[image: image1.png]

[image: image3.jpg]Creating A Single Global Electronic Market

1 Introduction

2 Harness for MS Conformance Testing

2.1 Architecture

This section describes how to configure the Test Framework elements for conformance testing

The Test Driver MUST be able to control the inputs and outputs of an MSH at transport level. This can be achieved by using an embedded transport adapter. This adapter has transport knowledge, and can format message material into the right transport envelope. Independently from the way to achieve this, the Test Driver MUST be able to:

· Create a message envelope for the transports authorized by ebXML MS 2.0, and generate fully formed messages for this transport.

· Parse a message envelope for the transports authorized by ebXML MS 2.0, and extract header data from a message, as well as from the message payload in case it is an XML document.

· Open a message communication channel (connection) with a remote ebXML message handler. In that case the Test Driver is said to operate in connection mode.

The Test Driver acts as a transport end-point that can receive or send messages with an envelope consistent with the transport protocol (e.g. HTTP or SMTP). The interaction between the MSH and the Test Service is of same nature as the interaction between the MSH and an application (as the Test Service simulates an application), i.e. it involves the MSH API, and/or a callback mechanism. Figure 3 illustrates how the Test Driver operates in connection mode.
[image: image2.png]Host 1 (or test center) Host 2
————————————— - Test target e e EE T

.

! Test Framework
@ ! SR peR

.

.

.

.

.

.

ebXML Message

Service

Test

Driver
« Handler

ius

Conformancel
Interoperability
report

Figure 1 shows an example of conformance test harness with Test Driver used in connection mode.

The typical conformance test case procedure will consists of a sequence of test steps. The Test Driver will control each of these steps. These steps will be:

1. Sending messages – the content of which is specified in the test case – to some action of the responder’s Test Service.

2. Receiving messages from the responder’s Test Service.

3. Analyzing the content of received messages, possibly in correlation with other message data, received or sent during the same test case, in order to validate the requirement of the test case.

4. Reporting on the test case outcome.

2.2 The Test Service and its Actions

A Test Case is described as a sequence of Test Steps. These Test Steps will consist of atomic operations executed by the components of the test Framework, e.g. sending a message, verifying a condition on a received message, etc. Messages sent to a candidate MSH include references to a Service and Action.

2.2.1 Test Service Name

The Test Service name contained in messages in this Conformance Test Suite MUST be:

urn:ebXML:iic:test

2.2.2 Test Service Action Name

The standard test actions are completely described in the ebXML Test Framework specification [ebTestFramework]. They include:

· Mute

· Dummy

· Reflector

· Initiator

· PayloadVerify

· ErrorAppNotify

· ErrorURLNotify

· Configurator

3 The MS Conformance Test Suite

3.1 Overview

 The ebXML MS 2.0 Conformance Test Suite consists of:

· Conformance Test Requirements
· An Abstract Conformance Test Suite
· Test Material
· An Executable Conformance Test Suite

3.2 Conformance Test Requirements

The table below defines the testing requirement for an ebXML Messaging Services Specification V2.0 compliant Messaging Service Handler. This table values map to the semantic definition of Test Requirements defined in [ebTestFramework]. The XML instance of the test requirements, conforming to the schema defined in the ebXML Test Framework Specification, can be found in [ebMSExeConfTestSuite].

These Test Requirements map directly to the ebXML Messaging Services V2.0 Specification. A graphical mapping of these requirements to the specification itself (using an annotated version of the MS specification) is available in [ebMSAnnotatedSpec].

3.2.1 The ebXML MS 2.0 Conformance Test Requirements Table

This table provides a non-normative list of conformance test requirements for ebXML MS 2.0 MSH implementations. The fundamental items making up each test requirement are provided in a tabular format. They include:

· ID – A unique identifier for each Test Requirement (highlighted in grey), and its aggregate functional requirements, each of which requiring testing

· Name – A short name describing the requirement

· Spec Ref – Location within the ebXML MS specification where Test Requirement is derived

· Precondition – An axiomatic expression that must first evaluate to “true” in order to test the Assertion

· Req Level – Indicator describing whether a particular feature is required (REQ), recommended (REC) or optional (OPT). REC and OPT test requirements are also highlighted in green.

· Assertion – An expression of expected behavior for a candidate MSH, given any test Preconditions (note that Assertions highlighted in green are optional for an implementation)
· Test Coverage – An indicator of how well Executable Test Cases exercise a Functional Test Requirement. If a Test Assertion is “Fully Tested”, there is no comment in this column. If the Assertion is “Partially Tested”, it is highlighted in orange and a reason for partial Executable Test coverage is given. Assertions with no matching Executable Test Cases are highlighted in red, with an accompanying explanation.
<JD>: General comment on the “coverage” column of the table:

: the coverage I would report about in this column - based on latest discussion -, is of the test requirement by the abstract test case. If, for a given test req, we provide an abstract test case for it, and if its coverage of the req is broad enough, I'd say the test req is covered as far as this test suite spec is concerned, regardless whether we will have a problem or not with the executable test case. Indeed, this test suite spec is defined by the abstract test suite, which is the only one normative. From there, anyone may decide their own way to implement the abstract test case, either manually or automatically using the Test Framework. They may or may not succeed in implementing fully the test case: that is the user's problem. If they use the test framework, that will also depend on the version used. Since we will also provide an executable test suite based on Test Framework 1.0 in a companion document, it is however appropriate to comment on the coverage of the abstract test cases by this executable test suite, but I would not mix both types of coverage.
· coverage of test req by abstract test case --> in test req table.

· coverage of abstract test case by executable test case --> in abstract test case table, or rather at the end in an appendix.
3.2.2 Conformance Test Requirements and Test Case Coverage
	ID
	Name
	Spec Ref
	Precondition
	Req Level
	Assertion
	Test
Coverage

	req_id_1
	Global Requirements

For All Tests
	#1.3
	
	
	
	

	funreq_id_1
	SchemaValidation
	#1.3
	(For each generated message)
	REQ
	Supports all mandatory syntax defined in Core plus Additional Features
	This requirement is tested “as a whole” through other requirements in this list.

<JD> we can define an abstract test case that does schema validation, even if executable can’t do it yet.

[MIKE] - But can we validate all mandatory syntax defined in Core plus additional features in one abstract test case? What would that test look like?

	req_id_2
	PackagingSpecification
	#2
	
	
	
	

	funreq_id_2
	GenerateConformantSOAPWithAttachMIMEHeaders
	#2.1.2
	(For each generated message, if it is multipart MIME OR if it is not text/xml)
	REQ
	The primary SOAP message is carried in the root body part of the message.
	

	funreq_id_3
	GenerateConformantSOAPWithAttachMIMEHeaders
	#2.1.2
	(For each generated message, if it is multipart MIME or not text/xml)
	REQ
	The type parameter of the Multipart/Related media header is "text/xml", the MIME parts must contain a CID MIME header or a Content-Location MIME header structured in accordance with RFC 2557
	

	funreq_id_4
	GenerateCorrectMessagePackageContent-Type
	#2.1.2
	(For each generated message)
	REQ
	The Content-Type MIME header in the Message Package contains a type attribute of "text/xml".
	

	funreq_id_5
	GenerateContent-IDStartValues
	#2.1.2
	(For each generated message)
	REC
	The Content-ID MIME header in any generated Message Package contains a start attribute identifying the first MIME part.
	

	funreq_id_6
	ProcessNon-MultipartMessages
	#2.1.2
	(For each received message, if the message is not multipart MIME)
	REQ
	The MSH accepts the message and passes it to the client application without generating an Error.
	

	funreq_id_7
	ProcessMultipartNoPayloadMessages
	#2.1.2
	(For each received message, if the message is multipart MIME and the message has no payload)
	REQ
	The MSH accepts the message and passes it to the client application without generating an Error.
	

	funreq_id_8
	GenerateCorrectSOAPMessageContentType
	#2.1.3.1
	(For each generated message)
	REQ
	The MIME Content-Type header for each generated SOAP Message has the value "text/xml".
	

	funreq_id_9
	GenerateSpecificSOAPMessageCharacterSet
	#2.1.3.1
	(For each generated message)
	REQ
	The MIME Content-Type header of each generated SOAP Message specifies the character set used to generate the message.
	Will write the “abstract test”, but not the “executable test”. Recommend (in next version of Test Framework that Test Driver developers scan SOAP message and compare with MIME Content-Type. Result can be set as a “true/false” parameter evaluated in XPath statement.

<JD> if we do have an abstract tset case but not an executable one, I’d say we don’t have to worry about it here: this restriction should be reported in the abstract tset case appendix, “test execution limitations”.

[MIKE] - Agreed

	funreq_id_10
	GenerateSameEncodingAndCharacterSetValue
	#2.1.3.1
	(For each generated message, if both the MIME charset and SOAP message encoding declaration are present)
	REQ
	They shall have the same value.
	

	funreq_id_11
	GenerateDefaultSOAPMessageCharacterSet
	#2.1.3.2
	(For each generated message)
	REC
	The UTF-8 character set is used by default when encoding each SOAP Message.
	

	funreq_id_12
	GeneratePayloadContainer
	#2.1.4
	(For each generated message, if the Message Package contains an application payload)
	REC
	It should be enclosed in a Payload Container.
	

	funreq_id_13
	ProvideEmptyManifestAndPayloadIntegrity
	#2.1.4
	(For each generated message, if there are no application payloads identified in the message header manifest)
	REQ
	There must not be any payload MIME parts
	

	funreq_id_14
	ProvideManifestAndPayloadIntegrity
	#2.1.4
	(For each generated message)
	REQ
	The contents of each payload MIME part are identified in the Manifest element within any generated SOAP body
	

	funreq_id_15
	ProcessUnrecognizedMIMEHeaders
	#2.1.5
	(For each received message containing unrecognized MIME headers)
	REQ
	Unrecognized MIME headers in a MIME part are ignored and no Error message is returned.
	

	funreq_id_16
	GeneratePrologXMLDeclaration
	#2
	(For each generated message, if an XML Prolog is present in the SOAP message)
	OPT
	The Prolog contains an XML declaration.
	

