
ebXML Test Framework

Committee Specification Version 1.1 DRAFT

OASIS ebXML Implementation, Interoperability and

Conformance Technical Committee

 14 April, 2004

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]

April 2002. All Rights Reserved.

Document identifier:

ebxml-iic-test-framework-11

Location:

 http://www.oasis-open.org/committees/documents.php?wg_abbrev=ebxml-iic

Authors/Editors:

Michael Kass, NIST <michael.kass@nist.gov>

Contributors:

Steven Yung, Sun Microsystems <steven.yung@sun.com>

Prakash Sinha, IONA <prakash.sinha@iona.com>

Matthew MacKenzie, Individual <matt@mac-kenzie.net>

Hatem El Sebaaly, IPNet Solutions <hatem@ipnetsolutions.com>

Monica Martin, Sun Microsystems <monica.martin@sun.com>

Jacques Durand, Fujitsu <jdurand@fsw.fujitsu.com>

Christopher Frank < C.Frank@seeburger.de>

Eric VanLydegraf, Kinzan <ericv@kinzan.com>

Jeff Turpin, CycloneCommerce <jturpin@cyclonecommerce.com>

Serm Kulvatunyou, NIST <serm@nist.gov>

Tim Sakach, Drake Certivo, Inc. tsakach@certivo.net

Hyunbo Cho, Postech <hcho@postech.ac.kr>

Abstract:

This document specifies ebXML interoperability testing specification for the eBusiness

community.

Status:

This document has been approved as a committee specification, and is updated periodically on

no particular schedule.

Committee members should send comments on this specification to the

ebxml-iic@lists.oasis-open.org list. Others should subscribe to and send comments to the

ebxml-iic-comment@lists.oasis-open.org list. To subscribe, send an email message to

ebxml-iic-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the

message.

For more information about this work, including any errata and related efforts by this committee,

please refer to our home page at http://www.oasis-open.org/committees/ebxml-iic.

Errata to this version:

None

ebxml-iic-test-framework-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 2 of 213

http://www.oasis-open.org/committees/documents.php?wg_abbrev=ebxml-iic
mailto:michael.kass@nist.gov
mailto:steven.yung@sun.com
mailto:prakash.sinha@iona.com
mailto:matt@mac-kenzie.net
mailto:hatem@ipnetsolutions.com
mailto:monica.martin@sun.com
mailto:C.Frank@seeburger.de
mailto:ericv@kinzan.com
mailto:jturpin@cyclonecommerce.com
mailto:serm@nist.gov
mailto:tsakach@certivo.net
mailto:ebxml-iic@lists.oasis-open.org
mailto:ebxml-iic-comment@lists.oasis-open.org
mailto:ebxml-iic-comment-request@lists.oasis-open.org?body=subscribe
http://www.oasis-open.org/committees/ebxml-iic

Table of Contents

1 Introduction ...3

1.1 Summary of Contents of this Document ..3

1.2 Document Conventions ...3

1.3 Audience ..4

1.4 Caveats and Assumptions ...4

1.5 Related Documents ...4

1.6 Minimal Requirements for Conformance ...5

2 Principles and Methodology of Operations ...6

2.1 General Objectives ..6

2.2 General Methodology ..7

3 The Test Framework Components ...9

3.1 The Test Driver ...9

3.1.1 Functions ..9

3.1.2 Using the Test Driver in Connection Mode ...11

3.1.3 Using the Test Driver in Service Mode ...13

3.2 The Test Service ...15

3.2.1 Functions and Interactions ...15

3.2.2 Modes of Operation of the Test Service ...17

3.2.3 Configuration Parameters of the Test Service ...18

3.2.4 The Messaging Actions of the Test Service ..20

3.2.4.1 Common Functions ...20

3.2.4.2 Test Service Actions ...20

3.2.4.3 Integration of the Test Service with an MSH Implementation ...23

3.2.5 Interfaces for Test Driver and Test Service ..23

3.2.5.1 Abstract Test Service “Send” Interface ...24

3.2.5.2 WSDL representation of the initiator RPC method ...25

3.2.5.3 Abstract Test Service “Configuration” Interface ..26

3.2.5.4 Abstract Test Service “Notification” Interface ..27

3.2.5.5 Abstract Test Driver “Receive” Interface ..30

3.3 Executing Test Cases ..32

3.3.1 A Typical Execution Scenario ..32

3.3.2 Test Case as a Workflow of Threads and Test Steps ..33

3.3.3 Related Message Data and Message Declarations ...340.50 w
[] 0 d
540.00 598.74 m
72.00 598.74 l
S

1 Introduction

1.1 Summary of Contents of this Document

This specification defines a test suite for ebXML Messaging basic interoperability. The testing procedure

design and naming conventions follow the format specified in the Standard for Software Test

Documentation IEEE Std 829-1998.

This specification is organized around the following topics:

• Interoperability testing architecture

• Test cases for basic interoperability

• Test data materials

1.2 Document Conventions

Terms in Italics are defined in the Definition of Terms in Appendix H. Terms listed in Bold Italics

represent the element and/or attribute content. Terms listed in Courier font relate to test data. Notes

are listed in Times New Roman font and are informative (non-normative). Attribute names begin with

lowercase. Element names begin with Uppercase.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,

RECOMMENDED, MAY and OPTIONAL, when they appear in this document, are to be interpreted as

described in [RFC2119] as quoted here:

• MUST: This word, or the terms "REQUIRED" or "SHALL", means that the definition is an absolute

requirement of the specification.

• MUST NOT: This phrase, or the phrase "SHALL NOT", means that the definition is an absolute prohibition of

the specification.

• SHOULD: This word, or the adjective "RECOMMENDED", means that there may exist valid reasons in

particular circumstances to ignore a particular item, but the full implications MUST be understood and

carefully weighed before choosing a different course.

• SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that there may exist valid

reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full

implications should be understood and the case carefully weighed before implementing any behavior

described with this label.

ebxml-iic-test-framework-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 3 of 213

3.3.4 Related Configuration Data ...34

Part II: Test Suite Representation ...36

4 Test Suite ...37

4.1 Conformance vs. Interoperability Test Suite ...37

4.2 The Test Suite Document ..38

4.2.1 Test Suite Metadata ..40

4.2.2 The ConfigurationGroup ..41

4.2.2.1 Precedence Rules for Test Driver/MSH configuration parameters used in message

construction ... 45

4.2.3 The TestServiceConfigurator Operation ...46

4.2.3.1 TestServiceConfigurator behavior in Connection and Service mode48

5 Test Requirements ..49

5.1 Purpose and Structure ..49

5.2 The Test Requirements Document ..49

5.2.1 ... 50

5.3 Specification Coverage ..52

5.4 Test Requirements Coverage (or Test Run-Time Coverage)53

6 Test Profiles ...55

6.1 The Test Profile Document ..55

6.2 Relationships between Profiles, Requirements and Test Cases56

7 Test Cases ...59

7.1 Structure of a Test Case ..59

7.1.1 Test Threads ..63

7.1.2 Test Steps ..66

7.1.2.1 Test Step Operations ..66

7.1.2.2 Message Verification/Validation ..68

7.1.2.3 Semantics of the SetParameter Operation in a Test Step ...70

7.1.2.4 The PutMessage Operation ..72

7.1.2.5 73

7.1.2.6 The SetPayload Operation ..98

7.1.2.7 The Dsign Operation ...100

7.1.2.8 The Initiator Operation ..104

7.1.2.9 The TestServiceConfigurator Operation ...106

7.1.3 The GetMessage Operation ...107

7.1.3.1 Semantics of the GetMessage operation ..108

7.1.4 The TestPreCondition Operation ..109

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 4 of 213

7.1.4.1 Semantics of the TestPreCondition operation ..111

112

7.1.5 The TestAssertion Operation ...112

7.1.6 Semantics of the TestAssertion operation ..113

7.1.7 The GetPayload Operation ...114

7.1.8 Message Store Schema ..117

 ... 118

7.1.8.1 Semantics of the Message Store ..120

7.1.8.2 ebXML Specific Message Store Schema ..121

7.1.8.3 ebXML Specific Filter Result Schema ...123

7.3 Configurator, Initiator, and Notification Message Formats 125

7.4 Test Report Schema ...134

8 Test Material ...135

8.1.1 Testing Profile Document ...135

8.1.2 Test Requirements Document ..135

8.1.3 Test Suite Document ..135

8.1.4 Base CPA and derived CPAs ...136

9 Test Material Examples ..138

9.1 Example Test Requirements ...138

9.1.1 Conformance Test Requirements ..138

9.1.2 Interoperability Test Requirements ..140

9.2 Example Test Profiles ..141

9.2.1 Conformance Test Profile Example ..141

9.2.3 Interoperability Test Profile ...142

9.3 Example Test Suites ..142

9.3.1 Conformance Test Suite ..143

9.3.2 Interoperability Test Suite ..144

Appendix A (Normative) The ebXML Test Profile Schema ...150

Appendix B (Normative) The ebXML Test Requirements Schema152

Appendix C (Normative) The ebXML Test Suite Schema and Supporting Subschemas

 156

Appendix D (Normative) The ebXML Message Store Schema (and supporting sub-

schemas) ... 165

Appendix E (Normative) The Test Report Schema ..179

Appendix F (Normative) ebXML Test Service Message Schema191

Appendix G ConfigurationGroup Schema ..196

Appendix H WSDL Definitions for Test Service ...199

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 5 of 213

Appendix I Terminology ...203

Appendix J References ...206

J.1 Normative References ...206

J.2 Non-Normative References ...207

Appendix K Acknowledgments ..208

K.1 IIC Committee Members ...208

Appendix L Revision History ..209

Appendix M Notices ...210

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 6 of 213

• MAY: This word, or the adjective "OPTIONAL", means that an item is truly optional. One vendor may

choose to include the item because a particular marketplace requires it or because the vendor feels that it

enhances the product while another vendor may omit the same item. An implementation that does not

include a particular option MUST be prepared to interoperate with another implementation which does

include the option, though perhaps with reduced functionality. In the same vein an implementation that does

include a particular option MUST be prepared to interoperate with another implementation which does not

include the option (except, of course, for the feature the option provides).

1.3 Audience

The target audience for this specification is:

• The community of software developers who implement and/or deploy the ebXML Messaging

Service (ebMS) or use other ebXML technologies such a s Registry/Repository (RegRep),

Collaboration Profile Protocol/Agreement (CPPA) or Business Process Specification Schema

(BPSS)

• The testing or verification authority, which will implement and deploy conformance or

interoperability testing for ebXML implementations.

1.4 Caveats and Assumptions

It is assumed the reader has an understanding of communications protocols, MIME, XML, SOAP, SOAP

Messages with Attachments and security technologies.

1.5 Related Documents

The following set of related specifications are developed independent of this specification as part of the

ebXML initiative, they can be found on the OASIS web site (http://www.oasis-open.org).

• ebXML Collaboration Protocol Profile and Agreement Specification [ebCPP] – CPP defines

one business partner's technical capabilities to engage in electronic business collaborations with

other partners by exchanging electronic messages. A CPA documents the technical agreement

between two (or more) partners to engage in electronic business collaboration. The MS Test

Requirements and Test Cases will refer to CPA documents or data as part of their material, or

context of verification.

• ebXML Messaging Service Specification [ebMS] – defines the messaging protocol and

service for ebXML, which provide a secure and reliable method for exchanging electronic

business transactions using the Internet.

• ebXML Test Framework [ebTestFramework]– describes the test architecture, procedures and

material that are used to implement the MS Interoperability Test Suite, as well as the test harness

for this suite.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 4 of 213

• ebXML MS Conformance Test Suite [ebMSConfTestSuite]– describes the Conformance test

suite and material for Messaging Services.

• ebXML Registry Specification [ebRS] – defines how one party can discover and/or agree upon

the information the party needs to know about another party prior to sending them a message

that complies with this specification. The Test Framework is also designed to support the testing

of a registry implementation.

• ebXML Business Process Specification Schema [BPSS] – defines how two parties can

cooperate through message-based collaborations, which follow particular message

choreographies. The Test Framework is also designed to support the testing of a business

process implementation.

1.6 Minimal Requirements for Conformance

An implementation of the Test Framework specified in this document MUST satisfy ALL of the following

conditions to be considered a conforming implementation:

• It supports all the mandatory syntax; features and behavior (as identified by the [RFC2119] key words

MUST, MUST NOT, REQUIRED, SHALL and SHALL NOT) defined in Part 1.1.1 – Document Conventions.

• It supports all the mandatory syntax, features and behavior defined for each of the components of the Test

Framework.

It complies with the following interpretation of the keywords OPTIONAL and MAY: When these keywords

apply to the behavior of the implementation, the implementation is free to support these behaviors or not,

as meant in [RFC2119]. When these keywords apply to data and configuration material used by an

implementation of the Test Framework, a conforming implementation of the Test Framework MUST be

capable of processing these optional materials according to the described semantics.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 5 of 213

2 Principles and Methodology of Operations

2.1 General Objectives

The ebXML Test Framework is intended to support conformance and interoperability testing for ebXML

specifications. It describes a testbed architecture and its software components, how these can be

combined to create a test harness for each type of ebXML testing. It also describes the test material to be

processed by this architecture, a mark-up language and format for representing test requirements, and

test suites (set of Test Cases).

The Test Framework described here has been designed to achieve the following objectives:

The Test Framework is a foundation for testing all ebXML architectural components such as Messaging,

Registry, BPSS, CPA, and Core Components.

The Test Framework is flexible enough to permit testing beyond ebXML message format, to include XML

message envelope and payload testing of any e-Business messaging service

Test Suites and Test Cases that are related to these standards, can be defined in a formal manner

(including Test Steps and verification conditions). They can be automatically processed by the Test

Framework, and their execution can easily be reproduced.

The harnessing of an ebXML implementation (or possibly several, e.g. in case of interoperability) with the

Test Framework requires a moderate effort. It generally requires some interfacing work specific to an

implementation, in the case no standard interface (API) has been specified. For example, the Test

Service (a component of the Test Framework) defines Actions that will need to be called by a particular

MSH implementation. Besides this kind of interfacing, no application code needs to be written.

Several testbed configurations - or test harnesses - can be derived from the Test Framework, depending

on the objectives of the testing. For example, MS conformance testing will include a particular

combination (architecture) of some components of the Test Framework, while interoperability testing will

require another set-up.

Operating the Test Framework - or one of the test harnesses that can be derived from it – in order to

execute a test suite, does not require advanced expertise in the framework internals, once the test suites

have been designed. The tests should be easy to operate and to repeat with moderate effort or overhead,

by users of the ebXML implementation(s) and IT staff responsible for maintaining the B2B infrastructure,

without expertise in testing activity.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 6 of 213

Users can define new Test Suites and Test Cases to be run on the framework. For this, they will script

their tests using the proposed test suite definition language or mark-up (XML-based) for Test Cases.

A Test Suite (either for conformance or for interoperability) can be run entirely and validated from one

component of the framework: the Test Driver. This means that all test outputs will be generated - and test

conditions verified - by one component, even if the test harness involves several – possibly remote –

components of the framework.

The verification of each Test Case is done by the Test Driver at run-time, as soon as the Test Case

execution is completed. The outcome of the verification can be obtained as the Test Suite has completed,

and a verification report is generated.

2.2 General Methodology

This specification only addresses the technical aspect of ebXML testing, and this section describes the

portion of testing methodology that relates directly to the usage of the Test Framework. A more general

test program for ebXML, describing a comprehensive methodology oriented toward certification, is

promoted by the OASIS Conformance TC and is described in [ConfCertTestFrmk] (NIST). When

conformance certification is the objective, the ebXML Test Framework should be used in a way that is

compliant with a conformance certification model as described in [ConfCertModelNIST]. More general

resources on Testing methodology and terminology can be found on the OASIS site

(www.oasis-open.org), as well as at NIST (www.itl.nist.gov.)

This specification adopts the terminology and guidelines published by the OASIS Conformance

Committee [ConfReqOASIS].

The Test Framework is intended for the following mode of operation, when testing for conformance or for

interoperability. In order for a testing process (or validation process) to conform to this specification, the

following phases need to be implemented:

• Phase 1: Test Plan (RECOMMENDED). An overall test plan is defined, which includes a

validation program and its objectives, the conditions of operations of the testing, levels or profiles

of conformance or of interoperability, and the requirements for Candidate Implementations to be

tested (context of deployment, configuration).

• Phase 2: Test Requirements Design (MANDATORY). A list of Test Requirements is established

for the tested specification, and for the profile/level of conformance/interoperability that is

targeted. These Test Requirements MUST refer to the specification document. Jointly to this list,

it is RECOMMENDED that Specification Coverage be reported. This document shows, for each

feature in the original specification, the Test Requirements items that address this feature. It also

estimates to which degree the feature is validated by these Test Requirements items.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 7 of 213

http://www.oasis-open.org
http://www.itl.nist.gov

• Phase 3: Test Harness Design (MANDATORY). A Test Harness is defined for a particular test

plan. It describes an architecture built from components of the Test Framework, along with

operation instructions and conditions. In order to conform to this specification, a test harness

MUST be described as a system that includes a Test Driver as specified in this document, and

MUST be able to interpret conforming test suites.

• Phase 4: Test Suite Design (MANDATORY). Each Test Requirement from Phase 2 is translated

into one or more Test Cases. A Test Case is defined as a sequence of operations (Test Steps)

over the Test Harness. Each Test Case includes: configuration material (CPA data), message

material associated with each Test Step, test verification condition that defines criteria for passing

this test. All this material, along with any particular operation directives, defines a Test Suite. In

order to be conforming to this specification, a test suite needs to be described as a document

(XML) conforming to part II of this specification.

• Phase 5: Validation Conditions (RECOMMENDED). Validation criteria are defined for the profile

or level being tested, and expressed as a general condition over the set of results from the

verification report of each Test Case of the suite. These validation criteria define the certification

or “badging” for this profile/level.

• Phase 6: Test Suite Execution (MANDATORY). The Test Suite is interpreted and executed by

the test Driver component of the Test Harness.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 8 of 213

3 The Test Framework Components

The components of the framework are designed so that they can be combined in different configurations,

or Test Harnesses.

We describe here two components that are central to the Test Framework:

The Test Driver, which interprets Test Case data and drives Test Case execution.

The Test Service, which implements some test operations (actions) that can be triggered by messages.

These operations support and automate the execution of Test Cases.

These components interface with the ebXML Message Service Handler (MSH), but are not restricted to

testing an MSH implementation.

3.1 The Test Driver

The Test Driver is the component that drives the execution of each step of a Test Case. Depending on

the test harness, the Test Driver may drive the Test Case by interacting with other components in

connection mode or in service mode.

In connection mode, the Test Driver directly generates ebXML messages at transport protocol level – e.g.

by using an appropriate transport adapter.

In service mode, the Test Driver does not operate at transport level, but at application level, by invoking

actions in the Test Service, which is another component of the framework. These actions will in turn send

or receive messages to and from the MSH.

3.1.1 Functions

The primary function of the Test Driver is to parse and interpret the Test Case definitions that are part of a

Test Suite, as described in the Test Framework mark-up language. Even when these Test Cases involve

several components of the Test Framework, the interpretation of the Test Cases is under control of the

Test Driver.

The Test Driver component of the ebXML Test Framework MUST have the following capabilities:

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 9 of 213

Self-Configuration - Based upon supplied Test Case configuration parameters specified in the ebXML

TestSuite.xsd schema (Appendix C), Test Driver configuration is done at startup, and MAY be modified at

the TestCase and TestStep levels as well.

ebXML Message Construction – Includes any portion of the message

Persistence of (Received) Messages –received messages MUST persist for the life of a Test Case.

Persistent messages MUST validate to the ebXMLMessageStore.xsd schema in Appendix D.

Parse and query persistent messages – Test Driver MUST use XPath query syntax to query persistent

message content

Parse and query message payloads – Test Driver MUST support XPath query syntax to query XML

message payloads of persistent messages.

Control the execution and workflow of the steps of a Test Case. Some steps may be executed by

other components, but their initiation is under control of the Test Driver.

Repeat previously executed Test Steps – Test Driver MUST be capable of repeating previously

executed Test Steps for the current Test Case.

Send messages - Either directly at transport layer (e.g. by opening an HTTP connection), or by using

Test Service actions.

Receive messages - Either directly at transport layer, or by notification from Test Service actions.

Perform discreet message content validation – Test Driver MUST be capable of performing discreet

validation of Time, URI, Signature and the entire XML message

Perform discreet payload content validation – Test Driver MUST be capable of performing discreet

validation of Time, URI, Signature and an XML payload

Report Conformance Test Results – Test Driver MUST generate an XML conformance report for all

executed tests in the profile. Conformance reports MUST validate to the ebXMLTestReport.xsd schema

in Appendix E.

A possible design that supports these functions is illustrated in Figure 1.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 10 of 213

Figure 1- The Test Driver: Functions and Data Flows

3.1.2 Using the Test Driver in Connection Mode

The Test Driver MUST be able to control the inputs and outputs of an MSH at transport level. This can be

achieved by using an embedded transport adapter. This adapter has transport knowledge, and can

format message material into the right transport envelope. Independently from the way to achieve this,

the Test Driver MUST be able to:

Create a message envelope, and generate fully formed messages for this transport.

Parse a message envelope and extract header data from a message, as well as from the message

payload in case it is an XML document.

Open a message communication channel (connection) with a remote message handler. In that case the

Test Driver is said to operate in connection mode.

When used in connection mode, the Test Driver is acting as a transport end-point that can receive or

send messages with an envelope consistent with the transport protocol (e.g. HTTP,SMTP, or FTP). The

interaction between the MSH and the Test Service is of the same nature as the interaction between the

MSH and an application (as the Test Service simulates an application), i.e. it involves the MSH API,

and/or a callback mechanism. Figure 2 illustrates how the Test Driver operates in connection mode.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 11 of 213

Figure 2- Test Driver: Connection Mode

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 12 of 213

Figure 3 – Test Driver: Remote Connection Mode

3.1.3 Using the Test Driver in Service Mode

In this configuration, the Test Driver directly interacts with the Service/Actions of the Test Service

component, without involving the transport layer, e.g. by invoking these actions via a software interface, in

the same process space. This allows for controlling the Test Cases execution from the application layer

(as opposed to the transport layer). Such a configuration is appropriate when doing interoperability testing

- for example between two MSH implementations – and in particular, in situations where the transport

layer should not be tampered with, or interfered with. The interactions with the Test Service must consist

of:

Sending: One action of the Test Service, the “Initiator”, serves as a channel to send requests to the MSH

it has been interfaced with. This action also MUST provide an interface to the Test Driver at application

level. When invoked by a call that contains message data, the action generates a sending request to the

MSH API for this message.

Receiving: As all actions of the Test Service may participate in the execution of a Test Case (i.e. of its

Test Steps), the Test Driver needs to be aware of their invocation by incoming messages. Each of these

actions notify the Test Driver through its “Receive” interface, passing received message data, as well as

response data. This way, the Test Driver builds an internal trace (or state) for the Test Case execution,

and is able to verify the test based on this data.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 13 of 213

The Test Driver MUST support the above communication operations with the Test Service when in

Service Mode. This may be achieved by using an embedded Service Adapter to bridge the sending and

receiving functions of the Test Driver, with the Service/Action calls of the Test Service. Figure 4 illustrates

how the Test Driver operates with a Service Adapter.

Figure 4 – Test Driver: Service Mode

This design allows for a minimal exposure of the MSH-specific API, to the components of the Test

Framework. The integration code that needs to be written for connecting the MSH implementation is then

restricted to an interface with the Service/Actions defined by the framework. Neither the Test Driver, nor

the Service Adapter, need to be aware of the MSH-specific interface. An example of test harness using

the Test Driver in Service Mode is shown in Figure 5.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 14 of 213

Figure 5 – Test Driver in Service Mode: Point-to-Point Interoperability Testing of Message Handlers

3.2 The Test Service

3.2.1 Functions and Interactions

The Test Service defines a set of Actions that are useful for executing Test Cases. The Test Service

represents the application layer for a message handler. It receives message content and error

notifications from the MSH, and also generates requests to the MSH, which normally are translated into

messages being sent out. The Test Actions are predefined, and are part of the Test Framework (i.e. not

user-written). For ebXML Messaging Services testing, Service and Actions will map to the Service and

Action header attributes of ebXML messages generated during the testing.

For ebXML Messaging Services testing, the Test Service name MUST be: urn:ebXML:iic:test .

Figure 6 shows the details of the Test Service and its interfaces.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 15 of 213

Figure 6 – The Test Service and its Interfaces

The functions of the Test Service are:

To implement the actions which map to Service / Action fields in a message header. The set of test

actions which are pre-defined in the Test Service will perform diverse functions, which are enumerated

below:

To notify the Test Driver of incoming messages. This only occurs when the Test Service is deployed in

reporting mode, which assumes it is coupled with a Test Driver.

To perform some message processing, e.g. compare a received message payload with a reference

payload (or their digests).

To send back a response to the MSH. Depending on the action invoked, the response may range from a

pre-defined acknowledgment to a specific message as previously specified.

Optionally, to generate a trace of its operations, in order to help trouble-shooting, or for reporting purpose.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 16 of 213

Although the Test Service simulates an application, it is part of the Test Framework, and does not vary

from one test harness to the other. However, in order to connect to the Test Service, a developer will

have to write wrapper code to the Test Service/Actions that is specific to the MSH implementation that

needs to be integrated. This proprietary code is expected to require a minor effort, but is necessary as the

API and callback interfaces of each MSH are not specified in the [ebMS] standard and is implementation-

dependent.

3.2.2 Modes of Operation of the Test Service

The Test Service operates in two modes: Reporting or Loop mode

Reporting mode: in that mode, the actions of the Test Service instance, when invoked, will send a

notification to the Test Driver. The Test Driver will then be aware of the workflow of the test case. There

are two “sub-modes” of behavior:

Local Reporting Mode: The Test Driver is installed on the same host as the Test Service, and

executes in the same process space. The notification uses the Receive interface of the Test

Driver, which is operating in service mode.

Remote Reporting Mode: The Test Driver is installed on a different host than the Test Service.

The notification is done via messages to the Test Driver, which is generally operating in

connection mode.

Loop mode: in this mode, the actions of the Test Service instance, when invoked, will NOT send a

notification to the Test Driver. The only interaction of the Test Service with external parties, is by sending

back messages via the message handler

The actions operate similarly in both reporting and loop modes. In other words, the mode of operation

does not normally affect the logic of the action. The action may send a response message, to the

requesting party via the “ResponseURL”. In general, the ResponseURL is the same as the requestor

URL.

Figure 7 shows a test harness with a Test Driver in connection mode, controlling a Test Service (Host 1) in remote

reporting mode. The other Test Service (Host 3) is operating in loop mode. This configuration is used when the test

cases are controlled from a third party test center, when doing interoperability testing. The test center may also act as

a Hub, and be involved in monitoring the traffic between the interoperating

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 17 of 213

parties.

Figure 7 – Example of Remote Reporting Mode : The Interoperability Test Center Model

3.2.3 Configuration Parameters of the Test Service

Test Service configuration is initially performed when the Test Driver reads the executable Test Suite

XML document, and loads the TestServiceConfigurator content found at the beginning of the TestSuite.

The Test Driver attempts to configure the Test Service (through a local or remote Configuration

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 18 of 213

interface). If the Test Driver is unable to configure the Test Service, then the Test Driver MUST generate

an exception. The Test Driver MAY handle this exception in a “non-fatal” manner if the Test Service

provides an alternate means of initial configuration.

Test Service configuration parameters are defined as content within the TestServiceConfiguration

element. There are three parameters that MUST be present to configure the Test Service, and one

“optional” parameter type. The three REQUIRED parameters are:

OperationMode (either local-reporting, remote-reporting or loop)

ResponseURL (destination for response messages)

NotificationURL (destination for notification messages, if applicable)

Additionally, the content of the PayloadDigests element MAY be passed to the Test Service. These

values are used by the PayloadVerify Test Service action to assert whether a received message payload

is unchanged when received by the MSH.

Outside of these four parameters, the Test Service is considered “stateless”.

Test Service configuration MAY be performed locally, if the Test Driver is in “service” mode (in the same

program space as the Test Service). Test Service configuration MUST be performed via RPC to the Test

Service Configuration interface’s “configurator” method if it is in “connection” mode.

In a test harness where an interoperability test suite involves two parties, the test suite (and Test Service

Configuration) will need to be executed twice - alternatively driven from each party. In that case, each

Test Service instance will alternatively be set to a reporting mode (local or remote), while the other will be

set to loop mode. These settings can be set remotely via RPC call to the configurator method of the Test

Service.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 19 of 213

3.2.4 The Messaging Actions of the Test Service

The actions described here are required of the Test Service when performing messaging services testing,

and should suffice in supporting most messaging Test Cases. In the case of ebXML Messaging Services

testing, these actions map to the Service/Action field of a message, and will be triggered on reception of

messages containing these service/action names. However, these actions are generic enough to be

used for any business messaging service.

3.2.4.1 Common Functions

Some functions are common to several actions, in addition to the specific functions they fulfill. These

common functions are:

• Generate a response message. Response messages are destined to the ResponseURL .

They also specify a Service/Action, as they are usually intended for another Test Service

although in case the ResponseURL directly points to the Test Driver in connection mode,

Service/Action will not have the regular MSH semantics.

• Notify the Test Driver. This assumes the Test Service is coupled with a Test Driver. In that

configuration, the Test Service is in reporting mode. The reporting is done by a message

(sent to the Notification URL) when in remote reporting mode, or by a call to the Receive

interface when in local reporting mode.

3.2.4.2 Test Service Actions

The Test Service actions defined below are “generic” types of actions that can be implemented for any

type of messaging service. Specific details regarding Service, Action, MessageId and other elements are

requirements specific to testing ebXML MS. In order to implement these actions for other types of

messaging services (such as RNIF), the “equivalent” message content would require manipulation. The

ebXML test actions are:

3.2.4.2.1 Mute action

 Reporting/Loop Mode Action Description: This is a “Dummy” action that does not generate any response

message back. Such an action is used for messages that do not require any effect, except possibly to

cause some side effect in the MSH, for example generating an error.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 20 of 213

Response Destination: None

In Reporting Mode: The action will notify the associated Test Driver. The notification containing the

received header and payload(s) material, will be done via the Receive interface, if in local reporting mode,

or with a message with Service / Action fields set to “ urn:ebXML:iic:test ”/ “Notify”, if in remote

reporting mode. The notification will report the action name (“Mute”) and the instance ID of the Test

Service.

3.2.4.2.2 Dummy action

Reporting/Loop Mode Action Description: This is an action that generates a simple response. On

invocation, this action will generate a canned response message back (no payload, simplest header with

minimally required message content), with no dependency on the received message, except for the

previous MessageID (for correlation) in the RefToMessageId header attribute.

Response Destination: A message with a Mute action element is sent to the Test Component (Test Driver

or Service) associated with the ResponseURL. This notice serves as proof that the message has been

received, although no assumption can be made on the integrity of its content.

In Reporting Mode: The action will also notify the associated Test Driver. The notification containing the

received header and payload(s) material, will be done via the Receive interface, if in local reporting mode,

or with a message with Service / Action fields set to “ urn:ebXML:iic:test ”/ “Notify”, if in remote

reporting mode. The notification will report the action name (“Dummy”) and the instance ID of the Test

Service.

3.2.4.2.3 Reflector

3.2.4.2.4 Reporting/Loop Mode Action Description: On invocation, this action generates a response

to a received message, by using the same message material, with minimal changes in the

header:

• Swapping of the to/from parties so that the “to” is now the initial sender.

• Setting RefToMessageId to the ID of the received message.

• Removing AckRequested or SyncReply elements if any.

• All other header elements (except for time stamps) are unchanged. The conversation ID remains

unchanged, as well as the CPAId. The payload is the same as in the received message, i.e. same

attachment(s).

Response Destination: a message with a Mute action element is sent to the Test Component (Test Driver

or Service) associated with the ResponseURL. This action acts as a Reflector for the initial sending party

In Reporting Mode: The action also notifies the associated Test Driver. The notification containing the

received header and payload(s) material, will be done via the Receive interface, if in local reporting mode,

or with a message with Service / Action fields set to “ urn:ebXML:iic:test ”/ “Notify”, if in remote

reporting mode. The notification will report the action name (“Reflector”) and the instance ID of the Test

Service.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 21 of 213

3.2.4.2.5 Initiator action

Reporting/Loop Mode Action Description: This Test Service action is not invoked through reception of a

request message. Instead, it is invoked via a local method call to the Test Services “Send” interface.

This action may be initiated by a locally interfaced Test Driver, or (via RPC) by a remote Test Driver.

On invocation, this action generates a new message. This message may be the first message of a totally

new conversation, or it may be part of an existing conversation (depending upon the message declaration

provided by the Test Driver. The header of the new message can be anything that is specified by the Test

Driver. For example, this action would be used to generate a "first" message of a new conversation,

different from the conversation ID specified in the invoking message.

Response Destination: Any party defined by the Test Driver.

In Reporting mode: Not Applicable, since this action is invoked directly by the Test Driver only (i.e. no

incoming message is received via MSH).

3.2.4.2.6 PayloadVerify action

Reporting/Loop Mode Action Description: On invocation, this action will compare the payload(s) of the

received message, with the expected payload. Instead of using real payloads, to be pre-installed on the

site of the Test Service, it is RECOMMENDED that a digest (or signature) of the reference payloads (files)

be pre-installed on the Test Service host using configuration parameters. The PayloadVerify action will

then calculate the digest of each received payload and compare with the reference digest parameter

values. This action will test the service contract between application and MSH, as errors may originate

either on the wire, or at every level of message processing in the MSH until message data is passed to

the application. The action reports (via RPC) to the Test Driver the outcome of the comparison. This is

done via an alternate communication channel to ensure that the same system being tested is not used to

report the reliability of its own MSH. A “notification” message is sent via RPC to the Test Driver. The

previous MessageID is reported (for correlation) in the RefToMessageId header attribute of the response.

The previous ConversationId is also reported. The payload message will contain a verification status

notification for each verified payload, as specified in Appendix F.

The XML format used by the response message is described in the section 7.1.12 (“Service Messages”).

Response Destination: a message is sent with a Mute action element to the Test Component (Test Driver

or Service) associated with the ResponseURL.

In Reporting mode: Action will also notify the associated Test Driver. The notification containing the

received header and payload(s) material, will be done via the Receive interface, if in local reporting mode,

or with a message with Service / Action fields set to “ urn:ebXML:iic:test" / “Notify”, if in remote

reporting mode.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 22 of 213

3.2.4.3 Integration of the Test Service with an MSH Implementation

As previously mentioned, the actions above are predefined and are a required part of the Test Framework

for messaging services testing, and will require some integration code with the MSH implementation, in

form of three adapters, to be provided by the MSH development (or user) team. These adapters are:

(1) Reception adapter, which is specific to the MSH callback interface. This code allows for

invocation of the actions of the Test Service, on reception of a message.

(2) MSH control adapter, which will be invoked by some Test Service actions, and will invoke in turn

the MSH-specific Message Service Interface (or API). Examples of such invocations are for

sending messages (e.g. by actions which send response messages), and MSH configuration

changes (done by the TestServiceConfigurator operation).

(3) Error URL adapter, which is actually independent from the candidate MSH. This adapter will

catch error messages, and invoke the errorURLNotify method of the Test Service. If the Test

Service is in reporting mode, the Test Driver is notified of this error message.

3.2.5 Interfaces for Test Driver and Test Service

Not all Test Harness communication occurs at the messaging level (i.e. through Test Service actions).

Certain Test Harness functionality can only be safely and reliably guaranteed by decoupling it from the

actual messaging protocol being tested. This is the case for the “initiator”, “configurator” and “notification”

methods of the Test Service. If the same protocol under test were also used as the infrastructure for the

actions above, then failure of that protocol would result in undetermined/ambiguous Test Case results.

 Four interfaces (3 Test Service, 1 Test Driver) are defined to provide a “decoupled” relationship between

the system under test, and the test harness.

The three interfaces on the Test Service component are:

Send – consists of one method (initiator) that accepts a message declaration and an encapsulated

payload list, builds the message envelope, attaches any payloads, and sends the message. The method

returns an XML document with a “pass/fail” Result element.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 23 of 213

Configuration – Consists of one method, (configuration) which accepts a Configuration Group list of

parameters and their corresponding values. This includes three “required” parameters, and additional

optional parameters that may be used in message construction by the “initiator” method. The method

returns an XML document with a “pass/fail” Result element.

Notification – consists of one method (report), which passes a “notification” message (either an

application error, a messaging error, or a received message) to the Test Driver’s Receive interface via its

“notify” method. The Test Driver MUST return an XML document with a “pass/fail” Result element to the

Test Service report method.

These three interfaces can be accessed either locally (if the Test Driver and Test Service are running in

the same program space), or remotely (if the Test Driver and Test Service are not local). In the case of

remote communication, these methods MUST be accessible via RPC call.

The interface on the Test Driver component is:

Receive – The “notify” method accepts incoming notification messages from the Test Service and returns

a required response for each. Notification messages include messages received from the Test Service

(when the Test Service is in “reporting mode”, error messages from the Test Service and response

messages from the Test Service referencing success/failure of Test Service configuration, or message

initialization.

3.2.5.1 Abstract Test Service “Send” Interface

The abstract interface is defined as:

1. An interface that must be supported by the Test Service

2. An initiator method that must be supported by that interface

3. The parameters and responses that must be supported by that method

This abstract MSH interface does not specify any particular implementation of a MSH, nor does it specify

a particular language binding.

