorithm='http://www.w3.org/2000/09/xmldsig#enveloped-signature']])

	Test Case
	testcase_171
	funreq_id_171
	Generate Transform XPath element excluding SOAP nextMSH or next SOAP node
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify Reference element has required sub-elements
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/ds:Signature/ds:SignedInfo/Reference/Transforms/Transform/Transform/XPath='not (ancestor-or-self::node()[@SOAP:actor="urn:oasis:names:tc:ebxml-msg:actor:nextMSH"] | ancestor-or-self::node()[@SOAP:actor="http://schemas.xmlsoap.org/soap/actor/next"]) ')

	Test Case
	testcase_172
	funreq_id_172
	Verify last Transform Algorithm attribute value
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessage’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify last Transform Algorithm value
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/ds:Signature/ds:SignedInfo/Reference/Transforms/Transform[last()][@Algorithm='http://www.w3.org/TR/2001/REC-xml-c14n-20010315']])

	Test Case
	testcase_173
	funreq_id_173
	Digitally signed payloads have appropriate Reference URI
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send initiator message to candidate MSH
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action ='Initiatorr']] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:initiator4']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:initiator4'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:RefToMessageId=$MessageId]])

	Precondition
	
	
	Check for returned payload
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Body/eb:Manifest/eb:Reference[@xlink:href='cid:payload_1']])

	Assertion
	
	
	Verify that Signature Reference points to payload location
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/ds:Signature/ds:SignedInfo/Reference[@URI='cid:payload_1']])

	Test Case
	testcase_174
	funreq_id_174
	Digitally signed payloads have appropriate Reference URI that match URI of payload
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header with CPA that defines signed payload
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Reflector’ and eb:CPAId=‘mshc_SignedMessage’]] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:payload_1']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:payload_1'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_SignedMessage’ and eb:ConversationId=$ConversationId and eb:RefToMessageId=$MessageId]])

	Precondition
	
	
	Check for returned payload
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Body/eb:Manifest/eb:Reference[@xlink:href='cid:payload_1']])

	Assertion
	
	
	Verify that Signature Reference points to payload location
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/ds:Signature/ds:SignedInfo/Reference[@URI='cid:payload_1']])

	Test Case
	testcase_176
	funreq_id_176
	Digitally signed inbound message gets a digitally signed Acknowledgment
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send signed message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_SignedMessageSignedAck’]]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_SignedMessageSignedAck' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify last Transform Algorithm value
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment/ds:Reference)

	Test Case
	testcase_182
	funreq_id_182
	Test StatusResponse for reliably sent message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message t
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Send message to MSH
	

	
	
	
	Send basic message with StatusRequest element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested] and soap:Body/eb:StatusRequest/eb:RefToMessageId ='$MessageId']])

	Test Step
	3
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Check for a returned StatusResponse
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:StatusResponse])

	Test Case
	testcase_183
	funreq_id_183
	Test StatusResponse for unreliably sent message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Send message to MSH
	

	
	
	
	Send basic message with StatusRequest element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’and eb:Action=‘Dummy’]] and soap:Body/eb:StatusRequest/eb:RefToMessageId ='$MessageId']])

	Test Step
	3
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Check for a returned StatusResponse
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:StatusResponse])

	Test Case
	testcase_184
	funreq_id_184
	Generate 'NotSupported' Error for StatusRequest
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send Dummy message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’and eb:Action=‘Dummy’]]]])

	Test Step
	2
	
	Send message to MSH
	

	
	
	
	Send basic message with StatusRequest element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’and eb:Action=‘Dummy’] and eb:AckRequested] and soap:Body/eb:StatusRequest/eb:RefToMessageId ='$MessageId']])

	Test Step
	3
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Check for a returned 'NotSupported' Error
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'NotSupported' and @eb:severity = 'Error']])

	Test Case
	testcase_185
	funreq_id_185
	Generate a valid StatusRequest
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send initiator message to candidate MSH
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’and eb:Action ='Initiator']] and soap:Body/eb:Manifest/eb:Reference[@xlink:href = 'cid:StatusRequestMessage']]])
SetPayload(/mime:Message/mime:MessageContainer[2 and @Content-Id='cid:StatusRequestMessage'])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’and eb:ConversationId=$ConversationId]])

	Precondition
	
	
	Check for StatusRequest
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Body/eb:StatusRequest)

	Assertion
	
	
	Validate the content of the StatusRequest
	Validate_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Body/eb:StatusRequest)

	Test Case
	testcase_186
	funreq_id_186
	Generate 'UnAuthorized' Error for StatusRequest
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message t
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Send message to MSH
	

	
	