	funreq_id_17
	GenerateXMLVersionInProlog
	#2.2.1
	(For each generated message, if the XML Prolog exists in the SOAP message)
	REQ
	The XML version is declared
	

	funreq_id_19
	GenerateCorrectExtensionElementNamespace
	#2.3
	(For each generated message)
	REQ
	All ebXML extension elements included within generated SOAP Envelope, Header and Body elements are namespace qualified to: "http://www.oasis-open.org/committees/ebxmlmsg/schema/msg-header-2_0.xsd"
	

	funreq_id_20
	GenerateCorrectEnvelopeSchemaLocation
	#2.3.2
	(For each generated message)
	REC
	SOAP Envelope elements include the XMLSchema-instance namespace qualified schemaLocation attribute indicating the extended ebXML envelope schema: "http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd"
	

	funreq_id_21
	GenerateCorrectSOAPHeaderAndBodySchemaLocation
	#2.3.2
	(For each generated message)
	REC
	SOAP Header and Body attributes both include a XMLSchema-instance namespace qualified schemaLocation attribute indicating the extended ebXML MessageHeader schema "http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"
	

	funreq_id_22
	GenerateCorrectSOAPHeaderNamespace
	#2.3.4
	(For each generated message)
	REQ
	A SOAP Header element is namespace qualified as per the SOAP namespace declaration in the SOAP Envelope element with the namespace "http://schemas.xmlsoap.org/soap/envelope/”.
	

	funreq_id_23
	GenerateCorrectSOAPBodyNamespace
	#2.3.4
	(For each generated message)
	REQ
	A SOAP Body element is namespace qualified as per the SOAP namespace declaration in the SOAP Envelope element with the namespace "http://schemas.xmlsoap.org/soap/envelope/”.
	

	funreq_id_24
	GenerateMessageHeaderInSOAPHeader
	#2.3.5.1
	(For each generated message)
	REQ
	A SOAP Header element always contains an ebXML MessageHeader element.
	

	funreq_id_25
	GenerateCorrectForeignElementNamespaces
	#2.3.6
	(For each generated message)
	REQ
	Any foreign namespace qualified elements present within generated ebXML extension elements are namespace qualified with a namespace that is not "http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd".
	

	funreq_id_26
	GenerateCorrectForeignElementNamespaces
	#2.3.6
	(For each received message)
	OPT
	The candidate MSH ignores the namespace-qualified #wildcard element
	

	funreq_id_27
	GenerateIdAttributeToExtensionElements
	#2.3.7
	(For each generated message)
	OPT
	An XML ID attribute is supplied for each generated ebXML element (to assist with such tasks as specifying elements included in a digital signature).
	

	funreq_id_28
	GenerateCorrectMessageHeaderVersion
	ebXML-2#2.3.8
	(For each generated message)
	REC
	An ebXML MessageHeader element always contains a version attribute with a value of "2.0"
	

	funreq_id_29
	GenerateCorrectSOAPMustUnderstandNamespace
	#2.3.9
	(For each generated message)
	REQ
	All ebXML extensions of the SOAP Header element (MessageHeader, SyncReply, MessageOrder, ...) contain the mustUnderstand attribute namespace qualified to the SOAP namespace (http://schemas.xmlsoap.org/soap/envelope).
	

	funreq_id_30
	ProcessMustUnderstand
	#2.3.9
	(For each received message containing a SOAP Header extension with a mustUnderstand attribute set to "1" and not understood by the MSH.)
	REQ
	The message is rejected and is not passed to the client application. A SOAP Error with an error code of ‘MustUnderstand’ is returned to the sending party.
	

	funreq_id_30.1
	ProcessMustUnderstand
	#2.3.9
	(For each received message containing a SOAP Header extension with a mustUnderstand attribute set to "0" and not understood by the MSH.)
	REQ
	The element is ignored, and the MSH accepts the message and passes it to the client application without generating an SOAP Error with an error code of ‘MustUnderstand’
	

	req_id_3
	CoreExtensionElements
	#3.1.1
	
	
	
	

	funreq_id_31
	GenerateUniquePartyId
	#3.1.1
	(For each generated message, unless a single type value refers to multiple identification systems)
	REQ
	The value of any given type attribute must be unique within the list of PartyId elements contained within either the From or To element.
	Not Tested - This is application level testing

<JD>(reword) No abstract test case: testing is application- dependent

[MIKE] – Agreed

	funreq_id_32
	ReportInconsistentPartyIdContent
	#3.1.1.1
	(For each received message, PartyId does not contain a type attribute and PartyId text node is not a URI)
	REC
	MSH responds with an error (Inconsistent/Error)
	

	funreq_id_33
	GenerateValidPartyIdContent
	#3.1.1.1
	(For each generated message, if generated PartyId contains a type attribute)
	REC
	Its value is a URI
	

	funreq_id_34
	GenerateValidPartyIdContent
	#3.1.1.1
	(For each generated message, if generated PartyId does not contain a type attribute)
	REQ
	Text content of the PartyId element must be a URI
	

	funreq_id_35
	ReportFailedCPAIDResolution
	#3.1.2
	(For each received message, if value of the CPAId element on an inbound message cannot be resolved)
	REQ
	The MSH responds with an error (ValueNotRecognized/Error).
	

	funreq_id_36
	ProvideConversationIdIntegrity
	#3.1.3
	(For each generated message within the context of the specified CPAId)
	REQ
	The generated ConversationId will be present in all messages pertaining to the given conversation.
	

	funreq_id_38
	ReportInconsistentServiceElementContent
	#3.1.4.1
	(For each received message, if the received "type" attribute is not set. and If the Service element content is not a URI.)
	REQ
	MSH Responds with an error (Inconsistent/Error)
	

	funreq_id_39
	GenerateConsistentServiceElementContent
	#3.1.4.1
	(For each generated message, if the generated Service element "type" attribute is not set.)
	REQ
	Generated Service element content must be a URI
	

	funreq_id_40
	ReportUnrecognizedServiceAndOrAction
	#3.1.5
	(For each received message, if the receiving MSH does not recognize both the Service and Action values of an incoming message)
	REQ
	It responds with an error (ValueNotRecognised/Error).
	

	funreq_id_41
	ProvideRefToMessageIdIntegrity
	#3.1.6.3
	(For each generated message, if the RefToMessageId element within the MessageData element is present)
	REQ
	It contains the MessageId value of an earlier ebXML Message to which this message relates.
	

	funreq_id_42
	GenerateNoRefToMessageId
	#3.1.6.3
	(For each generated message, if there is no earlier related message)
	REQ
	The RefToMessageId element is never present.
	

	funreq_id_43
	GenerateErrorRefToMessageId
	#3.1.6.3
	(For each generated message, if a previous message generated an error)
	REQ
	The RefToMessageId element is always present with a value indicating the message in error.
	

	funreq_id_44
	ProcessTimeToLive
	#3.1.6.4
	(For each received message, if the MSH receives a message for which it is the To Party MSH and the time of the internal clock is greater than TimeToLive (adjusted to UTC))
	REQ
	An error message is returned to the From Party MSH (TimeToLiveExpired/Error).
	

	funreq_id_45
	GenerateValidUTCTime
	#3.1.6.4
	(For each generated message, if a TimeToLive element is present in a generated message.)
	REQ
	The TimeToLive element expresses time in UTC, and conforms to the XML Schema dateTime.
	

	funreq_id_46
	GenerateDistinctLangValuesForDescription
	#3.1.8
	(For each generated message)
	REC
	No two Description elements must have the same xml:lang attribute value
	Not Tested - This is application level testing

<JD>No abstract test case: testing is application- dependent

[MIKE] - Agreed

	funreq_id_47
	GenerateNoPayloadOrApplicationDataInBodyOrManifest
	#3.2
	(For each generated message)
	REC
	No payload/application data is present in generated SOAP Body / ebXML Manifest elements.
	

	funreq_id_48
	ReportNon-ExistentMIMEPartForManifestReference
	#3.2.2
	(For each received message, if there is not a matching payload for the xlink:href element of a generated Manifest/Reference element)
	REQ
	An error message is directed to the From Party MSH (MimeProblem/Error).
	

	funreq_id_49
	ReportUnresolvableHREFInManifest
	#3.2.2
	(For each received message, if the xlink:href element of a Manifest/Reference element on an inbound message specifies a URI that is not a content id (not "cid:"), and that cannot be resolved)
	OPT
	The MSH reports an error to the From Party MSH (MimeProblem/Error)
	

	funreq_id_50
	GenerateResolvableHREFInManifest
	#3.2.2
	(For each generated message)
	OPT
	The xlink:href element of a Manifest/Reference element on an inbound message specifies a URI that is a content id ("cid:"), and can be resolved
	

	funreq_id_51
	ProcessUnreferencedPayloads
	#3.2.2
	(For each received message, if a MIME payload part exists on an incoming message that is not referenced by a Manifest/Reference element)
	REC
	The MIME payload is discarded, the message is passed to the client application and no Error message is generated.
	

	req_id_4
	ErrorHandling
	#4.2
	
	
	
	

	funreq_id_52
	ProcessUpstreamSOAPFault
	#4.2
	(For each received message)
	REQ
	The MSH can accept and process SOAP Fault values from a downstream SOAP processor.
	Not Tested - Spec does not say how downstream SOAP faults should be handled

<JD>No abstract test case: the handling of downstream SOAP faults is not specified.

[MIKE] - Agreed

	funreq_id_53
	GenerateCompliantSOAPFaults
	#4.2
	(For each generated message, if an MSH returns a SOAP Fault message to the sender of a SOAP message)
	REQ
	The returned message conforms to the SOAP specification guidelines for SOAP Fault values.
	This is partially tested

for MustUnderstandfault code

<JD> Only partially covered by the abstract test case, for Fault code = MustUnderstandfault

[MIKE] - Agreed

	funreq_id_54
	GenerateWarnings
	#4.2
	(For each generated message, when an ebXML message is reporting an error with a highestSeverity value of 'Warning')
	REC
	It is not reported or returned as a SOAP Fault.
	This is partially tested using DeliveryFailure Error

<JD> Only partially covered by the abstract test case, for the DeliveryFailure Error.