Method Return Type Method Name Exception

Condition

InitiatorResponse initiator (messageDeclaration,

messagePayloadList payloads)

Failed to

construct or send

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 24 of 213

Passes the constructed

message “declaration” and

encapsulated message

payloads to the Test Service

Initiator action, returning a

response message (pass/fail)

to the Test Driver

message

Table 1 – Initiator method description

Semantic Description: The Initiator call instructs the Test Service to generate a new message. The

new message material (message declaration and encapsulated payloads) is provided as two separate

arguments to the initiator call. The header of the new message can be anything that is specified and

understood by the Test Service (e.g. ebXML or RNIF). This action may be used to generate a "first"

message of a new conversation (if no ConversationId is present in the Message Declaration and no

“global” ConversationId was provided to the Test Service via a previous call to the “configurator” method).

If a global ConversationId was provided to the Test Service through the “configurator” method, then the

same ConversationId may be used again by a Test Service to carry on an existing conversation.

The method is of return-type InitiatorResponse, meaning the method returns a response XML message

document containing a status message describing the success/failure of the Initiator method call. This is

returned to the Test Driver. A return value of “false” stops execution of the Test Case with a final result of

“undetermined”. A return value of “true” signals the Test Driver to proceed with the testing workflow.

3.2.5.2 WSDL representation of the initiator RPC method

If the Test Driver is “remote” to the Test Service (i.e. resides outside of the program space of the Test

Service), messages may still be initiated by the Test Driver on the remote Test Service via RPC. The

Web Service Description Language (WSDL) document in Appendix H describes the Service, Operation,

Port and (example SOAP) bindings that MUST be implemented in the Test Service in order to perform

remote message initiation via SOAP v1.2 Other RPC bindings may be implemented, as long as the

operations and documents described in this WSDL definition are used, and both the Test Service and

Test Driver are using the same RPC methods and definitions.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 25 of 213

Figure 8 – WSDL diagram of the Initiator SOAP method

3.2.5.3 Abstract Test Service “Configuration” Interface

The abstract interface is defined as:

1. An interface that must be supported by the Test Service

2. A configurator method that must be supported by that interface

3. The parameters and responses that must be supported by that method

This abstract MSH interface does not specify any particular implementation of a MSH, nor does it specify

a particular language binding.

Method Return Type Method Name Exception

Condition

ConfiguratorResponse configurator (ConfigurationList

list)

Passes the configuration

parameters to the Test Service

Test Service fails

to configure

properly

Table 2 – Configurator method

Semantic Description: The configurator call passes configuration data from the Test Driver to the Test

Service. This includes the three REQUIRED configuration items (ResponseURL, NotificationURL,

ServiceMode), plus additional optional parameters that may be used in message construction by the

“initiator” method; including Service, Action, CPAId, SenderParty, ReceiverParty, Additionally, “ad-hoc”

parameters MAY be added for construction of non-ebXML messaging envelopes. Ad-hoc parameter

names and values MUST be agreed to by parties whose goal is to develop open test suites for particular

messaging applications using the OASIS IIC Test Framework.

The method is of type ConfiguratorResponse, meaning the method returns a response XML message

document containing a status message describing the success/failure of the configurator method call to

the Test Driver. A return value of “false” stops execution of the Test Case with a final result of

“undetermined”. A return value of “true” signals the Test Driver to proceed with the testing workflow.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 26 of 213

3.2.5.3.1 WSDL representation of the configurator SOAP method

If the Test Driver is “remote” to the Test Service (i.e. resides outside of the program space of the Test

Service), messages may still be initiated by the Test Driver on the remote Test Service via RPC. The

Web Service Description Language (WSDL) document in Appendix H describes the Service, Operation,

Port and (example) bindings that MUST be implemented in the Test Service in order to perform remote

Test Service configuration via SOAP v1.2 Other RPC bindings may be implemented, as long as the

operations and documents described in the WSDL definition are used, and the same RPC mechanism is

used by both Test Driver and Test Service implementer.

Figure 9 – WSDL diagram of the Configurator SOAP method

3.2.5.4 Abstract Test Service “Notification” Interface

The abstract interface is defined as:

4. An interface that must be supported by the Test Service

5. An “errorAppNotify”, “errorURLNotify” and “messageNotify” method that must be supported by

that interface

6. The parameters and responses that must be supported by that method

This abstract MSH interface does not specify any particular implementation of a MSH, nor does it specify

a particular language binding.

Exception

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 27 of 213

Method Return Type Method Name Condition

boolean errorAppNotify

(MessageEnvelope envelope)

Passes the application error

notification message to the

Test Driver

errorURLNotify

(MessageEnvelope envelope)

Passes the application error

notification message to the

Test Driver

messageNotify

(MessageEnvelope envelope,

MessagePayloadList payloads)

Passes received message to

the Test Driver

Test Driver fails to

respond or responds

with a

NotificatonResponse

Success value of

“false”

Table 3 – report method description

Semantic Description: The report method passes a notification message to the Test Driver. The

notification message may be a “virtual copy” of a message received by the Test Service, a message

containing an Error that is directed to the Test Driver due to an inability of the Test Service to resolve an

error reporting location, or it may be an “application error” message, generated by the Test Service, to be

forwarded to the Test Driver. The semantics of each case are described below:

This errorAppNotify method captures specific error notifications from the MSH to its using application. It

is not triggered by reception of an error message, but it is directly triggered by the internal error module of

the MSH local to this Test Service. If the MSH implementation does not support such direct notification of

the application (e.g. instead, it writes such notifications to a log), then an adapter needs to be written to

read this log and invoke this action whenever such an error is notified.

Such errors fall into two categories:

• MSH errors that need to be directly communicated to its application – and not to any remote party, e.g.

failure to send a message (no Acks received after maximum retries).

• In case an MSH generates regular errors with a severity level set to “Error” – as opposed to “Warning” – the

MSH is supposed to (SHOULD) also notify its application. The ErrorAppNotify action is intended to support

both types of notifications.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 28 of 213

Notification Message Format:

Error notification messages generated by the errorAppNotify method will have the same characteristics a

normal error message (i.e. have a MessageHeader with refToMessageId, ConversationId, CPAId

corresponding to that of the incoming “offending” message that generated the error). In addition, the

message will contain an Error List conforming to that normally generated by the MSH. This message will

be identified as “different” from a received message by the presence of a “Notification” root element,

which contains reporting test service name, reporting test service instance id, reporting method name

(errorAppNotify), synch type (synchronous or asynchronous), and id.

The errorURLNotify method will capture “normal” error notifications from the MSH (i.e. errors normally

returned to the sending MSH). This method is specified to handle cases where the MSH cannot resolve

the error reporting location (not present in CPA) and does not return the error to the sending MSH. In this

case the Test Service Notification interface is utilized to report the error to the Test Driver.

Notification Message Format:

Error notification messages generated by the errorURLNotify method will have the same characteristics a

normal error message (i.e. have a MessageHeader with refToMessageId, ConversationId, CPAId

corresponding to that of the incoming “offending” message that generated the error). In addition, the

message will contain an Error List conforming to that normally generated by the MSH. This message will

be identified as “different” from a received message by the presence of a “Notification” root element,

which contains reporting test service name, reporting test service instance id, reporting method name

(errorURLNotify), synch type (synchronous or asynchronous), and id.

The messageNotify method will capture messages received by the Test Service. This method is

specified to handle testing scenarios where the Test Service is in “local-reporting” or “remote reporting”

mode. A notification message generated by the messageNotify method is a “copy” of the received

message envelope and an encapsulated list of any attachments provided with the message. The

message contains.

Notification Message Format:

All notification messages generated by the messageNotify method will have the same characteristics a

normal message (i.e. have a MessageHeader with refToMessageId, ConversationId, CPAId).

Additionally, the messageNotify method will pass to the Test Driver an encapsulated list of message

attachments that were a part of the received message. This message will be identified as “different” from

a received message by the presence of a “Notification” root element, which contains reporting test service

name, reporting test service instance id, reporting method name (messageNotify), synch type

(synchronous or asynchronous), and id.

Additional note:

 Notfication messages do not contain any artifacts pertaining to the protocol that carried them. For

example, no HTTP or MIME headers are passed along with the notification message; becase the Test

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 29 of 213

Service does not normally have access to this message content. Only message envelopes, and

accompanying message payloads are passed on to the Test Driver’s “Receive” interface.

Response type:

All methods of the Test Service Notification interface return a result of type boolean , meaning the method

returns a true/false result to its calling process. A result of “true” indicates that the notification method

received a “success” response from the Test Driver, indicating successful notification. A result of “false”

indicates an unsuccessful attempt to notify the Test Driver with this message.

3.2.5.4.1 WSDL representation of the errorAppNotify, errorURLNotify and messageNotify SOAP

methods

Figure 9 – WSDL diagram of the notification SOAP method

3.2.5.5 Abstract Test Driver “Receive” Interface

The Test Driver MUST also have an interface available for communication with the Test Service. The

abstract interface is defined as:

1. An interface that must be supported by the Test Driver

2. An notify method that must be supported by that interface

3. The parameters and responses that must be supported by that method

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 30 of 213

This abstract MSH interface does not specify any particular implementation of a MSH, nor does it specify

a particular language binding.

Method Return Type Method Name Exception

Condition

NotificationResponse notify (MessageInfo message,

messagePayloadList payloads)

Passes the, received message

envelope and encapsulated

message payloads to the Test

Driver

Test Driver fails

to accept the

notification

message

Table 4 – WSDL diagram of the notify SOAP method

Semantic Description: The notify method instructs the Test Driver to add the received or generated

message content to the Message Store, along with accompanying service instance id, service action and

other data provided by the Test Service.

The method is of type NotificationResponse, meaning the method returns a response XML message

document containing a status message describing the success/failure of the notify method call back to the

Test Service.

3.2.5.5.1 WSDL representation of the notify SOAP method

If the Test Driver is “remote” to the Test Service (i.e. resides outside of the program space of the Test

Service), messages may still be initiated by the Test Driver on the remote Test Service via RPC. The

Web Service Description Language (WSDL) document in Appendix H describes the Service, Operation,

Port and (example) Bindings that MUST be implemented in the Test Service in order to perform remote

Test Service configuration via SOAP v1.2 Other RPC methods may be implemented, as long as the

operations and documents described in the WSDL definition are used, and the same RPC mechanism is

used by both Test Driver and Test Service implementer.

Figure 10 – WSDL diagram of the Notification SOAP method

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 31 of 213

3.3 Executing Test Cases

A Test Suite document contains a collection of Test Cases. Each Test Case is an XML script, intended to

be interpreted by a Test Driver. Using the Test Suite document, the Test Driver MUST be able to:

Configure Itself – Define necessary parameters that permit the Test Driver to send messages

and verify and/or validate received message content

Configure the Test Service – Define necessary parameters that permit the Test Service to set it

mode of operation, and send notification messages to the Test Driver (if required).

Access all necessary testing material – Test Requirements documents, message content,

payload content

Execute Test Cases – Interpret a formalized and valid XML scripting language that permits

unambiguous, repeatable results each time it is interpreted and executed

Generate a Test Report – After executing the Test Cases, a Test Driver MUST is able to

generate a Test Report using the material provided in the Test Suite, and collateral test material

that is part of the Test Suite.

3.3.1 A Typical Execution Scenario

In order to get an idea of how the Test Framework operates, a brief description of how a Test Driver

would typically execute a Test Suite is described below. This is an “overview” description of how the Test

Framework executes. In order to fully understand the details and requirements of implementing this

specification, the remaining portion of this specification must be examined.

A typical execution model for the Test Harness would be:

 A Test Driver is installed on a networked computer.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 32 of 213

An implementer wishing to test an exam (or other) implementation invokes the Test Driver

executable.

The Test Driver asks the tester for fundamental information (e.g. mode of testing to be used by

the Test Driver, message and error reporting URL for the candidate implementation)

The Test Driver “self configures” based upon user preferences.

The Test Driver performs any local or remote configuration of the candidate implementation.

The Test Driver presents the tester with a list of conformance or interoperability testing profiles

that he/she may select from for testing the candidate implementation.

The tester chooses a profile.

 Execution of Test Cases against the specified profile begins.

A standard Test Report Document is generated by the Test Driver, providing a trace of all testing

operations performed for each Test Case, with accompanying Test Case results, indicating a final

result of “pass”, “fail” or “undetermined” for each Test Case, based upon detailed results of each

operation within each Test Case.

If a candidate implementation passes all Test Cases in the Test Suite, it can be considered

conformant or interoperable for that particular testing profile.

If a candidate implementation fails some Test Cases, but the Test Requirement that they tested

against were “OPTIONAL”, “HIGHLY RECOMMENDED” or “RECOMMENDED”, then that

implementation may still be conformant for all REQUIRED features tested.

If the optional features tested were actually implemented on the candidate, and it failed any Test

Cases that test against those features then the candidate would be considered “non-conformant”

for those optional features.

If any Test Case results were “undetermined” (due to network problems, or due to missing

prerequisite candidate features that are not under the control of the Test Harness) then ultimate

conformance/interoperability of the candidate implementation is deemed “undetermined” for that

testing profile. In such cases, resolution of the underlying system issue must be resolved or the

Testing Profile must be redefined to test only those features that are truly supported by the

candidate implementation.

The above list represents an “overall” view of how a Test Harness operates. Detailed descriptions of the

testing material that drives the Test Harness, and implementation requirements for the Test Driver and

Test Service follow.

3.3.2 Test Case as a Workflow of Threads and Test Steps

:

A Test Case is a workflow of Test Threads and/or Test Steps. A Thread can be executed either in a

synchronous or asynchronous manner. If a particular operation consists of a logically grouped

sequence of message “send” and “receive” operations, then a Thread is a logical container to group those

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 33 of 213

operations. . A Test Step can be thought of as test operation (either a single message sending or

message receiving operation). In addition, a Test Step may test an assertion of expected message

content from a received message. A Test Step may also include conditional actions (testing

preconditions) that are a basis for proceeding to the execution of the assertion test.

A Test Case Instance is the execution of a particular Test Case, identified by specific message attribute

values. For example, two instances of the same Test Case will be distinguished by distinct

ConversationId and MessageId values in the generated messages. An example of a sequence of Test

Steps associated with an MS Conformance Test Case is:

Step 1: Test driver sends a sample message to the Reflector action of the Test Service. Message header

data is obtained from message header declaration, and message payload from the received file.

Step 2: Test driver receives the response message and adds it to the stored messages received for this

Test Case instance Step 3: Correlation with Step 3 is done based on the ConversationId attribute, which

should be identical to the MessageId of Step 2. Test driver verifies the test condition on response

message, for example that the SOAP envelope and extensions are valid.

3.3.3 Related Message Data and Message Declarations

Some Test Steps will require construction of message data. This message data MUST be specified using

a Message Declaration (see Section 7). A Message Declaration is an XML-based script interpreted by the

Test Driver to construct a message envelope and its content. Payload material is not included in the

messages declaration, but is referenced by it (for example, in the case of ebXML Messaging, via the

Manifest element).

A test step may also include operations that allow for extraction of a payload from or for adding a payload

to a message.

The Test Driver MUST be capable of interpreting these scripts in order to:

Assemble a message from script material and referenced payloads.

Analyze and select a received message based on header and envelope content (as well as based on

payload content if the payload is in XML).

3.3.4 Related Configuration Data

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 34 of 213

Test Cases MAY be executed under a pre-defined collaboration agreement. For example, when testing

ebXML Messaging Services, this agreement is a CPA [ebCPP]. This agreement will configure the ebXML

Candidate Implementations involved in the testing, or the collaborations that execute on these

implementations. A Test Driver Configuration Document: contains XML content for Test Driver

configuration. Included in this document will be parameters defining the operational mode of the test

driver and (if applicable) a reference to configuration data for the candidate implementation(s) to be

tested.

Figure 11 – Test Case Document and Database

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 35 of 213

Part II: Test Suite Representation

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 36 of 213

4 Test Suite

4.1 Conformance vs. Interoperability Test Suite

We distinguish two types of test suites, which share similar document schemas and architecture

components, but serve different purposes:

§ Conformance Test Suite. The objective is to verify the adherence or non-adherence of a Candidate

Implementation to the target specification. The test harness and Test Cases will be designed around

a single (candidate) implementation. The suite material emphasizes the target specification, by

including a comprehensive set of Test Requirements, as well as a clear mapping of these to the

original specification (e.g. in form of an annotated version of this specification).

§ Interoperability Test Suite. The objective is to verify that two implementations (or more) of the same

specification, or that an implementation and its operational environment, can interoperate according

to an agreement or contract (which is compliant with the specification, but usually restricts further the

requirements). These implementations are assumed to be conforming (i.e. have passed conformance

tests or have achieved the level of function of such tests), so the reference to the specification is not

as important as in conformance. Such a test suite involves two or more Candidate Implementations of

the target specification. The test harness and Test Cases will be designed in order to drive and

monitor these implementations.

A conformance test suite is composed of:

One or more Test Profile documents (XML). Such documents represent the level or profile of

conformance to the specification, as verified by this Test Suite.

Design of a Test Harness for the Candidate Implementation that is based on components of the ebXML

IIC Test Framework.

A Test Requirements document. This document contains a list of conformance test assertions that are

associated with the test profile to be tested.

An annotation of the target specification, that indicates the degree of Specification Coverage for each

specification feature or section, that this set of Test Requirements provides.

A Test Suite document. This document implements the Test Requirements, described using the Test

Framework material (XML mark-up, etc.)

An Interoperability Test Suite is composed of:

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 37 of 213

One or more Test Profile documents (XML). Such documents represent a set of features specific to a

particular functionality, represented in a Test Suite through Test Cases that only test those particular

features, and hence, that profile.

Design of a Test Harness for two or more interoperating implementations of the specification that is

based on components of the ebXML Test Framework.

A Test Requirements document. This document contains a list of test assertions associated with this

profile (or level) of interoperability.

A Test Suite document. This document implements the Test Requirements, described using the Test

Framework material (XML mark-up, etc.)

4.2 The Test Suite Document

The Test Suite XML document is a collection of Test Driver configuration data, documentation and

executable Test Cases.

§ Test Suite Metadata provides documentation used by the Test Driver to generate a Test Report for

all executed Test Cases.

§ Test Driver Configuration data provide basic Test Driver parameters used to modify the

configuration of the Test Driver to accurately perform and evaluate test results. It also contains

configuration data for the candidate ebXML implementation(s).

§ Message data is a collection of pre-defined XML payload messages that can be referenced for

inclusion in an ebXML test message.

§ Test Cases are a collection of discrete Test Steps. Each Test Step can execute any number of test

Operations (including sending, receiving, and examining returned messages). An ebXML Test Suite

document MUST validate against the ebTest.xsd file in Appendix C.

§ Message Payloads provide XML and non-XML content for use as material for test messages, as well

as message data for Test Services linked to the Test Driver.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 38 of 213

Figure 12 – Graphic representation of basic view of TestSuite schema

Definition of Content

Name Description Default

Value

From

Test

Driver

Required/Optional Exception

Condition

TestSuite Container for all

configuration,

documentation and

tests

Required

configurationGroupRef Reference ID of the

ConfigurationGroup

data used to configure

Required ConfigurationGroup

not found

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 39 of 213

theTest Driver (in

connection mode) or

Test Service/MSH (

when in service mode)

Metadata Container for general

documentation of the

entire Test Suite

Required

ConfigurationGroup Container for Test

Driver configuration

instance data

Optional

TestServiceConfigurator Containter for Test

Service configuration

instance data

Required Unable to configure

Test Service

Message Container element for

“wildcard” message

content (i.e. any well-

formed XML content)

Optional

TestCase Container for an

individual Test Case

Required

Table 5 provides a list of TestSuite element and attribute content

4.2.1 Test Suite Metadata

Documentation for the ebXML MS Test Suite is done through the Metadata element. It is a container

element for general documentation.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 40 of 213

Figure 13 – Graphic representation of expanded view of the Metadata element

Definition of Content

Name Description Default Value

From Test Driver

Required/Optional Exception

Conditions

Description General description of the

Test Suite

Required

Version Version identifier for Test

Suite

Required

Maintainer Name of person(s)

maintaining the Test Suite

Required

Location URL or filename of this test

suite

Required

PublishDate Date of publication Required

Status Status of this test suite Required

Table 6 provides a list of Metadata element and attribute content

4.2.2 The ConfigurationGroup

The ConfigurationGroup contains configuration data for both configuring the Test Driver as well as

modifying the content of test messages constructed by the Test Driver (when in “connection” mode) or

message declarations passed to the Test Service (when in “service” mode).

ConfigurationGroups may be referenced throughout a Test Suite, in a hierarchical fashion. By default, a

“global” ConfigurationGroup is required for the entire Test Suite, and MUST be referenced by the

TestSuite element in the Executable Test Suite document. This established a “base” configuration for the

Test Driver.

Subsequent re-configurations of the Test Driver may be done at the Test Case, Thread and Test Step

levels of the test object hierarchy. At each level, a reference to a ConfigurationGroup via the

“configurationGroupRef” attribute takes precedence and defines the Test Driver configuration for the

current test object and any “descendent” test objects (e.g. any Test Cases and sub-Threads will inherit

the Test Driver configuration defined by their parent Thread). Logically, when workflow control of the Test

Case returns to a higher level in the hierarchy, then the ConfigurationGroup defined at that level again

takes precedence over any defined at a lower level by a descendent test object.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 41 of 213

Figure 14 – Graphic representation of expanded view of the BaseConfigurationGroup element

Definition of Content

Name Description Default

Value

From

Test

Driver

Required/Optional Exception

Condition

ConfigurationGroup Container Test Driver/MSH

configuration data

 Required

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 42 of 213

id Unique URI used to identify this set of

configuration data

Required

 CPAId Unique identifier matching one of the

testing Collaboration Agreement

documents in the Conformance or

Interoperability Test Suite. Inserted

inside outgoing messages, as content for

the CPAId element in an ebXML

MessageHeader. Value is also used to

configure MSH when in “service” mode.

If a CPA is not used in testing (e.g. A2A

testing), then this optional parameter

may be omitted from the

ConfigurationGroup content.

Optional

Mode One of two types for the Test Driver,

(service | connection)

Required

SenderParty Default identifier used in message

header From/PartyId

Required

ReceiverParty Default identifier used in message

header To/PartyId

 Required

Service Default Service to be inserted into

outgoing message Service element

content

 Required

Action Default Service Action to be inserted

into outgoing messages Action

element content

 Required

StepDuration Timeout (in seconds) of a message

send or receiver operation

Required

Transport Directs the Test Driver as to which

transport protocol to use to carry

messages.

Required

Envelope Directs the Test Driver as to which

Messaging envelope type it is

constructing

Required

StoreAttachments Toggle switch directing Test Driver to

ignore (false) or store (true) incoming

message attachments

Required

ConfigurationItem Container for ”ad-hoc”name/value

pair used by the Test Driver for

configuration or possibly for

message payload content

construction

Optional

Name Name for the ConfigurationItem Required

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 43 of 213

Value Value of the ConfigurationItem Required

Type Type of ConfigurationItem

(namespace or parameter)

Required

Table 7 provides a list of ConfigurationGroup element and attribute content

Figure 15 – Graphic representation of hierarchical use of the ConfigurationGroup via reference at

TestSuite, TestCase, Thread and TestStep levels in the test object hierarchy

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 44 of 213

4.2.2.1 Precedence Rules for Test Driver/MSH configuration parameters used in message construction

In order to generate messages correctly, the Test Driver MUST follow the precedence rules for

interpreting a Configuration Group parameter reference. The precedence rules are:

Certain portions of a message are auto-generated by the Test Driver (or MSH) at run-time

 This includes the following parameters:

ConversationId

MessageId

Timestamp

Other message content may be provided through parameter definitions in the current ConfigurationGroup,

or through a SetParameter or SetXPathParameter operation. This includes message content such as:

CPAId

Service

Action

SenderParty

ReceiverParty

The following rule describes how a Test Driver MUST interpret parameter values and their precedence of

assignment within a Test Suite.

a) The TestSuite element’s “configurationGroupRef” attribute points to the

“global” parameter definition for the entire Test Suite. This acts as the

“baseline” parameter definition before Test Suite execution begins.

b) Parameters MAY be used by an XSL stylesheet or Xupdate document

that “mutates” a Message Declaration. They are passed to the XSL or

Xupdate processor via name reference.

c) Parameters MAY be used by the VerifyContent operation through

reference in an XPath expression. Parameter names are referenced in

XPath expressions with a preceding “$” character. The Test Driver

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 45 of 213

MUST dereference the parameter prior to performing an XPath query on

a FilterResult document object.

d) If a parameter is defined in a ConfigurationGroup or via a SetParameter

operation, the parameter definition takes precedence over any “auto-

generated” definition of that parameter by the Test Driver. Care should

be taken to only “override” such values at the (low) TestStep level, so

that “side effects” are not passed on through the Test Suite object

hierarchy (i.e. influencing message construction beyond the scope of the

Test Step or Thread that is intended).

e) Any descendent TestCase, Thread or TestStep element with a

“configurationGroupRef” attribute “redefines” a parameters value for itself

and any descendent Threads or Test Steps (i.e. it limits the scope of the

parameter definition to all of its descendents).

f) Any “SetParameter” elements definition within a TestCase, Thread or

Test Step element supersedes its current definition within the current

ConfigurationGroup. The scope of the parameter definition is limited to

any descendent Threads and/or Test Steps of the current test object.

A Test Driver MUST generate an exception and terminate the Test Case with a result of “undetermined” if

it cannot construct a message due to an undefined parameter.

A Test Driver MUST generate an exception and terminate the Test Case with a result of “undetermined” if

it cannot verify a message due to an undefined parameter in an XPath query.

4.2.3 The TestServiceConfigurator Operation

The TestServiceConfiguration element instructs the Test Driver to configure the Test Service. A Test

Service MUST provide both a Configuration interface to the Test Service, with a “configurator” method,

like that specified in section 3.2.5. The Test Driver MAY access the Configuration interface either locally

or remotely (via RPC), depending upon the current mode of the Test Driver.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 46 of 213

Figure 16 – Graphic representation of the TestServiceConfigurator content

Name Description Default

Value

From Test

Driver

Required/Optional Exception

Condition

TestServiceConfigurator Container for Test

Service configuration

data

Required (as a child of a

TestSuite element only),

optional elsewhere

Unable to

configure Test

Service

ServiceMode Switch to set to one of

three modes (loop |

local-reporting | remote-

reporting)

Required

ResponseURL Endpoint to send

response messages

Required

NotificationURL Endpoint to send

message and error

notifications (typically

the Test Driver URL)

Required

PayloadDigests Container for one or

more payload identifiers

and corresponding MD5

digest value

Optional

Payload Container for individual

payload information

Required

Href URI of the message

payload

Required

Digest MD5 digest value of the

payload

Required

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 47 of 213

4.2.3.1 TestServiceConfigurator behavior in Connection and Service mode

In Connection Mode: The “TestServiceConfigurator” operation instructs the Test Driver to pass

configuration parameters (via RPC) to a remote Test Service Configuration interface, using its

“configurator” method. The Test Service MUST respond with a status of “success” or “fail”.

In Service Mode: The “TestServiceConfigurator” operation instructs the Test Driver to pass configuration

parameters to the local Test Service via its Configuration interface, and its “configurator” method. The

Test Service MUST respond with a status of “success” or “fail”.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 48 of 213

5 Test Requirements

5.1 Purpose and Structure

The next step in designing a test suite is to define Test Requirements. This material, when used in a

conformance-testing context, is also called Test Assertions in NIST and OASIS terminology (see

definition in glossary in Appendix).

When used for conformance testing, each Test Requirement defines a test item to be performed, that

covers a particular requirement of the target specification. It rewords the specification element into a

“testable form”, closer to the final corresponding Test Case, but unlike the latter, independently from the

test harness specifics. In the ebXML Test Framework, a Test Requirement will be made of three parts:

Pre-condition The pre-condition defines the context or situation under which this test item applies. It

should help a reader understand in which case the corresponding specification requirement applies. In

order to verify this Test Requirement, the test harness will attempt to create such a situation, or at the

very least to identify when it occurs. If for some reason the pre-condition is not satisfied when doing

testing, then it does not mean that the outcome of this test is negative – only that the situation in which it

applies did not occur. In that case, the corresponding specification requirement could simply not be

validated, and the subsequent Assertion will not be tested.

Assertion The assertion actually defines the specification requirement, as usually qualified by a MUST or

SHALL keyword. In the test harness, the verification of an assertion will be attempted only if the pre-

condition is itself satisfied. When doing testing, if the assertion cannot be verified while the pre-condition

was, then the outcome of this test item is negative.

 Requirement Level Qualifies the degree of requirement in the specification, as indicated by such

keywords as RECOMMENDED, SHOULD, MUST, and MAY. Three levels can be distinguished: (1)

“required” (MUST, SHALL), (2) “recommended” ([HIGHLY] RECOMMENDED, SHOULD), (3) “optional”

(MAY, OPTIONAL). Any level lower than “required” qualifies a Test Requirement that is not mandatory

for Conformance testing. Yet, lower requirement degrees may be critical to interoperability tests. The test

requirement level can be override by explicit declaration in the Test Profile document, in case a lower or

higher level is required.

5.2 The Test Requirements Document

The Test Requirements XML document provides metadata describing the Testing Requirements, their

location in the specification, and their requirement type (REQUIRED, HIGHLY RECOMMENDED,

RECOMMENDED, or OPTIONAL). A Test Requirements XML document MUST validate against the

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 49 of 213

ebXMLTestRequirements.xsd file found in Appendix B. The ebXML MS Conformance Test Requirements

instance file can be found in Appendix E.

Figure 17 – Graphic representation of ebXMLTestRequirements.xsd schema

Definition of Content

5.2.1

Name Description Default

Value

From

Test

Driver

Required/Optional Exception

Condition

Requirements Container for all test

requirements

Required

MetaData Container for requirements

metadata, including Description,

Version, Maintainer, Location,

Publish Date and Status

Required

TestRequirement Container for all testable sub-

requirements

(FunctionalRequirements) of a

single generalized Test

Requirement. A

TestRequirement may also

contain other TestRequirement

elements as children

Required

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 50 of 213

description Description of requirement Required

id Unique identifier for each Test

Requirement

Required

name Name of test requirement Required

specRef Pointer to location in

specification where requirement

is found

Required

functionalType Generic classification of function

to be tested

Required

dependencyRef ID of “prerequisite”

TestRequirement or

FunctionalRequirement that

must be successfully tested first

prior to testing this requirement

Optional

FunctionalRequirement Sub-requirement for the main

Test Requirement. This is an

actual testable requirement, not

a “container” of requirements.

Required

id Unique ID for the sub-

requirement

Required

name Short descriptor of Functional

Requirement

Required

specRef Pointer to location in

specification where sub-

requirement is found

Required

dependencyRef ID of “prerequisite”

TestRequirement or

FunctionalRequirement that

must be successfully tested first

prior to testing this requirement

Optional

TestCaseId Identifier of Test Case(s) that

test this requirement

Optional

Clause Grouping element for Condition

expression(s)

Optional

Condition Textual description of test

precondition

Required

ConditionRef Reference (via id attribute) to

existing Condition element

already defined in the Test

Requirements document

Optional

And/Or Union/Intersection operators for

Conditions

Optional

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 51 of 213

Assertion Axiom expressing expected

behavior of an implementation

under conditions specified by

any Clause

Required

AssertionRef Reference (via id attribute) to

existing Assertion element

already defined in the Test

Requirements document

Optional

requirementType Enumerated Assertion descriptor

(REQUIRED, OPTIONAL…etc.)

Required

Table 8 provides a list of the testing Requirements element and attribute content

5.3 Specification Coverage

A Test Requirement is a formalized way to express a requirement of the target specification. The

reference to the specification is included in each Test Requirement, and is made of one or more section

numbers. There is no one-to-one mapping between sections of a specification document and the Test

Requirement items listed in the test material for this specification:

A specification section may map to several Test Requirements.

A Test Requirement item may also cover (partially or not) more than one section or sub-section.

A Test Requirement item may then cover a subset of the requirements that are specified in a section.

For these reasons, it is important to determine to which degree the requirements of each section of a

specification, are fully satisfied by the set of Test Requirements listed in the test suite document.

Establishing the Specification Coverage by the Test Requirements does this.

The Specification Coverage document is a separate document containing a list of all sections and

subsections of a specification document, each annotated with:

• A coverage qualifier.

• A list of Test Requirements that map to this section.

The coverage qualifier may have values:

• Full: The requirements included in the specification document section are fully covered by

the associated set of Test Requirements. This means that if each one of these Test

Requirements is satisfied by an implementation, then the requirements of the corresponding

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 52 of 213

document section are fulfilled. When the tests requirements are about conformance: The

associated set of test requirement(s) are a clear indicator of conformance to the specification

item, i.e. if a Candidate Implementation passes a Test Case that implements this test

requirement(s) in a verifiable manner, there is a strong indication that it will behave similarly

in all situations identified by the spec item.

• None: This section of the specification is not covered at all. Either there is no associated set

of Test Requirements, or it is known that the test requirements cannot be tested even

partially, at least with the Test Framework on which the test suite is to be implemented, and

under the test conditions that are defined.

• Partial: The requirements included in this document section are only partially covered by the

associated (set of) Test Requirement(s). This means that if each one of these Test

Requirements is satisfied by an implementation, then it cannot be asserted that all the

requirements of the corresponding document section are fulfilled: only a subset of all

situations identified by the specification item are addressed. Reasons may be:

o (1) The pre-condition(s) of the test requirement(s) ignores on purpose a subset of

situations that cannot be reasonably tested under the Test Framework.

o (2) The occurrence of situations that match the pre-condition of a Test Requirement

is known to be under control of the implementation (e.g. implementation-dependent)

or of external factors, and out of the control of the testbed. (See contingent run-time

coverage definition, Section 7).

When the tests requirements are about conformance: The associated set of test

requirement(s) are a weak indicator of conformance to the specification item. A negative test

result will indicate non-conformance of the implementation.

5.4 Test Requirements Coverage (or Test Run-Time Coverage)

In a same way as Test Requirements may not be fully equivalent to the specification items they represent

(see Specification Coverage, Section 5.3), the Test Cases that implement these Test Requirements may

not fully verify them, for practical reasons.

Some Test Requirements may be difficult or impossible to verify in a satisfactory manner. The reason for

this generally resides in an inability to satisfy the pre-condition. When processing a Test Case, the Test

Harness will attempt to generate an operational context or situation that intends to satisfy the pre-

condition, and that is supposed to be representative enough of real operational situations. The set of such

real-world situations that is generally covered by the pre-condition of the Test Requirement is called the

test requirements (or test run-time) coverage of this test Requirement. This happens in the following

cases:

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 53 of 213

Partial run-time coverage: It is in general impossible to generate all the situations that should verify a

test. It is however expected that the small subset of run-time situations generated by the Test Harness, is

representative enough of all real-world situations that are relevant to the pre-condition. However, it is in

some cases obvious that the Test Case definition (and its processing) will not generate a representative-

enough (set of) situation(s). It could be that a significant subset of situations identified by the pre-condition

of a Test Requirement cannot be practically set-up and verified. For example, this is the case when some

combinations of events or of configurations of the implementation will not be tested due to the

impracticality to address the combinatorial nature of their aggregation. Or, some time-related situations

cannot be tested under expected time constraints.

Contingent run-time coverage: It may happen that the test harness has no complete control in

producing the situation that satisfies the pre-condition of a Test Requirement. This is the case for Test

Requirements that only concern optional features that an implementation may or may not decide to

exhibit, depending on factors under its own control and that are not understood or not easy to control by

the test developers. An example is: “ IF the implementation chooses to bundle together messages [e.g.

under some stressed operation conditions left to the appreciation of this implementation] THEN the

bundling must satisfy condition XYZ”.

When a set of Test Cases is written for a particular set of Test Requirements, the degree of coverage of

these Test Requirements by these Test Cases SHOULD be assessed. The Test Requirements coverage

– not to be confused with the Specification Coverage - is represented by a list of the Test Requirements

Ids, which associates with each Test Requirement:

The Test Case (or set of Test Cases) that cover it,

The coverage qualifier, which indicates the degree to which the Test Requirement is covered.

The coverage qualifier may have values:

• Full: the Test Requirement item is fully verified by the set of Test Cases.

• Contingent: The run-time coverage is contingent (see definition).

• Partial: the Test Requirement item is only partially verified by the associated set of Test

Cases. The run-time coverage is partial (see definition).

• None: the Test Requirement item is not verified at all: there is no relevant Test Case.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 54 of 213

6 Test Profiles

6.1 The Test Profile Document

The Test Profile document points to a subset of Test Requirements (in the Test Requirements document),

that is relevant to the conformance or interoperability profile to be tested.

The document drives the Test Harness by providing the Test Driver with a list of unique reference IDs of

Test Requirements for a particular Test Profile. The Test Driver reads this document, and executes all

Test Cases (located in the Test Suite document) that contain a reference to each of the test

requirements. A Test Profile driver file MUST validate against the ebXMLTestProfile.xsd file found in

Appendix A. A Test Profile example file can be found in section 10.2.

