Jacques,

 Here is my response to your comments:

 Concurrency Use Case #1: Exception handling

 Test Case:
 - send a message M1
 - receive message M2
 - verify M2

 But in case an error is received that correlates with M1, at any point in time
 within 300sec after sending M1, before or after receiving M2, and regardless of
 the outcome of verifying M2, we want the test case to fail.

<JD> Overall, your scripting is working, but I find the embedding of threads clumsy:
- it is not very readable.
- in case the same thread needs be started several times in same test case,
we need to avoid embedding it each time: I assume we'll just start it by referring to its name.

[MIKE] - That is the purpose of the <ThreadRef> and <TestStepRef> elements.. to "reuse" a <Thread>
or <TestStep> via name reference. We could introduce all <Threads> at the beginning of the <TestSuite>, and
use them via name reference.. and eliminate "inlining" <Threads> If you have a lot of redundant
<Threads>.. this would make for smaller <TestSuite> files.

[MIKE2] – Removed <Thread> inside all <TestCase> scripting.. it can only be introduce via “<ThreadRef> now.

[MIKE3] – After studying this some more, I suggest allowing <Thread> as an “option” for Test Writers to “inline” into their <TestCase>. This gives the test designer the freedom to “create” more sophisticated (non-static) Test Cases (i.e. they can

embed “static” threads within their own “inlined” threads… rather than having to declare hundreds or thousands of “static”

threads at the beginning of the <TestSuite> . Doing this would give the test writer the option (and power) to create more

“readable” <TestCase>s as well I belive.

<JD3> Of course we don’t want large list of common declarations at beginning of test suite… When I was suggesting to script the threads separately, that was mostly within each test case, not at test suite level. That seems sufficient to avoid intricate scripts with hard-to-follow embedded threads. Now, “inline” could be an option, but if we “declare” the threads at beginning of each Test Case wouldn’t that be sufficient to avoid need for inlines? (I am trying to avoid too many options, for this second rlease…)

- embedding the full sequence of steps of a thread, inside the calling thread, is misleading:
it seems that the step #3 in use case 1 needs to wait for the end of the embedded thread,
while it is not true.

[MIKE] - Why does it seem to indicate that? The embedded thread has an type attribute value of "asynchronous"..
so why would you conclude that step #3 would have to wait for that thread to complete? Perhaps what you are saying
is that "inlining" a <Thread> gives the appearance of a "synchronous" execution, when in fact the "asynchronous" attribute
precludes this from happpening. I agree however that inlining <Thread> content is unnecessary, and should be eliminated.

[MIKE2] – Removed <Thread> inside all <TestCase> scripting.. it can only be introduce via “<ThreadRef> now.

[MIKE3] – Included <Thread> as an “option” for inlining to allow “customization” of <Thread> use. Test writers can also

use <Threads> via <ThreadRef name=”abc”/>

<JD3> see my previous comment. OK for ThreadRef notation.

So I propose to modify your test case for UC 1 (Exception Handling) as follows:

Instead of the following embedding pattern you have in your example:

Test Case 1:
Thread:
(Test Step 1.01 (Put) ;
 Test Step 1.02 (async Thread: Test Step 03 (Get, assertion)) ;
 Test Step 1.03 (Get, assertion)

We could dissociate the threads (and use their names):

Test Case 1:
Thread: "main"
{ Test Step 1.01 (Put) ;
 Test Step 1.02 (async thread("Exception")) ;
 Test Step 1.03 (Get, assertion)
}
Thread: "Exception"
(Test Step 2.01 (Get, assertion) }

[MIKE] - I will declare all <Threads> at the beginning (or end) of the <TestSuite>. This will allow their use by any <TestCase> via their "name" attribute value.

[MIKE2] – Modified schema to reflect this

Also, the script is not explicit about the 300sec limit:

[MIKE] - It is if you read the XML, but you are correct that it is not in the rendered HTML,. I added a <GetMessage stepDuration="300"/> attribute, which would be used to
define the "timeout" periof for that <GetMessage> operation

There are several ways we could handle this:
- time the Get operation itself, by adding to it an optional "timeout" parameter.

[MIKE] - I opted for this solution (see above)

If the Get could not select a message within the timeout, the test step proceeds further
here with the "Assertion" op, which would verify no error received.