[MIKE] - Agreed

	funreq_id_55
	ReportDataCommunicationErrors
	#4.2.2
	(For each received message)
	REC
	Errors associated with data communications protocols are detected and reported using the standard mechanisms supported by that protocol and does not use ebXML reporting mechanisms.
	Not Tested - This Test Framework does not support HTTP or SMTP conformance testing

<JD>Not covered bny any abstract test case: the generation and handling of protocol errors is specific to each protocols. (again, I would not mention the Test Framework here)

[MIKE] - Agreed

	funreq_id_56
	GenerateNoErrorList
	#4.2.3
	(For each generated message)
	REQ
	The ErrorList extension element of the SOAP Header element is never present if there are no errors to be reported.
	This is NOT tested, but unexpected errors will be “reported” in next version of Test Framework

<JD> we can have an abstract test case for this: no empty ErrorList element is allowed (either it should not be there, or if it is, some Error element should be there too)

[MIKE] – But I do not believe that is what the spec is saying… It is saying (rather poorly, and Pete and I agreed) if there are no errors, there is no errorlist… NOT there are no “empty” ErrorLists present in a message…. Comments?

	funreq_id_57
	ProvideErrorAndHighestSeverityIntegrity
	#4.2.3.1
	(For each generated message)
	REQ
	For each generated message, the highestSeverity attribute contains the highest severity of any Error elements generated in an outbound message.
	This is tested for Inconsistent error

<JD> Only partially covered by the abstract test case : case with one error only: the attr should have same severity as the Inconsistent Error severity).

[MIKE] - Agreed

	funreq_id_58
	GenerateCorrectCodeContextValue
	#4.2.3.2.2
	(For each generated message)
	REQ
	The codeContext attribute of any generated Error element is always a URI.
	This is tested for Inconsistent error

<JD> Only partially covered by the abstract test case : case with one error only: the Inconsistent Error.

[MIKE] - Agreed

	funreq_id_59
	GenerateCorrectCodeContextNamespaceValue
	#4.2.3.2.2
	(For each generated message)
	REC
	The namespace/scheme specified by codeContext for identifying errorCodes is the default value of urn:oasis:names:tc:ebxml-msg:service:errors.
	This is tested for Inconsistent error

<JD> Only partially covered by the abstract test case : case of the Inconsistent Error.

[MIKE] - Agreed

	funreq_id_60
	GenerateCorrectErrorSeverityValue
	#4.2.3.2.4
	(For each generated message)
	REQ
	Each Error element severity attribute has the value of Warning or Error indicating the severity of the error.
	This is tested for Inconsistent error

<JD> Only partially covered by the abstract test case : case of the Inconsistent Error.

[MIKE] - Agreed

	funreq_id_61
	ProvideXPointerAndErrorIntegrity
	#4.2.3.2.5
	(For each generated message, if an error exists in an ebXML element)
	REQ
	The location attribute of the Error element is an XPointer to the erroneous element.
	This is tested for Inconsistent Error , and only if an Xpointer is returned, not its value.

<JD> Only partially covered by the abstract test case : case of the Inconsistent Error.

[MIKE] - Agreed

	funreq_id_62
	GenerateReferencedMIMEPartErrorsWithCID
	#4.2.3.2.5
	(For each generated message, if an error exists in a generated payload MIME part)
	REQ
	The location attribute of the generated Error element contains the content-id (via a well-formed "cid:") of the erroneous MIME part.
	This is NOT tested until Test Framework supports generation of ANY type of MIME header

<JD>If we have an idea of what an erroneous payload container could be, we could define an abstract test case. So I’d say here something like:

“No abstract test case is defined: erroneous payload container undefined.”

[MIKE] - Agreed

	funreq_id_63
	GenerateErrorCodesUsingLongDescription
	#4.2.3.4
	(For each generated message)
	REQ
	The "Short Description" text for each error code provided by the Message Service Specification does not appear in any relevant Error element.
	This is NOT tested until it is determined what exactly should appear in the error description

<JD> Partial coverage by an abstract test case: for Inconsistent Error, we can write an abstract test case that verifies that the “short description” items are not used in the Description element.

[MIKE] – This is doable, but still a very poor specification

	funreq_id_64
	ReportErrorToMessageOrigin
	#4.2.4.1
	(For each received message, when an MSH detects an error in a message and · the Error Reporting Location (see section 4.2.4.2) to which the message reporting the error should be sent can be determined and the message in error does not have an ErrorList element with highestSeverity set to Error)
	REC
	The error is reported to the MSH that sent the original message in error.
	This is tested for Inconsistent error

<JD> Only partially covered by the abstract test case : case of the Inconsistent Error.

[MIKE] - Agreed

	funreq_id_65
	ProcessWithNoErrorReportLocation
	#4.2.4.1
	(For each received message, if the error reporting location cannot be found)
	REC
	The error is: Logged; Resolved by other means; and, No further action is taken.
	This cannot be tested using Test Framework

<JD> I would again avoid references to Test Framework 1.0.

 Instead:

“No abstract tet case: logging mechanism unspecified.”

[MIKE] - Agreed

	funreq_id_66
	ProcessCPPAErrorURI
	#4.2.4.2
	(For each received message, if the ErrorURI is implied in the relevant CPPA)
	OPT
	Then this is used as the Error Report Location.
	

	funreq_id_67
	ProcessWithNoCPPAErrorURIPresent
	#4.2.4.2
	(For each received message, if the ErrorURI is unavailable in the relevant CPPA)
	OPT
	A URI specified in the From Party of the message is used as the Error Report Location.
	

	funreq_id_68
	GenerateServiceAndActionForErrorsFromIndependentMessage
	#4.2.4.3
	(For each generated message, if an ErrorList is included as part of an independent message)
	REQ
	The values of Service and Action are; Service: urn:oasis:names:tc:ebxml-msg:service Action: MessageError
	

	funreq_id_69
	ProcessErrorListWhereHighestSeverityEqualsError
	#4.2.4.1
	(For each received message, if the message in error has an ErrorList element with highestSeverity set to Error)
	REC
	The error is: Logged; Resolved by other means; and, No further action is taken.
	This cannot be tested with existing Test Framework

<JD> I would again avoid references to Test Framework 1.0.

 Instead:

“No abstract tet case: logging mechanism unspecified.”

[MIKE] - Agreed

	req_id_5
	SyncReply
	4.3
	
	
	
	

	funreq_id_70
	ProcessSyncReply
	#4.3.1
	(For each received message, if a SyncReply element is present in a message received over a synchronous communications protocol)
	OPT
	A message generated in responseis sent on the same connection.
	

	funreq_id_71
	ReportMessageAndCPASyncReplyConflict
	#4.3.1
	(For each received message, if the CPPA syncReplyMode is set to none and SyncReply element is present in an inbound message)
	REQ
	The MSH issues an error (Inconsistent/Error).
	

	funreq_id_72
	GenerateAgreeingMessageAndCPASyncReply
	#4.3.1
	(For each generated message, if the CPPA syncReplyMode is set to none)
	REQ
	SyncReply must not be present in generated message.
	

	req_id_6
	ReliableMsg
	#6
	
	
	
	

	funreq_id_73
	ResendToAckReceived
	#6
	(For each reliably generated message, if the candidate MSH fails to receive an Acknowledgment message from a receiving MSH)
	REC
	The candidate sends successive retries until an Acknowledgment is received
	

	funreq_id_74
	ResendToRetriesExceeded
	#6
	(For each reliably generated message, if the candidate MSH fails to receive an Acknowledgment message from a receiving MSH)
	REC
	The candidate sends successive retries until a predetermined number of retries is exceeded.
	

	funreq_id_75
	ResumeAfterAckReceived
	#6
	(For each reliably generated message, if the candidate MSH receives an Acknowledgment from a receiving MSH)
	REC
	The MSH stops resending the message and behaves as if the message was successfully delivered.
	

	funreq_id_76
	NotifyDeliveryFailureOnExceed
	#6
	(For each reliably generated message, if the MSH is configured to resend and the Sending MSH fails to receive any Acknowledgment message from the receiving MSH)
	REQ
	The Sending MSH sends successive retries at expected time intervals, then notifies the From party of delivery failure
	

	funreq_id_77
	PersistReliableSentMsg
	#6.1
	(For each reliably received message, If recovery is within TimeToLive window and there is a system interrupt
	REQ
	, the message is processed by candidate MSH as if the interruption had not occurred.
	This is described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

<JD> would move this comment in the “test execution” section.

[MIKE] - Agreed

	funreq_id_78
	PersistReliableSentMsgNoAck
	#6.1
	(For each reliably sent message, If no Ack is received and recovery is within TimeToLive window and there is a system interrupt
	REQ
	The message is resent by candidate MSH
	This is described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

<JD> “For each reliably generated message…”
<JD> I am surprised there would not be executable test case here? In any case, would move this comment in the “test execution” section.

[MIKE] - Agreed

	funreq_id_79
	PersistReliableSentMsgAfterInterrupt
	#6.1
	(For each reliably sent message, after a system interruption)
	REQ
	The message is kept in persistent storage.
	This is described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

<JD> move comment to executable test case section.

[MIKE] - Agreed

	funreq_id_80
	PersistReliableReceivedMsgAfterInterrupt
	#6.1
	(For each reliably received message, after a system interruption and the system recovers within the TimeToLive window.)
	REQ
	The message processed as if the interruption had not occurred.
	This is described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

<JD> move comment to executable test case section.

[MIKE] - Agreed

	funreq_id_81
	PersistReliableReceivedMsgNoAck
	#6.1
	(For each reliably received message, after a system interruption and no Ack was sent prior to the interruption and the system recovers within the TimeToLive window.)
	REQ
	The message is kept in persistent storage and processed as if the interruption had not occurred.
	This is described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

<JD> move comment to executable test case section.

[MIKE] - Agreed

	funreq_id_82
	PersistReliableReceivedMsg
	#6.1
	(For each reliably received message, after a system interruption)
	REQ
	The message is kept in persistent storage.
	This is described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

<JD> move comment to executable test case section.

[MIKE] - Agreed

	funreq_id_83
	PersistReliableSentMsgAfterSystemFailure
	#6.1
	(For each reliably sent message, after a system failure and the system recovers within the TimeToLive window.)
	REQ
	The message is kept in persistent storage and processed as if the interruption had not occurred.
	This is described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

<JD> move comment to executable test case section.

[MIKE] - Agreed

	funreq_id_84
	PersistReliableSenTMsgAfterSystemFailureAndNoAck
	#6.1
	(For each reliably sent message, after a system failure and no Ack was received prior to the interruption and the system recovers within the TimeToLive window.)
	REQ
	The message is kept in persistent storage and processed as if the interruption had not occurred.
	This is described in the Abstract Test Suite, but is not implemented in the Executable Test Suite

<JD> move comment to executable test case section.