Figure 18 – Graphic representation of ebXMLTestProfile.xsd schema

Definition of Content

Name Description Default

Value

From

Test

Driver

Required/Optional Exception

Condition

TestProfile Container for all references

to test requirements

Required

requirementsLocation URI of test requirements

XML file

Required Requirements

document not

found

name Name of profile Required

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 55 of 213

description Short description of profile Required

Dependency Prerequisite profile reference

container

Optional

name Name of the required

prerequisite profile

Required

profileRef Identifier of prerequisite

profile to be loaded by Test

Driver before executing this

one

Required Profile

document not

found

TestRequirementRef Test Requirement reference Required

id Unique Identifier of Test

Requirement, as defined in

the Test Requirements

document

Required

requirementType Override existing

requirement type with

enumerated type of

(REQUIRED, OPTIONAL,

STRONGLY

RECOMMENDED or

RECOMMENDED)

Optional

Comment Profile author’s comment for

a particular requirement

Optional

Table 9 provides a list of TestProfile element and attribute content

6.2 Relationships between Profiles, Requirements and Test Cases

Creation of a testing profile requires selection of a group of Test Requirement references that fulfill a

particular testing profile. For example, to create a testing profile for a Core Profile would require the

creation of an XML document referencing Test Requirements 1,2,3,4,5 and 8.

The Test Driver would read this list, and select (from the Test Requirements Document) the

corresponding Test Requirements (and their “sub” Functional Requirements). The Test Driver then

searches the Executable Test Suite document to find all Test Cases that “point to” the selected Functional

Requirements. If more than one Test Case is necessary to satisfactorily test a single Functional

Requirement (as is the case for Functional Requirement #1) there may be more than one Test Case

pointing to it. The Test Driver would then execute Test Cases #1, #2 and #3 in order to fully test an

ebXML application against Functional Requirement #1.

The only test material outside of the three documents below that MAY require an external file reference

from within a Test Case are large, or non-XML message Payloads

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 56 of 213

Figure 19 – Test Framework documents and their relationships

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 57 of 213

Test Profile XML Document

TestRequirementRef #1 (Validation)

TestRequirementRef #2 (Packaging)

TestRequirementRef #3 (Core Extension Elements)

TestRequirementRef #4 (Error Handling)

TestRequirementRef #5 (SyncReply)

Test Requirements XML Document

Test Requirement #1 (Validation)

 Functional Requirement #1 (Valid MessageHeader content)

 Functional Requirement #2 (Valid Acknowledgment content)

 Functional Requirement #3 (Valid Signature content)

Test Requirement #2 (Packaging)

 Functional Requirement #4 (SOAP message in root of MME doc

)

 Functional Requirement #5 (MIME message type is “text/xml”)

 Functional Requirement #6 (MIME ‘start’ header is present)

 …

Test Requirement #3 (Core Extension Elements)

Test Suite XML Document

Test Driver Configuration Data

XML Payloads

Test Cases

Test Case #1 (Test Valid “To content)

Message

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 58 of 213

7 Test Cases

7.1 Structure of a Test Case

An Executable Test Case is the translation of a Test Requirement (or a part of a Test Requirement), in an

executable form, for a particular Test Harness. A Test Case includes the following information:

Test Requirement reference.

A workflow of Test Steps and/or Test Threads

Testable precondition(s) and assertion(s) of success or of failure within those Test Steps.

NOTE: The same Test Case may consolidate several Test Requirement items, i.e. a successful outcome

of its execution will verify the associated set of Test Requirement items. This is usually the case when

each of these Test Requirement items can make use of the same sequence of operations, varying only in

the final test condition. When several Test Requirement items are covered by the same Test Case, the

processing of the latter SHOULD produce separate verification reports.

Test Cases MUST evaluate to a value of “pass, fail, or undetermined”. The Test Case result is based

upon the final state of the Test Driver as it traverses the logic tree defined by the sequence of Test

Threads Test Steps and logical branches. Ultimately, a Test Case result is determined by the state

returned by the TestAssertion operations in the Test Case Workflow.

A Test Case has a final state of “pass” if:

The last executed “TestAssertion” operation in the workflow evaluates to “true” (or pass).

A Test Case has a final state of “fail” if:

Any TestAssertion that evaluates to a result of "false", and from which no further workflow execution

can occur (i.e. no branching is possible) based upon its boolean result causes the Test Driver to cease

execution of the Test Case, and report a final result of the Test Case as “fail”. In the case of a “false”

result in an asynchronous Thread that contains that TestPreCondition, the execution of all other

concurrent Threads belonging to that Split MUST also complete so that it can be determined if workflow

execution may continue based upon the associated Join operation. . If the Thread in question is not

subsequently Joined in the workflow, then the Test Case execution ceases with a final result of

“undetermined”.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 59 of 213

A Test Case has a final state of “undetermined” if:

Any TestPreCondition operation that evaluates to a result of "false", and from which no further

workflow execution can occur (i.e. no branching is possible) based upon its boolean result causes the

Test Driver to cease execution of the Test Case, and report a final result of the Test Case as

“undetermined”. In the case of a “false” TestPreCondition result within an asynchronous Thread, the

execution of all other concurrent Threads belonging to that Split MUST also complete so that it can be

determined if workflow execution may continue based upon the associated Join operation. If the Thread

in question is not subsequently Joined in the workflow, then the Test Case execution ceases with a final

result of “undetermined”.

OR

A TestPreCondition was the final test operation in the workflow (not a TestAssertion)

OR

Asystem exception condition (as defined for each individual operation) occurs in the Workflow. For

example, a protocol error occurring in a PutMessage or GetMessage operation will generate such an

exception.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 60 of 213

Figure 20 – Graphic representation of expanded view of the TestCase element

Definition of Content

Name Description Default Value

From Test

Driver

Required/Optional Exception

Condition

TestCase Container element for Optional

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 61 of 213

all test case content

id Unique identifier for this

Test Case

Required

description Short description of

TestCase

Optional

author Name of person(s)

creating the Test Case

Optional

version Version number of Test

Case

Optional

requirementReferenceId Pointer to the unique ID

of the

FunctionalRequiremt

Required Test

Requirement

not found

configurationGroupRef URI pointing to a

ConfigurationGroup

instance used to

reconfigure Test Driver

Optional Configuration

Group not

found

ThreadGroup Container for all

Threads declared for

this Test Case

Optional

Thread Definition of a

subprocess of Test

Steps and/or Threads

that may be forked

synchronously or

asynchronously

Required

SetParameter Contains name/value

pair to be used by

subsequent Threads or

Test Steps in this Test

Case

Optional

TestServiceConfigurator Container of

configuration content for

Test Service when Test

Driver is in “service”

mode

Optional Unable to

configure

Test Service

ThreadRef Name of the Thread to

be executed in this

TestCase

Optional Thread not

found

TestStep Container for send,

receive and message

verification operations,

executed in the same

program space as the

current thread (not

“forked”)

Required

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 62 of 213

If Branching mechanism

for test script, with

“andif” or “orif” option.

Boolean result value of

Threads and Test Steps

determine logical flow

Optional

ifType Attribute that determins

the predicate of the If

statement (either

“andif” or “orif”

IfType=”andif” Required

Then Branching mechanisms

for test script if the

result of If is “true”

Required

Elseif Additional branch if

result of If clause is

“false”

Optional

Else Additional branch if

result of If and all

ElseIfs is “false”

Split Parallel execution of

referenced sub-threads

inside of the Split

element

Optional

Join Evaluation of results of

named threads (as

“andjoin” or “orjoin”)

permits execution of

operations that follow

the Join element

Optional

Sleep Instruction to the Test

Driver to “wait” for the

specified time interval

(in seconds). May be

invoked anywhere in

the script

Optional

Table 10 provides a list of TestCase element and attribute content

7.1.1 Test Threads

Test Threads are a workflow of Test Steps and/or other sub-threads. One can think of a Thread as a

collection of “related” operations (such as a sequences of Test Steps performing message transmissions

and receptions for a common business process). Test Steps (single send/receive operations) and sub-

threads contained in a Test Thread are executed sequentially as they appear in that Thread script.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 63 of 213

Thread MAY be executed either serially or in parallel.

The Test Driver interprets a ThreadRef element as an instruction to execute the Thread instance whose

name matches that defined in the ThreadRef. A Thread will be executed serially if its ThreadRef is not

the child of a Split element.

Threads MUST execute concurrently if its ThreadRef is the child of a Split element.

Threads MAY be “joined” anywhere following the Split in which they were executed.

A Join operation “synchs” the execution of the Test Case, waiting until all Threads defined as children

within the Join complete execution. When that occurs, the Join operation will evaluate the boolean result

of the Thread(s) to determine if they meet the condition for an “andJoin” (all Threads evaluate to “true”).

An “orJoin” operation is not defined for the Join operator, however this operation can be achieved through

the use of the If/Then/Else scripting construct.

Threads defined in a Split MAY NOT necessarily be “joined” at all in a Test Case. This is permissible.

However, if a Test Case is scripted in this way, the “lone” Thread(s) MUST evaluate to a boolean result of

“true” (pass) in order for the Test Case result to be “pass”.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 64 of 213

Figure 21 – The Thread content diagram

Name Declaration Description Default Value

From Test

Driver

Required/Optio

nal

Exception

Condition

name Short name for the Thread Optional

description Description of the Thread Optional

SetParameter Set name/value pair to be

used by subsequent Test

Step operations

Optional

ThreadRef Reference via name to

Thread to execute serially

Optional Thread not found

Thread Instance of a Thread to be

executed synchronously

Optional

TestStep A message send/receive

operation that is executed in

the same program space as

the current Thread

Optional

Split Directive to run the

referenced Thread(s)

enclosed in the Split element

in parallel

Optional Thread not found

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 65 of 213

ThreadRef Reference via name to

Thread to execute

concurrently

Thread not found

Join Directive to evaluate the

boolean result of the enclosed

referenced Thread(s) in a

previous Split

Optional Thread not found

joinType Type of Thread join.. (andjoin

| orjoin)

andjoin Optional

Sleep Instrution to “wait” (specified

in integer seconds) a period

of time before executing the

next operation in the script

Optional

Table 11 – Thread Content Description

7.1.2 Test Steps

Test Steps perform a single operation. These operations include message construction and transmission

or message verification/validation. Each of these operations may be performed by the Test Driver in one

of two modes: connection (Test Driver is remote from Test Service) or service (Test Driver is interfaced

with Test Service). The section below describes these operations and their modes in more detail.

7.1.2.1 Test Step Operations

7.1.2.1.1 Message Construction and Transmission

In Connection Mode:

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 66 of 213

The “PutMessage” Test Step operation instructs the Test Driver to construct a message and transmit it to

the designated party. The PutMessage element contains a Message Declaration (i.e. an XML script) that

is used as a template to construct the message. The Test Driver must successfully construct and send

the message; otherwise it must generate an exception.

The “Initiator” Test Step operation instructs the Test Driver to pass a Message Declaration (and any

required message payloads) to the Test Service via RPC call to the Test Service Initiation interface, via

its “initiator” method. The initiator method must successfully interpret the Message Declaration; construct

the message with a new ConversationId (if none is present in the Message Declaration). The Test

Service initiator method must return a response message (defined in Appendix F) to the Test Driver

indicating success or failure.

In Service Mode:

The “PutMessage” Test Step operation instructs the Test Driver to pass on a Message Declaration and

accompanying message payload data to the Test Service Send interface and its “initiator” method.

Because the Test Service is essentially “stateless” except for its 3 configuration parameters, any

Message Declaration sent by the Test Driver MUST contain the required information (i.e. FromPartyId,

ToPartyId, CPAId ..etc.) One exception is the ConversationId. The Test Driver MAY provide its own

ConversationId in the Message Declaration. Otherwise, the initiator method will provide one in the

constructed message (therefore starting a new conversation).). The Test Service initiator method must

return a response message to the Test Driver indicating success or failure.

The “Initiator” operation is not used by the Test Driver in “service” mode, since the PutMessage operation

invokes the same method (initiator) of the Test Service Send interface, regardless of whether it is

controlling the ConversationId or letting the Test Service initiate the conversation.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 67 of 213

7.1.2.2 Message Verification/Validation

In Connection Mode: The “GetMessage” Test Step operation is used by the Test Driver to verify and/or

validate incoming messages to the Test Driver. Incoming messages for a Test Case are maintained in a

persistent Message Store for the life of a Test Case. Message content is filtered and verified via [XPath]

and validated via [XMLSchema]. Success or failure of the GetMessage operation is based upon the

success/failure of TestAssertion operations that verify or validate message content based upon XPath

query results, or XML schema validation respectively.

In Service Mode: The “GetMessage” Test Step operation is used by the Test Driver to verify and/or

validate incoming messages to the Test Service that are passed to the Test Driver via its Receive

interface, and its “notify” method. Incoming messages for a Test Case are maintained in a persistent

Message Store for the life of a Test Case. Message content is filtered and verified via [XPath] and

validated via [XMLSchema]. Success or failure of the GetMessage operation is based upon the

success/failure of TestAssertion operations that verify or validate message content based upon XPath

query results, or XML schema validation respectively.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 68 of 213

Figure 22 – Graphic representation of expanded view of the TestStep element

Definition of Content

Name Description Default Value

From Test Driver

Required/Optional Exception

Condition

TestStep Container for one of

four possible

operations

Optional

description Short description of

Test Step

Optional

configurationGroupRef Reference to

existing

ConfigurationGroup

to change current

Test Driver

configuration for

this Test Step

Optional Configuration

Group not

found

id ID of the test step Required

testStepContext Use CPAId,

ConversationId,

MessageId and

RefToMessageId

from previous

integer step number

indicated

Optional Test Step ID

not found

stepDuration Override the default

maximum execution

durationof this Test

Step

Taken from current

ConfigurationGroup

value

Optional

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 69 of 213

SetParameter Optionally define a

parameter name

and value that will

be used by the

PutMessage or

GetMessage

operation

Optional

PutMessage Directive to

construct and send

a message

Optional

GetMessage Directive to retrieve

messages from

Message Store in

their entirety

Optional

Initiator Initiate a message

on the local or

remote Test

Service

Optional Test Service

is unable to

construct or

transmit

message

Table 12 provides a list of TestStep element and attribute content

7.1.2.3 Semantics of the SetParameter Operation in a Test Step

Parameters can be assigned for use by Test Step operations in three ways:

2) Through assignment as a parameter name/value pair within the current

ConfigurationGroup.

3) Using SetParameter at the beginning of a Test Step

4) Using SetXPathParameter operation in a GetMessage operation (to extract a

message content value via XPath and assign it to a parameter)

7.1.2.3.1 Scope of a parameter

These same semantic rules apply to parameters referenced via ConfigurationGroup. The

“configurationGroupRef” attribute is available for use at the TestSuite, TestCase, Thread and TestStep

levels. A hierarchical relationship exists for any parameters defined in the ConfigurationGroup. A

configurationGroupRef at the TestSuite level is “global”, meaning any parameter definitions defined at the

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 70 of 213

TestSuite level are available to descendent TestCase, Thread, or TestStep. If a parameter is “redefined”

through a reference to another ConfigurationGroup at any of those “lower levels” in the object hierarchy,

then that definition takes precedence for that object and any “descendent” objects, until the logical

workflow of the TestCase moves to a “higher” level in the object hierarchy. When that occurs, whichever

previous definition of a parameter (via a configurationGroupRef or SetParameter operation) takes

precedence.

The SetParameter operation dynamically creates (or redefines) a single parameter whose value is

available to the current Test Object (TestCase, Thread or TestStep) it is defined in. For example, if it is

defined within a Thread, then it is available to any operation in that Thread, as well as any descendent

Test Steps or Threads of that current Thread. If it is defined within a Test Step, then its definition exists

for that Test Step. . When the workflow execution moves to a “higher” level (i.e. to the Thread containing

the TestStep) then that parameter a) ceases to exist if it was not already defined at a higher level in the

workflow hierarchy or b) takes the previously value defined at the next highest level in the workflow

hierarchy.

The SetXPathParameter operation (available within the GetMessage operation of a TestStep)

dynamically creates (or redefines) a single parameter whose value is available to the current Test Object

it is defined in (and optionally) to its parent Thread object IF the scope attribute is set to “parent”. By

default, if the scope attribute is not present the parameter’s scope is restricted to the current TestStep.

The value of a parameter defined using this operation is retrieved from the message content defined in

the XPath expression used in the operation.

7.1.2.3.2 Referencing/Dereferencing parameters in PutMessage and GetMessage operations

In the case of a PutMessage operation, a parameter defined with the ConfigurationGroup and/or the

SetParameter operation can be passed to an XSL or Xupdate processor and referenced within an XSL

stylesheet or XUpdate “mutator” document (via its name) and used to provide/mutate message content of

the newly constructed message A Test Driver MUST make pass these parameters to the XSL or Xupdate

processors for use in mutating a Message Declaration.

In the case of a GetMessage operation, a parameter defined with the ConfigurationGroup and/or the

SetParameter operation can be passed to the XPath processor used for the Filter or VerifyContent

operations. Within the XPath expression, the parameter MUST be referenced with the same name (case

sensitive) with which it has been assigned, and MUST be preceeded by a ‘$’ character. The Test Driver

MUST recognize the parameter within the XPath expression, and substitute its value prior to evaluating

the XPath expression

 How parameters are stored and retrieved by the Test Driver is an implementation detail, however to

accommodate implementations that may wish to store parameters within the Message Store, the

Message Store schema in Appendix D provides a structure that permits DOM access to parameters

through a simple name/value pair schema. Parameter values are stored under the MessageStore root

element as children of a ParameterGroup element whose ID is a unique value defined by the Test Driver

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 71 of 213

at run time, defining the context in which the parameter was defined (for example, a unique ID assigned

to each test object instance (e.g. a Test Step) could be used to bind the current parameter definition

within that test object, and disassociate it from other definitions in concurrently running Threads). How

unique ParameterGroup ID’s are defined is an implementation detail.

.

7.1.2.4 The PutMessage Operation

The PutMessage operation instructs the Test Driver to build and send a message (if the Test Driver is in

“connection” mode) or to pass a Message Declaration to the Test Service (if the Test Driver is in “service”

mode) . A minimal Message Declaration (contained within its child MessageDeclaration element) is

required to construct a message and an optional XSL stylesheet or Xupdate document MAY mutate that

message declaration. Dynamic message content such as timestamps, message ids and conversation ids

are passed to the XSLT or Xupdate processor through parameters created by the Test Driver. Additional

message content may be passed to the XSLT or Xupdate processor through parameter definitions

defined by the test writer (using the configurationGroupRef attribute or the SetParameter directive to

define a name/value pair).

An important difference between the functionality of the PutMessage operation when in “connection” vs.

“service” mode is the role of the Mutator element. If the Test Service is in “connection” mode, the Mutator

(and its XSL stylesheet or Xupdate document) “mutates” the Message Declaration into a message

envelope suitable for transmission to an MSH. If the Test Service is in “service” mode, the Mutator

mutates the Message Declaration, but does not build an actual message. Instead, it simply modifies the

Message Declaration, supplying message content via parameter definitions. It DOES NOT construct a

message. That is the responsibility of the “initiator” method of the Test Service. The initiator method

reads the Message Declaration provided by the Test Driver and actually constructs a message based

upon that template.

What this means is that a Test Case designed for use by a Test Driver in “connection” mode will not

function properly if the Test Driver is switched to “service mode” because the functionality of the Test

Driver is now turned over to the Test Service, using the API of the MSH under test. A new Mutator

stylesheet or Xupdate document MUST be used if one wishes to switch Test Driver modes.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 72 of 213

Figure 23 – Graphic representation of expanded view of the PutMessage element

7.1.2.5

Definition of Content

Name Description Default

Value

From

Test

Driver

Required/Optional Exception

Condition

PutMessage Container element for

message construction and

sending operation

Optional Protocol error

prevented

message

transmission

description Metadata describing the

nature of the PutMessage

operation

Required

repeatWithSameContext Integer looping parameter,

using same message

context (i.e.

ConversationId,

MessageID, Timestamp)

Optional

repeatWithNewContext Integer looping parameter,

using new message

context (i.e.

Optional

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 73 of 213

ConversationId,

MessageID, Timestamp)

MessageDeclaration Content defines message

envelope to be created (or

mutated) by Test Driver

Optional

FileURI Reference to message

declaration contained in a

file

Optional File not found

MessageRef Reference to an ID in the

Test Suite whose parent is

a MessagePayload

element

Optional

Mutator Container element for a

reference to either an XSL

stylesheet or Xupdate

document

Optional

XSL URI to an XSL stylesheet Optional Stylesheet not

found

XUpdate URI to an Xupdate

document

Oprional Xupdate script

not found

 XUpdate URI reference to Xupdate

document

Optional

SetPayload Container element for Test

Driver directives to create

MIME attachments (or

Payloads) to message

Optional

DSign Container element for

XML Digital Signature

declaration(s) for this

message, used to sign

any portion (envelope or

payload(s)) of the

message

Optional

Table 13 defines the content of the PutMessage element

The MessageDeclaration element is a container element for XML content describing the construction of

the envelope portion of a message. The XML content necessary to describe a basic message should be

minimal, with default parameter values supplied by the Test Driver for most message content. If the test

developer wishes to “override” the default element and attribute values, they may do so by explicitly

declaring those values in the XML markup.

Default values for element and attribute content may come from two sources. Either the Test Driver/MSH

generates that value, (for dynamic message content such as for a message Timestamp or a Message Id),

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 74 of 213

or the value is declared in the ConfigurationGroup parameters described in section 4.2.1, which are

passed through to the XSL or Xupdate processor for inclusion in the message.

For ebXML Messaging testing, message content parameters required for the ConfigurationGroup content

include:

CPAId

Service

Action

SenderParty

ReceiverParty

Dynamic message content parameters defined at “runtime” by the Test Driver include:

ConversationId

MessageId

Timestamp

As an example, a Test Suite ConfigurationGroup element content could be:

< ebTest:ConfigurationGroup ebTest:id =" mshc_basic ">

 < ebTest:CPAId > mshc_basic </ ebTest:CPAId >

 < ebTest:Mode > connection </ ebTest:Mode >

 < ebTest:SenderParty > urn:oasis:iic:testdriver </ ebTest:SenderParty >

 < ebTest:ReceiverParty > urn:oasis:iic:testservice </ ebTest:ReceiverParty >

 < ebTest:Service > urn:ebXML:iic:test. </ ebTest:Service >

 < ebTest:Action > Dummy </ ebTest:Action >

 <ebTest:StepDuration> 10 </ebTest:StepDuration>

 <ebTest:Transport> HTTP </ebTest:Transport>

 <ebTest:Envelope> ebXML </ebTest:Envelope>

</ ebTest:ConfigurationGroup >

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 75 of 213

If the message being constructed is an ebXML message used with an HTTP or SMTP transport, and

utilizing SOAP messaging, the XML schema defined in Appendix C (and illustrated below) MUST be used

to construct a valid Message Declaration:

Figure 24 – Image of MessageContainer Content

7.1.2.5.1 Schema for ebXML Message Declaration using SOAP

MIME header data: MIME headers MUST be created or modified using the declarative syntax described

in the mime.xsd schema in Appendix X. Default message MIME header data is illustrated in the message

envelope template in section 7.1.6. How the MIME headers are actually constructed is implementation

dependent. Test Drivers operating in “service” mode MAY ignore the MIME portion of a Message

Declaration, since message MIME manipulation may be unavailable at the application level interface used

for a particular ebXML MSH implementation. Test drivers in “connection” mode MUST properly interpret

the MIME portion of a Message Declaration and generate the appropriate MIME header information.

SOAP header and body data: SOAP message content MUST be created or modified using the

MessageDeclaration content syntax described in the soap.xsd schema described in Appendix E. Default

message SOAP content is illustrated in the message envelope template in section 7.1.6. Test Drivers

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 76 of 213

operating in “service” mode MAY ignore the SOAP portion of a MessageDeclaration, since message

SOAP manipulation may be unavailable at the application level interface used for an MSH

implementation. Test drivers in “connection” mode MUST properly interpret the SOAP portion of a

Message Declaration and generate the appropriate SOAP header information.

ebXML MS 2.0 Message data: ebXML message content MUST be created or modified using the

MessageDeclaration content syntax described in the eb.xsd schema described in Appendix X. . Test

drivers operating in both “service” and “connection” modes MUST properly interpret the ebXML portion of

a Message Declaration, and generate the appropriate ebXML content

Other Types of Message Envelopes and Payloads: RNIF, BizTalk or other XML Message Envelopes

and payloads can be constructing using any implementation-specific XML message declaration syntax in

combination with an XSL stylesheet or XUpdate declaration. It is HIGHLY RECOMMENDED that the

schemas used to define the Message Declaration and the Message Store structure be published as a

“best practice” in order to provide conformity and reusability of conformance and interoperability test

suites across this Test Framework.

Below is a sample ebXML Message Declaration. The Test Driver mutates the Message Declaration

(using an XSL stylesheet), inserting element and attribute content wherever it knows default content

should be, and declaring, or overriding default values where they are explicitly defined in the Message

Declaration.

< ebTest:MessageDeclaration >

 < mime:Message >

 < mime:MessageContainer >

 < soap:Envelope >

 < soap:Header >

 < eb:MessageHeader/ >

 </ soap:Header >

 < soap:Body />

 </ soap:Envelope >

 </ mime:MessageContainer >

 </ mime:Message >

</ ebTest:MessageDeclaration >

For illustrative purposes, the resulting message can be represented by the example message below. The

Test Driver, after parsing the simple Message Declaration above, and mutating it through an XSL

stylesheet, would generate the following MIME message with enclosed SOAP/ebXML content.

Content- Type: multipart/related ; type=" text/xml "; boundary="boundaryText";

start=messagepackage@oasis.org

-- boundaryText

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 77 of 213

Content- ID: <messagepackage@oasis.org>

Content- Type: text/xml ; charset=" UTF-8 "

< soap: Envelope xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema- instance"

 xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:eb="http://www.oasis- open.org/committees/ebxml- msg/schema/msg-

header-2_0 .xsd" xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

http://www.oasis- open.org/committees/ebxml- msg/schema/envelope.xsd

http://www.oasis- open.org/committees/ebxml-msg/schema/msg- header-2_0.xsd

http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd ">

< soap: Header>

 <eb:MessageHeader soap: mustUnderstand=" 1 " eb:version=" 2.0 ">

 <eb:From>

 <eb:PartyId >urn:oasis:iic:testdriver< /eb:PartyId>

 </eb:From>

 <eb:To>

 <eb:PartyId> urn:oasis:iic:testservice </eb:PartyId>

 </eb:To>

 <eb:CPAId> mshc_basic </eb:CPAId>

 <eb:ConversationId> 987654321 </eb:ConversationId>

 <eb:Service> urn:ebXML:iic:test </eb:Service>

 <eb:Action> Dummy </eb:Action>

 <eb:MessageData>

 <eb:MessageId> 0123456789< /eb:MessageId>

 <eb:Timestamp> 2000-07-25T12:19:05 </eb:Timestamp> MessageData>

 </eb:MessageHeader>

</ soap: Header>

</ soap: Envelope>

Dynamic ebXML message content values (illustrated in red above) are supplied by the Test Driver.

The ebXMLMessage.xsd schema in Appendix X defines the format for element and attribute content

declaration for ebXML MS testing. However, the schema alone DOES NOT define default XML element

content, since this is beyond the capability of schemas. Therefore, Test Driver implementers MUST

consult the “Definition of Content” tables for this section of the specification to determine what default

XML content must be generated by the Test Driver or MSH to create a valid ebXML message.

The following sections describe how a Test Driver or MSH MUST interpret the MessageDeclaration

content in order to be conformant to this specification for ebXML MS testing.

7.1.2.5.2 Interpreting the MIME portion of the Message Declaration

The XML syntax used by the Test Driver to construct the MIME message content consists of the

declaration of a main MIME container for the entire message, followed by a MIME container for the SOAP

message envelope. Default values for MIME headers MAY be “overridden” by explicit declaration of their

values in the MessageDeclaration content; otherwise, default values are used by the Test Driver to

construct the MIME headers.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 78 of 213

http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

Figure 25 – Graphic representation of expanded view of the MessageDeclaration element

Definition of Content

Name Declaration Description Default Value

From Test

Driver

Required/Optio

nal

Exception

Condition

Message Generate container for MIME,

SOAP and ebXML message

content

Required

type Generate a MIME message

‘type’ header

text/xml Optional

MessageContai

ner

Generate a MIME container in

message

Required

contentId Generate a ‘Content-ID’

MIME header for the

container

messagepack

age@oasis.or

g

Optional

contentType Generate a MIME message

package ‘Content-Type’

header

text/xml Optional

charset Generate a MIME message

package character set

UTF-8 Optional

soap:Envelope Generates a MIME container

for SOAP message

Required

Table 14 defines the MIME message content of the MessageDeclaration element

An Example of Minimal MIME Declaration Content

The following XML represents all the information necessary to permit a Test Driver to construct a MIME

message that may contain a SOAP envelope in its first MIME container. The XML document below

validates against the mime.xsd schema in Appendix C.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 79 of 213

< mime:Message xmlns:mime =" http://www.oasis-open.org/tc/ebxml- iic/testing/mime ">

 < mime:MessageContainer />

</ mime:Message >

7.1.2.5.3 Interpreting the SOAP portion of the ebXML Message Declaration

The XML syntax interpreted by the Test Driver to construct the SOAP message content consists of the

declaration of a SOAP Envelope element, which in turn is a container for the SOAP Header, Body and

non-SOAP XML content. Construction of the SOAP Header and Body content is simple for the Test

Driver, requiring only the creation of the two container elements with their namespace properly declared,

and valid according to the [SOAP]. The Test Driver only constructs the SOAP Body element if it is

explicitly declared in the content.

Figure 26 – Graphic representation of expanded view of the soap:Envelope element declaration

Definition of Content

Name Declaration Description Default Value

From Test

Driver

Required/Optional

soap:Envelope Generate container element with its

proper namespace for SOAP Header

and Body elements and their content

Required

soap:Header Generate SOAP Header extension

element

Required

soap:Body Modify the default Body element Element is

auto-generate

d by Test

Driver at run

Optional

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 80 of 213

time

#wildCard Generate “inline” wildcard content

inside SOAP Envelope

Optional

Table 15 defines the SOAP message content of the MessageDeclaration element in a message

declaration

An Example of Minimal SOAP Declaration Content

The following XML represents all the information necessary to permit a Test Driver to construct a minimal

SOAP message. It validates against the soap.xsd schema in appendix X.

< soap:Envelope >

 < soap:Header />

 </ soap:Envelope >

7.1.2.5.4 Interpreting the SOAP Header Extension Element Declaration

The declarative syntax interpreted by the Test Driver to construct the ebXML Header extension message

content consists of the declaration of a SOAP Header element, which in turn is a container for the ebXML

Header extension elements and their content. The only extension element that is required in the container

is the eb:MessageHeader element, which directs the Test Driver to construct an ebXML MessageHeader

element, along with its proper namespace declaration, as defined in [EBMS]. The Test Driver does not

construct any other Header extension elements unless they are explicitly declared as content in the

SOAP Header Declaration.

Figure 27 – Graphic representation of expanded view of the soap:Header element declaration

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 81 of 213

Definition of Content

Name Declaration Description Default

Value From

Test Driver

Required/Optional

Header SOAP Header declaration and

container for ebXML ebXML Header

Extension Element declarations

Required

eb:MessageHeader Create an ebXML MessageHeader

element with namespace declaration

Required

eb:ErrorList Create an ebXML ErrorList element Optional

eb:SyncReply Create an ebXML SyncReply element Optional

eb:MessageOrder Create an ebXML MessageOrder

element

Optional

eb:AckRequested Create an ebXML AckRequested

element

Optional

eb:Acknowledgment Create an ebXML Acknowledgment

element

Optional

Table 16 defines the MIME message content of the SOAP Header element in a message declaration

7.1.2.5.5 Interpreting the ebXML MessageHeader Element Declaration

The XML syntax interpreted by the Test Driver to construct the ebXML MessageHeader extension content

consists of the declaration of a MessageHeader element, and a required declaration of CPAId and Action

elements within it. This is the ”minimum” declaration aTest Driver needs to generate an ebXML Message

Header. All other required content, as defined in the schema in the ebXML MS v2.0 Specification, is

provided by the Test Driver through either default parameters defined in the ebTest.xsd schema in

Appendix C, or directly generated by the Test Driver (e.g. to generate necessary message container

elements) or by explicit declaration of content in the Message Declaration. The figure below illustrates

the schema for an ebXML Message Header declaration to be interpreted by the Test Driver.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 82 of 213

Figure 28 – Graphic representation of expanded view of the ebXML MessageHeader element declaration

Definition of Content

Name Declaration

Description

Default Value

From Test Driver

Required/Optio

nal

Exception

Condition

eb:MessageHea

der

Generate

MessageHeader

element and all of its

default element/attribute

content

Required

id Generate attribute with

declared value

Optional

version Modify default attribute

value

2.0 Optional

soap:mustUnder

stand

Modify default attribute

value

true Optional

From Modify default From

message element

generated by Test Driver

Generated by

Test Driver/MSH

at run time

Optional

PartyId Replace default

element value with new

value
Generated by

Required

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 83 of 213

Test Driver/MSH

at run time, using

config value

type Generate a type

attribute with value

Optional

Role Generates a Role

element with its value

Optional

To Modify default To

message element

generated by Test Driver

Generated by

Test Driver at run

time

Optional

PartyId Replace default element

value with new value

Generated by

Test Driver/MSH

at run time, using

config value

Required

type Generate type attribute

with value

Optional

Role Generates a Role

element with its value

Optional

CPAId Generate element with

its value

 Generated by

Test Driver/MSH

at run time, using

config value

Optional

ConversationId Modify default value

provided by Test Driver

Generated by

Test Driver at run

time

Optional

Service Modify default value

generated by Test Driver

Generated by

Test Driver/MSH

at run time, using

config value

Optional

Action Replace default value

with specified Action

name

Generated by

Test Driver/MSH

at run time, using

config value

Optional

MessageData Modify default container

generated by Test Driver

Generated by

Test Driverat run

time

Optional

MessageId Modify default value

generated by Test Driver

Generated by

Test Driver at run

time

Optional

Timestamp Modify default value

generated by Test Driver

Generated by

Test Driver at run

time

Optional

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 84 of 213

RefToMessageId Generate element and

its value

Optional

TimeToLive Generate element and

its value

Generated by

Test Driver at run

time

Optional

DuplicateEliminat

ion

Generate element Optional

Description Generate element with

value

Optional

#wildcard Generate content inline Optional

Table 17 defines the content of the ebXML MessageHeader element in a message declaration

An Example of a Minimal ebXML MessageHeader Content Declaration

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML

MessageHeader element with all necessary content to validate against the ebXML MS V2.0 schema. All

declared content must validate the ebTest.xsd schema in Appendix C.

<eb:MessageHeader/>

7.1.2.5.6 Interpreting the ebXML ErrorList Element Declaration

The XML syntax interpreted by the Test Driver to construct the ebXML ErrorList extension content

consists of the declaration of an ErrorList element, and a required declaration of one or more Error

elements within it. All required content, as defined in the schema in the ebXML MS V2.0 Specification, is

provided through either default parameters defined in the ebTest.xsd schema and included by the Test

Driver, or by explicit declaration.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 85 of 213

Figure 29 - Graphic representation of expanded view of the ebXML ErrorList element declaration

Definition of Content

Name Declaration

Description

Default Value

From Test Driver

Required/Optio

nal

Exception

Condition

eb:ErrorList Generate container

element

Optional

id Generate attribute and

its value

Optional

version Modify default value 2.0 Optional

soap:mustUnder

stand

Modify default value true Optional

highestSeverity Generate required

attribute and value

Required

Error Generate new Error

container

Required

id Generate attribute with

declared value

Optional

codeContext Generate element with

declared value

Optional

errorCode Generate required

attribute and value

Required

severity Generate required

attribute and value

Required

location Generate attribute with

declared value

Optional

Description Optional

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 86 of 213

Generate element with

declared value

#wildCard Generate content “inline”

into message

Optional

Table 18 defines the content of the ErrorList element in a message declaration

An Example of a Minimal ebXML ErrorList Content Declaration

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML

ErrorList element with all necessary content to validate against the ebXML MS v2.0 schema. All required

content not visible in the example would be generated by the Test Driver.

<eb:ErrorList eb:highestSeverity=Error">

 <eb:Error eb:errorCode=”Inconsistent” eb:severity=”Error”/>

</eb:ErrorList>

7.1.2.5.7 Interpreting the ebXML SyncReply Element Declaration

The XML syntax interpreted by the Test Driver to construct the ebXML SyncReply extension content

consists of the declaration of a SyncReply element. All required content, as defined in the schema in

[EBMS], is provided through either default parameters provided by the Test Driver or through explicit

declaration.

Figure 30 – Graphic representation of expanded view of the ebXML SyncReply element declaration

Definition of Content

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 87 of 213

Name Declaration

Description

Default Value

From Test Driver

Required/Optio

nal

Exception

Condition

eb:SyncReply Generate container

element and all default

content

Optional

id Generate attribute and

its value

Optional

version Modify default attribute

value

2.0 Optional

soap:mustUnder

stand

Modify default attribute

value

true Optional

soap:actor Modify default attribute

value

http://schemas.xmls

oap.org/soap/actor/

next

Optional

#wildCard Generate content “inline” Optional

Table 19 defines the content of the SyncReply element in a message declaration

An Example of a Minimal ebXML SyncReply Content Declaration

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML

AckRequested element with all necessary content to validate against the [EBMS] schema schema.