	
	Send basic message with StatusRequest element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:Frome/eb:PartyId=’UnauthorizedParty’ and b:CPAId=’mshc_Basic’]] and soap:Body/eb:StatusRequest/eb:RefToMessageId ='$MessageId']])

	Test Step
	3
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Check for a returned 'UnAuthorized' StatusResponse
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:StatusResponse[@eb:MessageStatus='UnAuthorized']])

	Test Case
	testcase_187
	funreq_id_187
	StatusResponse RefToMessageId points to correct MessageId
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message t
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Send message to MSH
	

	
	
	
	Send basic message with StatusRequest element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested] and soap:Body/eb:StatusRequest/eb:RefToMessageId ='$MessageId']])

	Test Step
	3
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify correct RefToMessageId
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:StatusResponse/eb:RefToMessageId=$MessageId])

	Test Case
	testcase_188
	funreq_id_188
	StatusResponse includes received Timestamp for recognized message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message t
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Send message to MSH
	

	
	
	
	Send basic message with StatusRequest element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested] and soap:Body/eb:StatusRequest/eb:RefToMessageId ='$MessageId']])

	Test Step
	3
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify Timestamp is present
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:StatusResponse/eb:Timestamp])

	Test Case
	testcase_189
	funreq_id_189
	StatusResponse does not include Timestamp for unrecognized message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message t
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Send message to MSH
	

	
	
	
	Send basic message with StatusRequest element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested] and soap:Body/eb:StatusRequest/eb:RefToMessageId ='null']])

	Test Step
	3
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify Timestamp is not present
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:StatusResponse[not eb:Timestamp]])

	Test Case
	testcase_190
	funreq_id_190
	StatusResponse does not include Timestamp for Unauthorized StatusRequest message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic message t
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested]]])

	Test Step
	2
	
	Send message to MSH
	

	
	
	
	Send basic message with StatusRequest element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ eb:Fromand eb:CPAId=‘mshc_Basic’] and eb:AckRequested] and soap:Body/eb:StatusRequest/eb:RefToMessageId ='$MessageId']])

	Test Step
	3
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify Timestamp is not present
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:StatusResponse [not eb:Timestamp]])

	Test Case
	testcase_192
	funreq_id_192
	StatusResponse includes NotRecognized status for unrecognized message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send Dummy message
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’]]]])

	Test Step
	2
	
	Send message to MSH
	

	
	
	
	Send basic message with StatusRequest element
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’] and eb:AckRequested] and soap:Body/eb:StatusRequest/eb:RefToMessageId ='null']])

	Test Step
	3
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Check for a returned 'NotRecognized' StatusResponse
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:StatusResponse[@eb:MessageStatus='NotRecognized']])

	Test Case
	testcase_196
	funreq_id_196
	Unsupported Ping service returns 'NotSupported' Error
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Send basic Ping message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action ='Ping']]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Check for a returned 'Received' StatusResponse
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList[eb:Error='NotSupported' and @eb:highestSeverity='Error']])

	Test Case
	testcase_198
	funreq_id_198
	Return valid Pong message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action ='Ping']]]])

	Test Step
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify Pong Action element is present
	Verify_Received_Message_Filter(/mime:Messagemime:MessageContainer[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action='Pong']])

	Assertion
	
	
	Verify that no payload is attached
	Verify_Received_Message_Filter(/mime:Messagenot mime:MessageContainer[2]])

	Test Case
	testcase_199:1
	funreq_id_199.1
	Multi-Hop message AckRequested soap:actor attribute is set to NextMSH
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested multi-hop message in a loop back to Test Driver
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:To/PartyId=$SenderParty and eb:CPAId=‘mshc_Basic’] and eb:AckRequested @soap:actor = 'urn:oasis:names:tc:ebxml-msg:actor:nextMSH'] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Precondition
	
	
	Verify that a message with an AckRequested element was forwarded by the msh
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:AckRequested])

	Precondition
	
	
	Verify SOAP actor attribute is present in the AckRequested element
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:AckRequested/@soap:actor])

	Assertion
	
	
	Verify that the actor attribute is correct
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Ackrequested[@soap:actor='urn:oasis:names:tc:ebxml-msg:actor:nextMSH']])

	Test Case
	testcase_199:2
	funreq_id_199.2
	Multi-Hop message Acknolwedgment soap:actor attribute is set to NextMSH
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested multi-hop message in a loop back to Test Driver
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:To/PartyId=$SenderParty and eb:CPAId=‘mshc_Basic’] and eb:AckRequested @soap:actor = 'urn:oasis:names:tc:ebxml-msg:actor:nextMSH'] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_Basic' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Precondition
	
	
	Verify that a message with an Acknowledgment element was returned by the msh
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment])