[MIKE] - Agreed

	funreq_id_85
	PersistReliableReceivedMsg
	#6.1
	(For each reliably received message)
	REQ
	The complete message is kept in persistent storage.
	This requirement is really an “implementation guideline”. MSH persistent store cannot be examined by this Test Framework, therefore this requirement will not be tested.

<JDNo abstract test case defined: no standard interface is specified for observing persistent store, and no expected behavior is specified or suggested.

[MIKE] - Agreed

	funreq_id_86
	PersistReceivedMsgID
	#6.1
	(For each reliably received message, in order to support the filtering of duplicate messages)
	REQ
	The MessageId of the received messaged is recorded in persistent storage.
	This requirement is really an “implementation guideline”. MSH persistent store cannot be examined by this Test Framework, therefore this requirement will not be tested.

<JDNo abstract test case defined: no standard interface is specified for observing persistent store, and the expected behavior is verified by test case for duplicate elimination.

[MIKE] - Agreed

	funreq_id_87
	PersistRecdMsg
	#6.1
	(For each reliably received message)
	REC
	The received message is recorded in its entirety at least until the information in the message has been passed to the application needing to process it.
	This requirement is really an “implementation guideline”. MSH persistent store cannot be examined by this Test Framework, therefore this requirement will not be tested.

<JD> No abstract test case defined: no standard interface is specified for observing persistent store, and the expected behavior is verified by test case for ordering.

[MIKE] - Agreed

	funreq_id_88
	PersistReceivedMsgTimestamp
	#6.1
	(For each reliably received message)
	REC
	The time at which a message is received is recorded in persistent storage.
	This requirement is really an “implementation guideline”. MSH persistent store cannot be examined by this Test Framework, therefore this requirement will not be tested.

<JD> No abstract test case defined: no standard interface is specified for observing persistent store, and the expected behavior / use of timestamp is not specified.

[MIKE] - Agreed

	funreq_id_89
	PersistResponseMsg
	#6.1
	(For each reliably received message)
	REC
	Each response message is stored in its entirety in persistent storage.
	This requirement is really an “implementation guideline”. MSH persistent store cannot be examined by this Test Framework, therefore this requirement will not be tested.

<JD> No abstract test case defined: no standard interface is specified for observing persistent store, and the expected behavior is not specified.

[MIKE] - Agreed

	funreq_id_90
	TargetAckRequestedToOrNextMSH
	#6.3.1.1
	(For each generated non-multi-hop message)
	REQ
	The AckRequested element is targeted at the Next MSH or the To Party
	

	funreq_id_91
	SetAckRequestedUnSigned
	#6.3.1.2
	(For each received message with an AckRequested with the Signed attribute set to False and consistent with the CPPA,)
	REQ
	The Acknowledgment message is unsigned.
	

	funreq_id_92
	SetSignedAttributeAfterVerifyReceivingMSHAckSupport
	#6.3.1.2
	(For each received message with an AckRequested with the Signed attribute set to True consistent with the CPPA, if the Receiving MSH supports signed acknowledgment messages of the type requested)
	REQ
	The Sending MSH sends back a signed Acknowledgment.
	

	funreq_id_93
	SetSignedAttributeAfterVerifyReceivingMSHAckSupport
	#6.3.1.2
	(For each received message with an AckRequested with the Signed attribute set to True consistent with the CPPA, if the Receiving MSH does not support signed acknowledgment messages of the type requested)
	REQ
	The MSH generates an Error of type Inconsistent, and severity = Warning.
	Will only test sha-1 signature conformance

<JD> Partial coverage by abstract test case: verified fo sha-1 signature .r

[MIKE] - Agreed

	funreq_id_94
	SetSignedAttributeAfterVerifyReceivingMSHAckSupport
	#6.3.1.2
	(For each received message with an AckRequested with the Signed attribute set to True and NOT consistent with the CPPA and requirementType="REQ"> if the Receiving MSH supports signed acknowledgment messages of the type requested)
	REQ
	The MSH generates an Error of type Inconsistent and an Error severity = Error.
	

	funreq_id_95
	SendAckToFromParty
	#6.3.1.3
	(For each Acknowledgment request message, If an Acknowledgment is requested of the MSH node acting in the role of To Party)
	REQ
	The Acknowledgment element generated is targeted to the MSH node acting in the role of From Party.
	

	funreq_id_96
	GenererateAckWithNoPayloadAndNoAckRequested
	#6.3.1.4
	(For each generated Acknowledgment message, if the message contains no payloads)
	REQ
	The message does not include an AckRequested element.
	

	funreq_id_97
	ReportErrorWithoutAckRequeseted
	#6.3.1.4
	(For each generated Acknowledgment message, if the message contains an ErrorList element)
	REQ
	The message does not include an AckRequested element.
	This is tested for Inconsistent

Error

<JD> Only partially covered by the abstract test case : case of the Inconsistent Error.

[MIKE] - Agreed

	funreq_id_98
	SpecifyNoSOAPActorToPartyAck
	#6.3.2.1
	(For each generated Acknowledgment message, if there is no SOAP actor attribute present on an Acknowledgement element)
	REC
	The default target is the ToParty MSH.
	

	funreq_id_99
	SpecifySOAPActorToPartyAck
	#6.3.2.1
	(For each Acknowledgment message)
	REC
	The SOAP actor attribute in a generated Acknowledgment element has a value corresponding to the AckRequested element of the message being acknowledged.
	

	funreq_id_100
	GenerateAckMsgTimestamp
	#6.3.2.2
	(For each generated Acknowledgment message, if the From element is present)
	REQ
	The Timestamp element is present within any generated Acknowledgment element. The value is in XML Schema dateTime format in the UTC time zone and represents the time at which the MSH generating the Acknowledgement Message received the message being acknowledged.
	

	funreq_id_101
	GenerateAckUsingMsgIDInRefToMessageID
	#6.3.2.3
	(For each generated Acknowledgment message)
	REQ
	The RefToMessageId element contains the MessageId of the message whose delivery is being acknowledged.
	

	funreq_id_102
	IdentifyPartyWithAckFromElement
	#6.3.2.4
	(For each generated Acknowledgment message, if the From element is present in an inbound message)
	REQ
	The From element in a generated Acknowledgment element contains an identifier of the party sending the Acknowledgment Message.
	

	funreq_id_103
	IdentifyPartyWithoutAckFromElement
	#6.3.2.4
	(For each generated Acknowledgment message, if the From element is omitted in an inbound message)
	REQ
	The value of the From element in the MessageHeader is used to identify the party sending the acknowledgment.
	

	funreq_id_104
	UseSignedAckMustContainRef
	#6.3.2.5
	(For each generated Acknowledgment message, if the message being acknowledged contains an AckRequested element with the signed attribute set to "true")
	REQ
	One or more Reference elements are included in the generated Acknowledgment element.
	

	funreq_id_105
	QualifyRefElementByNamespace
	#6.3.2.5
	(For each generated Acknowledgment message)
	REQ
	Any Reference elements included in a generated Acknowledgment element are namespace qualified to the XML Signature namespace and conform to the XML Signature specification.
	

	funreq_id_106
	NotifyClientOfAckDelivery
	#6.3.2.5
	(For each successfully sent Acknowledgment message)
	OPT
	The MSH notifies the client application of successful delivery of the referenced message.
	This is NOT tested – Test Framework does not support testing this

<JD> An abstract test case can be defined. The absence of more precise specification of the notification mode, will prevent an executable test case with T.Fmk 1.0 (but we can say this in later section).

[MIKE] - Agreed

	funreq_id_107
	IgnoreDuplicateRefToMessageID
	#6.3.2.5
	(For each received Acknowledgment message, if any subsequent Error or Acknowledgment messages with a RefToMessageId value equal to an already received Acknowledgment Message are received)
	OPT
	The messages are ignored and the MSH takes no action.
	Not testeed - Test Framework does not support system interruptions

<JD> The spec reference “6.2.2.5” sseems wrong.

[MIKE] – We should be able to write a test for this. Also, I fixed the spec ref

	funreq_id_108
	SetAckServiceActionValues
	#6.3.2.7
	(For each generated Acknowledgment message, If no errors were detected in the message received and the Acknowledgment Message is being sent with no payload data)
	REQ
	The Service and Action values are: Service - urn:oasis:names:tc:ebxml-msg:service Action - Acknowledgment
	

	funreq_id_109
	SetDuplicateEliminationAlways
	#6.4.1
	(For each generated message, if the CPPA DuplicateElimination element = "always")
	REQ
	The DuplicateElimination element is included to indicate to a Receiving MSH that it must eliminate duplicates.
	

	funreq_id_110
	SetDuplicateEliminationtoNever
	#6.4.1
	(For each generated message, if the CPPA DuplicateElimination element = "never")
	REQ
	The DuplicateElimination element is not present in the generated message.
	

	funreq_id_111
	SetDuplicateEliminationPerMessage
	#6.4.1
	(For each generated message, if the CPPA DuplicateElimination element = "per message" and the party requires duplicate elimination)
	REQ
	The DuplicateElimination element is present in the SOAP header of the message.
	

	funreq_id_112
	ReceiveDuplicateEliminationAlways
	#3.1.2
	(For each received message, if the CPPA DuplicateElimination element = "always" and the received message does not contain a DuplicateElimination element)
	REC
	The receiving MSH generates an Error message with an errorCode of Inconsistent and a Severity of Error.
	

	funreq_id_113
	ReceiveDuplicateEliminationtoNever
	#3.1.2
	(For each received message, if the CPPA DuplicateElimination element = "never" and the received message contains a DuplicateElimination element)
	REQ
	The receiving MSH generates an Error message with an errorCode of Inconsistent and a Severity of Error.
	

	funreq_id_114
	PersistMsgWithDuplicateElimination
	#6.4.1
	(For each reliably received message, if Duplication element is present on an inbound message)
	REQ
	The message is presented to the To Party Application at-most-once.
	

	funreq_id_115
	PersistMsgWithDuplicateEliminationAndInterruption
	#6.4.1
	(For each reliably message, if Duplication element is present on an inbound message and the system recovers from an interruption within the TimeToLive window.)
	REQ
	The message is presented to the To Party Application at-most-once.
	This is NOT tested (framework does not support interrupts) Test will be described in Abstract Test Suite only

<JD>remove “MIKE” comment in precondition col.

<JD> We can define an abstract test case that assumes interruption, and report later that the executable one cannot be implemented on T.Fmk 1.0.