<eb:SyncReply/>

7.1.2.5.8 Interpreting the ebXML AckRequested Element Declaration

The XML syntax interpreted by the Test Driver to construct the ebXML AckRequested extension content

consists of the declaration of an AckRequested element. All required content as defined in the [EBMS]

schema, is provided by the Test Driver or by explicit declaration.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 88 of 213

Figure 31 – Graphic representation of expanded view of the ebXML AckRequested element declaration

Definition of Content

Name Declaration

Description

Default Value

From Test Driver

Required/Optio

nal

Exception

Condition

eb:AckRequeste

d

Generate container

element and all default

content

Optional

id Generate attribute and

its value

Optional

version Modify default value 2.0 Optional

soap:mustUnder

stand

Modify default value true Optional

soap:actor Modify default attribute

value with new value

urn:oasis:names:t

c:ebxml-msg:acto

r:toPartyMSH

Optional

signed Modify default attribute

value

false Optional

#wildCard Generate content “inline” Optional

Table 20 defines the content of the AckRequested element in a message declaration

An Example of a Minimal ebXML AckRequested Content Declaration

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML

AckRequested element with all necessary content to validate against the [EBMS] schema.

<eb:AckRequested/>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 89 of 213

7.1.2.5.9 Interpreting the ebXML Acknowledgment Element Declaration

The XML syntax interpreted by the Test Driver to construct the ebXML Acknowledgment extension

content consists of the declaration of an Acknowledgment element. All required content, as defined in the

[EBMS] schema, is provided by the Test Driver or through explicit declaration.

Figure 32 – Graphic representation of expanded view of the ebXML Acknowledgment element declaration

Definition of Content

Name Declaration

Description

Default Value

From Test Driver

Required/Optio

nal

Exception

Condition

eb:Acknowledgm

ent

Generate container

element and all default

content

Optional

id Generate attribute and

its value

Optional

version Modify default attribute

value

2.0 Optional

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 90 of 213

soap:mustUnder

stand

Modify default attribute

value

true Optional

soap:actor Modify default attribute

value

urn:oasis:names:t

c:ebxml-msg:acto

r:toPartyMSH

Optional

Timestamp Modify default element

value

Generated by

Test Driver at run

time

Optional

RefToMessageId Modify default element

value

Generated by

Test Driver at run

time

Optional

From Modify default container Generated by

Test Driver at run

time

Optional

PartyId Modify default value urn:ebxml:iic:testd

river

Required

type Generate type attribute

with value

Optional

Role Generates a Role

element with its value

Optional

ds:Reference Generate container

element and all default

content

Optional

Id Generate attribute and

its value

Optional

URI Modify default attribute

value

“” Required

type Generate attribute and

its value

Optional

Transforms Generate container

relement

Optional

Transform Generate element with

its value

Optional

Algorithm Modify default attribute

value

http://www.w3.org

/TR/2001/REC-x

ml-c14n-2001031

5

Required

#wildCard Generate content “inline” Optional

XPath Generate element with

its value

Optional

DigestMethod Generate element with

its value

Required

Modify default attribute Generated by Required

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 91 of 213

Algorithm value Test Driver at run

time, based upon

CPA

#wildCard Generate content “inline” Optional

DigestValue Generate element with

its value

Computed by

Test Driver at run

time

Required

#wildCard Generate content “inline” Optional

Table 21 defines the content of the Acknowledgment element in a message declaration

An Example of a Minimal “unsigned” ebXML Acknowledgment Content Declaration

The following XML represents the minimum information necessary to permit a Test Driver to construct an

ebXML Acknowledgment element.

<eb:Acknowledgment/>

7.1.2.5.10 Interpreting the ebXML MessageOrder Element Declaration

The XML syntax interpreted by the Test Driver to construct the ebXML MessageOrder extension content

consists of the declaration of a MessageOrder element. All required content, as defined in the [EBMS]

schema, is provided by the Test Driver or through explicit declaration.

Figure 33 – Graphic representation of expanded view of the ebXML MessageOrder element declaration

Definition of Content

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 92 of 213

Name Declaration

Description

Default Value

From Test Driver

Required/Optio

nal

Exception

Condition

eb:MessageOrde

r

Generate container

element and all default

content

Optional

id Generate attribute and

its value

Optional

version Modify default attribute

value

2.0 Optional

soap:mustUnder

stand

Modify default attribute

value

true Optional

SequenceNumbe

r

Generate element with

declared value

Required

status Generate attribute with

declared value

Optional

#wildCard Generate content “inline” Optional

Table 22 defines the content of the MessageOrder element in a message declaration

An Example of a Minimal ebXML MessageOrder Content Declaration

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML

MessageOrder element.

<eb:MessageOrder>

<eb:SequenceNumber>1</eb:SequenceNumber>

</eb:MessageOrder>

7.1.2.5.11 Interpreting the SOAP Body Extension Element Declaration

The XML syntax used by the Test Driver to construct the ebXML Body extension message content

consists of the declaration of a SOAP Body element, which in turn is a container for the ebXML Manifest,

StatusRequest or StatusResponse elements.

The Test Driver does not construct any of these SOAP Body extension elements unless they are explicitly

declared as content in the SOAP Body Declaration.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 93 of 213

Figure 34 – Graphic representation of expanded view of the soap:Body element declaration

7.1.2.5.12 Interpreting the ebXML Manifest Element Declaration

The XML syntax interpreted by the Test Driver to construct the ebXML Manifest extension content

consists of the declaration of a Manifest element. All required content, as defined in the [EBMS] schema,

is provided by the Test Driver or through explicit declaration

Figure 35 – Graphic representation of expanded view of the ebXML Manifest element declaration

Definition of Content

Name Declaration

Description

Default Value

From Test Driver

Required/Optio

nal

Exception

Condition

eb:Manifest Generate container

element and all default

content

Optional

id Generate attribute and

its value

Optional

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 94 of 213

version Modify default attribute

value

2.0 Optional

id Modify default attribute

value

true Optional

xlink:type Generate element with

declared value

Optional

xlink:href Generate attribute with

declared value

Required

xlink:role Generate attribute with

declared value

Optional

contentId Modify the Content-ID

MIME header of the

payload

Optional

contentType Set the the Content-

Type MIME header of

the payload

Optional

contentLocation Set the the Content-

Location MIME header

of the payload

Optional

Schema Generate schema

container element

Optional

location Generate URI attribute

and value of schema

location

Required

version Generate schema

version attribute and

value

Optional

Description Generate description

element and value

Optional

xml:lang Generate description

language attribute and

value

Required

PayloadLocation Load specified file as a

MIME attachment to

message

Required File not found

MessageRef Load designated XML

document via IDREF as

a MIME attachment to

message

Required

PayloadDeclarati

on

“Inline” the XML content

of this element as a

MIME message

Required

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 95 of 213

attachment

Table 23 defines the content of the Manifest element in a message declaration

An Example of a Minimal ebXML Manifest Content Declaration

The following XML represents the minimum information necessary to permit a Test Driver to construct an

ebXML Manifest element with all necessary content to validate against the ebXML MS v2.0 schema.

<eb:Manifest>

<eb:Reference xlink:href=”cid:payload_1”/>

</eb:Manifest>

7.1.2.5.13 Interpreting the ebXML StatusRequest Element Declaration

The XML syntax interpreted by the Test Driver to construct the ebXML StatusRequest extension content

consists of the declaration of a StatusRequest element. All required content, as defined in the [EBMX]

schema. All required content, as defined in the [EBMS] schema, is provided by the Test Driver or through

explicit declaration

Figure 36 – Graphic representation of expanded view of the ebXML StatusRequest element declaration

Definition of Content

Name Declaration

Description

Default Value

From Test Driver

Required/Optio

nal

Exception

Condition

eb:StatusRequest Generate container

element and all

default content

Optional

id Generate attribute

and its value

Optional

version Modify default value 2.0 Optional

RefToMessageId Generate element and Required

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 96 of 213

its value

#wildCard Generate content

“inline”

Optional

Table 24 defines the content of the StatusRequest element in a message declaration

An Example of a Minimal ebXML StatusRequest Content Declaration

The following XML represents all the minimum information necessary to permit a Test Driver to construct

an ebXML StatusRequest element with all necessary content to validate against the [EBMS] schema.

<eb:StatusRequest>

<eb:RefToMessageId>20001209-133003-28571@example.com</eb:RefToMessageId>

</eb:StatusRequest>

7.1.2.5.14 Interpreting the ebXML StatusResponse Element Declaration

The XML syntax used by the Test Driver to construct the ebXML StatusResponse extension content

consists of the declaration of a StatusResponse element with required and optional element/attribute

content.

Figure 37 – Graphic representation of expanded view of the ebXML StatusResponse element declaration

Definition of Content

Name Declaration

Description

Default Value

From Test Driver

Required/Optio

nal

Exception

Condition

eb:StatusRespon

se

Optional

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 97 of 213

Generate container

element and all default

content

id Generate attribute and

its value

Optional

version Modify default attribute

value

2.0 Optional

messageStatus Generate attribute and

its value

Optional

RefToMessageId Generate element and

its value

Required

Timestamp Modify default value Generated by

Test Driver at run

time

Optional

#wildCard Generate content “inline” Optional

Table 25 defines the content of the StatusResponse element in a message declaration

An Example of a Minimal ebXML StatusResponse Content Declaration

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML

StatusResponse element with all necessary content to validate against the [EBMX] schema.

<eb:StatusResponse messageStatus=”Processed”/>

7.1.2.6 The SetPayload Operation

The SetPayload Operation is a sub-operation of PutMessage. It provides the Test Driver with the

necessary information to append a message payload. Payloads can be provided to the driver through a

file name reference, an in-memory message document reference, or can be constructed “on-the-fly”

through any declarative syntax specific to an ebXML application.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 98 of 213

Figure 38 – Graphic representation of expanded view of the SetPayload element

Definition of Content

Name Description Default

Value

Required/Optional Exception

Condition

description Metadata describing the nature of

the SetPayload operation

Required

Content-ID Set the Content-Id MIME header of

the payload

Required

Content-Location Set the the MIME Content-

Location header of the payload

Required

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 99 of 213

 FileURI URI of the file to be loaded as a

payload

Required File not found

PayloadRef Unique ID of the in memory XML

document to be loaded as the

payload

Required

MimeHeader Set any type of MIME header

name

Optional

MimeHeaderValue Set corresponding MIME header

value

Optional

SetParameter Container for user-defined

parameter to be made available to

other Test Steps

Optional

Name Name of new parameter Required

Value String value of parameter Required

Mutator Container Element for reference to

either an XSL Stylesheet

document or an Xupdate

document for payload mutation

Optional

XSL URI reference to XSL stylesheet Optional Stylesheet

document not

found

 XUpdate URI reference to Xupdate

document

Optional Xupdate

document not

found

Table 26 defines the content of the SetPayload element

7.1.2.7 The Dsign Operation

The DSign Operation is another sub-operation of PutMessage, and instructs the Test Driver to digitally

sign the portion of the message identified by its Reference element content.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 100 of 213

Figure 39 – Graphic representation of expanded view of the DSign element

Definition of Content

Name Description Default Value From Test Driver Required/Optional Exception

Condition

DSign Container for

Signature

declaration

content

Optional

ds:Signature Signature root

element, as

defined in

[XMLDSIG]

Required

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 101 of 213

Id Unique identifier

for Signature

Optional

SignedInfo Create

container for

Canonicalizatoin

and Signature

algorithms and

References

 Required

CanonicalizationMethod Modify default

container

element

Container auto-generated by

Test Driver

Optional Method

not

supported

by Test

Driver

Algorithm Modify default

attribute and

value

http://www.w3.org/TR/2001/REC-

xml-c14n-20010315

Required Algorithm

not

supported

by Test

Driver

#wildCard Generate

content “inline”

Optional

SignatureMethod Create

container

element Required

Algorithm Create attribute

and value

Required

Algorithm

not

supported

by Test

Driver

HMACOutputLength Generate

Element and its

value

Optional

#wildcard Generate

content “inline”

Optional

ds:Reference Generate

container

element and all

default content

Optional

Id Generate

attribute and its

value

Optional

URI Modify default

attribute value

 “” Optional

type Generate

attribute and its

Optional

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 102 of 213

value

Transforms Generate

container

relement

Optional

Transform Generate

element with its

value

Optional

Algorithm Modify default

attribute value

http://www.w3.org/TR/2001/REC-

xml-c14n-20010315

Required Algorithm

not

supported

by Test

Driver

#wildCard Generate

content “inline”

Optional

XPath Generate

element with its

value

Optional Invalid

XPath

expression

DigestMethod Generate

element with its

value

Required Method

not

supported

by Test

Driver

Algorithm

Generate

attribute and

value

Required Algorithm

not

supported

by Test

Driver

#wildCard Generate

content “inline”

Optional

DigestValue Generate

element with its

value

Set by Test Driver, based upon

URI value

Optional

#wildCard Generate

content “inline”

Optional

SignatureValue Generate

element and its

value

Set by Test Driver at run time

Optional

Id Generate

attribute and its

value

Optional

KeyInfo Generate

container

Element

All required and optional content,

as described in [XMLDSIG]

MUST be explicitly declared (no

auto-generation by Test Driver)

Optional Invalid

Key data

Object Generate

container

Optional

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 103 of 213

element

Table 27 - Content of the Dsign element

7.1.2.8 The Initiator Operation

The Initiator Operation provides a means to initiate a conversation from the candidate MSH. The Test

Driver through the “Send” interface of the Test Service performs the Initiator operation. This is

accomplished programmatically if the Test Driver is “local” to the Test Service. If this is not the case,

then this is accomplished through a remote procedure call (RPC), described in section 3.2.4. The Test

Driver passes on the XML content illustrated and described below to the Test Service “initiator” RPC

method to construct a message. The type of content in the MessageDeclaration element will vary with

the message envelope type (e.g. ebXML, RNIF..etc.). Also, because it is the Test Service that is actually

constructing the message (not the Test Driver), message declarations MUST only contain directives that

the MSH API can execute. For example MIME and SOAP content is generally not available for

manipulation by an ebXML MSH API. Therefore, MIME and SOAP message construction directives

SHOULD NOT be present as MessageDeclaration content, or if present, MUST be ignored by the initiator

method of the Send interface.

The schema illustrating the MessageDeclaration content for ebXML Messaging Services v2.0 testing can

be found in Appendix C.

Figure 40 – Graphic representation of expanded view of the generic Initiator element

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 104 of 213

Definition of Content

Name Description Default

Value

From

Test

Driver

Required/Optional Exception

Condition

Initiator Container element for

message construction

directives and message

payloads to be passed to

MSH via RPC

Optional Protocol error

prevented

message

transmission

description Metadata describing the

nature of the Initiator

operation

Required

SetMessageEnvelope Content defines message

envelope to be created (or

mutated) by Test Driver

Optional

MessageDeclaration Message construction

directives to be passed to

MSH for interpretation and

message generation

Optional

FileURI Reference to message

declaration contained in a file

Optional File not found

MessageRef Reference to an ID in the

Test Suite whose parent is a

Message element

Optional

DSign Container element for XML

Digital Signature

declaration(s) for this

message, used to sign any

portion (envelope or

payload(s)) of the message

Optional

SetPayload Container element for Test

Driver directives to add

MIME attachments (or

Payloads) to message

Optional

Table 28 – Content of the Initiator operation

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 105 of 213

7.1.2.9 The TestServiceConfigurator Operation

The TestServiceConfigurator operation provides a method to remotely reconfigure a Test Service. The

Configurator operation is performed by the Test Service via the Configure interface (if the Test Driver is

local to the MSH) or via a remote procedure RPC call to the Test Service configurator method (if the

Test Service is remote). Details of the Configurator operation are described in section 3.2.4

The XML content illustrated and described below is passed from the Test Driver to the MSH to construct

a message that contains all the necessary message information.

Figure 41 - Graphic representation of expanded view of the Configurator element

Definition of Content

Name Description Default

Value From

Test Driver

Required/Optional Exception

Condition

Configurator Container Test Driver/MSH

configuration data

 Required

OperationMode One of three types, “local-

reporting”, “remote-reporting” or

“loop”

Required

ResponseURL Parameter defining the URL for

the Test Service to send

response messages to

Optional

NotificationURL Parameter defining the location

for the Test Service to send

notification messages to

Optional

PayloadDigests Container for individual payload

identifiers, and their

corresponding MD5 digest

values

Optional

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 106 of 213

Payload Individual message payload

date container

Required

Href Identifier for payload in message Required

Digest MD5 digest value of payload Required

Table 29 – Content description for the TestServiceConfigurator operation

7.1.3 The GetMessage Operation

The GetMessage Operation, using its child XPath Filter operation, retrieves a node-list of Messages from

the Message Store of the Test Driver. The content of the node-list is dependent upon the XPath Filter

provided. The resulting node-list MAY be queried for adherence to a particular test Precondition or Test

Assertion. In addition, any XML payload associated with a message MAY be queried in the same manner

through the GetPayload sub-operation.

 Figure 42 – Graphic representation of expanded view of the GetMessage element

Name Description Default Value from

Test Driver

Required/Optional Exception

Condition

GetMessage Container element for filtering,

verifying and validating message

and payload content

Optional

description Description the nature of the

GetMessage operation

Required

Filter XPath query to select

message(s) from Message Store

Required First element in

the returned

node list is not a

Message

element; Not a

valid XPath or

well formed

XPath

mask Boolean attribute, when set to

“true” will “mask” (hide) the

message(s) which satisfy the

XPath expression. When “false”,

the Test Driver will make any

“masked” messages that match

the XPath expression visible.

false Optional

SetXPathParameter Set the value of a parameter with

the value of a node returned by

an XPath query against a

Filtered message retrieved from

the Message Store

Optional Invalid XPath

syntax in

Expression

element

Name Parameter name Required

Value Parameter value Required Not a valid

XPath or well

formed XPath

Type Parmeter type (string |

namespace)

Required

TestPreCondition Container for verification or

validation operation to be

performed on message as pre-

condition to testing the Assertion

Optional Not a valid

XPath or well

formed XPath

TestAssertion Container for verification or

validation operation to be

performed to test a conformance

or interoperability assertion

Optional Not a valid

XPath or well

formed XPath

GetPayload Retrieve a payload for the

current message, and test its

content using the same

operations available at the

GetMessage level

Optional Payload not

found

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 107 of 213

Table 30 defines the content of the GetMessage element

7.1.3.1 Semantics of the GetMessage operation

A fundamental aspect of the GetMessage operation is its behavior and effect over the Message Store.

The Message Store is an XML document object created by the Test Driver that contains an XML

representation of all synchronous and asynchronously received ebXML messages for a Test Case. The

received messages for a particular Test Case MUST persist in the Message Store for the life of the Test

Case. Messages in the Message Store MAY contain an XML representation of all MIME, SOAP, ebXML

or other types of message content, represented as an XML document (the schema permits any type of

XML representation of a messaging envelope, with each representation specified in a “best practice”

document for a particular testing community). The particular XML representation of a message in the

Message Store is based upon a "best practice" schema for representing a particular message type. If the

messages being stored are ebXML messages using HTTP transport and a SOAP envelope, the XML

format of the Message Store document MUST validate against the ebXMLMessageStore.xsd schema in

appendix D. The scope of message content stored in the Message Store is “global”, meaning its content

is accessible at any time by any Test Step or Thread (even concurrently executing Threads) during the

execution of a Test Case. Message Store content changes dynamically with each received message or

notification.

The GetMessage “Filter” operation queries the Message Store document object, and retrieves the XML

content that satisfies the XPath expression specified in its Filter child element. As the MessageStore is

updated every time a new message comes in, a GetMessage operation will automatically execute as

often as needed, until either (1) its Filter selects and returns a non-empty node-list, or (2) the timeout

(stepDuration) expires.

The XPath query used as content for a Filter operation MUST yield a node-list of Message elements, as

defined by the Message Store schema in Appendix D. Although the content of a message may vary (e.g.

ebXML, RNIF, SOAP), all node-list results from a Filter operation MUST contain Message elements. Any

subsequent VerifyContent or ValidateContent operations MUST then append this node-list to a

FilterResult root element, creating a new document object for further examination. The required structure

of the FilterResult document object is defined in the Filter Result schema in Appendix D.

Setting Parameters using user-defined or received Message Content:

In addition to storing message content, the Message Store MAY also store parameter values to be used

in the evaluation of subsequent received messages. This is not an implementation requirement, but an

option. A schema defining a “ParameterGroup” tree for maintaining the state of parameter definitions

within the Test Case object hierarchy is provided in the MessageStore sscheam defined in Appendix

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 108 of 213

Parameter values are defined in the “default” ConfigurationGroup of the Test Suite, and in any

subsequent Test Cases, Threads or Test Steps that reference a ConfigurationGroup via its ID. A test

writer may additionally define (or redefine) a parameter using the SetParameter element. The

SetParameter element requires three child elements to define a parameter: Name, Value and Type.

Once a parameter is defined, it may subsequently be used via XSLT or Xupdate in the PutMessage

Mutator operation or GetMessage Filter operations (as arguments in an XPath expression).

Additionally, parameters may be defined/redefined through the SetXPathParameter operation. This

operation extracts message content from the Message Store and stores it as a parameter value.

Whether it is a message header, or an XML message payload being examined, the test writer may assign

a parameter name, and an XPath pointing to the content to be stored as a parameter. XPath

parameters are stored in the Message Store, as defined in the Message Store schema in Appendix D.

Each parameter value is a string representation of the nodelist content retrieved by the XPath query.

 A TestPreCondition and/orTestAssertion sub-operation (which may also contain a single XPath query)

query the resulting document object constructed from the node-list generated by a GetMessage Filter

operation. That document object to be examined by a TestPreCondition of TestAssertion action MUST

have a root element with a name of test:FilterResult (as defined in the FilterResult schema in Appendix

D). If the Test Driver is unable to create a FilterResult document object because the resulting node-list

contains any XML content other than Message elements (such as an attribute list), then the Test Driver

MUST generate an exception, and terminate the Test Case with a result of "undetermined". (i.e. if the

XPath query does not return XML content that can be built into a document object, then it cannot be

further examined with XPath in the TestPreCondition or TestAssertion operations)

Message Masking:

 All the message items available for querying are children of the MessageStore element. The Xpath

expression in the Filter will typically select all the /MessageStore/Message elements that satisfy the filter,

and these will be consolidated as children of a FilterResult element, available for further querying, by the

TestAssertion operation.

 The messages that have been selected by a GetMessage operation are "invisible" to future

Getmessage operations in the same test case, if the "mask" attribute is set to "true" (the default is "false").

A GetMessage operation will query all messages in the message store for this test case, except those

messages that have been masked by a previous GetMessage operation.

How message masking takes place in a Test Driver is implementation specific.

7.1.4 The TestPreCondition Operation

The TestPreCondition Operation examines a message or messages in a GetMessage node-list by testing

the content of the node-list against the VerifyContent (content value comparison) or ValidateContent

(content integrity evaluation) operation. The TestPreCondition operation is semantically significant, in

that a “failure” to verify or validate the content of a message results in an exit from the execution of the

Test Step with an exit condition of “undetermined” (meaning, because the precondition could not be

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 109 of 213

verified or validated, the ultimate result of the Test Case could not be determined). If no further branching

is possible within the Test Case workflow, the Test Service will halt with a final Test Case result of

“undetermined”. The TestPreCondition element should only be used to verify a condition this is beyond

the control of the Test Harness (e.g. a particular optional feature on a candidate implementation under

test MAY NOT be implemented). Usage of this element in scripting a Test Case should be done with

care to avoid ambiguous or “false” test results (for example defining a “required”, testable feature of a

candidate implementation as a “precondition).

Figure 43 – Graphic representation of expanded view of the TestPreCondition element

Definition of Content

Name Description Default

Value From

Test Driver

Required/Optional Exception

Condition

description Metadata describing the nature of

the TestPreCondition operation

Required

VerifyContent Contains XPath expression to

evaluate content of message(s)

Optional Invalid XPath

expression

ValidateContent Empty if entire XML document is

to be validated or XPath

expression to “point to” content to

be validated

Optional Invalid XPath

expression

contentType An enumerated list of XML, URI,

dateTime, or Signature validation

descriptors

XML Optional

schemaLocation URI pointing to location of

schema used to validate a

content type of XML

Optional Schema not

found

Table 31 defines the content of the TestPreCondition element

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 110 of 213

7.1.4.1 Semantics of the TestPreCondition operation

The TestPreCondition operation MUST return either a boolean true or false result (or semantically a

pass/fail result) to the Test Driver. Based upon that result, execution of the Test Case will either proceed

(if the result is “true”) or halt (if no logical branching in the workflow is possible) from this Test Step, with

the final state of the Test Case set to “undetermined”.

If TestPreCondition includes a VerifyContent sub-operation, the VerifyContent operation MUST yield a

boolean value of true/false. If the verification is an XPath operation, the VerifyContent XPath expression

may yield a node-set, boolean, number or string object. All of these resulting objects MUST be evaluated

using the “boolean” function described in [XPath]. Those evaluation rules are:

• a returned node-set object evaluates to true if and only if it is non-empty

• a returned boolean object evaluates to true if it evaluates to “true” and false if it evaluates to

“false”

• a returned number object evaluates to true if and only if it is neither positive or negative zero nor

NaN

• a returned string object evaluates to true if and only if its length is non-zero

If TestPreCondition includes a ValidateContent sub-operation, the ValidateContent operation MUST yield

a boolean value of true/false. Rules for determining the resulting Boolean value are:

• if the contentType attribute value is XML, as defined in [XML] , the operation evaluates to true if

the content at the specified XPath validates according to the schema defined in the

“schemaLocation” attribute

• if the contentType is URI, as defined in [XMLSCHEMA], the operation evaluates to true if the

content at the specified XPath is a valid URI

• if the contentType is dateTime, as defined in [XMLSCHEMA], the operation evaluates to true if

the content af the specified XPath is a valid dateTime

• if the contentType is signature, as defined in [XMLDSIG], the operation evaluates to true if the

content at the specified XPath is a valid signature.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 111 of 213

7.1.5 The TestAssertion Operation

The TestAssertion Operation examines a message or messages in a node-list by testing the content

against an XPath expression in the TestPreCondition text. If the XPath expression returns a node-list

with one or more nodes, the ConformanceCondition is “true”, else it is “false”. Within a TestAssertion

Operation, content of the node-list can be further examined through the VerifyContent (content

evaluation) or ValidateContent (content format evaluation). The TestAssertion operation is semantically

significant, in that a “failure” to verify or validate the content of a message results in a Boolean result of

“false” for the TestAssertion, and therefore the TestStep object. If there is no logical workflow branching

from that TestStep, or from any of that TestStep’s parent Threads, then the Test Driver ends the Test

Case with a final Test Case result of of “fail” (meaning, because the assertion could not be verified or

validated, the ultimate result of the Test Case is “failure. Conversely, if the TestAssertion returns a result

of “true”, the Test Driver continues with the TestCase workflow.

Figure 44 – Graphic representation of expanded view of the TestAssertion element

Definition of Content

Name Description Default

Value

From Test

Driver

Required/Optional Exception

Condition

description Metadata describing the nature of

the TestPreCondition operation

Required

VerifyContent XPath expression to evaluate

content of message(s)

Optional Invalid

XPath

expression

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 112 of 213

ValidateContent Empty if entire XML document is to

be validated or XPath expression to

“point to” content to be validated for

correct format if type is URI,

dateTime or Signature

Optional Invalid

XPath

expression

contentType An enumerated list of XML, URI,

dateTime, or signature validation

descriptors

Optional

schemaLocation URI describing location of validating

XML schema, as defined in

[XMLSCHEMA] or a URI of a

Schematron schema

Optional Schema not

found

Table 32 defines the content of the TestAssertion element

7.1.6 Semantics of the TestAssertion operation

The TestAssertion operation MUST return either a true or false result (or semantically a pass/fail result) to

the Test Driver.

If TestAssertion includes a VerifyContent sub-operation, the VerifyContent operation MUST yield a

boolean value of true/false. If the verification is an XPath operation, the VerifyContent XPath expression

may yield a node-set, boolean, number or string object. All of these resulting objects MUST be evaluated

using the “boolean” function described in [XPath]. Those evaluation rules are:

• a returned node-set object evaluates to true if and only if it is non-empty

• a returned boolean object evaluates to true if it evaluates to “true” and false if it evaluates to

“false”

• a returned number object evaluates to true if and only if it is neither positive or negative zero nor

NaN

• a returned string object evaluates to true if and only if its length is non-zero

The VerifyContent operation MAY also be used to compare an MD5 digest value of a message payload

(computed by the Test Driver) with a content value contained in the VerifyContent element. If the

“verifyMethod” attribute value of the VerifyContent element is “MD5”, then a VerifyContent operation will

return a value of “true” if the digest value of current message payload returned by a GetPayload operation

is equal to the value contained in the VerifyContent element. Conversely, the operation will return a result

of “false” if the values do not match.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 113 of 213

If TestAssertion includes a ValidateContent sub-operation, the ValidateContent operation MUST yield a

boolean value of true/false. Rules for determining the resulting Boolean value are:

• if the contentType attribute value is XMLSchema, as defined in [XML] , the operation evaluates to

true if the content at the specified XPath validates according to the schema defined in the

“schemaLocation” attribute

• if the contentType is URI, as defined in [XMLSCHEMA], the operation evaluates to true if the

content at the specified XPath is a valid URI

• if the contentType is dateTime, as defined in [XMLSCHEMA], the operation evaluates to true if the

content af the specified XPath is a valid dateTime

• if the contentType is signature, as defined in [XMLDSIG], the operation evaluates to true if the content at

the specified XPath is a valid signature.

7.1.7 The GetPayload Operation

The GetPayload operation fetches the message payload from the current message retrieved with the

GetMessage operation. The message payload is retrieved based upon the required Content-ID, Content-

Location or Index child element value. As with the MessageHeader, both PreCondition and TestAssertion

operations can be performed on the message payload. Payload content can be verified (using the

VerifyContent operation described above) using an XPath expression. If the payload is an XML

document, the entire document can be validated (using the ValidateContent operation described above)

against the provided XML schema, or a discreet element or attribute value can be validated as a URI or

dateTime.

Figure 46 – Graphic representation of expanded view of the GetPayload element

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 114 of 213

Definition of Content

Name Description Default

Value

from

Test

Driver

Required/Optional Exception Condition

GetPayload Container

element for

operations

to verify and

validate

message

content

Optional More than one message currently in

the FilterResult

description Data

describing

the nature

of the

GetPaylod

operation

Required

ContentId Retrieve the

payload

using the

MIME

Content-ID

header

value

false Optional Payload not found

ContentLocation Retrieve the

payload

using the

MIME

Content-Loc

ation value

Optional Payload not found

Index Retrieve the

payload as

the Nth

attachment

after the

message

envelope

Required Payloat not found

SetXPathParameter Set the

value of a

parameter

with the

value of a

node

returned by

an XPath

Optional Invalid XPath syntax in Expression

element

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 115 of 213

query

against a

Filtered

message

retrieved

from the

Message

Store

Name Parameter

name

Required

Value Parameter

value

Required

Type Parameter

Type (string

or

namespace)

Required

TestPreCondition Container

for

verification

or validation

operation to

be

performed

on message

as an

optional

pre-conditio

n to testing

the

Assertion

Optional

TestAssertion Container

for

verification

or validation

operation to

be

performed

on message

as a test of

the

Assertion

Optional

Table 34 defines the content of the GetPayload element

Semantics of the GetPayload operation

Although message payloads are not stored in the MessageStore, the Test Driver MUST be able to

retrieve them for verification or validation through their corresponding Content-ID, Content-Type or Index.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 116 of 213

How the Test Driver stores the message payloads is implementation dependent. Unlike the GetMessage

operation, which can evaluate multiple messages, the GetPayload operation can only perform a

TestPreCondition or TestAssertion operation on a single payload, in a single message. That message is

the “current” message retrieved by the parent GetMessage operation. If more than one message is

retrieved using the GetMessage operation, the GetPayload operation will generate an exception, and the

GetPayload operation will return an “undetermined” result for the Test Case.

All other rules regarding the TestPreCondition or TestAssertion operations previously described apply to

these operations when applied to a GetPayload operation as well.

7.1.8 Message Store Schema

The Generic Message Store schema (Appendix D) describes the XML document format required for a

Test Driver implementation. The schema facilitates a standard XPath query syntax to be used for retrieval

and evaluation of received messages, notifications and (optionally) parameter names and values by the

Test Driver. The “generic” schema design of the Message Store document object permits virtually any

type of XML format for messages and notifications to be stored and queried via XPath.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 117 of 213

Figure 47 – Graphic representation of expanded view of the generic Test Driver MessageStore schema

Description of Content

Name Description Default

Value

From

Test

Driver

Required/Optional Exception

Condition

MessageStore Container for all message,

notification and possibly parameter

values for a Test Case instance

Required

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 118 of 213

ParameterGroup Container for hierarchical

representation of all parameters of

the Test Case instance. The

ParamaterGroup element

hierarchy begins with TestCase,

then Thread, then Test Step etc…

Optional (storage and

retrieval of parameter

MAY be done in any

way that benefits Test

Driver implementation)

Message Generic container for any type of

message, with certain required and

optional data associated with each

message

Optional

synchType Descriptor of type of how message

was received

(synchronous|asynchronous)

Required

id Test driver provided unique

identifier of received message

Required

serviceInstanceId Unique identifier of the Test

Service that generated the

received message

Optional

serviceName Name of the Service that

generated the received message

Optional

reportingAction Name of the action that generated

the received message

Optional

#wildcard Wildcard element used to

represent “any” XML content that

may be used to represent any type

of message

Required

Notification Container for a message or error

passed from the Test Servcie (in

local or remote-reporting mode) to

the Test Driver

Optional

synchType Descriptor of type of how message

was received by Test Service

Required

id Test Service provided unique

identifier of received message

Required

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 119 of 213

serviceInstanceId Unique identifier of the Test

Service that generated the

notification

Optional

serviceName Name of the Service that

generated the notification

Optional

reportingAction Name of the action that generated

the notification

Optional

notificationType Type of notification message.

(ErrorURL | ErrorApp | Message)

Required

#wildcard Wildcard element used to

represent “any” XML content that

may be used to represent any type

of message

Required

7.1.8.1 Semantics of the Message Store

As mentioned earlier, the ParameterGroup schema is a structure intended to assist those who wish to

store run-time parameters in the Message Store. The benefit of doing so lies in the ability to perform

XPath queries where the parameter values can easily be referenced from within the same Message Store

document object. There is no requirement, however, to use the Message Store as a repository for run-

time parameters.

The Message schema permits any type of message representation. Messages are required to have a

unique ID within the Message Store, and a “synchType” attribute, identifying the message as received

either synchronously or asynchronously. Messsages (unlike Notifications) are received directly by the

Test Driver (i.e. the Test Driver is in “connection” mode). Hence message content is more complete,

since it was received “over the wire”, and all content is accessible to the Test Driver.

This is not the case for Notification messages. Notification messages are received via an alternate

interface from the Test Service. Because the messaging system being tested cannot be trusted to

provide the notifications, notifications are either passed locally (via the Test Service Notification interface)

or remotely (via RPC) between Test Service and Test Driver. As a result, message content is restricted

to what part of the message was exposed to the Test Service. Therefore the representation or received

messages passed via notification is less complete than message content directly received by the Test

Driver (for example, MIME content may not be exposed to a Test Service application, therefore MIME

headers are not represented in the Notifcation message). For all other purposes however, the format of

the Notification message is identical to that of a message directly received by the Test Driver.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 120 of 213

7.1.8.2 ebXML Specific Message Store Schema

The ebXML MS v2.0 Message Store Schema (Appendix D) defines the structure of an individual ebXML

MS version 2.0 message received over HTTP. This schema MUST be used to define the message

structure for ebXML MS V2.0 messages and notifications.

Figure 48 – Graphic representation of expanded view of Message Store content model, specifically for

ebXML/SOAP messaging services

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 121 of 213

Definition of Content

Name Declaration Description Default Value

From Test

Driver

Required/Optio

nal

MessageStore Container for XML

representation of all

messages received by Test

Driver for a given Test Case

Required

ParameterGroup Test Case specific

container for all parameters

and their cooresponding

values

Required

Parameter Container of name/value

pairs

Optional

Name Parameter name Required

Value Parameter Value Required

Type Parameter type (parameter,

namespace)

Required

Message Container for MIME, SOAP

and ebXML message

content

Optional

contentType MIME message ‘Content-

Type’ header

Optional

type MIME message ‘type’

header

Optional

serviceInstanceId Unique identifier for

instance of Test Service

that reports the message

 Required

reportingAction Action name that received

the message on reporting

service

Required

id Unique identifier for this

message

Required

syncType Classifier of “synchronous”

or “asynchronous”

Required

serviceName Name of service that

received the message

Required

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 122 of 213

MessageContain

er

MIME SOAP

messagecontainer

Required

contentId SOAP container ‘Content-

ID’ header

Optional

contentType SOAP message package

‘Content-Type’ header

Optional

charset SOAP message package

character set

Optional

soap:Envelope Generates container for

SOAP message

Required

Notification Message received from

Test Service via the Test

Driver Receive interface’s

“Notify” method

Optional

Table 35 defines the content of the MessageStore element

7.1.8.3 ebXML Specific Filter Result Schema

The ebXML MS v2.0 Filter Result Schema (Appendix D) defines the structure of an individual ebXML MS

version 2.0. message received over HTTP. This schema MUST be used to define the message structure

of ebXML messages within the Filter Result.

Like the Message Store, the Filter Result is a document object that can be queried for content testing and

verification. Unlike the MessageStore, the FilterResult document object only needs to exist for the

lifecycle of a single TestStep. The Filter Result document is identical (in structure) to the MessageStore

document, with one exception. The root node of the Filter Result document is a FilterResult element, not

a MessageStore element. The content of the Filter Result document is any messages that satisfy the

filter query.