	Precondition
	
	
	Verify SOAP actor attribute is present in the Acknowledgment element
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment/@soap:actor])

	Assertion
	
	
	Verify that the actor attribute is correct
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment[@soap:actor='urn:oasis:names:tc:ebxml-msg:actor:nextMSH']])

	Test Case
	testcase_200
	funreq_id_200
	Intermediary MSH removes AckRequested with soap:actor = NextMSH
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested multi-hop message in a loop back to Test Driver
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action='Dummy' and eb:To/PartyId=$SenderParty and eb:CPAId='mshc_Basic'] and eb:AckRequested @soap:actor = 'urn:oasis:names:tc:ebxml-msg:actor:nextMSH'] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_Basic' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that a message with an AckRequested element was NOT forwarded by the msh
	Verify_Received_Message_Filter(/mime:Message[not mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:AckRequested])

	Test Case
	testcase_201
	funreq_id_201
	Intermediary MSH inserts AckRequested with soap:actor = NextMSH
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested multi-hop message in a loop back to Test Driver
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action='Dummy' and eb:To/PartyId=$SenderParty and eb:CPAId='mshc_Basic'and eb:AckRequested @soap:actor = 'urn:oasis:names:tc:ebxml-msg:actor:nextMSH'] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_Basic' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that a message with an AckRequested element was inserted by the msh
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:AckRequested])

	Test Case
	testcase_202
	funreq_id_202
	Only one AckRequested element is present in message forwarded by intermediary MSH
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested multi-hop message in a loop back to Test Driver
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action='Dummy' and eb:To/PartyId=$SenderParty and eb:CPAId='mshc_Basic'] and eb:AckRequested @soap:actor = 'urn:oasis:names:tc:ebxml-msg:actor:nextMSH'] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_Basic' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that a message with an AckRequested element was inserted by the msh
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:AckRequested][count() < 2])

	Test Case
	testcase_203
	funreq_id_203
	If SyncReply is present in a multi-hop message, AckRequested is not present in the message
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested multi-hop message in a loop back to Test Driver
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:To/PartyId=$SenderParty and eb:CPAId=‘mshc_Basic’and eb:SyncReply @soap:actor = 'urn:oasis:names:tc:ebxml-msg:actor:nextMSH'] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_SyncReplySignalsAndResponse' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that a message with an AckRequested element was NOT inserted by the msh
	Verify_Received_Message_Filter(/mime:Message[not mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:AckRequested])

	Test Case
	testcase_204
	funreq_id_204
	If both SyncReply and AckRequested elements are present in a received multi-hop message, an 'Inconsistent' Error is generated
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested multi-hop message in a loop back to Test Driver
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:To/PartyId=$SenderParty and eb:CPAId=‘mshc_Basic’] and eb:SyncReply @soap:actor = 'urn:oasis:names:tc:ebxml-msg:actor:nextMSH' and eb:AckRequested @soap:actor = 'urn:oasis:names:tc:ebxml-msg:actor:nextMSH'] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_SyncReplySignalsAndResponse' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that Error message is generated
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:ErrorList/eb:Error[@eb:errorCode = 'Inconsistent' and @eb:severity = 'Error']])

	Test Case
	testcase_205
	funreq_id_205
	If SyncReply is not present in a received multi-hop message, an intermediate Acknowledgment may be syncronously returned
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested multi-hop message in a loop back to Test Driver
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:To/PartyId=$SenderParty and eb:CPAId=‘mshc_Basic’] and eb:AckRequested @soap:actor = 'urn:oasis:names:tc:ebxml-msg:actor:nextMSH'] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_Basic' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Precondition
	
	
	Verify that a SyncReply element was NOT returned by the msh
	Verify_Received_Message_Filter(/mime:Message[not mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:SyncReply])

	Assertion
	
	
	Verify that a synchronous Acknowledgment messages returned
	Verify_Received_Message_Filter(/mime:Message[@syncType='synchronous' and mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment])

	Test Case
	testcase_206
	funreq_id_206
	2 Acknowledgments returned for NexMSH and To Party in multi-hop messsage
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested multi-hop message to multi-hop node acting as nextMSH and To Party MSH
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested @soap:actor = 'urn:oasis:names:tc:ebxml-msg:actor:nextMSH'] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_Basic' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that a synchronous Acknowledgment messages returned
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment] [count()=2])

	Test Case
	testcase_207
	funreq_id_207
	Multi-hop message is not acknowledged by intermediary MSH until persisted and delivered to NextMSH
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested multi-hop message in a loop back to Test Driver
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:To/eb:PartyId=$SenderParty and eb:CPAId=‘mshc_Basic’] and eb:AckRequested @soap:actor = 'urn:oasis:names:tc:ebxml-msg:actor:nextMSH'] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_Basic' and eb:ConversationId=$ConversationId and (eb:MessageData/RefMessageId=$MessageId or eb:MessageData/MessageId=$MessageId)]])