[MIKE] - Agreed

	funreq_id_116
	ReportErrorIfDuplicateEliminationUnsupported
	#3.1.2
	(For each received message containing a DuplicationElimination element, if duplicate elimination is not supported)
	REC
	An Inconsistent/Error is reported to the From Party.
	

	funreq_id_117
	ReportErrorDuplicateEliminationMsgToCPPA
	#3.1.2
	(For each reliably received message, if the value of duplicateElimination in the CPPA is "always" and a DuplicateElimination element is not present in the message)
	REC
	An Inconsistent/Error is reported to the From Party.
	

	funreq_id_118
	ReportErrorDuplicateEliminationMsgToCPPA
	#3.1.2
	(For each reliably received message, if the value of duplicateElimination in the CPPA is "never" and a DuplicateElimination element is present in the message)
	REC
	An Inconsistent/Error is reported to the From Party.
	

	funreq_id_119
	RedeliveryMsgbyRetries
	#6.4.3
	(For each generated message, if the message that requested acknowledgment is not acknowledged within the RetryInterval)
	OPT
	The message is redelivered up to a maximum number of retries as specified by the Retries parameter in the relevant CPA.
	

	funreq_id_120
	RetryIntervalMinLapseTime
	#6.4.4
	(For each reliably re-sent message, if the RetryInterval is present in the CPPA)
	OPT
	The minimum time elapsed between re-sends of the same message is equal to the RetryInterval.
	

	funreq_id_121
	SetTimeToLive
	#6.4.5
	(For each reliably re-sent message, if the RetryInterval element is present in the CPPA)
	REQ
	The TimeToLive for the message satisfies the equation: TimeToLive > Timestamp + ((Retries + 1) * RetryInterval)
	

	funreq_id_122
	PersistSentMsgLength
	#6.4.6
	(For each reliably received message, if the PersistDuration parameter is present in the CPPA and DuplicationElimination element is present in the message and the same message is received again by the MSH before PersistDuration expires)
	REQ
	The message is presented only once to the application.
	

	funreq_id_123
	PersistSentMsgLength
	#6.4.6
	(For each reliably received message, if the PersistDuration parameter is present in the CPPA and AckRequested element is present in the message and the same message is received again by the MSH before PersistDuration expires)
	REQ
	An Acknowledgement message is sent back to the sending MSH.
	

	funreq_id_124
	SendNoMsgWithLapsePersistDurationMsgID
	#6.4.6
	(For each generated message, if the length of time specified by the PersistDuration parameter in the relevant CPA has passed since a message was first sent)
	OPT
	A message with the same MessageId will not be sent again.
	

	funreq_id_125
	ReptDeliveryFailureIfPersistDurationExpired
	#6.4.6
	(For each reliably received message, if a message cannot be successfully delivered before expiry of the PersistDuration period)
	OPT
	An Error message with an ErrorCode of ‘DeliveryFailure’ is returned to the Sending Party.
	

	funreq_id_126
	TimestampPersistDurationGreaterThanTimeToLive
	#6.4.4
	(For each reliably sent message)
	REQ
	For each reliably sent message, the message satisfies the equation: PersistDuration > TimeStamp + TimeToLive.
	

	funreq_id_127
	IgnoreSyncReplyMode
	#6.4.7
	(For each reliably sent message, if the communications protocol is not synchronous)
	REQ
	The value of the syncReplyMode in the relevant CPA is ignored.
	

	funreq_id_128
	ReturnSyncReplyElementInResponsePayload
	#6.4.7
	(For each reliably sent message, if (in the context of the CPPA) the syncReplyMode is not none)
	REQ
	A SyncReply element is present in the message.
	

	funreq_id_129
	ReturnSyncReplyResponsePayload
	#6.4.7
	(For each reliably sent message, if (in the context of the CPPA) the syncReplyMode is not none)
	REQ
	The MSH returns the response on the same synchronous connection.
	

	funreq_id_130
	GenerateAckWhenAckRequested
	#6.5.3
	(For each reliably received message, if the AckRequested element that has a SOAP actor URI targeting the MSH)
	REQ
	An Acknowledgement Message is generated with RefToMessageId having the MessageId value of the message being acknowledged.
	

	funreq_id_131
	PersistAckWithOriginalMsg
	#6.5.3
	(For each generated Acknowledgment message)
	REQ
	The message is placed in persistent storage with the same PersistDuration as the original message.
	Not Tested - The Test Framework does not support generation of protocol errors

<JD> No abstract test case defined: no standard interface is specified for observing persistent store, and the expected behavior is not specified.

[MIKE] - Agreed

	funreq_id_132
	DeliverAckWithResponse
	#6.5.3
	(For each Acknowledgment message)
	REQ
	The message can be delivered as part of the normal response to the received message.
	

	funreq_id_133
	DeliverSeperatelAckServiceAndAction
	#6.5.3
	(For each Acknowledgment message, if the Acknowledgment element is sent separately from the response to the received message)
	REQ
	The Service element value is "urn:oasis:names:tc:ebxml-msg:service" and the Action element value is "Acknowledgment"
	

	funreq_id_134
	DeliverSeperateAckRefToMessageId
	#6.5.3
	(For each Acknowledgment message, if the Acknowledgment element is sent separately from the response to the received message)
	REQ
	The RefToMessageId element is set to the MessageId of the message received.
	

	funreq_id_135
	DeliverSeperateAckFromValue
	#6.5.3
	(For each Acknowledgment message, if the Acknowledgment element is sent separately from the response to the received message)
	OPT
	The From element MAY be populated with the To element extracted from the message received and all child elements from the To element received SHOULD be included in this From element.
	

	funreq_id_136
	DeliverSeperateAckToValue
	#6.5.3
	(For each Acknowledgment message, if the Acknowledgment element is sent separately from the response to the received message)
	OPT
	The To element MAY be populated with the From element extracted from the message received and all child elements from the From element received SHOULD be included in this To element.
	

	funreq_id_137
	AckNotReceivedResend
	#6.5.3
	(For each generated message containing an AckRequested element, and if an Acknowledgment message has not been received and the time specified in the RegryInterval parameter has passed since the last message was sent AND the message has been resent less than the number of times specified in the Retries parameter)
	REQ
	The Sending MSH resends the original message.
	

	funreq_id_138
	AckNotReceivedMaxRetriesExceeded
	#6.5.3
	(For each generated message containing an AckRequested element, and an Acknowledgment message has not been received after the maximum number of retries)
	REQ
	The Sending MSH notifies the application and/or system administrator of the failure to receive an Acknowledgment Message.
	This is NOT tested. Test Framework must include specification of error to be included in possible ErrorAppNotify message

<JD> An abstract test case can be defined. The absence of more precise specification of the notification mode, will prevent an executable test case with T.Fmk 1.0 (but we can say this in later section).

[MIKE] - Agreed

	funreq_id_139
	ResendMsgOnCommError
	#6.5.4
	(For each reliably generated message, if an Acknowledgment message has not been received and there is a communications protocol error during a message send)
	REQ
	The message is resent
	This is NOT tested, but will be described in the Abstract Test Suite

<JD> An abstract test case can be defined, with shutdown of the receiver of the reliably generated message.(But no exectutable.)

[MIKE] - Agreed

	funreq_id_140
	SendOriginalAckOnDuplicateMsg
	#6.5.5
	(For each reliably received message, if a duplicate message is received and the original acknowledgment is still present in the persistent store)
	OPT
	This original Acknowledgment Message is resent.
	

	funreq_id_141
	GenerateSyncResponseOnDuplicateMsg
	#6.5.5
	(For each reliably received message, If a duplicate message is received and the original acknowledgment is not present in the persistent store and the syncReplyMode is not set to none and The CPA indicates that an application response is included)
	OPT
	Response from the application is gathered by the MSH and returned synchronously.
	Not Tested -Not testable in this framework

<JD> No abstract test case can be defined, as no standard interface is designed to query the persistent store, and observable behavior can determine the presence of original ack.

[MIKE] - Agreed

	funreq_id_142
	GenerateAckMsgOnNonSyncDuplicateMsg
	#6.5.5
	(For each reliably received message, if a duplicate message is received and the original acknowledgment is not present in the persistent store and the syncReplyMode is not set to none)
	OPT
	A new Acknowledgment Message is generated and sent.
	Not Tested –Not testable in this framework

<JD> No abstract test case can be defined, as no standard interface is designed to query the persistent store, and observable behavior can determine the presence of original ack.

[MIKE] - Agreed

	funreq_id_143
	ReportErrorOnMsgWithAckReqNoTransmit
	#6.5.7
	(For each reliably received message, if the message contains an AckRequested element and the message cannot be delivered because the message could not be transmitted)
	REC
	An error message is sent to the From Party. The reported error is DeliveryFailure/Error.
	

	funreq_id_144
	GenerateWarningErrorOnMsgWithAckRequested
	#6.5.7
	(For each reliably received message, if the message contains an AckRequested element and the message was transmitted but no acknowledgement was received)
	REC
	An error message is sent to the From Party. The reported error is DeliveryFailure/Warning.
	

	funreq_id_145
	NotifyFailureByAlternateMeans
	#6
	(For each reliably received message, if an Error Message is generated with an error code set to DeliveryFailure and an Error Message cannot be delivered successfully)
	REQ
	The ultimate destination of the error message is informed of the failure by some undefined means.
	This is NOT tested.. untestable as written in specification

<JD> No abstract test case can be defined, as no standard means or interface is defined to notify the ultimate destination.

[MIKE] - Agreed

	req_id_7
	MsgOrder
	#9
	
	
	
	

	funreq_id_146
	EnableMsgOrderWithReliableMsg
	#9
	(For each generated message, if the message contains a MessageOrder element)
	REQ
	The DuplicateElimination is present and AckRequested directed to the To Party MSH and absence of a SyncReply element.
	Not Tested -This is application testing

<JD> I modified the test req:

we can then describe an abstract test case that gets the MSH to generate a message with MessageOrder: the condition in the Assertion can then be verified on the header of the generated message.