Figure 49 – Generic Filter Result schema

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 123 of 213

Figure 50 – ebXML Filter Result schema

Definition of Content

Name Declaration Description Default Value

From Test Driver

Required/Optional

FilterResult Container for XML representation of

all messages received by Test Driver

for a given Test Case

Required

Message Container for MIME, SOAP and

ebXML message content

Optional

contentType MIME message ‘Content-Type’

header

Optional

type MIME message ‘type’ header Optional

serviceInstanceId Unique identifier for instance of Test

Service that reports the message

 Required

reportingAction Action name that received the

message on reporting service

Required

id Unique identifier for this message Required

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 124 of 213

synchType Classifier of “synchronous” or

“asynchronous”

Required

serviceName Name of service that received the

message

Required

MessageContainer MIME SOAP messagecontainer Required

contentId SOAP container ‘Content-ID’ header Optional

contentType SOAP message package ‘Content-

Type’ header

Optional

charset SOAP message package character

set

Optional

soap:Envelope Generates container for SOAP

message

Required

Table 36 defines the content of the MessageStore element

NOTE: All ebXML MessageStore content contained in the SOAP envelope MUST validate to the [ebMS]

schema definition.

7.3 Configurator, Initiator, and Notification Message Formats

The Test Service Message Schema (Appendix F) describes an XML syntax that MUST be followed for

passing Test Service configuration, message construction and message notification data between the

Test Driver to the Test Service when the Test Driver is either interfaced with the Test Service, or is

remote to the Test Service but is receiving notification messages from the Test Service via RPC.

If the Test Service is in “local reporting mode”, configuration and message initiation information is passed

from the Test Driver to the Test Service via the Test Service “Send” and “Configuration” interfaces.

The Send interface provides the “initiator” method to start a new conversation or to construct a message

with the conversationId already provided by the Test Driver.

The Configuration interface provides the “configurator” method, which provides the t fundamental

parameters for setting the state of the Test Service (ResponseURL, NotificationURL ,ServiceMode and

PayloadDigests).

.

The message initiation and Test Service configuration use the same methods if the Test Service is in

“remote reporting mode”. The only difference is that the messages are passed between the two test

components via a Remote Procedure Call (RPC) instead of via local calls to respective interfaces.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 125 of 213

.

 Using an alternate channel for Test Service configuration, message initiation and message reporting

separates the implementation under test from the actual testing infrastructure. This helps to isolate

failures in conformance and interoperability from failures in the test harness.

The particular alternate communication binding that a test driver and test service implement is not

mandated in this specification, however (as an example) an abstract definition and WSDL definition with a

SOAP binding is provided in section 3.2.5.The list below describes each of the alternate channel

messages defined in Appendix H.

InitiatorRequest – XML message content to be interpreted by the Test Service initiator method to

construct an ebXML Message (or any other message envelope). This XML request is passed to a

candidate MSH Test Service via the Send interface (if the Test Driver is in service mode) or via a remote

procedure call to the Test Service (if the Test Driver is in connection mode). The first argument carries

the message envelope construction declarations. The second argument is a list of message payloads to

be added to the message. If the Test Driver is in “service” mode, the configuration parameters are

passed to the Send interface via the initiator method call. If the Test Driver is in “loop” mode, the two

parameters are passed to the Test Service via RPC call to the initiator method.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 126 of 213

Figure 51 – Initiator request content

Definition of Content

Name Declaration Description Default Value

From Test

Driver

Required/Optio

nal

Exception

Condition

InitiatorRequest Container for message

declaration

Required

Message Container for message

component declarations

Required

soap:Header MIME message ‘Content-

Type’ header

Optional

Soap:Body MIME message ‘type’

header

Optional

DSign Instruction to Test Service

to digitally sign the

appropriate portion of the

Optional

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 127 of 213

message envelope

Table 37 – Describes the content of the InitiatorRequest element

InitiatorResponse – XML message content to be interpreted by the Test Driver, with a result of

“success” or “failure” returned by the Test Service. The response is passed to Test Driver through its

Receive interface (if Test Driver is in Service mode) or sent to the getMessage method of the Test Driver

Receive RPC Service (if Test Driver is in Loop mode). In both cases, the getMessage method is invoked

on the Test Driver. The response message is added to the Message Store by appending its content to a

Message Store “Message” element. The Test Driver will automatically evaluate the result of the response

message, and exit the Test Case with a final status of “undetermined” if the initiator result is “failure”.

Otherwise, the Test Case will proceed to the next operation. Response message content is appended to

a Message Store Message element “as is”, with appropriate service instance, reporting action and other

information provided as

Figure 52 – Graphical representation of the InitiatorResponse schema

Definition of Content

Name Declaration Description Default Value

From Test

Service

Required/Optio

nal

Exception

Condition

InitiatorResponse Container for response from

Test Service

Required

Result Boolean result (true | false)

for conversation initiation

from Test Service

Required

Table 38 – Describes the content of the InitiatorResponse element

ConfiguratorRequest – XML message content passed to a candidate MSH Test Service, to be

interpreted by the configurator method call. Content consists of three required parameter names and

their corresponding values and types. If the Test Driver is in “service” mode, the configuration

parameters are passed to the Test Service Configuration interface via the configurator method call. If the

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 128 of 213

Test Driver is in “loop” mode, the parameters are passed to the Test Service via RPC call to the

configurator method.

Figure 53 – A Graphical representation of the ConfiguratorRequest content schema

Definition of Content

Name Description Default

Value

From Test

Driver

Required/Optional Exception

Condition

OperationMode Toggle mode to (local-reporting |

remote-reporting | loop)

Required

ResponseURL Parameter defining the URL for

the Test Service to send response

messages to

Optional

NotificationURL Parameter defining the location for

the Test Service to send

notification messages to

Optional

ConfigurationItem Container for individual

name/value pair used by the Test

Driver for configuration or possibly

for message payload content

construction

Optional

Name Name for the ConfigurationItem Required

Value Value of the ConfigurationItem Required

Type Type of ConfigurationItem

(namespace or parameter)

Required

Table 39 – Describes the content of the ConfigurationRequest element

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 129 of 213

ConfiguratorResponse – XML message content to be interpreted by the getMessage method of the

Test Driver Receive interface. The response is passed to Test Driver through its Receive interface (if

Test Driver is in Service mode) or sent to the Test Driver Receive RPC Service (if Test Driver is in Loop

mode). In both cases, the getMessage method is invoked on the Test Driver. The Test Driver will

automatically evaluate the result of the response message, and exit the Test Case with a final status of

“undetermined” if the XML content in the response message indicates “failure” to configure the Test

Service. Otherwise, the Test Case will proceed to the next operation. Response message content is

appended to a Message Store Message element “as is”, and providing the required service instance,

reporting action and other information.

Figure 54 - A graphical representation of the ConfiguratorResponse content schema

Definition of Content

Name Declaration Description Default Value

From Test

Service

Required/Optio

nal

Exception

Condition

ConfiguratorResp

onse

Container for response from

Test Service

Required

Result Boolean result (true | false)

for Test Service

configuration

Required

Table 40 – Description of content for the ConfiguratoreResponse element

Notification – XML message envelope and payloads passed from the Test Service to the Test Driver.

This includes errorURL notifications, errorApp notifications and any messages received by the Test

Service while operating in “reporting” mode. Notifications are passed to Test Driver through its Receive

interface (if Test Driver is in Service mode) or sent to the Test Driver via messaging to the Test Driver

“Notify” action. In both cases, the Test Driver will automatically append the received Notification element

and content the root element of the Message Store. Additional message payloads associated with the

message MUST be stored by the Test Driver for examination by a “GetPayload” operation if necessary.

If a particular Test Case must verify that a particular message was received by the candidate

implementation, then a GetMessage operation examining the MessageStore for that particular notification

message MUST be performed to verify conformance or interoperability.

Although the Notification message format is identical for the errorURLNotify, errorAppNotify and

messageNotify methods of the Test Service Notification schema, there are important differences for each

type of notification.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 130 of 213

A Notification message with a notificationType attribute of “message”, looks in many ways like a message

received directly by a Test Driver, with the exception that some information may not be present (such as

MIME header content), since this portion of the message may not be exposed to the methods of the Test

Service Notification interface.

A Notification message with a notificationType attribute value of “errorURL” is similar to a “message”

notification, with the exception that the message was generated by the Test Driver in response to an

erroneous incoming message. As a result, it has a SenderParty ID of the Test Service, and an Action of

“Notify” in its message header. It also contains the error message(s) generated by the MSH under test.

The same error format used by the messaging service under test is used to construct the error list.

A Notification message has the same attributes of an “errorURL” message. The only difference is that the

errors contained in the message are application-level errors. The same error format used by the

messaging service under test is used to construct the error list.

Figure 55 – Graphical representation of the Notification element content schema

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 131 of 213

Definition of Content

Name Declaration Description Default

Value

From

Test

Driver

Required/Optional

Notification Container for reported

message content

Optional

synchType Descriptor of type of how

message was received by

Test Service

Required

id Test Service provided unique

identifier of received message

Required

serviceInstanceId Unique identifier of the Test

Service that generated the

notification

Optional

serviceName Name of the Service that

generated the notification

Optional

reportingAction Name of the action that

generated the notification

Optional

notificationType Type of notification message.

(ErrorURL | ErrorApp |

Message)

Required

Soap:Header SOAP Header declaration

and container for ebXML

ebXML Header Extension

Element declarations

Required

eb:MessageHeader ebXML MessageHeader

element with namespace

declaration

Required

eb:ErrorList ebXML ErrorList element Optional

eb:SyncReply ebXML SyncReply element Optional

eb:MessageOrder ebXML MessageOrder

element

Optional

eb:AckRequested ebXML AckRequested

element

Optional

eb:Acknowledgment ebXML Acknowledgment

element

Optional

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 132 of 213

ds:Signature XML Signature element and

its content

Optional

soap:Body Container for allowable

ebXML content within a

SOAP body element

Required

eb:Manifest Container for references to

attachments in message

Optional

eb:StatusRequest ebXML StatusRequest

element

Optional

eb:StatusResponse ebXML StatusResponse

element

Optional

Table 41 – Description of MessageNotification element content

NotificationResponse – XML message content to be interpreted by the errorAppNotify, errorURLNotify

or messageNotify methods of the Test Service Notification interface. The response is passed to Test

Service through its Notification interface (if Test Service is in local-reporting mode) or sent to the Test

Driver Receive RPC Service (if Test Service is in remote-reporting mode. and other information.

Figure 56 - A graphical representation of the NotificationResponse content schema

Definition of Content

PayloadVerifyResponse – XML message content to be interpreted by the “notify” method of the Test

Driver’s “Receive” interface. This message content is an attachment to the notification message.

Figure 57 - A graphical representation of the PayloadVerifyResponse content schema

Definition of Content

Definition of Content

Default

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 133 of 213

Name
Declaration Description Value

From

Test

Driver

Required/Optional

PayloadVerifyResponse Container for results of

comparison of message

payload received by

candidate MSH with their

MD5 digest values

Required

Payload Container for individual

payload verification result

Required

Href ID of the payload Required

Result Boolean comparison result Required

Table 42 – Description of PayloadVerifyResponse content

7.4 Test Report Schema

The Test Report schema (Appendix G) describes the XML report document format required for Test

Driver implementations. The schema facilitates a standard XML syntax for reporting results of Test Cases

and their Test Steps.

The Test Report is essentially a “full trace” of the Test Case. All XML content in the XML Test Case is

available in the Test Report. Additionally, a “Result” element is appended to each Test Case, Thread,

Test Step, PutMessage, GetMessage, TestAssertion, TestPreCondition, VerifContent and

ValidateContent operation. The “result” attribute in all test objects has a value of “pass”, “fail” or

“undtermined”. The Test Report schema is too large to graphically display on this page. Please consult

Appendix G if you wish to examine the schema.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 134 of 213

8 Test Material

Test material necessary to support the ebXML Testing Framework includes:

A Testing Profile XML document

A Test Requirements XML document

A Test Suite XML document

A “Basic CPA” from which variants are derived for particular tests

8.1.1 Testing Profile Document

Both conformance and interoperability testing require the creation of a Testing Profile XML document,

which lists the Test Requirements against which Test Cases will be executed. A Test Profile document

MUST be included in an interoperability of conformance test suite. The Testing Profile document MUST

validate against the ebProfile.xsd schema in Appendix A.

8.1.2 Test Requirements Document

Both conformance and interoperability testing require the existence of a Test Requirements document.

While Test Requirements for conformance testing are specific and detailed against an ebXML

specification, interoperability Test Requirements may be more generic, and less rigorous in their

description and in their reference to a particular portion of an ebXML specification. However, both types

of testing MUST provide a Test Requirements XML document that validates against the

ebXMLTestRequirements.xsd schema in Appendix B.

8.1.3 Test Suite Document

Both conformance and interoperability testing require the existence of a Test Suite XML document that

validates against the ebTest.xsd schema in Appendix C. It is important to note that test case scripting

inside the Test Suite document MUST take into account the test harness architecture. Although a Test

Driver in Connection Mode can manipulate MIME and SOAP message content, such content may not be

accessible by a Test Driver in Service Mode, as the MSH does not communicate this data to the

application layer. Therefore, the following test scripting rules SHOULD be followed when designing Test

Cases:

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 135 of 213

When the message material is to be sent or analyzed at by a Test Driver in Service Mode (i.e. the Test

Driver acts as an application component), MIME header and SOAP content SHOULD NOT be declared

(in a PutMessage operation) or queried (in a GetMessage operation). However, for the sake of uniform

scripting, a Test Driver that conforms to this specification MUST accept MIME message envelope and

SOAP header material defined in the declaration of the PutMessage operation (it will then ignore

superfluous elements when passing the message to the Test Service). “Accepting” means: (1) when

sending (e.g. via PutMessage), MIME and SOAP envelope material will be ignored when invoking the

Initiator service action, (2) when receiving, any filtering condition or reference to MIME and SOAP

material will be ignored, e.g. removed from the set of conditions used in a GetMessage step. In addition,

a Test Driver that conforms to this specification MUST accept XPath query expressions that reference

MIME and SOAP message content, even though such content MAY not be included in the MessageStore

representation of a message.

When the message material is to be sent or analyzed in Connection Mode (i.e. the Test Driver acts as an

MSH component), MIME header and SOAP content MAY be declared (in a PutMessage operation) or

queried (in a GetMessage operation). At this messaging level, all message data is accessible by the

Test Driver.

In the graphical example of the above scenarios, an [ebMS] interoperability test suite will generally

require messages to be generated and received at application level (Service Mode) directly from Test

Driver to Test Service as illustrated in Figure 5. In contrast, an ebMS conformance test suite which will

require messages to be generated and received at transport level (Connection Mode), as illustrated in

Figures 2 and 3.

8.1.4 Base CPA and derived CPAs

Both conformance and interoperability testing require the existence of a “base CPA” configuration that

describes both the Test Driver and Test Service Collaboration Protocol Profile Agreement. This is the

“bootstrap” configuration for all messaging between the testing and candidate ebXML applications. How

the base CPA is represented to the applications is implementation specific, however the base CPA

configuration MUST be semantically equivalent to the CPA defined in Conformance or Interoperability

Test Suite Specification.

Modified (or derived) versions of the base CPA MUST have unique CPAIds identifying them as

derivations of the base CPA to both the Test Driver and Test Service. A Test Harness implementation

MAY reference CPAs that are derived from the base CPA in order to perform a particular type of

conformance or interoperability test. CPA’s derived from the base CPA and used in a Test Suite MUST

be documented in the appropriate ebXML Conformance Test Suite or ebXML Interoperability Test Suite

Specification. The unique CPAId, and the list of discreet variations from the base CPA MUST are

included in the Conformance or Interoperability Test Suite document.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 136 of 213

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 137 of 213

9 Test Material Examples

This section includes example test material to illustrate

A Test Requirements Document – Listing all Test Requirements for an ebXML implementation

A Test Profile Document – Listing all selected Test Requirements to be exercised

A Test Suite Document – Listing all Executable Test Cases for an ebXML implementation

9.1 Example Test Requirements

Below are two XML documents illustrating how Test Requirements are constructed, in this case for an

ebXML MS 2.0 implementation. In this particular case, the two documents represent Conformance and

Interoperability Test Requirements for an ebXML Messaging Services V2.0 implementation. The

example XML documents below include a subset of testing requirements defined for implementations of

the ebXML Messaging Services v2.0 Specification. Each Test Requirement may have one or more

Functional Requirements that together must be satisfied in order for an implementation to fully meet that

Test Requirement.

9.1.1 Conformance Test Requirements

In the example below, a “packaging” TestRequirement element contains two FunctionalRequirement

elements. The first Functional Requirement states that the primary SOAP message MUST be the first

MIME part of the message. The second packaging Functional Requirement states that the Content-Type

MIME header of the Message Package MUST be “text/xml”. If all Test Cases having a requirement

reference to these two Functional Requirements “pass”, then an ebXML MS v2.0 implementation would

be deemed “conformant” to the specification for the “Packaging” of ebXML messages. Of course, this is a

limited set of Test Requirements for illustrative purposes only.

<?xml version="1.0" encoding="UTF-8" ?>

< Requirements xmlns =" http://www.oasis-open.org/tc/ebxml- iic/conformance/reqs "

xmlns:xsi =" http://www.w3.org/2000/10/XMLSchema- instance "

xsi:schemaLocation =" http://www.oasis- open.org/tc/ebxml- iic/conformance/reqs/

ebXMLTestRequirements.xsd ">

< MetaData >

 < Description > Master Requirements File: ebXML Messaging Services 2.0 </ Description >

 < Version > 1.0 </ Version >

 < Maintainer > Michael Kass<Michael.kass@nist.gov> </ Maintainer >

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 138 of 213

 < Location > http://www.oasis-open.org/commitees/ebxml-

iic/ebmsg/requirements1.0.xml </ Loc ation >

 < PublishDate > 20 Feb 2003 </ PublishDate >

 < Status > DRAFT </ Status >

 </ MetaData >

<!—Main Test Requirement, for message packaging à

< TestRequirement id =" req_id_2 " name =" PackagingSpecification " specRef =" ebMS-2#2.1 "

functionalType =" packaging ">

<!—Define first sub- requirement to fulfill packaging testing à

< FunctionalRequirement id =" funreq_id_2 "

name =" GenerateConformantSOAPWithAttachMIMEHeaders " specRef =" ebMS-2#2.1.2 ">

< Clause >

<!—Set first condition of the message is of type “multipart- mime” à

 < Condition id =" condition_id_2 " requirementType =" required "> For each generated mesage,

if it is multipart MIME </ Condition >

 < Or />

<!—Set alternate condition that the message is not “text/xml” à

 < Condition id =" condition_id_305 " requirementType =" required "> if it is not

text/xml </ Condition >

 </ Clause >

<!—Define the Assertion that the first part of message is a SOAP message à

 < Assertion id =" assert_id_2 " requirementType =" required "> The primary SOAP message is

carried in the root body part of the message. </ Assertion >

 </ FunctionalRequirement >

<!—Define a second sub- requirement to fulfill packaging testing à

< FunctionalRequirement id =" funreq_id_4 " name =" GenerateCorrectMessagePackageContent- Type "

specRef =" ebMS-2#2.1.2 ">

< Clause >

<!—Define condition that the candidate MSH generates a message à

 < Condition id =" condition_id_4 " requirementType =" required "> For each generated

message </ Condition >

 </ Clause >

<!—Define the Assertion that the Content- Type of MIME header of that message is

“text/xml” à

 < Assertion id =" assert_id_4 " requirementType =" required "> The Content-Type MIME header in

the Message Package contains a type attribute of "text/xml". </ Assertion >

 </ FunctionalRequirement >

</TestRequirement>

<!—Define a new Test Requirement, for the Core Extension Elements of messaging à

< TestRequirement id =" req_id_3 " name =" CoreExtensionElements " specRef =" ebMS-2#3.1.1 "

functionalType =" packaging ">

<!—Define a sub- requirement to test the CPAId extension element à

< FunctionalRequirement id =" funreq_id_35 " name =" ReportFailedCPAIDResolution "

specRef =" ebMS-2#3.1.2 ">

< Clause >

<!—First , set condition of a candidate MSH receiving a message with an unresolvable

CPAId à

 < Condition id =" condition_id_40 " requirementType =" required "> For each received message,

if value of the CPAId element on an inbound message cannot be resolved </ Condition >

 </ Clause >

<!—Next , define the Assertion that the candidate MSH MUST (since requirementType is

“required”) respond with an Error à

 < Assertion id =" assert_id_35 " requirementType =" required "> The MSH responds with an error

(ValueNotRecognized/Error). </ Assertion >

 </ FunctionalRequirement >

<!—Define a sub- requirement to test continuity in message ConversationId à

< FunctionalRequirement id =" funreq_id_36 " name =" ProvideConversationIdIntegrity "

specRef =" ebMS-2#3.1.3 ">

< Clause >

<!—First , set condition of all messages generated by a Candidate Implementation

pertaining to a single CPAId à

 < Condition id =" condition_id_41 " requirementType =" required "> For each generated message

within the context of the specified CPAId </ Condition >

 </ Clause >

<!—Next , define the Assertion that a ConversationId element is always present à

 < Assertion id =" assert_id_36 " requirementType =" required "> The generated ConversationId

will be present in all messages pertaining to the given conversation. </ Assertion >

 </ FunctionalRequirement >

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 139 of 213

</TestRequirement>

</Requirements>

9.1.2 Interoperability Test Requirements

In the example below, a “basic interoperability profile” TestRequirement element contains two

FunctionalRequirement elements. The first Functional Requirement states that ebXML MS

implementation MUST be able to receive and send a basic ebXML message without a payload. The

second packaging Functional Requirement states that an ebXML MS implementation MUST be able to

process and return a simple ebXML message with one payload. If all Test Cases having a requirement

reference to these two Functional Requirements “pass”, then an ebXML MS v2.0 implementation would

be deemed “interoperable” to the Basic Interoperability Profile Specification for ebXML Messaging. Of

course, this is a limited set of Test Requirements for illustrative purposes only.

<?xml version="1.0" encoding="UTF-8" ?>

< Requirements xmlns =" http://www.oasis-open.org/tc/ebxml- iic/interop/reqs "

xmlns:xsi =" http://www.w3.org/2000/10/XMLSchema-instance "

xsi:schemaLocation =" http://www.oasis- open.org/tc/ebxml- iic/interop/reqs

ebXMLTestRequirements.xsd ">

< MetaData >

 < Description > Interoperability Requirements File: ebXML Messaging Services

2.0 </ Description >

 < Version > 1.0 </ Version >

 < Maintainer > Michael Kass <michael.kass@nist.gov> </ Maintainer >

 < Location > http://www.oasis-open.org/commitees/ebxml-

iic/ebmsg/ms_2.0_interop_requirements1.0.xml </ Location >

 < PublishDate > 11 Feb 2003 </ PublishDate >

 < Status > DRAFT </ Status >

 </ MetaData >

<!—Main Test Requirement, for basic interoperability testing à

< TestRequirement id =" req_id_1 " name =" Basic Interoperability Profile " specRef =" MS 2.0 BIP

0.8 " functionalType =" basic interoperability ">

<!—Define first sub- requirement to fulfill basic testing, sending a “no payload”

message à

< FunctionalRequirement id =" funreq_id_1 " name =" BasicExchangeNoPayload " specRef =" ebMS 2.0

BIP#3.2.1 ">

< Clause >

<!—First , set condition of a candidate MSH receiving a message with no payload à

 < Condition id =" condition_id_1 " requirementType =" required "> For each received ebXML

message with no payload, received by the “Dummy” action </ Condition >

 </ Clause >

<!—Next , define the Assertion of expected behavior for the Dummy Action à

 < Assertion id =" assert_id_1 " requirementType =" required "> The message is received and

processed, and a simple response message is returned </Assertion >

 </ FunctionalRequirement >

<!—Define second sub- requirement to fulfill basic testing, sending a “one payload”

message à

< FunctionalRequirement id =" funreq_id_2 " name =" BasicExchangeOnePayload " specRef =" ebMS 2.0

BIP#3.2.2 ">

< Clause >

<!—Set condition of a candidate MSH receiving a message with one payload à

 < Condition id =" condition_id_2 " requirementType =" required "> For each received ebXML

message with one payload, received by the “Reflector” action </ Condition >

 </ Clause >

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 140 of 213

<!—Define the Assertion of expected behavior for the Reflector Action à

 < Assertion id =" assert_id_2 " requirementType =" required "> The message is received and

processed, and a simple response message with the identical payload is

returned </Assertion >

 </ FunctionalRequirement >

<!—Define third sub- requirement to fulfill basic testing, sending a “three payload”

message à

< FunctionalRequirement id =" funreq_id_3 " name =" BasicExchangeThreePayloads " specRef =" ebMS

2.0 BIP#3.2.3 ">

< Clause >

<!—Set condition of a candidate MSH receiving a message with three payloads à

 < Condition id =" condition_id_3 " requirementType =" required "> For each received ebXML

message with three payloads, received by the “Reflector” action </ Condition >

 </ Clause >

<!—Define the Assertion of expected behavior for the Reflector Action à

 < Assertion id =" assert_id_3 " requirementType =" required "> The message is received and

processed, and a simple response message with the identical three payloads are

returned </Assertion >

 </ FunctionalRequirement >

<!—Define third sub- requirement to fulfill basic testing, generating Error messages à

< FunctionalRequirement id =" funreq_id_4 " name =" BasicExchangeGenerateError " specRef =" ebMS

2.0 BIP#3.2.4 ">

< Clause >

<!—Set condition of a candidate MSH receiving an erroneous message à

 < Condition id =" condition_id_4 " requirementType =" required "> For each received basic

ebXML message that should generate an Error </ Condition >

 </ Clause >

<!—Define the Assertion of expected behavior for the candidate MSH à

 < Assertion id =" assert_id_4 " requirementType =" required "> The message is received and,

the MSH returns a message to the originating party with an ErrorList and appropriate

Error message </Assertion >

 </ FunctionalRequirement >

</TestRequirement>

</Requirements>

9.2 Example Test Profiles

Below are two XML documents illustrating how a Test Profile document is constructed, in this case for an

ebXML MS v2.0 implementation. The example XML documents below represent a subset of test

requirements to be exercised. The Test Profile document provides a list of ID references (pointers) to

Test Requirements or Functional Requirements in an external Test Requirements document (see above).

A Test Harness would read this document, resolve the location of the Test Requirements document, and

then execute all Test Cases in the Test Suite document that point to (via ID reference) the Test

Requirements listed below. Note that a Test Driver can execute Test Cases pointing to a Functional

Requirement (discreet requirement) or a Test Requirement (a container of a group of Functional

Requirements). If the TestRequirementRef id attribute value points to a Test Requirement, then all Test

Cases for all child Functional Requirements will be executed by the Test Harness (This is a way to

conveniently execute a cluster of Test Cases by specifying a single Test Requirement.). This method is

used for both conformance and interoperability testing.

9.2.1 Conformance Test Profile Example

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 141 of 213

The Test Profile document below would be used to drive a Test Harness, by executing all Test Cases that

point (via ID) to the listed Test Requirement references (including individual Functional Requirements and

a single Test Requirement listed in the above example Conformance Test Requirements document.

<?xml version="1.0" encoding="UTF-8" ?>

<TestProfile xmlns="http://www.oasis-open.org/tc/ebxml-iic/test- profile "

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance " xsi:schemaLocation="http://www.oasis-

open.org/tc/ebxml- iic/test- profile http://www.oasis- open.org/tc/ebxml- iic/test-

profile/t est-profile.xsd " requirementsLocation="ebxml-iic-msg-v20- conformance_reqs.xml "

name="ebXML MS v2.0 Conformance Test Requirements " description=" Core conformance testing

profile for ebXML MS v2.0 implementations”>

 <TestRequirementRef id="funreq_id_2" /> <!—Execute all Test Casses that reference the

Basic SOAP message structure Functional Requirement à

 <TestRequirementRef id="funreq_id_4" /> <!—Execute all Test Cases that reference Message

Packaeg Content Type Functional Requirement à

 <TestRequirementRef id="req_id_2" /> <!—Execut all Test Cases that reference all

Functional Requirements within the Core Extension Elements Test Requirement à

 </TestProfile>

9.2.3 Interoperability Test Profile

The Test Profile document below would be used to drive a Test Harness, by executing all Test Cases that

point (via ID) to the listed Test Requirement references (including individual Functional Requirements

and a single Test Requirement listed in the above example Interoperability Test Requirements document.

<?xml version="1.0" encoding="UTF-8" ?>

<TestProfile xmlns="http://www.oasis-open.org/tc/ebxml-iic/test- profile "

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance " xsi:schemaLocation="http://www.oasis-

open.org/tc/ebxml- iic/test- profile http://www.oasis- open.org/tc/ebxml- iic/test-

profile/t est-profile.xsd " requirementsLocation="ebxml-iic-msg-v20- conformance_reqs.xml "

name="ebXML MS v2.0 Conformance Test Requirements " description=" Core conformance testing

profile for ebXML MS v2.0 implementations”>

 <TestRequirementRef id="funreq_id_1.1" /> <!—Execute all Test Casses that reference the

“Basic Exchange, No Payload” Functional Requirement à

 <TestRequirementRef id="funreq_id_1.2" /> <!—Execute all Test Casses that reference the

“Basic Exchange, One Payload” Functional Requirement à

 </TestProfile>

9.3 Example Test Suites

Below are two XML documents illustrating how Test Cases are constructed, in this case for testing an

ebXML MS v2.0 implementation. Each Test Case has a required “requirementReferenceId” attribute,

pointing to a Functional Requirement in the Test Requirements document. A Test Driver executes all

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 142 of 213

Test Cases in this document that have a requirementReferenceId value matching the particular Semantic

Test Requirement being exercised.

9.3.1 Conformance Test Suite

In the example below, a series of four Test Cases make up a Test Suite. A Test Driver executing

conformance Test Cases operates in “connection” mode, meaning it is not interfaced to any MSH, and is

acting on its own. Each Test Case exercises a Functional Requirement listed in section 10.1 The Test

Cases below do the following:

Send a message and elicit a response message that is verified as a SOAP message

Verifies that an elicited response message content type is “text/xml”

Verifies that an ebXML Error is returned in a response message when an unresolvable CPAId is received

Verifies that the ConversationId element is present in a simple response message

<?xml version = "1.0" encoding = "UTF-16"?>

<!--

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]

January 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that

comment on or otherwise explain it or assist in its implementation may be prepared, copied, published

and distributed, in whole or in part, without restriction of any kind, provided that the above copyright

notice and this paragraph are included on all such copies and derivative works. However, this document

itself may not be modified in any way, such as by removing the copyright notice or references to OASIS,

except as needed for the purpose of developing OASIS specifications, in which case the procedures for

copyrights defined in the OASIS Intellectual Property Rights document MUST be followed, or as required

to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors

or assigns.

-->

<?xml-stylesheet type="text/xsl" href="xslt/strip_att_namespace.xsl?>

<ebTest:TestSuite configurationGroupRef = "mshc_Basic" xmlns:ebTest = "http://www.oasis-

open.org/tc/ebxml-iic/tests" xmlns:xpath = "http://www.oasis-open.org/tc/ebxml-iic/xpath"

xmlns:mime = "http://www.oasis-open.org/tc/ebxml-iic/tests/mime" xmlns:soap = "http://www.oasis-

open.org/tc/ebxml-iic/tests/soap" xmlns:eb = "http://www.oasis-open.org/tc/ebxml-iic/tests/eb"

xmlns:tns = "http://www.oasis-open.org/tc/ebxml-iic/tests/tns" xmlns:xlink =

"http://www.w3.org/1999/xlink" xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance" xmlns:ds

= "http://www.oasis-open.org/tc/ebxml-iic/tests/xmldsig" xsi:schemaLocation = "http://www.oasis-

open.org/tc/ebxml-iic/tests/schemas/ebTest.xsd schemas/ebTest.xsd">

 <ebTest:MetaData>

 <ebTest:Description>Executable Conformance Test Suite File: ebXML Messaging Services

2.0</ebTest:Description>

 <ebTest:Version>1.0</ebTest:Version>

 <ebTest:Maintainer>Michael Kass <michael.kass@nist.gov></ebTest:Maintainer>

 <ebTest:Location>http://www.oasis-open.org/commitees/ebxml-

iic/ebmsg/requirements1.0.xml</ebTest:Location>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 143 of 213

 <ebTest:PublishDate>10 October 2003</ebTest:PublishDate>

 <ebTest:Status>DRAFT</ebTest:Status>

 </ebTest:MetaData>

 <ebTest:ConfigurationGroup id = "mshc_Basic">

 <ebTest:Mode>local-service</ebTest:Mode>

 <ebTest:SenderParty>TestService</ebTest:SenderParty>

 <ebTest:ReceiverParty>TestService</ebTest:ReceiverParty>

 <ebTest:Service>urn:ebxml:iic:test</ebTest:Service>

 <ebTest:Action>Dummy</ebTest:Action>

 <ebTest:StepDuration>0</ebTest:StepDuration>

 <ebTest:Transport>HTTP</ebTest:Transport>

 <ebTest:Envelope>ebXML</ebTest:Envelope>

 <ebTest:StoreAttachments>true</ebTest:StoreAttachments>

 </ebTest:ConfigurationGroup>

 <ebTest:TestServiceConfigurator>

 <ebTest:ServiceMode>loop</ebTest:ServiceMode>

 <ebTest:ResponseURL>http://myTestDriver.SOAPEndpoint.com</ebTest:ResponseURL>

 <ebTest:NotificationURL>http://myTestDriver.SOAPEndpoint.com</ebTest:NotificationURL>

 </ebTest:TestServiceConfigurator>

 <ebTest:TestCase requirementReferenceId = "funreq_id_36" id = "testcase_36" description =

"ConversationId is always present">

 <ebTest:TestStep id = "TC43TS1">

 <ebTest:PutMessage description = "Send basic Dummy message header">

 <ebTest:MessageDeclaration>

 <mime:Message>

 <mime:MessageContainer>

 <soap:Envelope>

 <soap:Header>

 <eb:MessageHeader/>

 </soap:Header>

 <soap:Body/>

 </soap:Envelope>

 </mime:MessageContainer>

 </mime:Message>

 </ebTest:MessageDeclaration>

 </ebTest:PutMessage>

 </ebTest:TestStep>

 <ebTest:TestStep id = "TC43TS2">

 <ebTest:GetMessage description = "Correlate returned messages based upon

CPAId, ConversationId and Action">

 <ebTest:Filter>/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header

/eb:MessageHeader[eb:CPAId='mshc_Basic' and

eb:ConversationId=$ConversationId and eb:Action='Mute']] </ebTest:Filter>

 <ebTest:TestAssertion description = "Verify that ConversationId is

present">

 <ebTest:VerifyContent>/mime:Message[mime:MessageContainer[1]/soap:Envelope/soap:Header/eb

:MessageHeader/eb:ConversationId] </ebTest:VerifyContent>

 </ebTest:TestAssertion>

 </ebTest:GetMessage>

 </ebTest:TestStep>

 </ebTest:TestCase>

</ebTest:TestSuite>

9.3.2 Interoperability Test Suite

In the example below, a series of four Test Cases make up an Interoperability Test Suite. A Test Driver

executing conformance Test Cases operates in “service” mode, meaning it is interfaced to a MSH. Each

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 144 of 213

Test Case exercises a Functional Requirement listed in section 10.2 The Test Cases below do the

following:

Perform a basic message exchange with no message payload

Verify integrity of 1 payload in round-trip message transmission

Verify integrity of 3 payloads in round-trip message transmission

Perform a basic message exchange with a returned Error message

<?xml version = "1.0" encoding = "UTF-16"?>

<!--

 EbXML Messaging v2 Interop Test SuiteSample Instance File.

 Michael Kass <michael.kass@nist.gov>.

 Date: 12/15/02

 This file was provided by the National Institute of Standards and Technology.

 This software can be redistributed and/or modified freely provided that any

derivative works bear some notice that they are derived from it, and any modified

versions bear some notice that they have been modified.