	Precondition
	
	
	Verify that a message was delivered to the Dummy action
	Verify_Received_Message_Filter(/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action='Dummy']])

	Precondition
	
	
	Verify that a message with an Acknowledgment element was returned by the msh
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment])

	Assertion
	
	
	Verify that Acknowledgment Timestamp is later than Timestamp of delivered Dummy message
	Verify_Received_Message_Filter(/mime:Message/mime:Container[1]/soap:Envelope/soap:Header[eb:Acknowledgment]/eb:MessageHeader/MessageData/Timestamp > /mime:Message/mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action='Dummy']/MessageData/Timestamp)

	Test Case
	testcase_208
	funreq_id_208
	Signed intermediate Acknowledgments are sent 'standalone'
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested multi-hop message in a loop back to Test Driver
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:To/eb:PartyId=$SenderParty and eb:CPAId=‘mshc_SignedAck’] and eb:AckRequested @eb:signed = 'true' @soap:actor = 'urn:oasis:names:tc:ebxml-msg:actor:nextMSH'] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Dummy’ and eb:To/eb:PartyId=$SenderParty and eb:CPAId=‘mshc_SignedAck’and eb:ConversationId=$ConversationId and eb:MessageData/RefMessageId=$MessageId]])

	Assertion
	
	
	Verify that a message with an Acknowledgment element was returned by the MSH with no payload
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment and (not mime:MessageContainer[2])])

	Test Case
	testcase_209
	funreq_id_209
	Intermediary MSH does not attempt MessageOrder processing
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Send basic message to Dummy action with out of sequence MessageOrder in a loop back to Test Driver
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:To/eb:PartyId=$SenderParty and eb:CPAId=‘mshc_Basic’] and eb:MessageOrdereb:SequenceNumber] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_Basic' and eb:ConversationId=$ConversationId and (eb:MessageData/RefMessageId=$MessageId or eb:MessageData/MessageId=$MessageId)]])

	Assertion
	
	
	Verify that out-of-sequence message (2) was sent by intermediarity MSH
	Verify_Received_Message_Filter(/mime:Message[mime:Container[1]/soap:Envelope/soap:Header[eb:MessageOrder='2']])

	Test Case
	testcase_210
	funreq_id_210
	Intermediary MSH returns Acknowledgment for AckRequest'
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Send basic AckRequested multi-hop message to multi-hop node acting as nextMSH and To Party MSH
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action=‘Dummy’ and eb:CPAId=‘mshc_Basic’] and eb:AckRequested @soap:actor = 'urn:oasis:names:tc:ebxml-msg:actor:nextMSH'] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned messages
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_Basic' and eb:ConversationId=$ConversationId and eb:MessageData/RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that a synchronous Acknowledgment messages returned
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb:Acknowledgment] [count()=2])

	Test Case
	testcase_214
	funreq_id_214
	Intermdiate MSH does not perform DuplicateElimination
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Construct message header'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=’mshc_Basic’ and eb:Action='Dummy']] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:CPAId='mshc_Basic' and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Assertion
	
	
	Verify that (2) Dummy messages are returned
	Verify_Received_Message_Filter(/mime:Message [count()=2])

	Test Case
	testcase_215
	funreq_id_215
	Verify that intermediate MSH does not alter message in any way
	

	TestStep
	1
	
	Send message to MSH
	

	
	
	
	Construct message header'
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope[soap:Header[/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:Action='Dummy' and eb:CPAId]=’mshc_Basic’] and soap:Body]])

	TestStep
	2
	
	Receive message from MSH
	

	
	
	
	Correlate returned message
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action='Dummiy' and eb:CPAId='mshc_Basic' and eb:ConversationId=$ConversationId and eb:MessageData/eb:RefToMessageId=$MessageId]])

	Precondition
	
	
	Verify that a Dummy message is present
	Validate_Received_Message_Filter(/mime:Message)

	Assertion
	
	
	Validate signature
	Validate_Received_Message_Filter(/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:Signature)

Table 2 is a tabular representation of all ebXML MS 2.0 Abstract Conformance Test Cases

3.4 Executable Conformance Test Suite (Normative)

[ebMSExeConfTests] is an XML document containing the executable ebXML MS V2.0 Conformance Suite. The XML document consists of a “bootstrap” ConfigurationGroup data, Test Case, Test Step and Test Operation XML content that provides the necessary information for the execution of the Test Suite by the Test Driver. The syntax and semantics of this Test Suite are described in detail in the [ebTestFramework].