[MIKE] - Agreed

	funreq_id_147
	ProcessSequenceMsg
	#9.1.1
	(For each received message, when two messages are received, each with a MessageOrder element, and the same conversationID)
	REQ
	The MSH processes messages only in the sequence indicated by the SequenceNumber element.
	

	funreq_id_148
	PassOrderedMsgToApplication
	#9.1.1
	(For each received message, if the message contains a MessageOrder element and when receiving ordered messages with the same conversationID out of sequence)
	REQ
	The message is not passed to the destination applicationuntil all messages with a lower (earlier) SequenceNumber have previously been passed.
	

	funreq_id_149
	GenerateDeliveryFailureOnOutOfSequMsg
	#9.1.1
	(For each received message, if the message contains a MessageOrder element and if the maximum number of out-of-sequence ordered messages have been received)
	REQ
	The Sending MSH is sent an error and the error code is DeliveryFailure and severity set to Error.
	 This is NOT tested – spec ambiguity (implementation dependent) makes this untestable

<JD> I do not see any mention in spec about:” maximum number of out-of-sequence ordered messages”
[MIKE] – 2nd paragraph of section 9.1.1

	funreq_id_150
	UseZeroSequenceNoForFirstOrderedMsgForConversation
	#9.1.1
	(For each received message, if the message contains a MessageOrder element and if this is the first ordered message for the ConversationID)
	REQ
	The SequenceNumber element has value of 0."
	

	funreq_id_151
	UseStatusResetForFirstOrderedMsgForConversation
	#9.1.1
	(For each received message, if the message contains a MessageOrder element and if this is the first ordered message for the ConversationID)
	REQ
	The status value is set to Reset"
	

	funreq_id_152
	UseZeroSequenceNoForFirstOrderedMsgAfterReset
	#9.1.1
	(For each received message, if the message contains a MessageOrder element and this is the first ordered message after a reset instruction is sent by the Sending MSH)
	REQ
	The SequenceNumber element has value of 0.
	

	funreq_id_153
	UseZeroSequenceNoAndStatusResetForFirstOrderedMsgAfterReset
	#9.1.1
	(For each received message, if the message contains a MessageOrder element and this is the first ordered message after a reset instruction is sent by the Sending MSH)
	REQ
	The status value is set to Reset
	

	funreq_id_154
	UseZeroSequenceNoAndSatusContinueForFirstOrderedMsgAfterWrap
	#9.1.1
	(For each generated message, if the message contains a MessageOrder element and this is the first ordered message after the sequence wrapped at value 99999999)
	REQ
	The SequenceNumber element has value of 0 and a status Value of Continue
	This is NOT tested because of the impracticality of generating such a large number of messages

<JD> No abstract test case is defined, due to the impracticality of generating such a large number of messages

[MIKE] - Agreed

	funreq_id_155
	ResetMsgSeqForConversation
	#9.1.1
	(For each generated message, when sending a message with the MessageOrder element and if the status attribute is set to "Reset")
	REQ
	All previous sent messages for this conversation must have been accounted for.
	This is NOT tested – application level testing

<JD> I believe we can define an abstract test case where MSH is asked to send a message with Reset, and verify that it will do so only after receiving an Ack for the previous message it had generated in the same sequence. (Maybe an executable test case for this, using Initiator to set the Reset)

[MIKE] - Agreed

	funreq_id_156
	SyncReplyMsgNotIncludeMsgOrder
	#9.2
	(For each generated message, if the message contains a SyncReply element)
	REQ
	A MessageOrder element is never included in the same message as a SyncReply element.
	This is NOT tested – application level testing

<JD> I believe we can define an abstract test case where MSH is asked to send a message with both elements (e.g. via CPA config), and verify that this will not happen.

[MIKE] – Agreed

	funreq_id_157
	ReportErrorMsgOrderSyncReply
	#9.2
	(If a message is received in which the MessageOrder element is included with a SyncReply element)
	REC
	An error is reported. The error is Inconsistent/Error.
	

	req_id_8
	SecurityAndCommunicationChannels
	#4
	
	
	
	

	funreq_id_158
	SignatureElementIsChildOfSoapHeader
	#4.1
	(For each generated message, when one or more Signature elements is present)
	REQ
	It is the child of the SOAP Header.
	

	funreq_id_159
	SignatureIsNamespaceQualified
	#4.1
	(For each generated message, when one or more Signature elements is present)
	REQ
	It is namespace qualified with http://www.w3.org/2000/09/xmldsig#"
	

	funreq_id_160
	SignatureConformsToXMLDSIG
	#4.1
	(For each generated message, when one or more Signature elements is present)
	REQ
	Its structure and content conform to the XML Signature specification available at http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/.
	

	funreq_id_161
	AttributeSignatureElement
	#4.1
	(If there is more than one Signature element within the SOAP Header)
	REQ
	It is the first signature that represents digital signing of the message by the From Party MSH.
	

	funreq_id_162
	ApplySecurityBasedOnTransportOfCPA
	#4.1.3
	(For each generated message if, based upon the Transport section of the relevant CPA, a signature is REQ for the entire message)
	REQ
	A Signature element must be present, and its SignedInfo element contains a Reference element to the SOAP envelope which has a URI attribute value of ""
	

	funreq_id_163
	GenerateSignToXMLDSIG
	#4.1.3
	(For each signed message)
	REQ
	Digital signatures are generated and rendered according the XML Signature specification (XMLDSIG).
	

	funreq_id_164
	GenerateSignChildElements
	#4.1.3
	(For each signed message)
	REQ
	The SignedInfo element has a CanonicalizationMethod, SignatureMethod and one or more Reference elements.
	

	funreq_id_165
	GenerateSignAlgorithmAttribute
	#4.1.3
	(For each signed message)
	REQ
	The SignatureMethod element is present and has an Algorithm attribute on any generated digitally signed message.
	

	funreq_id_166
	SignCanonicalMethod
	#4.1.3
	(For each generated message with one or more Signature elements)
	REC
	The canonicalization method applied to the data to be signed is Agorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"
	

	funreq_id_167
	SignatureMethodAlgorithmAttribute
	#4.1.3
	(For each generated message with one or more Signature elements)
	REC
	The value of the Algorithm attribute is Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"
	

	funreq_id_168
	SupportDSA-SHA1SignAlgorithm
	#4.1.3
	(For each generated message with one or more Signature elements)
	REQ
	The MSH supports the signature algorithm DSA-SHA1, validates the signature and passes the message to the application.
	

	funreq_id_169
	AddOptionalReferenceAttribute
	#4.1.3
	(For each generated message with one or more Signature elements)
	REC
	The MSH supports the optional addition of the informative Type attribute with value "http://www.w3.org/2000/09/xmldsig#Object" on the XML Signature Reference element.
	

	funreq_id_170
	IncludeMandatoryTransformElementToEnvelopedSign
	#4.1.3
	(For each generated message with one or more Signature elements)
	REQ
	The generated XML Signature Reference element includes a child Transform element which in turn includes a first Transform element with an Algorithm attribute of value "http://www.w3.org/2000/09/xmldsig#enveloped-signature".
	

	funreq_id_171
	GenerateMandatoryTransformWithExcludeSOAPActor
	#4.1.3
	(For each generated message with one or more Signature elements, (CPA, Transport section) that requires signature)
	REQ
	A second Transform element is generated with the requisite XPath element excluding all elements with SOAP actor attributes targeting the nextMSH or next SOAP node.
	

	funreq_id_172
	CanonicalizationTransformElementAlgorithmAttribute
	#4.1.3
	(For each generated message with one or more Signature elements)
	OPT
	The last generated Transform element has an Algorithm attribute with a value of "http://www.w3.org/TR/2001/REC-xml-c14n-20010315".
	

	funreq_id_173
	XMLSignReferenceURIForPayload
	#4.1.3
	(For each generated message with one or more Signature elements)
	REQ
	Any payload data requiring digital signature is identified by an XML Signature Reference element that has a URI attribute resolving to the location of that data.
	

	funreq_id_174
	MapSignReferenceURIToManifestPayload
	#4.1.3
	(For each generated message with one or more Signature elements)
	REC
	The value of the URI attribute of a generated XML Signature Reference element matches the xlink:href URI value present in the Manifest/Reference element corresponding to that same payload.
	

	funreq_id_175
	GenerateSignPriorToTransferEncoding
	#4.1.3
	(For each generated message with one or more Signature elements, and with transfer encoding)
	REQ
	Signature generation takes place before any transfer encoding (e.g. base64) is applied to the SOAP Envelope or payload MIME parts.
	

	funreq_id_176
	SignAckReferenceElementList
	#4.1.3.2
	(For each received signed message)
	REQ
	A digitally signed inbound message may be acknowledged with a digitally signed acknowledgement. Any such acknowledgement message contains an XML Signature Reference element list corresponding to the Reference elements contained in the original message.
	

	funreq_id_177
	AuthenticatePartyByCommunicationChannel
	#4.1.4.3
	(For each generated message)
	OPT
	The communication channel used to transport the ebXML message can be used to provide uni or bi-directional party authentication (e.g. TLS over TCP/IP).
	This is NOT tested, but query of protocol security parameters will be recommended for next version of Test Framework

<JD> No abstract test case is defined :the control of authentication is transport –specific.