 -- >

<?xml- stylesheet type="text/xsl" href="xslt/strip_att_namespace.xsl?>

<ebTest:TestSuite configurationGroupRef = "mshc_Basic" xmlns:ebTest = "http://www.oasis-

open.org/tc/ebxml-iic/tests" xmlns:xpath = "http://www.oasis- open.org/tc/ebxml-

iic/xpath " xmlns:mime = "http://www.oasis-open.org/tc/ebxml- iic/tests/mime" xmlns:soap =

"http://www.oasis-open.org/tc/ebxml- iic/tests/soap" xmlns:eb = "http://www.oasis-

open.or g/tc/ebxml-iic/tests/eb" xmlns:tns = "http://www.oasis- open.org/tc/ebxml-

iic/test s/tns" xmlns:xlink = "http://www.w3.org/1999/xlink" xmlns:xsi =

"http://www.w3.org/2001/XMLSchema-instance" xmlns:ds = "http://www.oasis-

open.org/tc/ebx ml-iic/tests/xmldsig" xsi:schemaLocation = "http://www.oasis-

open.org/tc/ ebxml-iic/tests/schemas/ebTest.xsd schemas/ebTest.xsd">

 <ebTest:MetaData>

 <ebTest:Description>Interoperability Test Suite: ebXML Messaging Services

2.0</ebTest:Description>

 <ebTest:Version>1.0</ebTest:Version>

 <ebTest:Maintainer>Michael Kass <mkass@nist.gov></ebTest:Maintainer>

 <ebTest:Location>http://www.oasis- open.org/commitees/ebxml-

iic/ebmsg/requireme nts1.0.xml</ebTest:Location>

 <ebTest:PublishDate>07 March 2003</ebTest:PublishDate>

 <ebTest:Status>FINAL</ebTest:Status>

 </ebTest:MetaData>

 <ebTest:ConfigurationGroup id = "mshc_1">

 <ebTest:CPAId>mshc_1</ebTest:CPAId>

 <ebTest:Mode>local- service</ebTest:Mode>

 <ebTest:SenderParty>TestService1</ebTest:SenderParty>

 <ebTest:ReceiverParty>TestService2</ebTest:ReceiverParty>

 <ebTest:Service>urn:ebxml:iic:test</ebTest:Service>

 <ebTest:Action>Dummy</ebTest:Action>

 <ebTest:StepDuration>10</ebTest:StepDuration>

 <ebTest:Transport>HTTP</ebTest:Transport>

 <ebTest:Envelope>ebXML</ebTest:Envelope>

 <ebTest:StoreAttachments>true</ebTest:StoreAttachments>

 </ebTest:ConfigurationGroup>

 <ebTest:TestServiceConfigurator>

 <ebTest:ServiceMode>loop</ebTest:ServiceMode>

 <ebTest:ResponseURL>http://myTestDriver.SOAPEndpoint.com</ebTest:ResponseURL>

 <ebTest:NotificationURL>http://myTestDriver.SOAPEndpoint.com</ebTest:NotificationURL>

 <ebTest:PayloadDigests>

 <Payload>

 <Href>cid:Payload_1</Href>

 <Digest>5200a7e8c1a0b68958c27266fb9ea9b0</Digest>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 145 of 213

 </Payload>

 <Payload>

 <Href>cid:Payload_2</Href>

 <Digest>c6fe703f9076361c9419b4c75e0f3084</Digest>

 </Payload>

 <Payload>

 <Href>cid:Payload_3</Href>

 <Digest>fa93b5c51f1622f4319ac0eb51a27b5e</Digest>

 </Payload>

 </ebTest:PayloadDigests>

 </ebTest:TestServiceConfigurator>

 <ebTest:TestCase requirementReferenceId = "funreq_id_1" id = "testcase_1.1"

description = "Basic exchange, no payload">

 <ebTest:TestStep id = "TC1TS1" xmlns:fo = "http://www.w3.org/1999/XSL/Format"

xmlns:ebTest = "http://www.oasis-open.org/tc/ebxml- iic/tests">

 <ebTest:PutMessage description = "Send basic message header with

default configuration Action and CPAId">

 <ebTest:MessageDeclaration>

 <mime:Message>

 <mime:MessageContainer>

 <soap:Envelope>

 <soap:Header>

 <eb:MessageHeader/>

 </soap:Header>

 <soap:Body/>

 </soap:Envelope>

 </mime:MessageContainer>

 </mime:Message>

 </ebTest:MessageDeclaration>

 </ebTest:PutMessage>

 </ebTest:TestStep>

 <ebTest:TestStep id = "TC1TS2" xmlns:fo = "http://www.w3.org/1999/XSL/Format"

xmlns:ebTest = "http://www.oasis-open.org/tc/ebxml- iic/tests">

 <ebTest:GetMessage description = "Correlate returned message">

 <ebTest:Filter>/TEST:MessageStore/mime:Message[mime:Container[1] /soap:Envelope/soap:H

eader/eb:MessageHeader[eb:CPAId=$CPAId and

eb:Conversationid=$ConversationId and eb:Action='Mute']]</ebTest:Filter>

 <ebTest:TestAssertion description = "Verify that an ebXML

message is returned">

 <ebTest:VerifyContent>//mime:Message[mime:MessageContai n er[1]/soap:Envelope/soap:Head

er/eb:MessageHeader] </ebTest:VerifyContent>

 </ebTest:TestAssertion>

 </ebTest:GetMessage>

 </ebTest:TestStep>

 </ebTest:TestCase>

 <ebTest:TestCase requirementReferenceId = "funreq_id_2" id = "testcase_1.2"

description = "Basic asyncronous exchange with one payload">

 <ebTest:TestStep id = "TC2TS1" xmlns:fo = "http://www.w3.org/1999/XSL/Format"

xmlns:ebTest = "http://www.oasis-open.org/tc/ebxml- iic/tests">

 <ebTest:PutMessage description = "Send basic message header to the

Reflector Action">

 <ebTest:MessageDeclaration>

 <mime:Message>

 <mime:MessageContainer>

 <soap:Envelope>

 <soap:Header>

 <eb:MessageHeader>

 <eb:Action>Reflector</eb:Action>

 </eb:MessageHeader>

 </soap:Header>

 <soap:Body>

 <eb:Manifest>

 <eb:Reference href

= "cid:payload_1"/>

 </eb:Manifest>

 </soap:Body>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 146 of 213

 </soap:Envelope>

 </mime:MessageContainer>

 </mime:Message>

 </ebTest:MessageDeclaration>

 <ebTest:SetPayload description = "Add content- id and payload to

mime message">

 <ebTest:Content-ID>cid:payload_1</ebTest:Content- ID>

 <ebTest:FileURI>payload_1</ebTest:FileURI>

 </ebTest:SetPayload>

 </ebTest:PutMessage>

 </ebTest:TestStep>

 <ebTest:TestStep id = "TC2TS2" xmlns:fo = "http://www.w3.org/1999/XSL/Format"

xmlns:ebTest = "http://www.oasis-open.org/tc/ebxml- iic/tests">

 <ebTest:GetMessage description = "Correlate returned messages">

 <ebTest:Filter>/TEST:MessageStore/mime:Message[mime:Container[1] /soap:Envelope/soap:H

eader/eb:MessageHeader[eb:CPAId='mshc_1' and

eb:Conversationid=$ConversationId and eb:Action='Mute']]</ebTest:Filter>

 <ebTest:TestAssertion description = "Check for returned

payload">

 <ebTest:VerifyContent>//mime:Message[mime:MessageContai n er[1]/soap:Body/eb:Manifest/e

b:Reference[@xlink:href='cid:payload_1']] </ebTest:VerifyContent>

 </ebTest:TestAssertion>

 <ebTest:GetPayload description = "Find payload in message">

 <ebTest:Content-ID>cid:payload_1</ebTest:Content- ID>

 <ebTest:TestAssertion description = "Verify returned

payload contents">

 <ebTest:VerifyContent/>

 </ebTest:TestAssertion>

 </ebTest:GetPayload>

 </ebTest:GetMessage>

 </ebTest:TestStep>

 </ebTest:TestCase>

 <ebTest:TestCase requirementReferenceId = "funreq_id_3" id = "testcase_1.3"

description = "Basic exchange with three payloads">

 <ebTest:TestStep id = "TC3TS1" xmlns:fo = "http://www.w3.org/1999/XSL/Format"

xmlns:ebTest = "http://www.oasis-open.org/tc/ebxml- iic/tests">

 <ebTest:PutMessage description = "Send basic message header to the

Reflector Action">

 <ebTest:MessageDeclaration>

 <mime:Message>

 <mime:MessageContainer>

 <soap:Envelope>

 <soap:Header>

 <eb:MessageHeader>

 <eb:Action>Reflector</eb:Action>

 </eb:MessageHeader>

 </soap:Header>

 <soap:Body>

 <eb:Manifest>

 <eb:Reference href

= "cid:payload_1"/>

 <eb:Reference href

= "cid:payload_2"/>

 <eb:Reference href

= "cid:payload_3"/>

 </eb:Manifest>

 </soap:Body>

 </soap:Envelope>

 </mime:MessageContainer>

 </mime:Message>

 </ebTest:MessageDeclaration>

 <ebTest:SetPayload description = "Add content- id and payload to

mime message">

 <ebTest:Content-ID>cid:payload_1</ebTest:Content- ID>

 <ebTest:FileURI>payload_1</ebTest:FileURI>

 </ebTest:SetPayload>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 147 of 213

 <ebTest:SetPayload description = "Add content- id and payload to

mime message">

 <ebTest:Content-ID>cid:payload_2</ebTest:Content- ID>

 <ebTest:FileURI>payload_2</ebTest:FileURI>

 </ebTest:SetPayload>

 <ebTest:SetPayload description = "Add content- id and payload to

mime message">

 <ebTest:Content-ID>payload_3</ebTest:Content- ID>

 <ebTest:FileURI>payload_3</ebTest:FileURI>

 </ebTest:SetPayload>

 </ebTest:PutMessage>

 </ebTest:TestStep>

 <ebTest:TestStep id = "TC3TS2" xmlns:fo = "http://www.w3.org/1999/XSL/Format"

xmlns:ebTest = "http://www.oasis-open.org/tc/ebxml- iic/tests">

 <ebTest:GetMessage description = "Correlate returned messages">

 <ebTest:Filter>/TEST:MessageStore/mime:Message[mime:Container[1] /soap:Envelope/soap:H

eader/eb:MessageHeader[eb:CPAId='mshc_1' and

eb:Conversationid=$ConversationId and eb:Action='Mute']]</ebTest:Filter>

 <ebTest:TestAssertion description = "Check for returned

payload">

 <ebTest:VerifyContent>//mime:Message[mime:MessageContai n er[1]/soap:Body/eb:Manifest/e

b:Reference[@xlink:href='cid:payload_1']] </ebTest:VerifyContent>

 </ebTest:TestAssertion>

 <ebTest:GetPayload description = "Find first payload in

message">

 <ebTest:Content-ID>cid:payload_1</ebTest:Content- ID>

 <ebTest:TestAssertion description = "Verify returned

payload contents">

 <ebTest:VerifyContent/>

 </ebTest:TestAssertion>

 </ebTest:GetPayload>

 <ebTest:GetPayload description = "Find second payload in

message">

 <ebTest:Content-ID>cid:payload_2</ebTest:Content- ID>

 <ebTest:TestAssertion description = "Verify returned

payload contents">

 <ebTest:VerifyContent/>

 </ebTest:TestAssertion>

 </ebTest:GetPayload>

 <ebTest:GetPayload description = "Find third payload in

message">

 <ebTest:Content-ID>cid:payload_3</ebTest:Content- ID>

 <ebTest:TestAssertion description = "Verify returned

payload contents">

 <ebTest:VerifyContent/>

 </ebTest:TestAssertion>

 </ebTest:GetPayload>

 </ebTest:GetMessage>

 </ebTest:TestStep>

 </ebTest:TestCase>

 <ebTest:TestCase requirementReferenceId = "funreq_id_4" id = "testcase_1.4"

description = "Basic exchange with Error Message">

 <ebTest:TestStep id = "TC4TS1" xmlns:fo = "http://www.w3.org/1999/XSL/Format"

xmlns:ebTest = "http://www.oasis-open.org/tc/ebxml- iic/tests">

 <ebTest:PutMessage description = "Send MessageHeader with unresolvable

Action name ">

 <ebTest:MessageDeclaration>

 <mime:Message>

 <mime:MessageContainer>

 <soap:Envelope>

 <soap:Header>

 <eb:MessageHeader>

 <eb:Action>NULL</eb:Action>

 </eb:MessageHeader>

 </soap:Header>

 <soap:Body/>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 148 of 213

 </soap:Envelope>

 </mime:MessageContainer>

 </mime:Message>

 </ebTest:MessageDeclaration>

 </ebTest:PutMessage>

 </ebTest:TestStep>

 <ebTest:TestStep id = "TC4TS2" xmlns:fo = "http://www.w3.org/1999/XSL/Format"

xmlns:ebTest = "http://www.oasis-open.org/tc/ebxml- iic/tests">

 <ebTest:GetMessage description = "Correlate returned messages">

 <ebTest:Filter>/TEST:MessageStore/mime:Message[mime:Container[1] /soap:Envelope/soap:H

eader/eb:MessageHeader[eb:CPAId='mshc_1' and

eb:Conversationid=$ConversationId and eb:ErrorList]]</ebTest:Filter>

 <ebTest:TestAssertion description = "Test if 'NotRecognized'

Error is generated">

 <ebTest:VerifyContent>//mime:Message[mime:MessageContai n er[1]/soap:Envelope/soap:Body

/soap:Fault/soap:Code[soap:Value='NotRecognized ']] </ebTest:VerifyContent>

 </ebTest:TestAssertion>

 </ebTest:GetMessage>

 </ebTest:TestStep>

 </ebTest:TestCase>

</ebTest:TestSuite>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 149 of 213

Appendix A (Normative) The ebXML Test Profile

Schema

The OASIS ebXML Implementation and Interoperability Committee has provided a version of the ebXML

Test Profile schema using the schema vocabulary that conforms to the W3C XML Schema

Recommendation specification [XMLSchema].

<?xml version = "1.0" encoding = "UTF-8"?>

<!-- Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema-- >

<schema xmlns = "http://www.w3.org/2001/XMLSchema"

 targetNamespace = "http://www.oasis-open.org/tc/ebxml-iic/test- profile"

 xmlns:tns = "http://www.oasis-open.org/tc/ebxml-iic/test- profile"

 >

 <!--

Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema

 -- >

 <!--

 $Id: TestProfile.xsd,v 1.2 2002/07/02 15:28:27 matt Exp $

 -- >

 <element name = "TestProfile">

 <complexType>

 <sequence>

 <element ref = "tns:Dependency" minOccurs = "0" maxOccurs =

"unbounded"/>

 <element ref = "tns:TestRequirementRef" maxOccurs =

"unbounded"/>

 </sequence>

 <attribute name = "requirementsLocation" use = "required" type =

"anyURI"/>

 <attribute name = "name" use = "required" type = "string"/>

 <attribute name = "description" use = "required" type = "string"/>

 </complexType>

 </element>

 <element name = "Dependency">

 <complexType>

 <attribute name = "name" use = "required" type = "string"/>

 <attribute name = "profileRef" use = "required" type = "anyURI"/>

 </complexType>

 </element>

 <element name = "TestRequirementRef">

 <!--

 To overide the conformance type of the underlying requirement ...

 -- >

 <complexType>

 <sequence>

 <element name = "Comment" type = "string" minOccurs = "0"

maxOccurs = "unbounded"/>

 </sequence>

 <attribute name = "id" use = "required" type = "string"/>

 <attribute name = "requirementType" use = "optional" type =

"tns:requirement.type"/>

 </complexType>

 </element>

 <simpleType name = "requirement.type">

 <restriction base = "string">

 <enumeration value = "required"/>

 <enumeration value = "strongly recommended"/>

 <enumeration value = "recommended"/>

 <enumeration value = "optional"/>

 </restriction>

 </simpleType>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 150 of 213

</schema>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 151 of 213

Appendix B (Normative) The ebXML Test

Requirements Schema

The OASIS ebXML Implementation and Interoperability Committee has provided a version of the ebXML

Test Requirements schema using the schema vocabulary that conforms to the W3C XML Schema

Recommendation specification [XMLSchema].

<?xml version = "1.0" encoding = "UTF-8"?>

<!-- Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema-- >

<schema xmlns = "http://www.w3.org/2001/XMLSchema"

 targetNamespace = "http://www.oasis-open.org/tc/ebxml- iic/conformance/reqs"

 xmlns:tns = "http://www.oasis-open.org/tc/ebxml- iic/conformance/reqs"

 >

 <group name = "FunctionalRequirementGroup">

 <sequence>

 <element ref = "tns:FunctionalRequirement"/>

 </sequence>

 </group>

 <!--

Copyright (C) The Organization for the Advancement of Structured Information Standards

[OASIS]

January 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and

derivative works that comment on or otherwise explain it or assist in its implementation

may be prepared, copied, published and distributed, in whole or in part, without

restriction of any kind, provided that the above copyright notice and this paragraph are

included on all such copies and derivative works. However, this document itself may not

be modified in any way, such as by removing the copyright notice or references to OASIS,

except as needed for the purpose of developing OASIS specifications, in which case the

procedures for copyrights defined in the OASIS Intellectual Property Rights document

MUST be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or

its successors or assigns.

-- >

 <!-- Generated by XML Authority. Conforms to w3c http://www.w3.org/2000/10/XMLSchema--

>

 <!-- OASIS/ebXML Test Suite Framework

 Description: Schema used to define ebXML Test Requirements instance document

 Author: Michael Kass

 Organization: NIST

 Author: Matthew MacKenzie

 Organization: XML Global

 Date: 03/31/2002

 Version 1.0

 -- >

 <!-- CHANGES:

 Version 1.0 (Matt):

 - added attributes requirementType and name to Level.

 - added other to functional.type enumeration.

 -- >

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 152 of 213

 <element name = "TestRequirement">

 <complexType>

 <sequence>

 <element ref = "tns:Clause" minOccurs = "0"/>

 <choice maxOccurs = "unbounded">

 <element ref = "tns:Assertion"/>

 <element ref = "tns:AssertionRef"/>

 </choice>

 <choice minOccurs = "0" maxOccurs = "unbounded">

 <element ref = "tns:FunctionalRequirement"/>

 <element ref = "tns:TestRequirement"/>

 </choice>

 </sequence>

 <attribute name = "id" use = "required" type = "ID"/>

 <attribute name = "name" use = "required" type = "string"/>

 <attribute name = "specRef" use = "required" type = "string"/>

 <attribute name = "functionalType" use = "required" type = "string"/>

 <attribute name = "dependencyRef" use = "optional" type = "anyURI"/>

 </complexType>

 </element>

 <element name = "FunctionalRequirement">

 <complexType>

 <sequence>

 <element ref = "tns:Clause" minOccurs = "0"/>

 <choice maxOccurs = "unbounded">

 <element ref = "tns:Assertion"/>

 <element ref = "tns:AssertionRef"/>

 </choice>

 <choice minOccurs = "0" maxOccurs = "unbounded">

 <element ref = "tns:FunctionalRequirement"/>

 <element ref = "tns:TestRequirement"/>

 </choice>

 </sequence>

 <attribute name = "id" use = "required" type = "ID"/>

 <attribute name = "name" use = "required" type = "string"/>

 <attribute name = "specRef" use = "required" type = "string"/>

 <attribute name = "testCaseRef" use = "optional" type = "anyURI"/>

 <attribute name = "dependencyRef" use = "optional" type = "anyURI"/>

 </complexType>

 </element>

 <element name = "Clause">

 <complexType>

 <sequence>

 <choice>

 <element ref = "tns:Clause"/>

 <choice>

 <element ref = "tns:Condition"/>

 <element ref = "tns:ConditionRef"/>

 </choice>

 </choice>

 <sequence minOccurs = "0" maxOccurs = "unbounded">

 <choice>

 <element ref = "tns:And"/>

 <element ref = "tns:Or"/>

 </choice>

 <choice>

 <element ref = "tns:Clause"/>

 <choice>

 <element ref = "tns:Condition"/>

 <element ref = "tns:ConditionRef"/>

 </choice>

 </choice>

 </sequence>

 </sequence>

 </complexType>

 </element>

 <element name = "Condition">

 <complexType>

 <simpleContent>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 153 of 213

 <extension base = "string">

 <attribute name = "id" use = "required" type = "ID"/>

 <attribute name = "requirementType" use = "optional"

type = "tns:requirement.type"/>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <element name = "ConditionRef">

 <complexType>

 <attribute name = "id" use = "required" type = "IDREF"/>

 </complexType>

 </element>

 <element name = "And" type = "string"/>

 <element name = "Or" type = "string"/>

 <element name = "Assertion">

 <complexType>

 <simpleContent>

 <extension base = "string">

 <attribute name = "requirementType" use = "required"

type = "tns:requirement.type"/>

 <attribute name = "id" use = "required" type = "ID"/>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <element name = "MetaData">

 <complexType>

 <sequence>

 <element ref = "tns:Description"/>

 <element ref = "tns:Version"/>

 <element ref = "tns:Maintainer"/>

 <element ref = "tns:Location"/>

 <element ref = "tns:PublishDate"/>

 <element ref = "tns:Status"/>

 </sequence>

 </complexType>

 </element>

 <element name = "Description" type = "string"/>

 <element name = "Version" type = "string"/>

 <element name = "SourceControlInfo" type = "string"/>

 <element name = "Maintainer" type = "string"/>

 <element name = "Location" type = "anyURI"/>

 <element name = "PublishDate" type = "string"/>

 <element name = "Status" type = "tns:pubStatus.type"/>

 <simpleType name = "pubStatus.type">

 <restriction base = "string">

 <enumeration value = "DRAFT"/>

 <enumeration value = "FINAL"/>

 <enumeration value = "RETIRED"/>

 </restriction>

 </simpleType>

 <simpleType name = "requirement.type">

 <restriction base = "string">

 <enumeration value = "required"/>

 <enumeration value = "strongly recommended"/>

 <enumeration value = "recommended"/>

 <enumeration value = "optional"/>

 </restriction>

 </simpleType>

 <simpleType name = "testLevel.type">

 <restriction base = "string">

 <enumeration value = "full"/>

 <enumeration value = "most"/>

 <enumeration value = "partial"/>

 <enumeration value = "none"/>

 </restriction>

 </simpleType>

 <simpleType name = "functional.type">

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 154 of 213

 <restriction base = "string">

 <enumeration value = "security"/>

 <enumeration value = "reliable messaging"/>

 <enumeration value = "packaging"/>

 <enumeration value = "other"/>

 </restriction>

 </simpleType>

 <simpleType name = "layerList">

 <list itemType = "string"/>

 </simpleType>

 <element name = "Requirements">

 <complexType>

 <sequence>

 <element ref = "tns:MetaData"/>

 <element ref = "tns:TestRequirement" maxOccurs = "unbounded"/>

 </sequence>

 </complexType>

 </element>

 <element name = "AssertionRef">

 <complexType>

 <attribute name = "id" use = "required" type = "IDREF"/>

 </complexType>

 </element>

</schema>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 155 of 213

Appendix C (Normative) The ebXML Test Suite

Schema and Supporting Subschemas

The OASIS ebXML Implementation and Interoperability Committee has provided a version of the ebXML

Test Requirements schema using the schema vocabulary that conforms to the W3C XML Schema

Recommendation specification [XMLSchema].

MIME Portion of the ebXML Message Declaration Schema

<?xml version = "1.0" encoding = "UTF-8"?>

<!-- Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema-- >

<schema xmlns = "http://www.w3.org/2001/XMLSchema"

 targetNamespace = "http://www.oasis-open.org/tc/ebxml- iic/tests/mime"

 xmlns:tns = "http://www.oasis-open.org/tc/ebxml- iic/tests/mime"

 xmlns:xs = "http://www.w3.org/2001/XMLSchema"

 xmlns:soap = "http://www.oasis-open.org/tc/ebxml- iic/tests/soap">

 <import namespace = "http://www.oasis-open.org/tc/ebxml- iic/tests/soap"

schemaLocation = "soap.xsd"/>

 <!--

Copyright (C) The Organization for the Advancement of Structured Information Standards

[OASIS]

January 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and

derivative works that comment on or otherwise explain it or assist in its implementation

may be prepared, copied, published and distributed, in whole or in part, without

restriction of any kind, provided that the above copyright notice and this paragraph are

included on all such copies and derivative works. However, this document itself may not

be modified in any way, such as by removing the copyright notice or references to OASIS,

except as needed for the purpose of developing OASIS specifications, in which case the

procedures for copyrights defined in the OASIS Intellectual Property Rights document

MUST be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or

its successors or assigns.

-- >

 <element name = "Message">

 <complexType mixed = "true">

 <choice>

 <element ref = "tns:MessageContainer"/>

 </choice>

 <attribute name = "contentType" default = "multipart/related" type =

"string"/>

 <attribute name = "type" default = "text/xml" type = "string"/>

 </complexType>

 </element>

 <element name = "MessageContainer">

 <complexType>

 <sequence>

 <element ref = "soap:Envelope"/>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 156 of 213

 </sequence>

 <attribute name = "contentId" use = "optional" type = "string"/>

 <attribute name = "contentType" default = "text/xml" type = "string"/>

 <attribute name = "charset" default = "UTF-8" type = "string"/>

 </complexType>

 </element>

</schema>

SOAP Portion of the ebXML MessageDeclaration Schema

<?xml version = "1.0" encoding = "UTF-8"?>

<!-- Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema-- >

<schema xmlns = "http://www.w3.org/2001/XMLSchema"

 targetNamespace = "http://www.oasis-open.org/tc/ebxml- iic/tests/soap"

 xmlns:tns = "http://www.oasis-open.org/tc/ebxml- iic/tests/soap"

 xmlns:xs = "http://www.w3.org/2001/XMLSchema"

 xmlns:eb = "http://www.oasis-open.org/tc/ebxml- iic/tests/eb"

 xmlns:ds = "http://www.w3.org/2000/09/xmldsig#">

 <import namespace = "http://www.oasis-open.org/tc/ebxml- iic/tests/eb" schemaLocation

= "eb.xsd"/>

 <import namespace = "http://www.w3.org/2000/09/xmldsig#" schemaLocation =

"http://www.oasis- open.org/committees/ebxml-msg/schema/xmldsig-core- schema.xsd"/>

 <group name = "optionElements">

 <all minOccurs = "0">

 <element ref = "eb:SyncReply" minOccurs = "0"/>

 <element ref = "eb:MessageOrder" minOccurs = "0"/>

 <element ref = "eb:AckRequested" minOccurs = "0"/>

 <element ref = "eb:Acknowledgment" minOccurs = "0"/>

 <element ref = "eb:ErrorList" minOccurs = "0"/>

 <element ref = "ds:Signature" minOccurs = "0"/>

 </all>

 </group>

 <attributeGroup name = "encodingStyle">

 <attribute name = "encodingStyle" type = "tns:encodingStyle"/>

 </attributeGroup>

 <!-- Schema for the SOAP/1.1 envelope

 This schema has been produced using W3C's SOAP Version 1.2 schema

 found at:

 http://www.w3.org/2001/06/soap- envelope

 Copyright 2001 Martin Gudgin, Developmentor.

 Changes made are the following:

 - reverted namespace to http://schemas.xmlsoap.org/soap/envelope/

 - reverted mustUnderstand to only allow 0 and 1 as lexical values

 Copyright 2003 OASIS

 Changes made are the following:

 - SOAP Header and Body element content models constrained to include ebXML content

 Original copyright:

 Copyright 2001 W3C (Massachusetts Institute of Technology,

 Institut National de Recherche en Informatique et en Automatique,

 Keio University). All Rights Reserved.

 http://www.w3.org/Consortium/Legal/

 This document is governed by the W3C Software License [1] as

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 157 of 213

 described in the FAQ [2].

 [1] http://www.w3.org/Consortium/Legal/copyright- software-19980720

 [2] http://www.w3.org/Consortium/Legal/IPR- FAQ-20000620.html#DTD

-- >

 <!-- Envelope, header and body -- >

 <element name = "Envelope" type = "tns:Envelope"/>

 <complexType name = "Envelope">

 <sequence>

 <element ref = "tns:Header"/>

 <element ref = "tns:Body"/>

 <any namespace = "##other" processContents = "lax" minOccurs = "0"

maxOccurs = "unbounded"/>

 </sequence>

 <anyAttribute namespace = "##other" processContents = "lax"/>

 </complexType>

 <element name = "Header">

 <complexType>

 <sequence>

 <element ref = "eb:MessageHeader"/>

 <group ref = "tns:optionElements"/>

 </sequence>

 </complexType>

 </element>

 <complexType name = "Header">

 <sequence>

 <any namespace = "##other" processContents = "lax" minOccurs = "0"

maxOccurs = "unbounded"/>

 </sequence>

 <anyAttribute namespace = "##other" processContents = "lax"/>

 </complexType>

 <element name = "Body">

 <complexType>

 <choice minOccurs = "0">

 <element ref = "eb:Manifest"/>

 <element ref = "eb:StatusRequest"/>

 <element ref = "eb:StatusResponse"/>

 </choice>

 </complexType>

 </element>

 <complexType name = "Body">

 <annotation>

 <documentation>

 Prose in the spec does not specify that attributes are allowed on the Body

element

 </documentation>

 </annotation>

 <sequence>

 <any namespace = "##any" processContents = "lax" minOccurs = "0"

maxOccurs = "unbounded"/>

 </sequence>

 <anyAttribute namespace = "##any" processContents = "lax"/>

 </complexType>

 <!-- Global Attributes. The following attributes are intended to be usable via

qualified attribute names on any complex type referencing them. -- >

 <attribute name = "mustUnderstand" default = "0">

 <simpleType>

 <restriction base = "boolean">

 <pattern value = "0|1"/>

 </restriction>

 </simpleType>

 </attribute>

 <attribute name = "actor" type = "anyURI"/>

 <simpleType name = "encodingStyle">

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 158 of 213

 <annotation>

 <documentation>

 'encodingStyle' indicates any canonicalization conventions followed in the

contents of the containing element. For example, the value

'http://schemas.xmlsoap.org/soap/encoding/' indicates the pattern described in SOAP

specification

 </documentation>

 </annotation>

 <list itemType = "anyURI"/>

 </simpleType>

 <complexType name = "Fault"

 final = "extension">

 <annotation>

 <documentation>

 Fault reporting structure

 </documentation>

 </annotation>

 <sequence>

 <element name = "faultcode" type = "QName"/>

 <element name = "faultstring" type = "string"/>

 <element name = "faultactor" type = "anyURI" minOccurs = "0"/>

 <element name = "detail" type = "tns:detail" minOccurs = "0"/>

 </sequence>

 </complexType>

 <complexType name = "detail">

 <sequence>

 <any namespace = "##any" processContents = "lax" minOccurs = "0"

maxOccurs = "unbounded"/>

 </sequence>

 <anyAttribute namespace = "##any" processContents = "lax"/>

 </complexType>

</schema>

ebMS portion of the ebXML Message Declaration Schema

<?xml version = "1.0" encoding = "UTF-8"?>

<!-- Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema-- >

<schema xmlns = "http://www.w3.org/2001/XMLSchema"

 targetNamespace = "http://www.oasis-open.org/tc/ebxml- iic/tests/eb"

 xmlns:tns = "http://www.oasis-open.org/tc/ebxml- iic/tests/eb"

 xmlns:xlink = "http://www.w3.org/1999/xlink"

 xmlns:ds = "http://www.oasis-open.org/tc/ebxml- iic/tests/xmldsig"

 xmlns:soap = "http://www.oasis-open.org/tc/ebxml- iic/tests/soap"

 version = "1.0"

 elementFormDefault = "qualified"

 attributeFormDefault = "qualified">

 <import namespace = "http://www.w3.org/1999/xlink" schemaLocation =

"http://www.oasis- open.org/committees/ebxml- msg/schema/xlink.xsd"/>

 <import namespace = "http://www.oasis-open.org/tc/ebxml- iic/tests/xmldsig"

schemaLocation = "xmldsig.xsd"/>

 <import namespace = "http://www.oasis-open.org/tc/ebxml- iic/tests/soap"

schemaLocation = "soap.xsd"/>

 <import namespace = "http://www.w3.org/XML/1998/namespace" schemaLocation =

"http://www.oasis- open.org/committees/ebxml- msg/schema/xml_lang.xsd"/>

 <attributeGroup name = "headerExtension.grp">

 <attribute ref = "tns:id"/>

 <attribute ref = "tns:version" use = "optional"/>

 <attribute ref = "soap:mustUnderstand" use = "optional"/>

 </attributeGroup>

 <attributeGroup name = "bodyExtension.grp">

 <attribute ref = "tns:id"/>

 <attribute ref = "tns:version" use = "optional"/>

 </attributeGroup>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 159 of 213

 <!--

Copyright (C) The Organization for the Advancement of Structured Information Standards

[OASIS]

January 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and

derivative works that comment on or otherwise explain it or assist in its implementation

may be prepared, copied, published and distributed, in whole or in part, without

restriction of any kind, provided that the above copyright notice and this paragraph are

included on all such copies and derivative works. However, this document itself may not

be modified in any way, such as by removing the copyright notice or references to OASIS,

except as needed for the purpose of developing OASIS specifications, in which case the

procedures for copyrights defined in the OASIS Intellectual Property Rights document

MUST be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or

its successors or assigns.

-- >

 <!-- MANIFEST, for use in soap:Body element -- >

 <element name = "Manifest">

 <complexType>

 <sequence>

 <element ref = "tns:Reference" maxOccurs = "unbounded"/>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 <attributeGroup ref = "tns:bodyExtension.grp"/>

 </complexType>

 </element>

 <element name = "Reference">

 <complexType>

 <sequence>

 <element ref = "tns:Schema" minOccurs = "0" maxOccurs =

"unbounded"/>

 <element ref = "tns:Description" minOccurs = "0" maxOccurs =

"unbounded"/>

 <choice>

 <element ref = "tns:FileName"/>

 <element ref = "tns:MessageRef"/>

 <any namespace = "##other" processContents = "lax"

minOccurs = "0" maxOccurs = "unbounded"/>

 </choice>

 </sequence>

 <attribute ref = "tns:id"/>

 <attribute ref = "xlink:type" fixed = "simple"/>

 <attribute ref = "xlink:href" use = "required"/>

 <attribute ref = "xlink:role"/>

 <attribute name = "contentId" use = "optional" type = "string"/>

 <attribute name = "contentType" use = "optional" type = "string"/>

 <attribute name = "contentLocation" use = "optional" type = "anyURI"/>

 </complexType>

 </element>

 <element name = "Schema">

 <complexType>

 <attribute name = "location" use = "required" type = "anyURI"/>

 <attribute name = "version" type = "tns:non-empty- string"/>

 </complexType>

 </element>

 <!-- MESSAGEHEADER, for use in soap:Header element -- >

 <element name = "MessageHeader">

 <complexType>

 <sequence>

 <element ref = "tns:From" minOccurs = "0"/>

 <element ref = "tns:To" minOccurs = "0"/>

 <element ref = "tns:CPAId" minOccurs = "0"/>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 160 of 213

 <element ref = "tns:ConversationId" minOccurs = "0"/>

 <element ref = "tns:Service" minOccurs = "0"/>

 <element ref = "tns:Action" minOccurs = "0"/>

 <element ref = "tns:MessageData" minOccurs = "0"/>

 <element ref = "tns:DuplicateElimination" minOccurs = "0"/>

 <element ref = "tns:Description" minOccurs = "0" maxOccurs =

"unbounded"/>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 <attributeGroup ref = "tns:headerExtension.grp"/>

 </complexType>

 </element>

 <element name = "CPAId" type = "tns:non-empty- string"/>

 <element name = "ConversationId" type = "tns:non-empty- string"/>

 <element name = "Service">

 <complexType>

 <simpleContent>

 <extension base = "tns:non-empty- string">

 <attribute name = "type" type = "tns:non- empty-

string"/ >

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <element name = "Action" type = "tns:non-empty- string"/>

 <element name = "MessageData">

 <complexType>

 <sequence>

 <element ref = "tns:MessageId" minOccurs = "0"/>

 <element ref = "tns:Timestamp" minOccurs = "0"/>

 <element ref = "tns:RefToMessageId" minOccurs = "0"/>

 <element ref = "tns:TimeToLive" minOccurs = "0"/>

 </sequence>

 </complexType>

 </element>

 <element name = "MessageId" type = "tns:non-empty- string"/>

 <element name = "TimeToLive" type = "dateTime"/>

 <element name = "DuplicateElimination"/>

 <!-- SYNC REPLY, for use in soap:Header element -- >

 <element name = "SyncReply">

 <complexType>

 <sequence>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 <attributeGroup ref = "tns:headerExtension.grp"/>

 <attribute ref = "soap:actor" default = "urn:oasis:names:tc:ebxml-

msg: actor:toPartyMSH"/>

 </complexType>

 </element>

 <!-- MESSAGE ORDER, for use in soap:Header element -- >

 <element name = "MessageOrder">

 <complexType>

 <sequence>

 <element ref = "tns:SequenceNumber"/>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 <attributeGroup ref = "tns:headerExtension.grp"/>

 </complexType>

 </element>

 <element name = "SequenceNumber" type = "tns:sequenceNumber.type"/>

 <!-- ACK REQUESTED, for use in soap:Header element -- >

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 161 of 213

 <element name = "AckRequested">

 <complexType>

 <sequence>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 <attributeGroup ref = "tns:headerExtension.grp"/>

 <attribute ref = "soap:actor"/>

 <attribute name = "signed" use = "optional" type = "boolean"/>

 </complexType>

 </element>

 <!-- ACKNOWLEDGMENT, for use in soap:Header element -- >

 <element name = "Acknowledgment">

 <complexType>

 <sequence>

 <element ref = "tns:Timestamp" minOccurs = "0"/>

 <element ref = "tns:RefToMessageId" minOccurs = "0"/>

 <element ref = "tns:From" minOccurs = "0"/>

 <element name = "Reference" minOccurs = "0" maxOccurs =

"unbounded"/>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0"/>

 <element ref = "ds:Reference" minOccurs = "0" maxOccurs =

"unbounded"/>

 </sequence>

 <attributeGroup ref = "tns:headerExtension.grp"/>

 <attribute ref = "soap:actor" default = "urn:oasis:names:tc:ebxml-

msg: actor:toPartyMSH"/>

 </complexType>

 </element>

 <!-- ERROR LIST, for use in soap:Header element -- >

 <element name = "ErrorList">

 <complexType>

 <sequence>

 <element ref = "tns:Error" maxOccurs = "unbounded"/>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 <attributeGroup ref = "tns:headerExtension.grp"/>

 <attribute name = "highestSeverity" use = "required" type =

"tns:severity.type"/>

 </complexType>

 </element>

 <element name = "Error">

 <complexType>

 <sequence>

 <element ref = "tns:Description" minOccurs = "0"/>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 <attribute ref = "tns:id"/>