[MIKE] - Agreed

- introduce a new type of step, a "sleep", which would block the thread some amount
of time before passing control to the next step. (note that could be useful generally).

[MIKE2] – I can se where <Sleep> would be useful for waiting between <TestSteps>, in particular for

waiting a specific time between consecutive <PutMessage> <TestStep>s. But it would not (as I interpret it) solve the

“timeout” issue, since a <Sleep> AFTER a <GetMessage> operation would have no influence on when the

<GetMessage> operation finishes, only the time interval between completion of the <GetMessage> <TestStep> and the next <TestStep>.… so a “timeout” or “stepDuration” attribute for <GetMessage> would still seem necessary regardless of whether or not

we use <Sleep>.

[MIKE3] – In addition to a “stepDuration” attribute, we have a “stepDelay” attribute, allowing one to set both the

maximum execution time as well as a “sleep” period before execution of the <TestStep>.
<JD3> Agree, but I only thought of using “sleep “ before doing GetMessage, not after. I think we need both a general “sleep” and

a TimeOut parameter, so would keep a separate “sleep” step, or pre-step that we could use for any step:

· in case we want to get all possible messages within time T, we’ll set the stepDuration to T.

· in case we want to select only one message, before T expires, we’ll set this stepDuration to T and set “getMultiple” to false.

· If we want to verify that a message is received within a time window (after t1, before t1+T), then we could use sleep(t1) before or at beginning of GetMessage step, and set GetMessage stepDuration to T. (useful for test cases that want to detect when an expected message is received late.)

I just went through the BPSS spec, and we should be able to write test cases that will

artificially delay steps in a thread, as you said, e.g. time between two PutMessage ops, because BPSS has

this TimeToPerform parameter. So I would favor a separate “sleep step” , or at the very least a “sleep” precondition for all steps and also split ops, so that their exec could be delayed.

Now, while going through TestFramework 1.1, I noted something: we are not clear about the semantics of GetMessage w/r to message store (at least we should be clearer in section 7.1.7): Even if a GetMessage does not remove messages from the store, how can we make sure that another GetMessage in a next step will NOT select the same message? Shouldn’t we introduce a notion of “marker” in the store, that would be specific to a Test Case if not at thread level?

[MIKE] - This is an option.. but I like the "stepDuration" attribute better because it is explicit to the <GetMessage> operation,
where timing will be an issue I will expand the graphic of the schema with the next revision to show this.
.

[MIKE3] – In addition to a “stepDuration” attribute, we have a “stepDelay” attribute, allowing one to set both the

maximum execution time as well as a “sleep” period before execution of the <TestStep>. Both “stepDelay” and

“stepDuration” could be added to the <ConfigurationGroup> as “global” Test Driver configuration parameters that

can be “overriden” at the individual <TestStep> level using these attribute values.

<JD3> sounds good enough. Although I said before, it is not just steps, but also ops like “split” that may need be delayed. So is there really a problem with having separate “sleep” steps?

Finally, a more general question: now that we have several threads in a tset case,
should we always require that ALL threads terminate successfully, for the test case to succeed?

[MIKE] - No. With this expanded (logical branching) capability, a successful <TestCase>
is now based upon the final "state" in its logical branching evaluating to "true" . (BUT NOT INTERMEDIATE
"BRANCHING" STATES). If we branch to a <Thread> or <TestStep> that returns a "false" result, but it is part of an
<If> <Then> <ElseIf> <Else> structure, and the branching (and execution) can logically continue, then we would not say that the
<TestCase> "passed" until the logical branching reached a leaf node in the branch with a "true" result.
Conversely, to "fail", execution reaches a leaf node in the logical branching structure where the result is "false"
and cannot proceed further.

- It could be more natural to state that if thread X terminates on a successsful assertion
(e.g. Error message is obtained, and matches requires condition) then this causes the
entire test case to fail.

[MIKE] - This is a case of perception. No error = "pass" OR No Error = "fail" However, "pass" and "fail"
have a specific meaning in the currently defined logical evaluation of a <TestCase> "pass", as currently
defined, means "success" and "proceed" (in the case of logical branching). Saying that an Error message
is obtained = "pass" presents problems. That is why my <TestAssertion> says No Errors = "pass".
If we want to describe <TestAssertions> both ways, then we need a qualifier like the one you describe.
Comments from implementers?