[MIKE] - Agreed

	funreq_id_178
	ProvideMsgContentDataIntegrityByCommunicationChannel
	#4.1.4.4
	(For each generated message)
	OPT
	The communication channel used to transport the ebXML message can be used to provide data integrity of the message content (e.g. TLS over TCP/IP).
	This is NOT tested, but query of protocol security parameters will be recommended for next version of Test Framework

<JD> No abstract test case is defined :the control of integrity is transport –specific

[MIKE] - Agreed

	funreq_id_179
	SignMsgPriorToEncryption
	#4.1.4.5
	(For each generated message if, based upon the Transport section of the relevant CPA, a signature is Required for entire message and if signature and encryption of a message component is requested of the MSH)
	OPT
	Signing takes place prior to encryption.
	

	funreq_id_180
	ProvideMsgContentDataConfidentialityByCommunicationChannel
	#4.1.4.6
	(For each generated message)
	REQ
	The communication channel used to transport the ebXML message can be used to provide data confidentiality for the message content (e.g. TLS over TCP/IP).
	This is NOT tested, but query of protocol security parameters will be recommended for next version of Test Framework

<JD> No abstract test case is defined :the control of data confidentiality is transport –specific

[MIKE] - Agreed

	funreq_id_181
	AuthorizeMsgWithBilateralAuthenticationByNetworkProtocol
	#4.1.4.8
	(For each generated message)
	OPT
	The source of an ebXML message can be authorized by using a secure network protocol for bilateral authentication of certificates prior to establishing a session (e.g. TLS over TCP/IP).
	This is NOT tested, but query of protocol security parameters will be recommended for next version of Test Framework

<JD> No abstract test case is defined :the control of bilateral authentication of certificates is transport –specific

[MIKE] - Agreed

	req_id_9
	MessageStatusService
	#7
	
	
	
	

	funreq_id_182
	GenerateStatusResponseWithReliableMessaging
	#7
	(For each received message, if the message contains a StatusRequest element and the RefToMessageId child element references a previously received message that had been sent reliably and is present in persistent storage)
	REC
	A Message Status Response Message is returned.
	

	funreq_id_183
	GenerateStatusResponseWithoutReliableMessaging
	#7
	(For each received message, if the message contains a StatusRequest element and the RefToMessageId child element references a previously received message that had not been sent reliably)
	OPT
	A Message Status Response is returned.
	

	funreq_id_184
	ReportUnsupportedService
	#7
	(For each received message, if the message contains a StatusRequest element and the message is received for a service that is not supported)
	REC
	An Error Message is returned with an errorCode of "NotSupported".
	

	funreq_id_185
	GenerateValidStatusRequestMessage
	#7.1.1
	(For each generated message, If the MessageHeader child Action element is equal to "StatusRequest")
	REQ
	The message consists of no payload and the MessageHeader/StatusRequest elements configured as specified in the Message Service Specification and are not included along with any of the Manifest, StatusResponse, or ErrorList elements.
	Not Tested - This is application-level testing

<JD> If we change this as a “generate” req instead of a “received” one, I believe we could define an abstact test case where the app on top of candidate MSH is sending a status request to the remote party. An executable test case will require ability for a service action (Initiator?) to ask for status request (not for T.Fmk 1.0?)

[MIKE] – Will write this test

	funreq_id_186
	ProcessUnauthorizedStatusRequest
	#7.1.3
	(For each received message, if the message contains a StatusRequest element and the StatusRequest child RefToMessageId element value is recognized by the MSH and the message is received from a party deemed to be unauthorised)
	OPT
	A response is sent with the messageStatus attribute set to "UnAuthorized".
	Not Tested - This is application-level testing

<JD> no abstract test case is defined: conditions for authorization are not defined.

[MIKE] - Agreed

	funreq_id_187
	ProvideRefToMessageIdAndMessageIdIntegrity
	#7.3.1
	(For each received message, if the message contains a StatusRequest element and the StatusRequest child RefToMessageId element value is recognized by the MSH and a StatusResponse is generated for this request)
	REC
	In the returned StatuResponse element, the RefToMessageId element child of the MessageData element specifies the MessageId of the message containing the associated StatusRequest element. In addition, the RefToMessageId element child of the StatusResponse elements always contains the MessageId of the message whose status is being queried.
	

	funreq_id_188
	SetTimestampRecognizedAndAuthorized
	#7.3.2
	(For each received message, if the message contains a StatusRequest element and the StatusRequest child RefToMessageId element value is recognized)
	REQ
	In the response message, the Timestamp child element of the StatusResponse element contains the time at which the message being reported on was originally received.
	

	funreq_id_189
	SetTimestampNotRecognized
	#7.3.2
	(For each received message, if the message contains a StatusRequest element and the StatusRequest child RefToMessageId element value is not recognized)
	REQ
	The Timestamp child element of the StatusResponse element is not present in the response message.
	

	funreq_id_190
	SetTimestampNotAuthorized
	#7.3.2
	(For each received message, if the message contains a StatusRequest element and the StatusRequest child RefToMessageId element value is not authorized.)
	REQ
	The Timestamp child element of the StatusResponse element is not present in the response message.
	Not Tested , This is application level testing

<JD> no abstract test case is defined: conditions for authorization are not defined

[MIKE] - Agreed

	funreq_id_191
	GenerateUnauthorizedMessageStatus
	#7.3.3
	(For each received message, if the message contains a StatusRequest element and the message is recognized)
	REQ
	The messageStatus attribute in the StatusResponse element has a value of 'UnAuthorized'.
	

	funreq_id_192
	GenerateNotRecognizedMessageStatus
	#7.3.3
	(For each received message, if the message contains a StatusRequest element and the StatusRequest child RefToMessageId element value is not recognized)
	REQ
	The messageStatus attribute in the StatusResponse element has a value of 'NotRecognized'.
	

	funreq_id_193
	GenerateReceivedMessageStatus
	#7.3.3
	(For each received message, if the message contains a StatusRequest element and the StatusRequest child RefToMessageId element value is recognized and the RefToMessageId element value is recognized and not yet processed)
	REQ
	The messageStatus attribute in the StatusResponse element has a value of 'Received'.
	This is NOT tested. Test Framework does not support this particular test.

<JD> we could define an abstract test case: by sending to MSH message with ordering required, we can control that a message is waiting in MSH if out of order. Then we can ask for this status.

[MIKE] - Agreed

	funreq_id_194
	GenerateProcessedMessageStatus
	#7.3.3
	(For each received message, if the message contains a StatusRequest element and the StatusRequest child RefToMessageId element value is recognized and the RefToMessageId element value is recognized and processed)
	REQ
	The messageStatus attribute in the StatusResponse element has a value of 'Processed'.
	

	funreq_id_195
	GenerateReceivedMessageStatus
	#7.3.3
	(For each received message, if the message contains a StatusRequest element and the StatusRequest child RefToMessageId element value is recognized and the message identified by the RefToMessageId element in the StatusRequest element has been forwarded by the MSH)
	REQ
	A StatusResponse with a 'Forwarded' messageStatus is present in the returned message.
	

	req_id_10
	PingService
	#8
	
	
	
	

	funreq_id_196
	ReportServiceNotSupported
	#8
	(For each received message, if the message header Action element contains a child Ping element and the requested service is not supported)
	REC
	A message with an Error element is returned with an errorCode of "NotSupported" and a highestSeverityattribute set to "Error".
	

	funreq_id_197
	GenerateValidPingMessageStructure
	#8.1
	(For each generated message, if the message header Action element contains a child Ping element)
	REQ
	The message consists of no payload and the MessageHeader and Signature elements (if present) are configured as specified in the Message Service Specification.
	

	funreq_id_198
	GeneratePongResponse
	#8.2
	(For each received message, if the message header Action element contains a child Ping element and the requested service is supported and The Ping request is occurring under normally expected conditions, and the received message is authorized and not interpreted by the Receiving party as part of an attack.)
	OPT
	A message header Action element containing a child Pong element is returned. The message contains no payload and the MessageHeader & Signature elements (if present) are configured as specified in the Message Service Specification.
	

	req_id_11
	MultiHopModule
	#10
	
	
	
	

	funreq_id_199
	SetMultiHopIntermediaryNextMSH
	#10.1
	(For each generated multi-hop message)
	OPT
	The AckRequested and Acknowledgment elements have the SOAP actor attribute set to NextMSH (urn:oasis:names:tc:ebxml-msg:actor:nextMSH).
	

	funreq_id_200
	RemoveIntermediaryAckRequested
	#10.1.1
	(For each received multi-hop message, when a node acts as an intermediary)
	REQ
	The node removes any AckRequested element with a SOAP actor attribute of NextMSH.
	

	funreq_id_201
	InsertIntermediaryAckRequested
	#10.1.1
	(For each received multi-hop message, when a node acts as an intermediary)
	OPT
	The node can insert a single AckRequested element with a SOAP actor attribute of NextMSH.
	

	funreq_id_202
	GenerateSingleAckRequestedForNextMSH
	#10.1.1
	(For each generated multi-hop message with the SOAP actor attribute value targeting the NextMSH)
	REQ
	There will not be two AckRequested elements in the same message.
	

	funreq_id_203
	SyncReplyNoAckRequestedForNextMSH
	#10.1.1
	(For each generated multi-hop message, if a SyncReply element is present in a message)
	REQ
	An AckRequested element with SOAP actor attribute targeting the NextMSH is never included.
	Not tested - Application level testing

<JD> No abstract test case defined for multi-hop architecture.

[MIKE] - Agreed

	funreq_id_204
	GenerateErrorWithSyncReplyAckRequested
	#10.1.1
	(For each received multi-hop message, if the SyncReply and AckRequested elements is received in one message and the AckRequested element is received in the same message)
	REQ
	An error is reported with an errorCode of "Inconsistent".
	

	funreq_id_205
	GenerateIntermediaryAckMsgIfNoSyncReply
	#10.1.1
	(For each received multi-hop message, when a node acts in the role of intermediary and no SyncReply element is specified)
	OPT
	A node may synchronously return an intermediate Acknowledgment Message to the Sending MSH.
	

	funreq_id_206
	GenerateAckBasedOnActor
	#10.1.3
	(For each received multi-hop message, if an inbound message contains two AckRequested elements where one addresses NextMSH and another AckRequest addresses the ToParty MSH and the receiving MSH is the ToParty MSH)
	REQ
	The MSH node is in the combined role of Next and ToParty MSH, and will send two Acknowledgments
	

	funreq_id_207
	GenerateIntermediaryAckMsgAtComplete
	#10.1.3
	(For each received multi-hop message, a reliable message received by an MSH node in the role of intermediary)
	REQ
	The message is not acknowledged until the message is both persisted and delivered to the Next MSH.
	

	funreq_id_208
	GenerateIntermediarySignedAck
	#10.1.4
	(For each received multi-hop message, when a signed Acknowledgment Message is requested by an intermediate node)
	REQ
	The message is only generated as a standalone message and is not bundled with any other data (payload).
	

	funreq_id_209
	NoMsgOrderProcessForIntermediary
	#10.2
	(For each received multi-hop message, when the MSH acts in the role of intermediary)
	REQ
	The MSH does not attempt to participate in Message Order processing.
	

	funreq_id_210
	RequestDownstreamAck
	#6.3.1
	(For a downstream (Next) processor, if an AckRequested element is received)
	REQ
	An acknowledgment is returned.
	