 <attribute name = "codeContext" default = "urn:oasis:names:tc:ebxml-

ms g:service:errors" type = "anyURI"/>

 <attribute name = "errorCode" use = "required" type = "tns:non- empty-

string"/>

 <attribute name = "severity" use = "required" type =

"tns:severity.type"/>

 <attribute name = "location" type = "tns:non-empty- string"/>

 </complexType>

 </element>

 <!-- STATUS RESPONSE, for use in soap:Body element -- >

 <element name = "StatusResponse">

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 162 of 213

 <complexType>

 <sequence>

 <element ref = "tns:RefToMessageId"/>

 <element ref = "tns:Timestamp" minOccurs = "0"/>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 <attributeGroup ref = "tns:bodyExtension.grp"/>

 <attribute name = "messageStatus" use = "required" type =

"tns:messageStatus.type"/>

 </complexType>

 </element>

 <!-- STATUS REQUEST, for use in soap:Body element -- >

 <element name = "StatusRequest">

 <complexType>

 <sequence>

 <element ref = "tns:RefToMessageId"/>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 <attributeGroup ref = "tns:bodyExtension.grp"/>

 </complexType>

 </element>

 <!-- COMMON TYPES -- >

 <complexType name = "sequenceNumber.type">

 <simpleContent>

 <extension base = "positiveInteger">

 <attribute name = "status" default = "Continue" type =

"tns:status.type"/>

 </extension>

 </simpleContent>

 </complexType>

 <simpleType name = "status.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "Reset"/>

 <enumeration value = "Continue"/>

 </restriction>

 </simpleType>

 <simpleType name = "messageStatus.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "UnAuthorized"/>

 <enumeration value = "NotRecognized"/>

 <enumeration value = "Received"/>

 <enumeration value = "Processed"/>

 <enumeration value = "Forwarded"/>

 </restriction>

 </simpleType>

 <simpleType name = "non-empty- string">

 <restriction base = "string">

 <minLength value = "1"/>

 </restriction>

 </simpleType>

 <simpleType name = "severity.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "Warning"/>

 <enumeration value = "Error"/>

 </restriction>

 </simpleType>

 <!-- COMMON ATTRIBUTES and ATTRIBUTE GROUPS -- >

 <attribute name = "id" type = "ID"/>

 <attribute name = "version" type = "tns:non-empty- string"/>

 <!-- COMMON ELEMENTS -- >

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 163 of 213

 <element name = "PartyId">

 <complexType>

 <simpleContent>

 <extension base = "tns:non-empty- string">

 <attribute name = "type" type = "tns:non- empty-

string"/ >

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <element name = "To">

 <complexType>

 <sequence>

 <element ref = "tns:PartyId"/>

 <element name = "Role" type = "tns:non-empty- string" minOccurs

= "0"/>

 </sequence>

 </complexType>

 </element>

 <element name = "From">

 <complexType>

 <sequence>

 <element ref = "tns:PartyId"/>

 <element name = "Role" type = "tns:non-empty- string" minOccurs

= "0"/>

 </sequence>

 </complexType>

 </element>

 <element name = "Description">

 <complexType>

 <simpleContent>

 <extension base = "tns:non-empty- string">

 <attribute ref = "xml:lang" use = "required"/>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <element name = "RefToMessageId" type = "tns:non-empty- string"/>

 <element name = "Timestamp" type = "dateTime"/>

 <element name = "FileName" type = "tns:non-empty- string"/>

 <element name = "MessageRef" type = "tns:non-empty- string"/>

</schema>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 164 of 213

Appendix D (Normative) The ebXML Message Store

Schema (and supporting sub-schemas)

<?xml version = "1.0" encoding = "UTF-8"?>

<!-- Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema-- >

<xsd:schema xmlns = "http://www.oasis-open.org/tc/ebxml- iic/testing/messageStore"

 targetNamespace = "http://www.oasis-open.org/tc/ebxml- iic/testing/messageStore"

 xmlns:mime = "http://www.oasis-open.org/tc/ebxml- iic/testing/mime"

 xmlns:soap = "http://www.oasis-open.org/tc/ebxml- iic/testing/soap"

 xmlns:xsd = "http://www.w3.org/2001/XMLSchema">

 <xsd:import namespace = "http://www.oasis-open.org/tc/ebxml- iic/testing/mime"

schemaLocation =

"file:///E:/ebXML_MS_20_Conformance_Testing_1.0/schemas/messagestore_mime.xsd"/>

 <xsd:import namespace = "http://www.oasis-open.org/tc/ebxml- iic/testing/soap"

schemaLocation =

"file:///E:/ebXML_MS_20_Conformance_Testing_1.0/schemas/messagestore_soap.xsd"/>

 <xsd:element name = "MessageStore">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref = "ParameterGroup" minOccurs = "0" maxOccurs =

"unbounded"/>

 <xsd:element ref = "Message" minOccurs = "0" maxOccurs =

"unbounded"/>

 <xsd:element ref = "Notification" minOccurs = "0" maxOccurs =

"unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name = "ParameterGroup">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref = "Parameter" minOccurs = "0" maxOccurs =

"unbounded"/>

 <xsd:element ref = "ParameterGroup" minOccurs = "0" maxOccurs =

"unbounded"/>

 </xsd:sequence>

 <xsd:attribute name = "id" use = "required" type = "xsd:anyURI"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name = "Parameter">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name = "Name" type = "xsd:string"/>

 <xsd:element name = "Value" type = "xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name = "GenericMessage" type = "GenericMessageType"/>

 <xsd:simpleType name = "synch.type">

 <xsd:restriction base = "xsd:string">

 <xsd:enumeration value = "synchronous"/>

 <xsd:enumeration value = "asynchronous"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name = "parameter.type">

 <xsd:restriction base = "xsd:NMTOKEN">

 <xsd:enumeration value = "string"/>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 165 of 213

 <xsd:enumeration value = "namespace"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name = "notification.type">

 <xsd:restriction base = "xsd:NMTOKEN">

 <xsd:enumeration value = "errURL"/>

 <xsd:enumeration value = "errorApp"/>

 <xsd:enumeration value = "message"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:element name = "Message">

 <xsd:complexType>

 <xsd:complexContent>

 <xsd:extension base = "GenericMessageType">

 <xsd:sequence>

 <xsd:element ref = "mime:MessageContainer"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:complexType name = "GenericMessageType">

 <xsd:attribute name = "synchType" use = "required" type = "synch.type"/>

 <xsd:attribute name = "id" use = "required" type = "xsd:string"/>

 <xsd:attribute name = "serviceInstanceId" use = "optional" type =

"xsd:string"/>

 <xsd:attribute name = "serviceName" use = "optional" type = "xsd:string"/>

 <xsd:attribute name = "reportingAction" use = "optional" type = "xsd:string"/>

 <xsd:anyAttribute namespace = "##any" processContents = "strict"/>

 </xsd:complexType>

 <xsd:element name = "Notification">

 <xsd:complexType>

 <xsd:complexContent>

 <xsd:extension base = "GenericMessageType">

 <xsd:sequence>

 <xsd:element ref = "soap:Envelope"/>

 </xsd:sequence>

 <xsd:attribute name = "notificationType" use =

"required" type = "notification.type"/>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 166 of 213

MIME Portion of ebXML-Specific MessageStore Schema

<?xml version = "1.0" encoding = "UTF-8"?>

<!-- Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema-- >

<schema xmlns = "http://www.w3.org/2001/XMLSchema"

 targetNamespace = "http://www.oasis-open.org/tc/ebxml- iic/testing/mime"

 xmlns:tns = "http://www.oasis-open.org/tc/ebxml- iic/testing/mime"

 xmlns:xs = "http://www.w3.org/2001/XMLSchema"

 xmlns:soap = "http://www.oasis-open.org/tc/ebxml- iic/testing/soap">

 <import namespace = "http://www.oasis-open.org/tc/ebxml- iic/testing/soap"

schemaLocation = "messagestore_soap.xsd"/>

 <!--

Copyright (C) The Organization for the Advancement of Structured Information Standards

[OASIS]

January 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and

derivative works that comment on or otherwise explain it or assist in its implementation

may be prepared, copied, published and distributed, in whole or in part, without

restriction of any kind, provided that the above copyright notice and this paragraph are

included on all such copies and derivative works. However, this document itself may not

be modified in any way, such as by removing the copyright notice or references to OASIS,

except as needed for the purpose of developing OASIS specifications, in which case the

procedures for copyrights defined in the OASIS Intellectual Property Rights document

MUST be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or

its successors or assigns.

-- >

 <element name = "Message">

 <complexType>

 <sequence>

 <element ref = "tns:MessageContainer"/>

 </sequence>

 <attribute name = "type" use = "optional" type = "string"/>

 <attribute name = "contentType" use = "optional" type = "string"/>

 <attribute name = "synchType" use = "required" type =

"tns:synch.type"/>

 <attribute name = "id" use = "required" type = "string"/>

 <attribute name = "serviceInstanceId" use = "optional" type =

"string"/>

 <attribute name = "serviceName" use = "optional" type = "string"/>

 <attribute name = "reportingAction" use = "optional" type = "string"/>

 </complexType>

 </element>

 <element name = "MessageContainer">

 <complexType>

 <sequence>

 <element ref = "soap:Envelope"/>

 </sequence>

 <attribute name = "contentId" use = "optional" type = "string"/>

 <attribute name = "contentType" use = "optional" type = "string"/>

 <attribute name = "charset" use = "optional" type = "string"/>

 </complexType>

 </element>

 <simpleType name = "synch.type">

 <restriction base = "NMTOKEN">

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 167 of 213

 <enumeration value = "syncronous"/>

 <enumeration value = "asyncronous"/>

 </restriction>

 </simpleType>

 <element name = "MessagePayload">

 <complexType>

 <sequence>

 <element ref = "tns:PayloadURI"/>

 </sequence>

 </complexType>

 </element>

 <element name = "PayloadURI" type = "string"/>

</schema>

SOAP Portion of ebXML-Specific Message Store Schema

<?xml version = "1.0" encoding = "UTF-8"?>

<!-- Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema-- >

<schema xmlns = "http://www.w3.org/2001/XMLSchema"

 targetNamespace = "http://www.oasis-open.org/tc/ebxml- iic/testing/soap"

 xmlns:tns = "http://www.oasis-open.org/tc/ebxml- iic/testing/soap"

 xmlns:xs = "http://www.w3.org/2001/XMLSchema"

 xmlns:eb = "http://www.oasis- open.org/committees/ebxml- msg/schema/msg-

header-2_0.xsd ">

 <import namespace = "http://www.oasis- open.org/committees/ebxml- msg/schema/msg-

header -2_0.xsd" schemaLocation = "http://www.oasis- open.org/committees/ebxml-

msg/schema/ msg-header-2_0.xsd"/>

 <group name = "optionElements">

 <all minOccurs = "0">

 <element ref = "eb:SyncReply" minOccurs = "0"/>

 <element ref = "eb:MessageOrder" minOccurs = "0"/>

 <element ref = "eb:AckRequested" minOccurs = "0"/>

 <element ref = "eb:Acknowledgment" minOccurs = "0"/>

 <element ref = "eb:ErrorList" minOccurs = "0"/>

 </all>

 </group>

 <attributeGroup name = "encodingStyle">

 <attribute name = "encodingStyle" type = "tns:encodingStyle"/>

 </attributeGroup>

 <!-- Schema for the SOAP/1.1 envelope

 This schema has been produced using W3C's SOAP Version 1.2 schema

 found at:

 http://www.w3.org/2001/06/soap- envelope

 Copyright 2001 Martin Gudgin, Developmentor.

 Changes made are the following:

 - reverted namespace to http://schemas.xmlsoap.org/soap/envelope/

 - reverted mustUnderstand to only allow 0 and 1 as lexical values

 Original copyright:

 Copyright 2001 W3C (Massachusetts Institute of Technology,

 Institut National de Recherche en Informatique et en Automatique,

 Keio University). All Rights Reserved.

 http://www.w3.org/Consortium/Legal/

 This document is governed by the W3C Software License [1] as

 described in the FAQ [2].

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 168 of 213

 [1] http://www.w3.org/Consortium/Legal/copyright- software-19980720

 [2] http://www.w3.org/Consortium/Legal/IPR- FAQ-20000620.html#DTD

-- >

 <!-- Envelope, header and body -- >

 <element name = "Envelope" type = "tns:Envelope"/>

 <complexType name = "Envelope">

 <sequence>

 <element ref = "tns:Header"/>

 <element ref = "tns:Body"/>

 <any namespace = "##other" processContents = "lax" minOccurs = "0"

maxOccurs = "unbounded"/>

 </sequence>

 <anyAttribute namespace = "##other" processContents = "lax"/>

 </complexType>

 <element name = "Header">

 <complexType>

 <sequence>

 <element ref = "eb:MessageHeader"/>

 <group ref = "tns:optionElements"/>

 </sequence>

 </complexType>

 </element>

 <complexType name = "Header">

 <sequence>

 <any namespace = "##other" processContents = "lax" minOccurs = "0"

maxOccurs = "unbounded"/>

 </sequence>

 <anyAttribute namespace = "##other" processContents = "lax"/>

 </complexType>

 <element name = "Body">

 <complexType>

 <choice>

 <element ref = "eb:Manifest"/>

 <element ref = "eb:StatusRequest"/>

 <element ref = "eb:StatusResponse"/>

 </choice>

 </complexType>

 </element>

 <complexType name = "Body">

 <annotation>

 <documentation>

 Prose in the spec does not specify that attributes are allowed on the Body

element

 </documentation>

 </annotation>

 <sequence>

 <any namespace = "##any" processContents = "lax" minOccurs = "0"

maxOccurs = "unbounded"/>

 </sequence>

 <anyAttribute namespace = "##any" processContents = "lax"/>

 </complexType>

 <!-- Global Attributes. The following attributes are intended to be usable via

qualified attribute names on any complex type referencing them. -- >

 <attribute name = "mustUnderstand" default = "0">

 <simpleType>

 <restriction base = "boolean">

 <pattern value = "0|1"/>

 </restriction>

 </simpleType>

 </attribute>

 <attribute name = "actor" type = "anyURI"/>

 <simpleType name = "encodingStyle">

 <annotation>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 169 of 213

 <documentation>

 'encodingStyle' indicates any canonicalization conventions followed in the

contents of the containing element. For example, the value

'http://schemas.xmlsoap.org/soap/encoding/' indicates the pattern described in SOAP

specification

 </documentation>

 </annotation>

 <list itemType = "anyURI"/>

 </simpleType>

 <complexType name = "Fault"

 final = "extension">

 <annotation>

 <documentation>

 Fault reporting structure

 </documentation>

 </annotation>

 <sequence>

 <element name = "faultcode" type = "QName"/>

 <element name = "faultstring" type = "string"/>

 <element name = "faultactor" type = "anyURI" minOccurs = "0"/>

 <element name = "detail" type = "tns:detail" minOccurs = "0"/>

 </sequence>

 </complexType>

 <complexType name = "detail">

 <sequence>

 <any namespace = "##any" processContents = "lax" minOccurs = "0"

maxOccurs = "unbounded"/>

 </sequence>

 <anyAttribute namespace = "##any" processContents = "lax"/>

 </complexType>

</schema>

ebMS Portion of ebXML-Specific Message Store Schema

<?xml version = "1.0" encoding = "UTF-8"?>

<!-- Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema-- >

<schema xmlns = "http://www.w3.org/2001/XMLSchema"

 targetNamespace = "http://www.oasis- open.org/committees/ebxml- msg/schema/msg-

header- 2_0.xsd"

 xmlns:tns = "http://www.oasis- open.org/committees/ebxml- msg/schema/msg-

header-2_0.xs d"

 xmlns:xlink = "http://www.w3.org/1999/xlink"

 xmlns:ds = "http://www.w3.org/2000/09/xmldsig#"

 xmlns:soap = "http://schemas.xmlsoap.org/soap/envelope/"

 version = "1.0"

 elementFormDefault = "qualified"

 attributeFormDefault = "qualified">

 <import namespace = "http://www.w3.org/1999/xlink" schemaLocation =

"http://www.oasis- open.org/committees/ebxml- msg/schema/xlink.xsd"/>

 <import namespace = "http://www.w3.org/2000/09/xmldsig#" schemaLocation =

"http://www.oasis- open.org/committees/ebxml-msg/schema/xmldsig-core- schema.xsd"/>

 <import namespace = "http://schemas.xmlsoap.org/soap/envelope/" schemaLocation =

"http://www.oasis- open.org/committees/ebxml- msg/schema/envelope.xsd"/>

 <import namespace = "http://www.w3.org/XML/1998/namespace" schemaLocation =

"http://www.oasis- open.org/committees/ebxml- msg/schema/xml_lang.xsd"/>

 <attributeGroup name = "bodyExtension.grp">

 <attribute ref = "tns:id"/>

 <attribute ref = "tns:version" use = "required"/>

 </attributeGroup>

 <attributeGroup name = "headerExtension.grp">

 <attribute ref = "tns:id"/>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 170 of 213

 <attribute ref = "tns:version" use = "required"/>

 <attribute ref = "soap:mustUnderstand" use = "required"/>

 </attributeGroup>

 <!--

Copyright (C) The Organization for the Advancement of Structured Information Standards

[OASIS]

January 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and

derivative works that comment on or otherwise explain it or assist in its implementation

may be prepared, copied, published and distributed, in whole or in part, without

restriction of any kind, provided that the above copyright notice and this paragraph are

included on all such copies and derivative works. However, this document itself may not

be modified in any way, such as by removing the copyright notice or references to OASIS,

except as needed for the purpose of developing OASIS specifications, in which case the

procedures for copyrights defined in the OASIS Intellectual Property Rights document

MUST be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or

its successors or assigns.

-- >

 <!-- MANIFEST, for use in soap:Body element -- >

 <element name = "Manifest">

 <complexType>

 <sequence>

 <element ref = "tns:Reference" maxOccurs = "unbounded"/>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 <attributeGroup ref = "tns:bodyExtension.grp"/>

 </complexType>

 </element>

 <element name = "Reference">

 <complexType>

 <sequence>

 <element ref = "tns:Schema" minOccurs = "0" maxOccurs =

"unbounded"/>

 <element ref = "tns:Description" minOccurs = "0" maxOccurs =

"unbounded"/>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 <attribute ref = "tns:id"/>

 <attribute ref = "xlink:type" fixed = "simple"/>

 <attribute ref = "xlink:href" use = "required"/>

 <attribute ref = "xlink:role"/>

 </complexType>

 </element>

 <element name = "Schema">

 <complexType>

 <attribute name = "location" use = "required" type = "anyURI"/>

 <attribute name = "version" type = "tns:non-empty- string"/>

 </complexType>

 </element>

 <!-- MESSAGEHEADER, for use in soap:Header element -- >

 <element name = "MessageHeader">

 <complexType>

 <sequence>

 <element ref = "tns:From"/>

 <element ref = "tns:To"/>

 <element ref = "tns:CPAId"/>

 <element ref = "tns:ConversationId"/>

 <element ref = "tns:Service"/>

 <element ref = "tns:Action"/>

 <element ref = "tns:MessageData"/>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 171 of 213

 <element ref = "tns:DuplicateElimination" minOccurs = "0"/>

 <element ref = "tns:Description" minOccurs = "0" maxOccurs =

"unbounded"/>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 <attributeGroup ref = "tns:headerExtension.grp"/>

 </complexType>

 </element>

 <element name = "CPAId" type = "tns:non-empty- string"/>

 <element name = "ConversationId" type = "tns:non-empty- string"/>

 <element name = "Service">

 <complexType>

 <simpleContent>

 <extension base = "tns:non-empty- string">

 <attribute name = "type" type = "tns:non- empty-

string"/ >

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <element name = "Action" type = "tns:non-empty- string"/>

 <element name = "MessageData">

 <complexType>

 <sequence>

 <element ref = "tns:MessageId"/>

 <element ref = "tns:Timestamp"/>

 <element ref = "tns:RefToMessageId" minOccurs = "0"/>

 <element ref = "tns:TimeToLive" minOccurs = "0"/>

 </sequence>

 </complexType>

 </element>

 <element name = "MessageId" type = "tns:non-empty- string"/>

 <element name = "TimeToLive" type = "dateTime"/>

 <element name = "DuplicateElimination"/>

 <!-- SYNC REPLY, for use in soap:Header element -- >

 <element name = "SyncReply">

 <complexType>

 <sequence>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 <attributeGroup ref = "tns:headerExtension.grp"/>

 <attribute ref = "soap:actor" use = "required"/>

 </complexType>

 </element>

 <!-- MESSAGE ORDER, for use in soap:Header element -- >

 <element name = "MessageOrder">

 <complexType>

 <sequence>

 <element ref = "tns:SequenceNumber"/>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 <attributeGroup ref = "tns:headerExtension.grp"/>

 </complexType>

 </element>

 <element name = "SequenceNumber" type = "tns:sequenceNumber.type"/>

 <!-- ACK REQUESTED, for use in soap:Header element -- >

 <element name = "AckRequested">

 <complexType>

 <sequence>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 172 of 213

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 <attributeGroup ref = "tns:headerExtension.grp"/>

 <attribute ref = "soap:actor"/>

 <attribute name = "signed" use = "required" type = "boolean"/>

 </complexType>

 </element>

 <!-- ACKNOWLEDGMENT, for use in soap:Header element -- >

 <element name = "Acknowledgment">

 <complexType>

 <sequence>

 <element ref = "tns:Timestamp"/>

 <element ref = "tns:RefToMessageId"/>

 <element ref = "tns:From" minOccurs = "0"/>

 <element ref = "ds:Reference" minOccurs = "0" maxOccurs =

"unbounded"/>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 <attributeGroup ref = "tns:headerExtension.grp"/>

 <attribute ref = "soap:actor"/>

 </complexType>

 </element>

 <!-- ERROR LIST, for use in soap:Header element -- >

 <element name = "ErrorList">

 <complexType>

 <sequence>

 <element ref = "tns:Error" maxOccurs = "unbounded"/>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 <attributeGroup ref = "tns:headerExtension.grp"/>

 <attribute name = "highestSeverity" use = "required" type =

"tns:severity.type"/>

 </complexType>

 </element>

 <element name = "Error">

 <complexType>

 <sequence>

 <element ref = "tns:Description" minOccurs = "0"/>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 <attribute ref = "tns:id"/>

 <attribute name = "codeContext" default = "urn:oasis:names:tc:ebxml-

ms g:service:errors" type = "anyURI"/>

 <attribute name = "errorCode" use = "required" type = "tns:non- empty-

string"/>

 <attribute name = "severity" use = "required" type =

"tns:severity.type"/>

 <attribute name = "location" type = "tns:non-empty- string"/>

 </complexType>

 </element>

 <!-- STATUS RESPONSE, for use in soap:Body element -- >

 <element name = "StatusResponse">

 <complexType>

 <sequence>

 <element ref = "tns:RefToMessageId"/>

 <element ref = "tns:Timestamp" minOccurs = "0"/>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 173 of 213

 <attributeGroup ref = "tns:bodyExtension.grp"/>

 <attribute name = "messageStatus" use = "required" type =

"tns:messageStatus.type"/>

 </complexType>

 </element>

 <!-- STATUS REQUEST, for use in soap:Body element -- >

 <element name = "StatusRequest">

 <complexType>

 <sequence>

 <element ref = "tns:RefToMessageId"/>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 <attributeGroup ref = "tns:bodyExtension.grp"/>

 </complexType>

 </element>

 <!-- COMMON TYPES -- >

 <complexType name = "sequenceNumber.type">

 <simpleContent>

 <extension base = "positiveInteger">

 <attribute name = "status" default = "Continue" type =

"tns:status.type"/>

 </extension>

 </simpleContent>

 </complexType>

 <simpleType name = "status.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "Reset"/>

 <enumeration value = "Continue"/>

 </restriction>

 </simpleType>

 <simpleType name = "messageStatus.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "UnAuthorized"/>

 <enumeration value = "NotRecognized"/>

 <enumeration value = "Received"/>

 <enumeration value = "Processed"/>

 <enumeration value = "Forwarded"/>

 </restriction>

 </simpleType>

 <simpleType name = "non-empty- string">

 <restriction base = "string">

 <minLength value = "1"/>

 </restriction>

 </simpleType>

 <simpleType name = "severity.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "Warning"/>

 <enumeration value = "Error"/>

 </restriction>

 </simpleType>

 <!-- COMMON ATTRIBUTES and ATTRIBUTE GROUPS -- >

 <attribute name = "id" type = "ID"/>

 <attribute name = "version" type = "tns:non-empty- string"/>

 <!-- COMMON ELEMENTS -- >

 <element name = "PartyId">

 <complexType>

 <simpleContent>

 <extension base = "tns:non-empty- string">

 <attribute name = "type" type = "tns:non- empty-

string"/ >

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 174 of 213

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <element name = "To">

 <complexType>

 <sequence>

 <element ref = "tns:PartyId" maxOccurs = "unbounded"/>

 <element name = "Role" type = "tns:non-empty- string" minOccurs

= "0"/>

 </sequence>

 </complexType>

 </element>

 <element name = "From">

 <complexType>

 <sequence>

 <element ref = "tns:PartyId" maxOccurs = "unbounded"/>

 <element name = "Role" type = "tns:non-empty- string" minOccurs

= "0"/>

 </sequence>

 </complexType>

 </element>

 <element name = "Description">

 <complexType>

 <simpleContent>

 <extension base = "tns:non-empty- string">

 <attribute ref = "xml:lang" use = "required"/>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <element name = "RefToMessageId" type = "tns:non-empty- string"/>

 <element name = "Timestamp" type = "dateTime"/>

</schema>

Generic FilterResult Schema

<?xml version = "1.0" encoding = "UTF-8"?>

<!-- Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema-- >

<xsd:schema xmlns = "http://www.oasis-open.org/tc/ebxml- iic/testing/messageStore"

 targetNamespace = "http://www.oasis-open.org/tc/ebxml- iic/testing/messageStore"

 xmlns:xsd = "http://www.w3.org/2001/XMLSchema">

 <!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Michael Kass (NIST) -- >

 <!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Michael Kass (NIST) -- >

 <!--

Copyright (C) The Organization for the Advancement of Structured Information Standards

[OASIS]

January 2002. All Rights Reserved.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 175 of 213

This document and translations of it may be copied and furnished to others, and

derivative works that comment on or otherwise explain it or assist in its implementation

may be prepared, copied, published and distributed, in whole or in part, without

restriction of any kind, provided that the above copyright notice and this paragraph are

included on all such copies and derivative works. However, this document itself may not

be modified in any way, such as by removing the copyright notice or references to OASIS,

except as needed for the purpose of developing OASIS specifications, in which case the

procedures for copyrights defined in the OASIS Intellectual Property Rights document

MUST be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or

its successors or assigns.

-- >

 <xsd:element name = "FilterResult">

 <xsd:complexType>

 <xsd:choice>

 <xsd:element ref = "Message" minOccurs = "0" maxOccurs =

"unbounded"/>

 <xsd:element ref = "Notification" minOccurs = "0" maxOccurs =

"unbounded"/>

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name = "GenericMessage" type = "GenericMessageType"/>

 <xsd:simpleType name = "synch.type">

 <xsd:restriction base = "xsd:string">

 <xsd:enumeration value = "synchronous"/>

 <xsd:enumeration value = "asynchronous"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name = "notification.type">

 <xsd:restriction base = "xsd:NMTOKEN">

 <xsd:enumeration value = "message"/>

 <xsd:enumeration value = "errorURL"/>

 <xsd:enumeration value = "errorApp"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:element name = "Message">

 <xsd:complexType>

 <xsd:complexContent>

 <xsd:extension base = "GenericMessageType">

 <xsd:attribute name = "type" use = "optional" type =

"xsd:string"/>

 <xsd:attribute name = "contentType" use = "optional"

type = "xsd:string"/>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:complexType name = "GenericMessageType">

 <xsd:sequence>

 <xsd:any namespace = "##other" processContents = "lax" minOccurs = "0"

maxOccurs = "unbounded"/>

 </xsd:sequence>

 <xsd:attribute name = "synchType" use = "required" type = "synch.type"/>

 <xsd:attribute name = "id" use = "required" type = "xsd:string"/>

 <xsd:attribute name = "serviceInstanceId" use = "optional" type =

"xsd:string"/>

 <xsd:attribute name = "serviceName" use = "optional" type = "xsd:string"/>

 <xsd:attribute name = "reportingAction" use = "optional" type = "xsd:string"/>

 <xsd:anyAttribute namespace = "##any" processContents = "strict"/>

 </xsd:complexType>

 <xsd:element name = "Notification">

 <xsd:complexType>

 <xsd:complexContent>

 <xsd:extension base = "GenericMessageType">

 <xsd:attribute name = "notificationType" use =

"required" type = "notification.type"/>

 </xsd:extension>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 176 of 213

 </xsd:complexContent>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

ebXML Specific Filter Result Schema

 <?xml version = "1.0" encoding = "UTF-8"?>

<!-- Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema-- >

<xsd:schema xmlns = "http://www.oasis-open.org/tc/ebxml- iic/testing/messageStore"

 targetNamespace = "http://www.oasis-open.org/tc/ebxml- iic/testing/messageStore"

 xmlns:mime = "http://www.oasis-open.org/tc/ebxml- iic/testing/mime"

 xmlns:soap = "http://www.oasis-open.org/tc/ebxml- iic/testing/soap"

 xmlns:xsd = "http://www.w3.org/2001/XMLSchema">

 <xsd:import namespace = "http://www.oasis-open.org/tc/ebxml- iic/testing/mime"

schemaLocation =

"file:///E:/ebXML_MS_20_Conformance_Testing_1.0/schemas/messagestore_mime.xsd"/>

 <xsd:import namespace = "http://www.oasis-open.org/tc/ebxml- iic/testing/soap"

schemaLocation =

"file:///E:/ebXML_MS_20_Conformance_Testing_1.0/schemas/messagestore_soap.xsd"/>

 <!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Michael Kass (NIST) -- >

 <!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Michael Kass (NIST) -- >

 <!--

Copyright (C) The Organization for the Advancement of Structured Information Standards

[OASIS]

January 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and

derivative works that comment on or otherwise explain it or assist in its implementation

may be prepared, copied, published and distributed, in whole or in part, without

restriction of any kind, provided that the above copyright notice and this paragraph are

included on all such copies and derivative works. However, this document itself may not

be modified in any way, such as by removing the copyright notice or references to OASIS,

except as needed for the purpose of developing OASIS specifications, in which case the

procedures for copyrights defined in the OASIS Intellectual Property Rights document

MUST be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or

its successors or assigns.

-- >

 <xsd:element name = "FilterResult">

 <xsd:complexType>

 <xsd:choice>

 <xsd:element ref = "Message" minOccurs = "0" maxOccurs =

"unbounded"/>

 <xsd:element ref = "Notification" minOccurs = "0" maxOccurs =

"unbounded"/>

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name = "GenericMessage" type = "GenericMessageType"/>

 <xsd:simpleType name = "synch.type">

 <xsd:restriction base = "xsd:string">

 <xsd:enumeration value = "synchronous"/>

 <xsd:enumeration value = "asynchronous"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name = "notification.type">

 <xsd:restriction base = "xsd:NMTOKEN">

 <xsd:enumeration value = "errURL"/>

 <xsd:enumeration value = "errorApp"/>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 177 of 213

 <xsd:enumeration value = "message"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:element name = "Message">

 <xsd:complexType>

 <xsd:complexContent>

 <xsd:extension base = "GenericMessageType">

 <xsd:sequence>

 <xsd:element ref = "mime:MessageContainer"/>

 </xsd:sequence>

 <xsd:attribute name = "type" use = "optional" type =

"xsd:string"/>

 <xsd:attribute name = "contentType" use = "optional"

type = "xsd:string"/>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:complexType name = "GenericMessageType">

 <xsd:attribute name = "synchType" use = "required" type = "synch.type"/>

 <xsd:attribute name = "id" use = "required" type = "xsd:string"/>

 <xsd:attribute name = "serviceInstanceId" use = "optional" type =

"xsd:string"/>

 <xsd:attribute name = "serviceName" use = "optional" type = "xsd:string"/>

 <xsd:attribute name = "reportingAction" use = "optional" type = "xsd:string"/>

 <xsd:anyAttribute namespace = "##any" processContents = "strict"/>

 </xsd:complexType>

 <xsd:element name = "Notification">

 <xsd:complexType>

 <xsd:complexContent>

 <xsd:extension base = "GenericMessageType">

 <xsd:sequence>

 <xsd:element ref = "soap:Envelope"/>

 </xsd:sequence>

 <xsd:attribute name = "notificationType" use =

"required" type = "notification.type"/>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 178 of 213

Appendix E (Normative) The Test Report Schema

<?xml version = "1.0" encoding = "UTF-8"?>

<!-- Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema-- >

<schema xmlns = "http://www.w3.org/2001/XMLSchema"

 targetNamespace = "http://www.oasis-open.org/tc/ebxml- iic/testreport"

 xmlns:testReport = "http://www.oasis-open.org/tc/ebxml- iic/testreport"

 xmlns:ds = "http://www.oasis-open.org/tc/ebxml- iic/tests/xmldsig"

 xmlns:mime = "http://www.oasis-open.org/tc/ebxml- iic/tests/mime"

 version = "1.0"

 elementFormDefault = "unqualified"

 attributeFormDefault = "unqualified">

 <import namespace = "http://www.oasis-open.org/tc/ebxml- iic/tests/xmldsig"

schemaLocation = "xmldsig.xsd"/>

 <import namespace = "http://www.oasis-open.org/tc/ebxml- iic/tests/mime"

schemaLocation = "file:///E:/scripting_poc_03_18_04/schemas/mime.xsd"/>

 <!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Michael Kass (NIST) -- >

 <!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Michael Kass (NIST) -- >

 <!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Michael Kass (NIST) -- >

 <!--

Copyright (C) The Organization for the Advancement of Structured Information Standards

[OASIS]

January 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and

derivative works that comment on or otherwise explain it or assist in its implementation

may be prepared, copied, published and distributed, in whole or in part, without

restriction of any kind, provided that the above copyright notice and this paragraph are

included on all such copies and derivative works. However, this document itself may not

be modified in any way, such as by removing the copyright notice or references to OASIS,

except as needed for the purpose of developing OASIS specifications, in which case the

procedures for copyrights defined in the OASIS Intellectual Property Rights document

MUST be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or

its successors or assigns.