[MIKE2] – If we introduce the “pass/fail” qualifier to <TestPrecondition> and <TestAssertion>, and we introduce

a special <Exception> object (whose “true” results in failure of the <TestStep>, or <Thread>) then this should

satisfy the requirement I would think.

[MIKE3] – Looking at this some more, it seems that simply writing the <TestAssertion> or <TestPrecondition> in the “positive”

(where “true” = “pass” and “false” = “fail”) would be the simplest solution. However, to have it both ways,

(true = “pass or fail” and false = “pass or fail”) I have added a “matchResult” to both of these elements to allow a test writer to

“flip” the meaning of the assertion.

 <JD3> A more basic question on GetMessage: I am actually unclear as why we need both <TestPrecondition> and <TestAssertion>in GetMessage: the precond object seems unnecessary, The Filter is enough to select relevant messages. So I would guess we only need to associate matchResult with TestAssertion. Not sure if an Exception object is needed, would avoid this terminology at step level..
That will be generally what Exceptions threads are for.
For this we could use an explicit qualifier "fail" or "pass" for the final Assertions
(if the Assertion is verified, the qualifier decides of the entire test case: "fail" or "pass").

[MIKE] - If our logical structure is sound (<TestCase><Thread><If><Then><Else) then the final
<TestAssertion> (wherever that is in the logic tree.. it could vary depending on logic flow during execution)
would determine <TestCase> result. Again, the "pass" or "fail" I believe reflects the
No error = "pass" OR No Error = "fail" issue. If it is determined that we need this, then I will
add it as a <TestAssertion> attribute (with a default of "pass").

[MIKE3] – Added this feature

- without pass/fail qualifiers, the thread execution simply has boolean semantics, for
the overall flow control of the case ("if (thread A) then ...").

[MIKE] - This is not true. The boolean semantics do more than control flow. The boolean semantics
include a "bottom up" logic, in which a true/false <TestAssertion> result determines a true/false
<TestStep> result. A true/false <TestStep> result (based upon its parent <If><Then><Else>
clause) determines control flow AND is the current state of the <TestCase> If the <TestAssertion> is the
"last" in the <TestCase> (as you mention directly below) , then the state of the <TestCase> is whatever its value is: pass or fail.
So it is not simply boolean semantics driving execution, it is the "state" of the <TestCase> at any point in time.
The only advantage of using the "pass/fail" qualifier" is that it lets you express a <TestAssertion> in both the positive and negative (pass or fail).
(e.g the No error = "pass" OR No Error = "fail") As it is currently is defined, all <TestAssertion>s MUST be expressed
in the positive (pass). It is not a big deal to add this attribute to <TestAssertion> and <TestPrecondition>.
Comments from implementers?

[MIKE2] – I understand better what you are saying above now. Yes, without any additional modification, the execution relies totally on the boolean logic for the overall flow. Introduction of additional control flow via a “qualifier” attribute to each <TestAssertion> or <TestPrecondition> would give more flexibility, and adding an <Exception> element would allow a faster short-cut to terminating

execution of the <TestCase> (rather than relying on the boolean flow to ultimately reach the same result… I would think).

[MIKE3] – I added an <Exception> element as an option in defining a <Thread>… so control can branch to a <Thread name=”Exception”/>

to terminate execution of the <TestCase>

<JD3> for the sake of avoiding introducing too many new constructs: couldn’t we get by with a more general mechanism: i.e. branching to any thread, which in turn could simply decide to “fail” the test case as described previously? (instead of having special Exception threads with specific semantics)

- Conversely, it could be that it is enough for thread XYZ to terminate successfully,
for the test case to succeed, regardless of how other threads do. Then we would qualify
its last assertion with "pass".