3.5 Test Material

Test material is message material referenced by the Abstract Test Suite necessary to completely describe a Test Case. This material includes MSH configuration parameters, message content parameters and Test Driver configuration parameters.
3.5.1 Test Material for Test Driver Configuration

Test Driver Configuration Parameters are specific only to Test Driver configuration and execution. These parameters are defined as content of a ConfigurationGroup element of the Test Suite.

	Parameter Name
	Description
	Set in Test
Configuration
Group
	Dynamically set

by Test Driver
	Lifecycle of

Parameter for this Test Suite

	Mode
	Operational parameter used to switch between “connection” or “reporting”
	Yes
	No
	Global – Defined for Entire Test Suite

	TransportProtocol
	HTTP 1.1 or SMTP
	Yes
	No
	Global – Defined Test Suite

	StepDelay
	Time between execution of Test Steps
	Yes
	No
	Global/Local – Defined for Entire Test Suite and Explicitly Defined for Some Test Cases

	PayloadDigests
	Set of name/value pairs corresponding to content-id/digest value for payloads known to Test Driver
	Yes
	No
	Global – Defined for Entire Test Suite

	ConfigurationItem
	Wildcard name/value pair for arbitrary inclusion in XPath expressions
	Yes
	No
	Not Used

Table 3 provides a list of parameters “known” to a Test Driver through configuration, only for the purpose of Test Driver operation

3.5.2 Test Material for Message Content

The ebXML Message Headers below are dynamically by the Test Driver using the declarative message syntax described in [ebTestFramework]. Key message content value is supplied by the Test Driver, either through configuration parameters or through interpretation of the values provided in the message declaration itself. Below is a table illustrating the key configuration parameters that a Test Driver MAY use in the construction of an ebXML Message. Some of these parameters are “auto-generated” by the Test Driver at run time, while others can be set as XML content of the ConfigurationGroup element of the Test Suite. All parameters can be “overridden” by explicit declaration either as content of a MessageDeclaration element, or as content of an XPath query.

	Parameter Name
	Description
	Set in Test

ConfigurationGroup
	Dynamically generated

by Test Driver
	Lifecycle

Of

Parameter for this Test Suite

	CPAId
	Reference to one of 13 CPA configurations for a candidate MSH
	Yes
	No
	Global/Local – Defined for Entire Test Suite and Explicitly Defined for Some Test Cases

	ConversationId
	As defined in [ebMS]
	No
	Yes
	Test Case

	Service
	urn:ebxml:iic:test
	Yes
	No
	Global/Local – Defined for Entire Test Suite and Explicitly Defined for Some Test Cases

	Action
	As defined in [ebMS]
	Yes
	No
	Global/Local – Defined for Entire Test Suite and Explicitly Defined for Some Test Cases

	SenderParty
	The From/PartyId message value
	Yes
	No
	Global/Local – Defined for Entire Test Suite and Explicitly Defined for Some Test Cases

	ReceiverParty
	The To/PartyId message value
	Yes
	No
	Global/Local – Defined for Entire Test Suite and Explicitly Defined for Some Test Cases

	MessageId
	As defined in [ebMS]
	No
	Yes
	Local – Defined for Each Test Step

	RefToMessageId
	As defined in [ebMS]
	No
	Yes, generated for <GetMessage> operation, but not

<MessageDeclaration> operation
	Local – Defined for Each Test Step performing a <GetMessage> operation

Table 4 provides a list of parameters “known” to a Test Driver through configuration, for construction or verification of message content
3.5.3 A Sample Generated Message Header using message parameters

This sample header is constructed for messages with one payload before instantiation of message headers highlighted in red.

<SOAP:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<SOAP:Header>

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId>$SenderParty </eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>$ReceiverParty </eb:PartyId>

</eb:To>

<eb:CPAId>$CPAId</eb:CPAId>

<eb:ConversationId>$ConversationId </eb:ConversationId>

<eb:Service> urn:ebXML:iic:test</eb:Service>

<eb:Action>$Action </eb:Action>

<eb:MessageData>

<eb:MessageId>$MessageId</eb:MessageId>

<eb:Timestamp>$Timestamp </eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

<eb:Manifest eb:version="2.0">

<eb:Reference xlink:href="cid: payload_1"

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 1</eb:Description>

</eb:Reference>

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

3.5.4 Test Material for MSH Configuration

A candidate MSH is configured for testing through the use of the CPAId reference present in an incoming message. There are 13 CPAIds (and 13 unique MSH configurations) identified for this Conformance Test Suite. These configurations are defined (as a set of instance tables), in section 4.1.2 of this document.