	funreq_id_211
	GenerateMultipleAckRequested
	#6.3.1
	(For each generated multi-hop message, if there are two AckRequested elements in a generated message Header)
	REQ
	The two AckRequested elements do not specify the same value for their respective SOAP actor attributes.
	This is NOT tested – application level testing

	funreq_id_212
	TargetAtMostOneAckNextMSH
	#6.3.1
	(For each generated multi-hop message)
	REQ
	At most one AckRequested element may be targeted at the actor URI for the Next MSH.
	This is NOT tested – application level testing

	funreq_id_213
	TargetAtMostOneAckToPartyMSH
	#6.3.1
	(For each generated multi-hop message)
	REQ
	At most one AckRequested element may be targeted at the actor URI for the To Party MSH in a given message.
	This is NOT tested – applictaion level testing

	funreq_id_214
	IgnoreIntermediaryDuplicates
	#6.5.2
	(For each reliably received message, when the MSH acts as an intermediary node)
	REQ
	The MSH does not filter out perceived duplicate messages.
	

	funreq_id_215
	ControlIntermediaryMSHHandling
	#4.1.3
	(For each received multi-hop message, when a node acts as an intermediary)
	REQ
	The MSH does not change, format or in any way modify any element not targeted at that intermediary MSH. The MSH does not add or delete white space.
	

	funreq_id_216
	TargetAckRequestedToOrNextMSH
	#6.3.1.1
	(For each generated multi-hop message)
	REQ
	The AckRequested element is targeted at the NextMSH
	

	
	
	
	
	
	
	

Table 1 is a tabular representation of the ebXML MS 2.0 Conformance Test Requirements

3.3 Abstract MS Conformance Test Suite

Abstract test cases represent (in an informal way) the semantics necessary to generate actual, executable conformance test cases. The following abstract Test Cases are specified using test material (MSH configuration parameters, Test Driver configuration parameters and run-time generated message content and message payloads) in a sequence of Test Cases. Each Test Case consists of a sequence of Test Steps. Test Steps, in turn, may be a sequence of test operations performed on a message to be sent, or on a received message. The full description of the structure of a Test Case can be found in [ebTestFramework].

 The format of the Test Cases described below cannot be used by the ebXML Test Framework to execute the tests. The executable versions can be found in [ebXMLExeConfTestSuite].

3.3.1 Abstract Test Case Description

This Abstract Test Case Specification provides the necessary information for a test developer to write an executable conformance test suite against the listed Requirement ID in the table.

The Abstract Test Cases contain references to:

· MSH configuration settings
· MIME, SOAP and ebXML message content

· Run time message parameters
· Message payload content

Candidate MSH configuration settings are represented in this test suite by the CPAId of a MessageHeader. The CPAId represents a particular MSH configuration that MUST be used by the candidate MSH in order to successfully run a particular Test Case. The 13 MSH configuration parameter groups referenced by this Test Suite are described in section 4.1.2 of this specification.

MIME, SOAP and ebXML message content is represented in the Abstract Message Content column in the table 2. The message content appears as an XPath argument to a Test Step operation. In all operations, whether they be sending, receiving, verifying or validating message content, the XPath expression represents an expected message, the XPath expression represents the required message or message fragment to be sent, received or examined. The syntax and semantic rules for the XPath expression conform to the [XPath] specification.

Run time message parameters are parameter values “known” by the Test Driver at run time. Parameter values are inserted by the Test Driver into messages in their appropriate location prior to message transmission, and are used in XPath expressions to filter the content of received messages. For illustration purposes, these parameters are preceded with a ‘$’ symbol in the Abstract Message Content. The actual values of these parameters are either generated by the Test Driver during Test Case Execution, or are globally defined through Test Driver configuration.
Message payload content – is not described in the Abstract Test Suite, but is simply “pointed to” using a “Content-Id” reference.
3.3.2 Relationship between Abstract Test Cases and Executable Test Cases

The current test suite specification only defines Abstract test cases. These may be translated further in more concrete, executable test cases that will depend on a particular test framework, for example the ebXML Test Framework 1.0 [ebTestFramework].
Abstract test Cases:

An abstract test case more precisely verifies a test requirement, or parts of it (e.g. by defining a subset of situations where the test requirement applies.). It generally does not cover all the situations relevant to a test requirement, but is representative of the most common situations. It defines detailed test material (e.g. message content, context of use), defines test steps. It is precise enough so that test cases can be created that will yield a correct and repeatable test result. It is more restricted than a test requirement, because it focuses on the input, output and internal MSH controls that have been described in the specification (and therefore can be assumed to be supported by all implementations), or that are implicitly assumed to be supported (e.g. manual shutdown and restart). In other words, each step of the abstract test case is either:

(1) capturing and/or analyzing the observable behavior (generally black-box),

(2) manipulating available internal controls for the implementation under test.

 The ebMS specification describes the messages generated on the wire, the message data passed to the application, plus errors and notifications to application. Abstract test representation of the ebMS test requirements is limited to the following material and actions:
 input of (received) messages
configuration with CPA data
application error notification,

MSH shutting down / starting.
Any test requirement involving some state or material for which the original specification does not describe any standard input/output, interface or control, cannot be expressed as is by an abstract test case, as it would be at the discretion of each implementation.
This is the case for requirements concerning the state of the persistence store that is supposed to be part of an MSH implementation. Persistence of a message cannot be directly observed, only its effect on the overall behavior of the MSH (e.g. resending the messsage after a shutdown/recovery) can be observed in an abstract test case.

Executable test cases:

An executable test case uses and assumes an instance of a Test Framework, or more specifically, a test harness.A Test Framework provides both the execution environment and the (executable) definition syntax for the test case. In the case of ebXML MS, the executable test case is a translation of an abstract test case into the material specified by a particular version of the Test Framework. Therefore, depending on the version of the Test Framework that is referred to, the same abstract test case can have different executable expressions.

Some test harness restrictions may not permit translation o an abstract test case to an executable test case. For example, V1.0 of the Test Framework does not permit shutdown and restart of a candidate MSH in an automated way. For such a reason a Test Framework may not have an executable test case equivalent, or is only partially verified by an executable test case.

3.3.3 ebXML MS 2.0 Abstract Test Cases
The Test Cases in this Abstract (non-executable) Test Suite are grouped according to functionality. The abstract Test Cases below cover the following ebXML MS functional categories (with test case numbers):

5. Message Packaging (2-30)

6. Core Extension Elements (31-51)

7. Error Handling (52-69)

8. Sync Reply (70-72)

9. Reliable Messaging (73-145)

10. Message Ordering (146-157)

11. Security and Communication Channels (158-181)

12. Message Status (182-195)

13. Ping (196-198)

14. Multi-hop (199-215)
*NOTE: The test suite includes a few tests that can only be run synchronously. Those test cases are (70, 71, 128, 157), and should not be run by MSH implementations that run in asynchronous mode only (e.g. using SMTP transport protocol)
The Abstract Test Suite does not necessarily reflect a “1 to 1” relationship with functional test requirements. If a Conformance Test Requirement is too broad in scope, or ambiguous in its description, then an Abstract Test Case(s) may not exist for that requirement.

Also, the Abstract Test Cases does not necessarily have a “1 to 1” relationship with the Executable Test Cases. Some tests can be described in an abstract sense, but due to restrictions in the ebXML Test Framework the corresponding Executable Test Case(s) may not exist.

Table structure:

· Test Object: identifies the type of material: Test Case, or sub-parts of a test case: Test Step, Verification….

· ID: identifier for the test case, of of each test step.

· Requirement: reference to the test requirement (s) that is verified.

· Description: informal statement about what the test case is verifying, or what operation the test step is doing.

· Abstract Message Content: a logical expression that characterizes the content of the message either to be sent, or to be received.
	Test Object
	ID
	Requirement
	Description
	Abstract Message Content

	Test Case
	testcase_2
	funreq_id_2
	SOAP message must be in root part of MIME message
	

	Test Step
	1
	
	Send message to MSH
	

	
	
	
	Construct and send a basic message header
	Sent_Message_Header(/mime:Message[mime:MessageContainer[1] /soap:Envelope/ soap:Header/eb:MessageHeader[eb:MessageId = $MessageId and eb:ConversationId=$ConversationId and eb:CPAId=‘mshc_Basic’ and eb:Action=‘Dummy’]])

	Test Step
	2
	
	Filter received message(s) from MSH
	

	
	
	
	Correlate returned message based upon CPAId, ConversationId and Action
	Received_Message_Header_Filter(/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header/eb:MessageHeader[eb:Action=‘Mute’ and eb:CPAId=‘mshc_Basic’ and eb:ConversationId=$ConversationId]])

	Assertion
	
	
	Verify that an SOAP Message is found in the root part of the MIME message
	Verify_Received_Message_Filter(/mime:Message[mime:MessageContainer[1]/soap:Envelop])

3.3.4 Test case execution limitations with TestFramework 1.0

The following test cases will not have executable test cases counterparts in the executable test suite based on the Test Framework 1.0:

TestCase_1 (funreq_id_1):

Test framework 1.0 does not support test steps for schema validation.

testcase_77 (funreq_id_77):

Test framework 1.0 does not support MSH sgut-down / restart.

TestCase_79 (funreq_id_79):

Test framework 1.0 does not support MSH sgut-down / restart

TestCase_80 (funreq_id_80)

Test framework 1.0 does not support MSH sgut-down / restart

TestCase_81 (funreq_id_81)

Test framework 1.0 does not support MSH sgut-down / restart

TestCase_82 (funreq_id_82)

Test framework 1.0 does not support MSH sgut-down / restart

TestCase_83 (funreq_id_83)

Test framework 1.0 does not support MSH sgut-down / restart

TestCase_84 (funreq_id_84)

Test framework 1.0 does not support MSH sgut-down / restart

TestCase_115 (funreq_id_115)

Test framework 1.0 does not support MSH sgut-down / restart

TestCase_138 (funreq_id_138)

Test framework 1.0 does not support a definition of error notification

TestCase_139 (funreq_id_139)

Test framework 1.0 does not support interruption of the Test Driver

communication end-point.

3.4 Executable Conformance Test Suite (Normative)

[ebMSExeConfTests] is an XML document containing the executable ebXML MS V2.0 Conformance Suite. The XML document consists of a “bootstrap” ConfigurationGroup data, Test Case, Test Step and Test Operation XML content that provides the necessary information for the execution of the Test Suite by the Test Driver. The syntax and semantics of this Test Suite are described in detail in the [ebTestFramework].

3.5 Test Material

Test material is message material referenced by the Abstract Test Suite necessary to completely describe a Test Case. This material includes MSH configuration parameters, message content parameters and Test Driver configuration parameters.
3.5.1 Test Material for Test Driver Configuration

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]
April 2002. All Rights Reserved.
ebxml-iic-basic-interop-test-suite-10

03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved.

Page 3 of 1