[MIKE3] – Hmmm. This is different. I will need to add an additional element, called <Success>… that unconditionally

says <TestCase> success, regardless of anything else. This (along with “pass”, “fail” and “exception” is essentially a “GOTO”. I will add this. Comments from

implementers?
<JD3> I didn’t mean adding new elements / ops: my example was just another example that would be made possible to handle nicely with a general “fail” or “pass” order. And I think we can do that already with the “fail” / “pass” annotation (matchResult) above? In fact, not sure if “matchResult” is the best name: would an “exit” attribute be mor explicit to signify the end of the test case, giving the possible annotations, where if_true and if_false are element attributes:

if_true=”exit_fail”,

if_true=”exit_pass”,

if_false=”exit_fail”,

if_false=”exit_pass”,

[MIKE] - I see what you are saying. This is true.. since the value of the last <TestAssertion> reflects the
state of the <TestCase> at that point.

- note that we could acheive the same effect with a pass or fail action:
if (thread A) then "fail";
or
if (thread A) then "pass" else "fail";

[MIKE] - If we want to introduce additional elements into the scheam (<Pass> and <Fail>) we can do that. It makes for more
readable <TestCase>s. Basically, these <Pass> and <Fail> tags would set the state of the <TestCase> and the
Boolean logic would still ultimately determine whether execution continues (if it is part of some greater <If><Then> <Else> structure, of it is a <Thread> within a <Thread> Comments from implementers?

[MIKE] – Added these elements to the schema, however a test writer still has a choice to either : (a) rely on boolean flow to determine final test case state “true/false” or (b) insert <ThreadRef name=”Pass”/> or <ThreadRef name=”Fail”/> into their flow to make it more readable and unambiguous.

So a thread in itself would not decide of the total outcome (except for the main thread,
which has a default of: if (thread main) then "pass" else "fail";)

[MIKE] - I do not have a problem with this if that is what is decided.

 Concurrency Use Case #2: workflow split

 Test Case:
 - send M1
 (---> this will trigger two concurrent subprocesses 2 and 3 on the remote side,
 which will send back two threads of messages: M2a + M2b for subprocess 2, and M3 for
 subprocess 3. There is no order between subprocesses 2 and 3)
 - split {(receive M2a; verify M2a; receive M2b; verify M2b)(receive M3; verify M3)}
 (---> then when M2a, M2b and M3 have been verified, one last message M4 is expected)
 - receive message M4
 - verify M4

<JD> In this script, the "if...then...endThen" seems unnecessary:

[MIKE] - This is true, It could just be:

<Thread name="thread_01" type="synchronous">
 <TestStep id="step_01"/>
 <Thread name= "thread_02" type="asynchronous"> </Thread>
 <TestStep id="step_03"/>

</Thread>

[MIKE] - The result would be the determination that all <TestStep>s and <Threads> have a state of "true" (with the asynchronous Thread result returned
whenever it completes). step_01 is executed first, thread_02 is executed next (asynchronously), step_03 is executed simultaneously with thread_02
(This assumes that each operation is executed serially unless it is an asynchronous thread).

Also the notion of "AndSplit" does not really match common workflow notions:
subthreads are always all started and concurrently in a split (so there is no such thing
as an or-split I believe).

[MIKE] - I got my notation (AndSplit/OrSplit) from the workflow examples I researched on the web
(Google searching of AndSplit or OrSplit returns many such examples). However, you can certainly
just say:

<Split>
 ...
</Split>

<Join type="AndJoin"/> or <Join type="OrJoin"/>

My questions are:

In workflow, does a <Split> always require a <Join>? Can we just <Split> three <TestSteps> without necessarily
having a logical <Join> operation (for example, a <Thread> that does a PutMessage <TestStep>, then a "GetMessage" <TestStep> then another "GetMessage" <TestStep>, with no
branching to a <AndJoin> or <OrJoin>) The result of the <Thread> is based upon all <TestSteps> returning a value of "true"

Also, how do we express a synchronous "AndSplit" operation (since a <Split>, as you say is by definition an asynchronous execution of sub-threads)? As I have read it, <AndSplit>
is an asynchronous execution of subthreads, and an <OrSlit> is a synchronous execution of subthreads.

Because some <Split> operations in ebXML BPSS testing will require sequential execution, and cannot be run in parallel. I see this as a problem unless we can define a workflow term for a
"synchronous <Split>". For example, the script below would result in asynchronous PutMessage and GetMessage <TestSteps> which is not what we want, since BPSS requires a sequence of "Purchase Order First", then "Send Invoice Second". Is there a "synchronous" way to do a <Split>? Or should I be using another workflow term to express this?