The recommended CPA parameter values in table 4 below reflect the most common (or expected) options, or those recommended by the Messaging specification [ebMS]. This representative set includes a subset of configuration options for an ebMS implementation and a subset of relevant attributes of a Collaboration Protocol Agreement (CPA) between the partners or endpoints. In addition, some parameters fall outside the scope of a CPA, but are nevertheless critical messaging features that must be set to correctly run a test or a test suite. The table contains a column with an XPath reference to the location within a CPA that a parameter refers (if it is defined in a CPA)

The MSH configuration parameter table represents the parameters that define possible MSH configurations that can apply to a single Test Case, or a group of Test Cases. A particular configuration is referenced in a Test Case thought the “CPAId” element value expressed in a message. These parameters can be used to “profile” an MSH configuration under test, and provide a context for test reporting. In addition, such a set of parameters may (in a future versions of the ebXML Test Framework Specification) be used as metadata to “tag” conformance or interoperability tests, and permit filtering of test cases based upon these parameter values. Currently, these parameters serve only as an MSH configuration context under which tests may be executed.

	Name
	Commonly Used Values
	Equivalent CPA field(s) (using XPath notation)

	Transport Protocol
	HTTP 1.1 | SMTP
	CollaborationProtocolAgreement/PartyInfo/Transport//TransportProtocol

	Canonicalization Algorithm
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	N/A – explicitly defined in individual message declaration

	Signature Algorithm
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	 CollaborationProtocolAgreement/PartyInfo/DocExchange//SenderNonRepudiation/SignatureAlgorithm

	Signed Message
	true|false
	CollaborationProtocolAgreement/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isNonRepudiationRequired

	Signed Acknowledgment
	true|false
	CollaborationProtocolAgreement/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isNonRepudiationReceiptRequired

	Confidentiality (not required for BIP testing)
	none | transient | persistent | transient-and-persistent
	CollaborationProtocolAgreement/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isConfidential

	Authentication (not required for BIP testing)
	none | transient | persistent | transient-and-persistent
	CollaborationProtocolAgreement/PartyInfo/CollaborationRole/ServiceBinding//BusinessTransactionCharacteristics/isAuthenticated

	Retries
	An integer value
	CollaborationProtocolAgreement/PartyInfo/DocExchange//ReliableMessaging/Retries

	RetryInterval
	PT30S (a typical value)
	CollaborationProtocolAgreement/PartyInfo/DocExchange//ReliableMessaging/RetryInterval

	AckRequested
	always | never | perMessage
	CollaborationProtocolAgreement/PartyInfo/DeliveryChannel/AckRequested

	PersistDuration

	P10D (a typical value)

	CollaborationProtocolAgreement/PartyInfo/DocExchange// ReliableMessaging/ReliableMessaging/PersistDuration

	duplicateElimination
	always | never | perMessage
	CollaborationProtocolAgreement/PartyInfo/DeliveryChannel/MessagingCharacteristics/@duplicateElimination

	MessageOrder Semantics
	Guaranteed|NotGuaranteed
	CollaborationProtocolAgreement/PartyInfo/DocExchange// ReliableMessaging/MessageOrderSemantics

	HTTP Timeouts

	PT5M (a typical value)
	N/A – explicitly defined in Test Suite ConfigurationGroup XML

	syncReplyMode

	mshSignalsOnly | responseOnly | signalsAndResponse | signalsOnly | none
	CollaborationProtocolAgreement/PartyInfo/DeliveryChannel/syncReplyMode

	ErrorURL
	URL of driver party MSH
	CollaborationProtocolAgreement/PartyInfo/Transport/Endpoint/@uri

	NotifyURL
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	N/A –explicitly defined in Test Suite ConfigurationGroup XML

Table 4 provides a list of CPA parameters for configuration of a candidate MSH
3.5.5 Instances of Candidate MSH Configuration CPA Data

The tables below contain the recommended and required MSH configuration parameters defined for the ebXML MS 2.0 Conformance Test Suite. The configuration groups are identified using the corresponding CPAId specified in individual Test Cases in the Test Suite. Required (bold/highlighted) and Recommended Parameter Values for test MSH configuration are provided for all 13 CPAIds defined in the Abstract Test Suite.

