Also the notion of "AndSplit" does not really match common workflow notions:
subthreads are always all started and concurrently in a split (so there is no such thing
as an or-split I believe).

[MIKE] - I got my notation (AndSplit/OrSplit) from the workflow examples I researched on the web
(Google searching of AndSplit or OrSplit returns many such examples). However, you can certainly
just say:

<Split>
 ...
</Split>
 <Join type="AndJoin"/> or <Join type="OrJoin"/>

 My questions are:

In workflow, does a <Split> always require a <Join>? Can we just <Split> three <TestSteps> without necessarily
having a logical <Join> operation (for example, a <Thread> that does a PutMessage <TestStep>, then a "GetMessage" <TestStep> then another "GetMessage" <TestStep>, with no
branching to a <AndJoin> or <OrJoin>) The result of the <Thread> is based upon all <TestSteps> returning a value of "true"

Also, how do we express a synchronous "AndSplit" operation (since a <Split>, as you say is by definition an asynchronous execution of sub-threads)? As I have read it, <AndSplit>
is an asynchronous execution of subthreads, and an <OrSlit> is a synchronous execution of subthreads.

Because some <Split> operations in ebXML BPSS testing will require sequential execution, and cannot be run in parallel. I see this as a problem unless we can define a workflow term for a
"synchronous <Split>". For example, the script below would result in asynchronous PutMessage and GetMessage <TestSteps> which is not what we want, since BPSS requires a sequence of "Purchase Order First", then "Send Invoice Second". Is there a "synchronous" way to do a <Split>? Or should I be using another workflow term to express this?

<Split>
<TestStep><PutMessage>...send an Purchase Order </PutMessage></TestStep>
<TestStep><GetMessage>... Request a Confirmation </PutMessage></TestStep>
</Split>
<AndJoin>
<TestStep><PutMessage>...send a Duplicate Purchase Order </PutMessage></TestStep>
<TestStep><PutMessage>...get an Error response </PutMessage></TestStep>
</AndJoin>

On all these discussions you are getting into the BPSS semantics; see section 5.12.6.1, v.1.1 BPSS

regarding fork/join and time to perform. This section also addressing incoming and outgoing transitions.

And, note later in the document: “A BusinessActivity may have any number of incoming transition

but only one output transition. Either a Fork or Decision business states must be used to logically specify more than one outgoing transition.”

 Conditional Use Case #3: conditional branching

 Test Case:
 - send M1
 - received M2 (e.g. an approval, or rejection)
 (---> if M2 is "approval", we will expect a sequence of: receive M3 + send M4 + receive M5.
 if M2 is "rejection", we will expect a sequence of: receive M6)
 We need to verify all received messages, as the test case would fail if they do not comply.

<JD> In this case, as it is either one thread or the other, we probably need no "split"
(I think we have a misunderstanding on the split semantics)
only an "if (assertion) then (thread A) else (thread B)" would be sufficient.

[MIKE] - I see. I interpreted this as we receiver an "Approval"... "Rejection"..
or perhaps some other type of message. You are saying it is either one or the other.
In this case, I agree that we do not need a <Split> However, there may be use cases
where an <If><Then><ElseIf><Then> <Else> situation may exist.

Now, should we use the "if (...) " at assertion level, instead of thread level?

[MIKE] - I think this gets to the issue of what a <TestStep> is. Should it invoke
a <Thread>? Or is it the "lowest common denominator" (capable only of invoking
a <PutMessage> or <GetMessage> operation.. My opinion is that we are getting too
"low level" here, because <TestPreCondition> and <TestAssertion> may get "lost" in the
complexities of <If><Then><Else> I would rather have the <If> clause reserved for evaluating
the results of <TestSteps> and <Threads>, ranther than <TestAssertions>. Comments
from implementers?

mm1: I agree we should think quite a bit about how low-level or detail we provide as we are ‘a framework.’ We are already re-defining some of the process semantics to support a test-processing description.

because we need to branch within a thread, like here, in some cases.
So both could be possible in general.
the "Then" and "Else" would still start threads (synchronous in our use case, as you pointed out).