<Split>
<TestStep><PutMessage>...send an Purchase Order </PutMessage></TestStep>
<TestStep><GetMessage>... Request a Confirmation </PutMessage></TestStep>
</Split>
<AndJoin>
<TestStep><PutMessage>...send a Duplicate Purchase Order </PutMessage></TestStep>
<TestStep><PutMessage>...get an Error response </PutMessage></TestStep>
</AndJoin>

<Monica> On all these discussions you are getting into the BPSS semantics; see section 5.12.6.1, v.1.1 BPSS

regarding fork/join and time to perform. This section also addressing incoming and outgoing transitions.

And, note later in the document: “A BusinessActivity may have any number of incoming transition

but only one output transition. Either a Fork or Decision business states must be used to logically specify more than one outgoing transition.”
<JD3> I went through the BPSS spec. It only uses “Fork” and “Join”. The Fork (equivalent to a Split), has possibility to fork several concurrent threads, or just one (no “serialized” semantics of threads), depending on some argument (ALL, XOR). So I think in our case, we don’t even need the XOR semantics as the choice of which activity will run, depends on some factor other than a conditional statement.

A Join may wait for all, or for just one (“waitForAll” arg, same as “AND” join). A Join is not always needed after Fork.

So I believe we could go with just Fork (or Split) and Join. We don’t even need to decide if the threads in argument of a Fork will run async W/r to the main thread that is forking, or synchronously: using a Join in the very next step after the Fork would mean a synchronous execution of the forked thread(s) w/r/ to the main thread.

I am concerned as to whether how these terms will “mesh” with <If> <Then> <Elseif> <Else> It may be better

To either try to live without (or change the terminology) of one group or the other. <If><Then>…etc… is more

Powerful (or appears to be more easily understood). Couldn’t we call <OrJoin> “<Or>” and <AndJoin> “<And>”?

It seems that here we don't need more than split, or-join, and-join which are
known workflow operators.

[MIKE] - I think we need one more (asynchronous split)?

 [MIKE3] – After more study, I added a <Join> element, with a “joinType” attribute whose value can be either “andjoin” or

“orjoin”. This will give us the flexibility to do nested compound clauses, using any combinatin of “and” or “or”

predicates. Rather than define a <Split> element, I feel that we can simply use a <Thread>, having an implicit

<Split> operation (represented as a series of <Thread> or <TestStep> sub-operations). I am actually only

adding a <Join> and <Else> tag to handle flow control, and I believe that these constructs, combined with the ability to nest <Threads> should provide us with all of the branching capability that we will need. I was able to compose the

three use cases, and I look forward to doing a BPPS <TestCase>. I am not happy using the terms <Join> and <Else> together… I belive it would be more appropriate to use <Then> and <Else>… but whatever the TC decides is OK with me.

Split (A, B) is actually equivalent to a sequence { async thread(A); async thread(B) }
so maybe we don't even need a split.

MIKE] - I agree, unless we need to "join" their result. Then we need to define what is being "joined".

[MIKE3] – The <Join> issue can be solved using the <Join> operator I provide in the updated schema.
If we have a sequence of A,B,C,D,E,F,G, then we define a "join", in XML terms we need to "enclose" what
we are joining, so I think a "container" element (e.g. <Split>) would be necessary to define what we are joining,
<Split>A,B,C</Split>? or <Split>C,D,E</Split>?

[MIKE3] – Decided that this can be addressed by defining a <Thread> as an implicit <Split> of listed <Thread> and <TestStep> sub-processes

We still need a join, here and-join to wait for all threads,
before proceeding further in the parent thread.

[MIKE] - This means (in XML terms) that we need a "parent" element for the 2 asynchronous threads (A and B). So a
<Split> parent element is called for.