	Parameter Name
	mshc_Basic
	mshc_Signed

Message
	mshc_Signed

Ack
	mshc_Signed

MessageSigned

Ack
	mshc_Sync

ReplySignals

Only

	Transport Protocol
	HTTP 1.1 or SMTP
	HTTP 1.1 or SMTP
	HTTP 1.1 or SMTP
	HTTP 1.1 or SMTP
	HTTP 1.1 or SMTP

	Canonicalization Algorithm
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)

	Signature Algorithm
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)

	Signed Message
	false
	true
	false
	true
	false

	Signed Acknowledgment
	false
	false
	true
	true
	false

	Confidentiality (not required for Conformance testing)
	none
	none
	none
	none
	none

	Authentication (not required for Conformance testing)
	none
	none
	none
	none
	none

	Retries
	3
	3
	3
	3
	3

	RetryInterval
	PT30S
	PT30S
	PT30S
	PT30S
	PT30S

	AckRequested
	perMessage
	perMessage
	perMessage
	perMessage
	perMessage

	PersistDuration

	P10D

	P10D

	P10D

	P10D

	P10D

	duplicateElimination
	perMessage
	perMessage
	perMessage
	perMessage
	perMessage

	MessageOrder Semantics
	NotGuaranteed
	NotGuaranteed
	NotGuaranteed
	NotGuaranteed
	NotGuaranteed

	HTTP Timeouts

	PT5M (if HTTP)
	PT5M (if HTTP)
	PT5M (if HTTP)
	PT5M (if HTTP)
	PT5M (if HTTP)

	SyncReplyMode

	none
	none
	none
	none
	mshSignalsOnly

	ErrorURL
	URL of driver party MSH
	URL of driver party MSH
	URL of driver party MSH
	URL of driver party MSH
	URL of driver party MSH

	NotifyURL
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)

Table 5 is a tabular representation of candidate MSH conformance testing configurations

	Parameter Name
	mshc_Sync

ReplySignals

AndResponse
	mshc_NoError

Location
	mshc_Duplicate

Elimination

Never
	mshc_Duplicate

Elimination

Always
	mshc_PersistDuration

Expired

	Transport Protocol
	HTTP 1.1 or SMTP
	HTTP 1.1 or SMTP
	HTTP 1.1 or SMTP
	HTTP 1.1 or SMTP
	HTTP 1.1 or SMTP

	Canonicalization Algorithm
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)

	Signature Algorithm
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)

	Signed Message
	false
	false
	false
	false
	false

	Signed Acknowledgment
	false
	false
	false
	false
	false

	Confidentiality (not required for Conformance testing)
	none
	none
	none
	none
	none

	Authentication (not required for Conformance testing)
	none
	none
	none
	none
	none

	Retries
	3
	3
	3
	3
	3

	RetryInterval
	PT30S
	PT30S
	PT30S
	PT30S
	PT30S

	AckRequested
	perMessage
	perMessage
	perMessage
	perMessage
	perMessage

	PersistDuration

	P10D

	P10D

	P10D

	P10D

	P0D

	duplicateElimination
	perMessage
	perMessage
	never
	always
	perMessage

	MessageOrder Semantics
	NotGuaranteed
	NotGuaranteed
	NotGuaranteed
	NotGuaranteed
	NotGuaranteed

	HTTP Timeouts

	PT5M (if HTTP)
	PT5M (if HTTP)
	PT5M (if HTTP)
	PT5M (if HTTP)
	PT5M (if HTTP)

	SyncReply (used to globally define all messages are sent witih a SyncReply element)
	false (if HTTP)
	false (if HTTP)
	false (if HTTP)
	false (if HTTP)
	false (if HTTP)

	syncReplyMode

	signalsAndResponse
	none
	none
	none
	none

	ErrorURL
	URL of driver party MSH
	none
	URL of driver party MSH
	URL of driver party MSH
	URL of driver party MSH

	NotifyURL
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)

Table 6 is a tabular representation of candidate MSH conformance testing configurations

	Parameter Name
	mshc_Ack

Requested

Always
	mshc_Ack

Requested

Never
	mshc_Message

Order

	Transport Protocol
	HTTP 1.1 or SMTP
	HTTP 1.1 or SMTP
	HTTP 1.1 or SMTP

	Canonicalization Algorithm
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)
	“http://www.w3.org/TR/2001/REC-xml-c14n-20010315” (spec recommended)

	Signature Algorithm
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)
	http://www.w3.org/2000/09/xmldsig#dsa-sha1 (spec recommended)

	Signed Message
	false
	false
	false

	Signed Acknowledgment
	false
	false
	false

	Confidentiality (not required for Conformance testing)
	none
	none
	none

	Authentication (not required for Conformance testing)
	none
	none
	none

	Retries
	3
	3
	3

	RetryInterval
	PT30S
	PT30S
	PT30S

	AckRequested
	always
	never
	perMessage

	PersistDuration

	P10D

	P10D

	P10D

	duplicateElimination
	perMessage
	perMessage
	perMessage

	MessageOrder Semantics
	NotGuaranteed
	NotGuaranteed
	Guaranteed

	HTTP Timeouts

	PT5M (if HTTP)
	PT5M (if HTTP)
	PT5M (if HTTP)

	SyncReply (used to globally define all messages are sent witih a SyncReply element)
	false (if HTTP)
	false (if HTTP)
	false (if HTTP)

	syncReplyMode

	none
	none
	none

	ErrorURL
	URL of driver party MSH
	URL of driver party MSH
	URL of driver party MSH

	NotifyURL
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)
	URL of the Test Driver (in a hub configuration), or to the driver party MSH (in point-to-point config)

Table 8is a tabular representation of candidate MSH conformance testing configurations
3.5.6 Message Payloads

Message payloads are described in the Abstract Conformance Test Suite through Manifest reference and MIME container reference. The actual content of message payloads used for this Test Suite are defined in the Executable Conformance Test Suite [ebMSExeConfTestSuite].