So it seems to me could have:

Thread: "main"
- step 1;
- split (thread A, thread B)
- and-join (A, B)
- step 4;

[MIKE] - Agreed. It could be written as:

<Thread name="main">
 <TestStep id = "testStep_01"> ... </TestStep>
 <Split>
 <Thread name="A"></Thread>
 <Thread name="B"></Thread>
 </Split>
<AndJoin>
<TestStep id="step_04">...</TestStep>
</AndJoin>

[MIKE3] – Or as I now would write it:

<Thread name="main">

 <TestStep id = "testStep_01"> ... </TestStep>

 <Thread name=”split” synchType=”synchronous”>

 <Thread name="A" synchType=”asynchronous”></Thread>

 <Thread name="B" synchType=”asynchronous”></Thread>

 </Thread>

<TestStep id="step_04">...</TestStep>
 <JD3> The “thread name=”split” is confusing: split is not a thread, but the classical workflow operator. Why not have something like you had before, but with a more conventional Join, closer to what BPSS has:

<Thread name="main">

 <TestStep id = "testStep_01"> ... </TestStep>

 <Split>

 < ThreadRef ="A"/>

 < ThreadRef ="B"/>

 </Split>

<Join type=”and”>

 < ThreadRef ="A"/>

 < ThreadRef ="B"/>

</Join>

<TestStep id="step_04">...</TestStep>

</Thread >

I would even say that inside a split, no mention of “asynch” is needed as it is the semantics of Split. We could also say that a Split always executes asynchronously, i.e. if there are steps just after, they will execute concurrently with threads A and B. If we don’t want so, we’ll use a Join as I did in this example, which will wait for A and B (“and”) or for one of them (“or”). Using “synchronous” Split would make the use of my “and” Join unnecessary, but only in that case. (would not help for “or”). So I am wondering whether we ever need “synch” and “asynch” when forking a thread , as even when we want to fork a single thread from within the main thread, we can use a Split with one argt, and the Join above to decide whether to make it synchronous or not. The Join is actually flexible as we can decide “where” to join in the main thread.

So I would favor it again as this reduces the number of constructs we have to implement.

 Conditional Use Case #3: conditional branching

 Test Case:
 - send M1
 - received M2 (e.g. an approval, or rejection)
 (---> if M2 is "approval", we will expect a sequence of: receive M3 + send M4 + receive M5.
 if M2 is "rejection", we will expect a sequence of: receive M6)
 We need to verify all received messages, as the test case would fail if they do not comply.

<JD> In this case, as it is either one thread or the other, we probably need no "split"
(I think we have a misunderstanding on the split semantics)
only an "if (assertion) then (thread A) else (thread B)" would be sufficient.

[MIKE] - I see. I interpreted this as we receiver an "Approval"... "Rejection"..
or perhaps some other type of message. You are saying it is either one or the other.
In this case, I agree that we do not need a <Split> However, there may be use cases
where an <If><Then><ElseIf><Then> <Else> situation may exist.

Now, should we use the "if (...) " at assertion level, instead of thread level?

[MIKE] - I think this gets to the issue of what a <TestStep> is. Should it invoke
a <Thread>? Or is it the "lowest common denominator" (capable only of invoking
a <PutMessage> or <GetMessage> operation.. My opinion is that we are getting too
"low level" here, because <TestPreCondition> and <TestAssertion> may get "lost" in the
complexities of <If><Then><Else> I would rather have the <If> clause reserved for evaluating
the results of <TestSteps> and <Threads>, ranther than <TestAssertions>. Comments
from implementers?

[MIKE3] – I looked at “branching” at the <GetMessage> operation level (since that is where the

<TestPrecondition> and <TestAssertion> operations are. Because we are dealing (at that point) with

examination of an individual message (or group of messages in the MessageStore), branching into new

sub-<Threads> or <TestSteps> from this “atomic” level, would not seem appropriate or logical, since

the “driving” parent <Thread> should really control what actions occur next, based on the returned

boolean result of the <TestStep>. Branching below the atomic level to start new <Threads> is not

necessary in my opinion, and removes control from the parent <Thread> in orchestrating execution,

creating what could be a VERY deeply nested <Thread> structure. Comments from implementers?
<JD3> I am wondering if we could treat such action (spawning a thread) in a similar way as we treat the “fail” or “pass” exit, syntactically?

because we need to branch within a thread, like here, in some cases.
So both could be possible in general.
the "Then" and "Else" would still start threads (synchronous in our use case, as you pointed out).