A sample message payload included in a test suite may look like:

<ebTest:MessagePayload xmlns:ebTest=”http://www.oasis-open.org/tc/ebxml-iic/tests” ebTest:id=”cid:payload_1”>

<tns:purchase_order xmlns:tns=”http://www.oasis-open.org/tc/ebxml-iic/tests/payloads”>

<tns:po_number>1</tns:po_number>

<tns:part_number>123</tns:part_number>

<tns:price_currency=”USD”>500.00</tns:price>

</tns:purchase_order>

</ebTest:MessagePayload>

Appendix A. References

Non-Normative References

[ebTestFramework]
ebXML Test Framework specification, Version 1.0, Technical Committee Specification, March 4, 2003,
http://www.oasis-open.org/committees/documents.php?wg_abbrev=ebxml-iic
[ebMS]

ebXML Messaging Service Specification, Version 2.0,
http://www.oasis-open.org/committees/documents.php?wg_abbrev=ebxml-iic
[ebMSInteropTests]
ebXML MS V2.0 Basic Interoperability Profile Test Cases,
http://www.oasis-open.org/committees/documents.php?wg_abbrev=ebxml-iic
[ebMSConfTestSuite]
ebXML MS V2.0 Conformance Test Suite,
http://www.oasis-open.org/committees/documents.php?wg_abbrev=ebxml-iic
[ebMSExeConfTests] ebXML MS V2.0 Executable Conformance Test Suite

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-iic
[ebMSInteropReqs]
ebXML MS V2.0 Interoperability Test Requirements,

http://www.oasis-open.org/committees/documents.php?wg_abbrev=ebxml-iic
[ebMSConfReqs]
ebXML MS V2.- Conformance Test Requirements,

http://www.oasis-open.org/committees/documents.php?wg_abbrev=ebxml-iic
[XMLSchema]
W3C XML Schema Recommendation,
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
[ebCPP]
ebXML Collaboration Protocol Profile and Agreement specification, Version 1.0, published 10 May, 2001,
http://www.ebxml.org/specs/ebCCP.doc
[ebBPSS]
ebXML Business Process Specification Schema, version 1.0, published 27 April 2001,
http://www.ebxml.org/specs/ebBPSS.pdf.

[XPath]
XML Path Language (XPath), Version 1.0, published 16 November 1999,

http://www.w3.org/TR/xpath.html
Appendix B. Acknowledgments

The authors wish to acknowledge the support of the members of the OASIS ebXML IIC TC who contributed ideas, comments and text to this specification by the group’s discussion eMail list, on conference calls and during face-to-face meetings.

IIC Committee Members

Jacques Durand, Fujitsu <jdurand@fsw.fujitsu.com>

Jeffery Eck, Global Exchange Services <Jeffery.Eck@gxs.ge.com>

Hatem El Sebaaly, IPNet Solutions <hatem@ipnetsolutions.com>

Aaron Gomez, Drummond Group Inc. <aaron@drummondgroup.com>

Michael Kass, NIST <michael.kass@nist.gov>

Matthew MacKenzie, Individual <matt@mac-kenzie.net>

Monica Martin, Sun Microsystems <monica.martin@sun.com>

Tim Sakach, Drake Certivo <tsakach@certivo.net>

Jeff Turpin, Cyclone Commerce <jturpin@cyclonecommerce.com>

Eric van Lydegraf, Kinzan <ericv@kinzan.com>

Pete Wenzel, SeeBeyond <pete@seebeyond.com>

Steven Yung, Sun Microsystems <steven.yung@sun.com>

Boonserm Kulvatunyou, NIST <serm@nist.gov>

Mike Dillon, Drummond Group Inc. <mike@drummondgroup.com>

Rik Drummond, Drummond Group Inc. <rvd2@drummondgroup.com>

Appendix C. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2003. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Appendix D. Revision History

	Rev
	Date
	By Whom
	What

	cs-10
	2003-06-27
	Michael Kass
	Initial version

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]
April 2002. All Rights Reserved.
ebxml-iic-basic-interop-test-suite-10

03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved.

Page 4 of 139