-- >

 <element name = "TestReport">

 <complexType>

 <sequence>

 <element ref = "testReport:MetaData"/>

 <element ref = "testReport:TestCase" maxOccurs = "unbounded"/>

 </sequence>

 </complexType>

 </element>

 <element name = "MetaData">

 <complexType>

 <sequence>

 <element ref = "testReport:Description"/>

 <element ref = "testReport:Version"/>

 <element ref = "testReport:Maintainer"/>

 <element ref = "testReport:Location"/>

 <element ref = "testReport:PublishDate"/>

 <element ref = "testReport:Status"/>

 </sequence>

 </complexType>

 </element>

 <element name = "Description" type = "testReport:non-empty- string"/>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 179 of 213

 <element name = "Version" type = "testReport:non-empty- string"/>

 <element name = "Maintainer" type = "testReport:non-empty- string"/>

 <element name = "Location" type = "anyURI"/>

 <element name = "PublishDate" type = "testReport:non-empty- string"/>

 <element name = "Status" type = "testReport:non-empty- string"/>

 <element name = "TestCase">

 <complexType>

 <sequence>

 <element ref = "testReport:Result"/>

 <choice maxOccurs = "unbounded">

 <element ref = "testReport:SetParameter"/>

 <element ref = "testReport:TestServiceConfigurator"/>

 <element ref = "testReport:Thread"/>

 <element ref = "testReport:TestStep"/>

 <element ref = "testReport:If"/>

 <element ref = "testReport:Split"/>

 <element ref = "testReport:Join"/>

 <element ref = "testReport:Sleep"/>

 </choice>

 </sequence>

 <attribute name = "id" use = "required" type = "ID"/>

 <attribute name = "description" use = "optional" type = "string"/>

 <attribute name = "author" use = "optional" type = "string"/>

 <attribute name = "version" use = "optional" type = "string"/>

 <attribute name = "requirementReferenceId" use = "required" type =

"anyURI"/>

 <attribute name = "requirementType" use = "required" type = "string"/>

 <attribute name = "specRef" use = "optional" type = "string"/>

 <attribute name = "name" use = "required" type = "testReport:non-

empty -string"/>

 <attribute name = "result" use = "required" type = "result.type"/>

 </complexType>

 </element>

 <element name = "ConfigurationGroup">

 <complexType>

 <sequence>

 <element ref = "testReport:CPAId" minOccurs = "0"/>

 <element ref = "testReport:Mode"/>

 <element ref = "testReport:SenderParty"/>

 <element ref = "testReport:ReceiverParty"/>

 <element ref = "testReport:Service"/>

 <element ref = "testReport:Action"/>

 <element ref = "testReport:StepDuration"/>

 <element ref = "testReport:ResponseURL" minOccurs = "0"/>

 <element ref = "testReport:NotificationURL" minOccurs = "0"/>

 <element ref = "testReport:Transport"/>

 <element ref = "testReport:Envelope"/>

 <element ref = "testReport:ConfigurationItem" minOccurs = "0"

maxOccurs = "unbounded"/>

 </sequence>

 <attribute name = "id" use = "required" type = "ID"/>

 </complexType>

 </element>

 <element name = "CPAId" type = "testReport:non-empty- string"/>

 <element name = "Mode" type = "testReport:mode.type"/>

 <element name = "SenderParty" type = "anyURI"/>

 <element name = "ReceiverParty" type = "anyURI"/>

 <element name = "Service" type = "anyURI"/>

 <element name = "Action" type = "testReport:non-empty- string"/>

 <element name = "StepDuration" type = "integer"/>

 <element name = "Transport" type = "testReport:non-empty- string"/>

 <element name = "Envelope" type = "testReport:non-empty- string"/>

 <simpleType name = "mode.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "local- service"/>

 <enumeration value = "remote- service"/>

 <enumeration value = "connection"/>

 </restriction>

 </simpleType>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 180 of 213

 <simpleType name = "mimeHeader.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "MIMEMessageContent- Type"/>

 <enumeration value = "MIMEMessageStart"/>

 <enumeration value = "Content- Type"/>

 <enumeration value = "start"/>

 <enumeration value = "charset"/>

 <enumeration value = "type"/>

 <enumeration value = "wildcard"/>

 </restriction>

 </simpleType>

 <simpleType name = "content.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "XML"/>

 <enumeration value = "date"/>

 <enumeration value = "URI"/>

 <enumeration value = "signature"/>

 <enumeration value = "XPointer"/>

 </restriction>

 </simpleType>

 <simpleType name = "method.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "xpath"/>

 <enumeration value = "md5"/>

 </restriction>

 </simpleType>

 <simpleType name = "messageContext.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "true"/>

 <enumeration value = "false"/>

 </restriction>

 </simpleType>

 <simpleType name = "requirement.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "required"/>

 <enumeration value = "stronglyrecommended"/>

 <enumeration value = "recommended"/>

 <enumeration value = "optional"/>

 </restriction>

 </simpleType>

 <simpleType name = "non-empty- string">

 <restriction base = "string">

 <minLength value = "1"/>

 </restriction>

 </simpleType>

 <simpleType name = "configAction.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "query"/>

 <enumeration value = "replace"/>

 </restriction>

 </simpleType>

 <simpleType name = "action.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "reset"/>

 <enumeration value = "modify"/>

 </restriction>

 </simpleType>

 <simpleType name = "configItem.type">

 <restriction base = "NMTOKEN"/>

 </simpleType>

 <simpleType name = "parameter.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "namespace"/>

 <enumeration value = "string"/>

 </restriction>

 </simpleType>

 <simpleType name = "connectivePredicate.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "and"/>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 181 of 213

 <enumeration value = "or"/>

 </restriction>

 </simpleType>

 <simpleType name = "thread.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "synchronous"/>

 <enumeration value = "asynchronous"/>

 </restriction>

 </simpleType>

 <simpleType name = "matchResult.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "pass"/>

 <enumeration value = "fail"/>

 </restriction>

 </simpleType>

 <simpleType name = "if.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "andif"/>

 <enumeration value = "orif"/>

 </restriction>

 </simpleType>

 <simpleType name = "split.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "andsplit"/>

 <enumeration value = "orsplit"/>

 </restriction>

 </simpleType>

 <simpleType name = "join.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "andjoin"/>

 <enumeration value = "orjoin"/>

 </restriction>

 </simpleType>

 <simpleType name = "serviceMode.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "loop"/>

 <enumeration value = "local- reporting"/>

 <enumeration value = "remote- reporting"/>

 </restriction>

 </simpleType>

 <simpleType name = "booleanResult.type">

 <restriction base = "boolean">

 <enumeration value = "true"/>

 <enumeration value = "false"/>

 </restriction>

 </simpleType>

 <simpleType name = "failure.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "preConditionTest"/>

 <enumeration value = "assertionTest"/>

 <enumeration value = "undetermined"/>

 </restriction>

 </simpleType>

 <simpleType name = "exitCondition.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "pass"/>

 <enumeration value = "fail"/>

 <enumeration value = "undetermined"/>

 <enumeration value = "continue"/>

 </restriction>

 </simpleType>

 <element name = "MessageExpression">

 <complexType>

 <sequence>

 <element ref = "testReport:ErrorMessage"/>

 </sequence>

 </complexType>

 </element>

 <element name = "ErrorMessage" type = "testReport:non-empty- string"/>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 182 of 213

 <element name = "PutMessage">

 <complexType>

 <sequence>

 <element ref = "TestResult"/>

 <choice>

 <element ref = "testReport:MessageDeclaration"/>

 <element ref = "testReport:FileURI"/>

 <element ref = "testReport:MessageRef"/>

 </choice>

 <element ref = "testReport:Mutator" minOccurs = "0"/>

 <element ref = "testReport:DSign" minOccurs = "0" maxOccurs =

"unbounded"/>

 <element ref = "testReport:SetPayload" minOccurs = "0"

maxOccurs = "unbounded"/>

 </sequence>

 <attribute name = "description" use = "required" type = "string"/>

 <attribute name = "repeatWithSameContext" use = "optional" type =

"integer"/>

 <attribute name = "repeatWithNewContext" use = "optional" type =

"integer"/>

 <attribute name = "result" use = "required" type = "result.type"/>

 </complexType>

 </element>

 <element name = "GetPayload">

 <complexType>

 <sequence>

 <choice>

 <element ref = "testReport:Content- ID"/>

 <element ref = "testReport:Content- Location"/>

 <element ref = "testReport:Index"/>

 </choice>

 <element ref = "testReport:SetParameterXPathParameter"

minOccurs = "0" maxOccurs = "unbounded"/>

 <element ref = "testReport:TestPreCondition" minOccurs = "0"

maxOccurs = "unbounded"/>

 <element ref = "testReport:TestAssertion" minOccurs = "0"

maxOccurs = "unbounded"/>

 <element name = "If" minOccurs = "0" maxOccurs = "unbounded">

 <complexType>

 <sequence>

 <choice>

 <element ref =

"testReport:TestPreCondition"/>

 <element ref =

"testReport:TestAssertion"/>

 </choice>

 <element ref = "testReport:Then"/>

 <element name = "ElseIf" minOccurs = "0"

maxOccurs = "unbounded">

 <complexType>

 <sequence maxOccurs =

"unbounded">

 <choice>

 <element

ref = "testReport:TestPreCondition"/>

 <element

ref = "testReport:TestAssertion"/>

 </choice>

 <element ref =

"testReport:Then"/>

 </sequence>

 </complexType>

 </element>

 <element ref = "testReport:Else"

minOccurs = "0"/>

 </sequence>

 <attribute name = "ifType" use = "required" type

= "testReport:if.type"/>

 </complexType>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 183 of 213

 </element>

 </sequence>

 <attribute name = "description" use = "required" type = "string"/>

 <attribute name = "result" use = "required" type = "result.type"/>

 </complexType>

 </element>

 <element name = "GetMessage">

 <complexType>

 <sequence>

 <element ref = "TestResult"/>

 <element ref = "testReport:Filter"/>

 <element ref = "testReport:SetParameterXPathParameter"

minOccurs = "0" maxOccurs = "unbounded"/>

 <element ref = "testReport:TestPreCondition" minOccurs = "0"

maxOccurs = "unbounded"/>

 <element ref = "testReport:TestAssertion" minOccurs = "0"

maxOccurs = "unbounded"/>

 <element name = "If" minOccurs = "0" maxOccurs = "unbounded">

 <complexType>

 <sequence>

 <choice>

 <element ref =

"testReport:TestPreCondition"/>

 <element ref =

"testReport:TestAssertion"/>

 </choice>

 <element ref = "testReport:Then"/>

 <element name = "ElseIf" minOccurs = "0"

maxOccurs = "unbounded">

 <complexType>

 <sequence maxOccurs =

"unbounded">

 <choice>

 <element

ref = "testReport:TestPreCondition"/>

 <element

ref = "testReport:TestAssertion"/>

 </choice>

 <element ref =

"testReport:Then"/>

 </sequence>

 </complexType>

 </element>

 <element ref = "testReport:Else"

minOccurs = "0"/>

 </sequence>

 <attribute name = "ifType" use = "required" type

= "testReport:if.type"/>

 </complexType>

 </element>

 <element ref = "testReport:GetPayload" minOccurs = "0"

maxOccurs = "unbounded"/>

 </sequence>

 <attribute name = "description" use = "required" type = "string"/>

 <attribute name = "testStepContext" use = "optional" type = "IDREF"/>

 <attribute name = "mask" use = "optional" type = "boolean"/>

 <attribute name = "result" use = "required" type = "result.type"/>

 </complexType>

 </element>

 <element name = "Filter" type = "testReport:non-empty- string"/>

 <element name = "SetPayload">

 <complexType>

 <sequence>

 <element ref = "testReport:Result"/>

 <choice>

 <element ref = "testReport:Content- ID"/>

 <element ref = "testReport:Content- Location"/>

 </choice>

 <choice>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 184 of 213

 <element ref = "testReport:PayloadDeclaration"/>

 <element ref = "testReport:FileURI"/>

 <element ref = "testReport:PayloadRef"/>

 </choice>

 <element ref = "testReport:Mutator" minOccurs = "0"/>

 <sequence minOccurs = "0" maxOccurs = "unbounded">

 <element ref = "testReport:MimeHeader"/>

 <element ref = "testReport:MimeHeaderValue"/>

 </sequence>

 </sequence>

 <attribute name = "description" use = "required" type = "string"/>

 <attribute name = "result" use = "required" type = "result.type"/>

 </complexType>

 </element>

 <element name = "TestPreCondition">

 <complexType>

 <choice>

 <element ref = "testReport:VerifyContent"/>

 <element ref = "testReport:ValidateContent"/>

 </choice>

 <attribute name = "description" use = "required" type = "string"/>

 <attribute name = "result" use = "required" type =

"testReport:booleanResult.type"/>

 </complexType>

 </element>

 <element name = "TestAssertion">

 <complexType>

 <choice>

 <element ref = "testReport:VerifyContent"/>

 <element ref = "testReport:ValidateContent"/>

 </choice>

 <attribute name = "description" use = "required" type = "string"/>

 </complexType>

 </element>

 <element name = "MimeHeader" type = "testReport:mimeHeader.type"/>

 <element name = "MimeHeaderValue" type = "testReport:non-empty- string"/>

 <element name = "Content- Location" type = "testReport:non-empty- string"/>

 <element name = "Index" type = "integer"/>

 <element name = "FileURI" type = "anyURI"/>

 <element name = "PayloadRef" type = "string"/>

 <element name = "Signature" type = "base64Binary"/>

 <element name = "Content- ID" type = "string"/>

 <element name = "MessageDeclaration">

 <complexType>

 <sequence>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 </complexType>

 </element>

 <element name = "ValidateContent">

 <complexType mixed = "true">

 <choice>

 <element ref = "testReport:Result"/>

 </choice>

 <attribute name = "contentType" use = "required" type =

"testReport:content.type"/>

 <attribute name = "schemaLocation" use = "optional" type = "anyURI"/>

 <attribute name = "result" use = "required" type =

"testReport:booleanResult.type"/>

 </complexType>

 </element>

 <element name = "VerifyContent">

 <complexType mixed = "true">

 <choice>

 <element ref = "testReport:Result"/>

 </choice>

 <attribute name = "result" use = "required" type =

"testReport:booleanResult.type"/>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 185 of 213

 </complexType>

 </element>

 <element name = "Message">

 <complexType>

 <sequence>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 <attribute name = "id" use = "required" type = "ID"/>

 </complexType>

 </element>

 <element name = "SetParameter">

 <complexType>

 <sequence>

 <element name = "Name" type = "string"/>

 <element name = "Value" type = "string"/>

 <element name = "Type" type = "testReport:parameter.type"/>

 </sequence>

 </complexType>

 </element>

 <element name = "Mutator">

 <complexType>

 <choice>

 <element ref = "testReport:XSL"/>

 <element ref = "testReport:XUpdate"/>

 </choice>

 </complexType>

 </element>

 <element name = "XSL" type = "anyURI"/>

 <element name = "XUpdate" type = "anyURI"/>

 <element name = "BooleanClause">

 <complexType>

 <attribute name = "booleanPredicate" use = "required" type =

"boolean"/>

 </complexType>

 </element>

 <element name = "Parameter" type = "string"/>

 <element name = "Value">

 <complexType/>

 </element>

 <element name = "DSign">

 <complexType>

 <sequence>

 <element ref = "ds:Signature"/>

 </sequence>

 </complexType>

 </element>

 <element name = "TestStep">

 <complexType>

 <sequence>

 <element ref = "testReport:Result"/>

 <element ref = "testReport:SetParameter" minOccurs = "0"

maxOccurs = "unbounded"/>

 <choice>

 <element ref = "testReport:PutMessage"/>

 <element ref = "testReport:GetMessage"/>

 <element ref = "testReport:Initiator"/>

 </choice>

 </sequence>

 <attribute name = "description" use = "optional" type = "string"/>

 <attribute name = "id" use = "required" type = "ID"/>

 <attribute name = "testStepContext" use = "optional" type = "IDREF"/>

 <attribute name = "stepDuration" use = "optional" type = "integer"/>

 <attribute name = "result" use = "required" type =

"testReport:booleanResult.type"/>

 </complexType>

 </element>

 <element name = "PayloadDeclaration">

 <complexType>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 186 of 213

 <sequence>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 </complexType>

 </element>

 <element name = "And">

 <complexType>

 <sequence>

 <element ref = "testReport:TestStep" maxOccurs = "unbounded"/>

 </sequence>

 </complexType>

 </element>

 <element name = "Thread">

 <complexType>

 <choice maxOccurs = "unbounded">

 <element ref = "testReport:SetParameter"/>

 <element ref = "testReport:TestServiceConfigurator"/>

 <element ref = "testReport:Thread"/>

 <element ref = "testReport:TestStep"/>

 <element ref = "testReport:If"/>

 <element ref = "testReport:Split"/>

 <element ref = "testReport:Join"/>

 <element ref = "testReport:Sleep"/>

 <element ref = "testReport:Pass"/>

 <element ref = "testReport:Fail"/>

 </choice>

 <attribute name = "name" use = "required" type = "ID"/>

 <attribute name = "description" use = "optional" type = "string"/>

 <attribute name = "result" use = "required" type =

"testReport:booleanResult.type"/>

 </complexType>

 </element>

 <element name = "ThreadRef">

 <complexType>

 <attribute name = "nameRef" use = "required" type = "IDREF"/>

 </complexType>

 </element>

 <element name = "TestStepRef" type = "IDREF"/>

 <element name = "Pass">

 <complexType/>

 </element>

 <element name = "Fail">

 <complexType/>

 </element>

 <element name = "Then">

 <complexType>

 <choice maxOccurs = "unbounded">

 <element ref = "testReport:SetParameter"/>

 <element ref = "testReport:Thread"/>

 <element ref = "testReport:TestStep"/>

 <element ref = "testReport:If"/>

 <element ref = "testReport:Split"/>

 <element ref = "testReport:Join"/>

 <element ref = "testReport:Sleep"/>

 </choice>

 </complexType>

 </element>

 <element name = "Else">

 <complexType>

 <choice maxOccurs = "unbounded">

 <element ref = "testReport:SetParameter"/>

 <element ref = "testReport:Thread"/>

 <element ref = "testReport:TestStep"/>

 <element ref = "testReport:If"/>

 <element ref = "testReport:Split"/>

 <element ref = "testReport:Join"/>

 <element ref = "testReport:Sleep"/>

 </choice>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 187 of 213

 </complexType>

 </element>

 <element name = "OrJoin">

 <complexType>

 <choice>

 <element ref = "testReport:TestStep"/>

 <element ref = "testReport:ThreadRef"/>

 <element ref = "testReport:Thread"/>

 </choice>

 </complexType>

 </element>

 <element name = "ThreadGroup">

 <complexType>

 <sequence>

 <element ref = "testReport:Thread" minOccurs = "0" maxOccurs =

"unbounded"/>

 </sequence>

 </complexType>

 </element>

 <element name = "If">

 <complexType>

 <sequence>

 <choice maxOccurs = "unbounded">

 <element ref = "testReport:SetParameter"/>

 <element ref = "testReport:Thread"/>

 <element ref = "testReport:TestStep"/>

 <element ref = "testReport:Split"/>

 <element ref = "testReport:Join"/>

 <element ref = "testReport:Sleep"/>

 </choice>

 <element ref = "testReport:Then"/>

 <element ref = "testReport:ElseIf" minOccurs = "0" maxOccurs =

"unbounded"/>

 <element ref = "testReport:Else" minOccurs = "0"/>

 </sequence>

 <attribute name = "ifType" use = "required" type =

"testReport:if.type"/>

 </complexType>

 </element>

 <element name = "Wait" type = "string"/>

 <element name = "Sleep" type = "integer"/>

 <element name = "ElseIf">

 <complexType>

 <sequence>

 <choice maxOccurs = "unbounded">

 <element ref = "testReport:SetParameter"/>

 <element ref = "testReport:Thread"/>

 <element ref = "testReport:TestStep"/>

 <element ref = "testReport:Split"/>

 <element ref = "testReport:Join"/>

 <element ref = "testReport:Sleep"/>

 </choice>

 <element ref = "testReport:Then"/>

 </sequence>

 <attribute name = "ifType" use = "required" type =

"testReport:if.type"/>

 </complexType>

 </element>

 <element name = "Split">

 <complexType>

 <sequence maxOccurs = "unbounded">

 <element ref = "testReport:ThreadRef"/>

 </sequence>

 </complexType>

 </element>

 <element name = "Join">

 <complexType>

 <sequence maxOccurs = "unbounded">

 <element ref = "testReport:Thread"/>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 188 of 213

 </sequence>

 <attribute name = "joinType" use = "required" type =

"testReport:join.type"/>

 </complexType>

 </element>

 <element name = "Initiator">

 <complexType>

 <sequence>

 <element ref = "TestResult"/>

 <element name = "SetMessageEnvelope">

 <complexType>

 <sequence>

 <choice>

 <element ref =

"testReport:MessageDeclaration"/>

 <element ref =

"testReport:FileURI"/>

 <element ref =

"testReport:MessageRef"/>

 </choice>

 </sequence>

 </complexType>

 </element>

 <element ref = "testReport:DSign" minOccurs = "0" maxOccurs =

"unbounded"/>

 <element ref = "testReport:SetPayload" minOccurs = "0"

maxOccurs = "unbounded"/>

 </sequence>

 <attribute name = "description" use = "required" type = "string"/>

 <attribute name = "result" use = "required" type =

"testReport:booleanResult.type"/>

 </complexType>

 </element>

 <element name = "TestServiceConfigurator">

 <complexType>

 <sequence>

 <element name = "ServiceMode" type =

"testReport:serviceMode.type"/>

 <element ref = "testReport:ResponseURL"/>

 <element ref = "testReport:NotificationURL"/>

 <element ref = "testReport:CPAId"/>

 <element ref = "testReport:Service"/>

 <element ref = "testReport:Action"/>

 <element ref = "testReport:SenderParty"/>

 <element ref = "testReport:ReceiverParty"/>

 <element ref = "testReport:ConfigurationItem" minOccurs = "0"

maxOccurs = "unbounded"/>

 </sequence>

 <attribute name = "result" use = "required" type =

"testReport:booleanResult.type"/>

 </complexType>

 </element>

 <element name = "MessageRef" type = "string"/>

 <element name = "ConfigurationItem">

 <complexType>

 <sequence>

 <element name = "Name" type = "anyURI"/>

 <element name = "Value" type = "testReport:non-empty- string"/>

 <element name = "Type" type = "testReport:configItem.type"/>

 </sequence>

 </complexType>

 </element>

 <element name = "ErrorURL" type = "anyURI"/>

 <element name = "NotificationURL" type = "anyURI"/>

 <element name = "SetParameterXPathParameter">

 <complexType>

 <sequence>

 <element name = "Name" type = "string"/>

 <element name = "Expression" type = "string"/>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 189 of 213

 <element name = "Type" type = "testReport:parameter.type"/>

 </sequence>

 </complexType>

 </element>

 <element name = "ResponseURL" type = "anyURI"/>

 <element name = "Result">

 <complexType>

 <attribute name = "exception" use = "optional" type = "testReport:non-

empty-string"/>

 <attribute name = "booleanValue" use = "optional" type = "boolean"/>

 <attribute name = "exitCondition" use = "optional" type =

"testReport:exitCondition.type"/>

 </complexType>

 </element>

</schema>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 190 of 213

Appendix F (Normative) ebXML Test Service Message

Schema

<?xml version = "1.0" encoding = "UTF-8"?>

<!-- Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema-- >

<schema xmlns = "http://www.w3.org/2001/XMLSchema"

 targetNamespace = "http://www.oasis-open.org/tc/ebxml- iic/tests/messages"

 xmlns:tns = "http://www.oasis-open.org/tc/ebxml- iic/tests/messages"

 xmlns:eb = "http://www.oasis- open.org/committees/ebxml- msg/schema/msg-

header-2_0.xsd "

 xmlns:ds = "http://www.oasis-open.org/tc/ebxml- iic/tests/xmldsig"

 xmlns:soap = "http://www.oasis-open.org/tc/ebxml- iic/tests/soap"

 xmlns:xsd = "http://www.w3.org/2001/XMLSchema">

 <import namespace = "http://www.oasis- open.org/committees/ebxml- msg/schema/msg-

header -2_0.xsd" schemaLocation = "http://www.oasis- open.org/committees/ebxml-

msg/schema/ msg-header-2_0.xsd"/>

 <import namespace = "http://www.oasis-open.org/tc/ebxml- iic/tests/xmldsig"

schemaLocation = "xmldsig.xsd"/>

 <import namespace = "http://www.oasis-open.org/tc/ebxml- iic/tests/soap"

schemaLocation = "file:///E:/scripting_poc_03_18_04/schemas/soap.xsd"/>

 <!--

Copyright (C) The Organization for the Advancement of Structured Information Standards

[OASIS]

January 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and

derivative works that comment on or otherwise explain it or assist in its implementation

may be prepared, copied, published and distributed, in whole or in part, without

restriction of any kind, provided that the above copyright notice and this paragraph are

included on all such copies and derivative works. However, this document itself may not

be modified in any way, such as by removing the copyright notice or references to OASIS,

except as needed for the purpose of developing OASIS specifications, in which case the

procedures for copyrights defined in the OASIS Intellectual Property Rights document

MUST be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or

its successors or assigns.

-- >

 <!--

Copyright (C) The Organization for the Advancement of Structured Information Standards

[OASIS]

January 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and

derivative works that comment on or otherwise explain it or assist in its implementation

may be prepared, copied, published and distributed, in whole or in part, without

restriction of any kind, provided that the above copyright notice and this paragraph are

included on all such copies and derivative works. However, this document itself may not

be modified in any way, such as by removing the copyright notice or references to OASIS,

except as needed for the purpose of developing OASIS specifications, in which case the

procedures for copyrights defined in the OASIS Intellectual Property Rights document

MUST be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or

its successors or assigns.

-- >

 <element name = "Message">

 <complexType mixed = "true">

 <choice>

 <element ref = "tns:MessageContainer"/>

 </choice>

 <attribute name = "contentType" default = "multipart/related" type =

"string"/>

 <attribute name = "type" default = "text/xml" type = "string"/>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 191 of 213

 </complexType>

 </element>

 <element name = "MessageContainer">

 <complexType>

 <sequence>

 <element ref = "soap:Envelope"/>

 </sequence>

 <attribute name = "contentId" use = "optional" type = "string"/>

 <attribute name = "contentType" default = "text/xml" type = "string"/>

 <attribute name = "charset" default = "UTF-8" type = "string"/>

 </complexType>

 </element>

 <element name = "InitiatorRequest">

 <complexType>

 <sequence>

 <element name = "Message">

 <complexType>

 <sequence>

 <element ref = "soap:Header" minOccurs =

"0"/>

 <element ref = "soap:Body"/>

 <element ref = "tns:DSign"/>

 </sequence>

 </complexType>

 </element>

 </sequence>

 </complexType>

 </element>

 <element name = "InitiatorResponse">

 <complexType>

 <sequence>

 <element name = "Result" type = "tns:result.type"/>

 </sequence>

 </complexType>

 </element>

 <element name = "NotificationResponse">

 <complexType>

 <sequence>

 <element name = "Result" type = "tns:result.type"/>

 </sequence>

 </complexType>

 </element>

 <complexType name = "GenericMessageType">

 <attribute name = "synchType" use = "required" type = "tns:synch.type"/>

 <attribute name = "id" use = "required" type = "string"/>

 <attribute name = "serviceInstanceId" use = "optional" type = "string"/>

 <attribute name = "serviceName" use = "optional" type = "string"/>

 <attribute name = "reportingAction" use = "optional" type = "string"/>

 <anyAttribute namespace = "##any" processContents = "strict"/>

 </complexType>

 <element name = "Notification">

 <complexType>

 <complexContent>

 <extension base = "tns:GenericMessageType">

 <sequence>

 <element ref = "soap:Envelope"/>

 </sequence>

 <attribute name = "notificationType" use = "required"

type = "tns:notification.type"/>

 </extension>

 </complexContent>

 </complexType>

 </element>

 <element name = "ConfiguratorRequest">

 <complexType>

 <sequence>

 <element ref = "tns:TestServiceConfiguration"/>

 </sequence>

 </complexType>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 192 of 213

 </element>

 <element name = "TestServiceConfiguration">

 <complexType>

 <sequence>

 <element name = "ServiceMode" type = "tns:serviceMode.type"/>

 <element ref = "tns:ResponseURL"/>

 <element ref = "tns:NotificationURL"/>

 <element ref = "tns:PayloadDigests" minOccurs = "0"/>

 </sequence>

 </complexType>

 </element>

 <element name = "ResponseURL" type = "anyURI"/>

 <element name = "ConfiguratorResponse">

 <complexType>

 <sequence>

 <element name = "Result" type = "boolean"/>

 </sequence>

 </complexType>

 </element>

 <element name = "CPA">

 <complexType>

 <sequence>

 <any namespace = "##other" processContents = "lax" minOccurs =

"0" maxOccurs = "unbounded"/>

 </sequence>

 </complexType>

 </element>

 <element name = "Status" type = "boolean"/>

 <element name = "CPAId" type = "tns:non-empty- string"/>

 <element name = "Mode" type = "tns:non-empty- string"/>

 <element name = "ConversationId" type = "tns:non-empty- string"/>

 <element name = "MessageId" type = "tns:non-empty- string"/>

 <simpleType name = "non-empty- string">

 <restriction base = "string">

 <minLength value = "1"/>

 </restriction>

 </simpleType>

 <simpleType name = "configAction.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "query"/>

 <enumeration value = "replace"/>

 </restriction>

 </simpleType>

 <simpleType name = "result.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "pass"/>

 <enumeration value = "fail"/>

 </restriction>

 </simpleType>

 <simpleType name = "operationMode.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "reporting"/>

 <enumeration value = "loop"/>

 </restriction>

 </simpleType>

 <simpleType name = "parameter.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "parameter"/>

 <enumeration value = "string"/>

 </restriction>

 </simpleType>

 <simpleType name = "serviceMode.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "remote- reporting"/>

 <enumeration value = "local- reporting"/>

 <enumeration value = "loop"/>

 </restriction>

 </simpleType>

 <simpleType name = "parameter.type">

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 193 of 213

 <restriction base = "NMTOKEN">

 <enumeration value = "string"/>

 <enumeration value = "namespace"/>

 </restriction>

 </simpleType>

 <simpleType name = "notification.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "errURL"/>

 <enumeration value = "errorApp"/>

 <enumeration value = "message"/>

 </restriction>

 </simpleType>

 <simpleType name = "synch.type">

 <restriction base = "string">

 <enumeration value = "synchronous"/>

 <enumeration value = "asynchronous"/>

 </restriction>

 </simpleType>

 <element name = "OperationMode" type = "tns:operationMode.type"/>

 <element name = "NotificationURL" type = "anyURI"/>

 <element name = "ConfigurationItem">

 <complexType>

 <sequence>

 <element name = "Name" type = "string"/>

 <element name = "Value" type = "string"/>

 <element name = "Type" type = "tns:parameter.type"/>

 </sequence>

 </complexType>

 </element>

 <element name = "DSign">

 <complexType>

 <sequence>

 <element ref = "ds:Signature"/>

 </sequence>

 </complexType>

 </element>

 <element name = "PayloadDigests">

 <complexType>

 <sequence>

 <element name = "Payload" maxOccurs = "unbounded">

 <complexType>

 <sequence>

 <element name = "Href" type = "anyURI"/>

 <element name = "Digest" type =

"base64Binary"/>

 </sequence>

 </complexType>

 </element>

 </sequence>

 </complexType>

 </element>

 <element name = "PayloadVerifyNotification">

 <complexType>

 <sequence>

 <element name = "Payload" maxOccurs = "unbounded">

 <complexType>

 <sequence>

 <element name = "Href" type = "anyURI"/>

 <element name = "Result" type =

"boolean"/>

 </sequence>

 </complexType>

 </element>

 </sequence>

 </complexType>

 </element>

</schema>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 194 of 213

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 195 of 213

Appendix G ConfigurationGroup Schema

<?xml version = "1.0" encoding = "UTF-8"?>

<!-- Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema-- >

<schema xmlns = "http://www.w3.org/2001/XMLSchema"

 targetNamespace = "http://www.oasis-open.org/tc/ebxml- iic/tests"

 xmlns:ebTest = "http://www.oasis-open.org/tc/ebxml- iic/tests"

 version = "1.0"

 elementFormDefault = "unqualified"

 attributeFormDefault = "unqualified">

 <!--

Copyright (C) The Organization for the Advancement of Structured Information Standards

[OASIS]

January 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and

derivative works that comment on or otherwise explain it or assist in its implementation

may be prepared, copied, published and distributed, in whole or in part, without

restriction of any kind, provided that the above copyright notice and this paragraph are

included on all such copies and derivative works. However, this document itself may not

be modified in any way, such as by removing the copyright notice or references to OASIS,

except as needed for the purpose of developing OASIS specifications, in which case the

procedures for copyrights defined in the OASIS Intellectual Property Rights document

MUST be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or

its successors or assigns.

-- >

 <simpleType name = "mimeHeader.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "MIMEMessageContent- Type"/>

 <enumeration value = "MIMEMessageStart"/>

 <enumeration value = "Content- Type"/>

 <enumeration value = "start"/>

 <enumeration value = "charset"/>

 <enumeration value = "type"/>

 <enumeration value = "wildcard"/>

 </restriction>

 </simpleType>

 <simpleType name = "content.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "XML"/>

 <enumeration value = "date"/>

 <enumeration value = "URI"/>

 <enumeration value = "signature"/>

 <enumeration value = "signedAck"/>

 <enumeration value = "Schematron"/>

 <enumeration value = "XPointer"/>

 </restriction>

 </simpleType>

 <simpleType name = "method.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "xpath"/>

 <enumeration value = "sha-1"/>

 </restriction>

 </simpleType>

 <simpleType name = "mode.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "local- service"/>

 <enumeration value = "remote- service"/>

 <enumeration value = "connection"/>

 </restriction>

 </simpleType>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 196 of 213

 <simpleType name = "messageContext.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "true"/>

 <enumeration value = "false"/>

 </restriction>

 </simpleType>

 <simpleType name = "requirement.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "required"/>

 <enumeration value = "stronglyrecommended"/>

 <enumeration value = "recommended"/>

 <enumeration value = "optional"/>

 </restriction>

 </simpleType>

 <simpleType name = "non-empty- string">

 <restriction base = "string">

 <minLength value = "1"/>

 </restriction>

 </simpleType>

 <simpleType name = "configAction.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "query"/>

 <enumeration value = "replace"/>

 </restriction>

 </simpleType>

 <simpleType name = "action.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "reset"/>

 <enumeration value = "modify"/>

 </restriction>

 </simpleType>

 <simpleType name = "configItem.type">

 <restriction base = "NOTATION">

 <enumeration value = "parameter"/>

 <enumeration value = "namespace"/>

 </restriction>

 </simpleType>

 <simpleType name = "parameter.type">

 <restriction base = "NMTOKEN">

 <enumeration value = "xpath"/>

 <enumeration value = "string"/>

 <enumeration value = "variable"/>

 </restriction>

 </simpleType>

 <element name = "ConfigurationGroup">

 <complexType>

 <sequence>

 <element name = "CPAId" type = "ebTest:non-empty- string"

minOccurs = "0"/>

 <element ref = "ebTest:Mode"/>

 <element name = "SenderParty" type = "anyURI"/>

 <element name = "ReceiverParty" type = "anyURI"/>

 <element name = "Service" type = "anyURI"/>

 <element name = "Action" type = "ebTest:non-empty- string"/>

 <element name = "StepDuration" type = "integer"/>

 <element name = "Transport" type = "ebTest:non-empty- string"/>

 <element name = "Envelope" type = "ebTest:non-empty- string"/>

 <element name = "ConfigurationItem" minOccurs = "0" maxOccurs =

"unbounded">

 <complexType>

 <sequence>

 <element name = "Name" type =

"ebTest:non- empty- string"/>

 <element name = "Value" type =

"anyURI"/>

 <element name = "Type" type =

"ebTest:configItem.type"/>

 </sequence>

 </complexType>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 197 of 213

 </element>

 </sequence>

 <attribute name = "id" use = "required" type = "ID"/>

 </complexType>

 </element>

 <element name = "Mode" type = "ebTest:mode.type"/>

 <element name = "ConfigurationGroups">

 <complexType>

 <sequence>

 <element ref = "ebTest:ConfigurationGroup" maxOccurs =

"unbounded"/>

 </sequence>

 </complexType>

 </element>

</schema>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 198 of 213

Appendix H WSDL Definitions for Test Service

Below is the WSDL definition file for Test Service notification method

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XMLSPY v2004 rel. 3 U (http://www.xmlspy.com) by Mike Kass (Personal)

-->

<wsdl:definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="urn:oasis:names:tc:ebxml-

i ic:testservice:wsdl:2.0" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd1="http://www.oasis- open.org/tc/ebxml- iic/tests/messages"

targetNamespace="urn:oasis:names:tc:ebxml-iic:testservice:wsdl:2.0"

name="RegistryService">

 <wsdl:import namespace="http://www.oasis-open.org/tc/ebxml- iic/tests/messages"

location="schemas/ebXMLServiceMessages.xsd"/>

 <wsdl:message name="Notification">

 <wsdl:part name="Notification" element="xsd1:Notification"/>

 </wsdl:message>

 <wsdl:message name="NotificationResponse">

 <wsdl:part name="NotificationResponse" element="xsd1:NotificationResponse"/>

 </wsdl:message>

 <wsdl:message name="NewMessage"/>

 <wsdl:portType name="NotificationPortType">

 <documentation>Maps to the Notification interface of Test Framework

spec.</documentation>

 <wsdl:operation name="messageNotification">

 <wsdl:output message="tns:Notification"/>

 <wsdl:input message="tns:NotificationResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="NotificationSOAPBinding" type="tns:NotificationPortType">

 <soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="messageNotification">

 <soap:operation soapAction="urn:#messageNotification"/>

 <input>

 <soap:body use="literal"/>

 </input>

 <wsdl:output>

 <mime:multipartRelated>

 <mime:part>

 <soap:body parts="Notification" use="literal"/>

 </mime:part>

 <mime:part/>

 </mime:multipartRelated>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="TestService">

 <documentation>The Notification service of OASIS ebXML Test Framework version

1.1</documentation>

 <wsdl:port name="NotificationSOAPBinding"

binding="tns:NotificationSOAPBinding">

 <soap:address location="http://your_URL_to_your_NotificationService"/>

 </wsdl:port>

 </wsdl:service>

 <documentation>This is the the normative abstract WSDL service definition for the

OASIS ebXML Test Service</documentation>

</wsdl:definitions>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 199 of 213

Test Driver Initiator

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XMLSPY v2004 rel. 3 U (http://www.xmlspy.com) by Mike Kass (Personal)

-->

<wsdl:definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="urn:oasis:names:tc:ebxml-

i ic:testservice:wsdl:2.0" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd1="http://www.oasis- open.org/tc/ebxml- iic/tests/messages"

targetNamespace="urn:oasis:names:tc:ebxml-iic:testservice:wsdl:2.0"

name="RegistryService">

 <wsdl:import namespace="http://www.oasis-open.org/tc/ebxml- iic/tests/messages"

location="schemas/ebXMLServiceMessages.xsd"/>

 <wsdl:message name="InitiatorRequest">

 <wsdl:part name="InitiatorRequest" element="xsd1:InitiatorRequest"/>

 </wsdl:message>

 <wsdl:message name="InitiatorResponse">

 <wsdl:part name="InitiatorResponse" element="xsd1:InitiatorResponse"/>

 </wsdl:message>

 <wsdl:portType name="SendPortType">

 <documentation>Maps to the Initiator interface of Test Framework

spec.</documentation>

 <wsdl:operation name="initiator">

 <wsdl:input message="tns:InitiatorRequest"/>

 <wsdl:output message="tns:InitiatorResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="InitiatorSOAPBinding" type="tns:SendPortType">

 <soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="initiator">

 <soap:operation

soapAction="uri:oasis:ebxml:iic:testservice:Send:initiator"/>

 <wsdl:input>

 <mime:multipartRelated>

 <mime:part>

 <soap:body parts="InitiatorRequest"

use="literal"/>

 </mime:part>

 <mime:part/>

 </mime:multipartRelated>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="TestService">

 <documentation>The QueryManager service of OASIS ebXML Test Framework version

1.1</documentation>

 <wsdl:port name="InitiatorSOAPBinding" binding="tns:InitiatorSOAPBinding">

 <soap:address

location="http://your_URL_to_your_ConfigurationService"/>

 </wsdl:port>

 </wsdl:service>

 <documentation>This is the the normative abstract WSDL service definition for the

OASIS ebXML Test Service</documentation>

</wsdl:definitions>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 200 of 213

Test Service configure

<?xml version = "1.0" encoding = "UTF-8"?>

<!-- edited with XMLSPY v2004 rel. 3 U (http://www.xmlspy.com) by Mike Kass (Personal)

-->

<wsdl:definitions xmlns = "http://schemas.xmlsoap.org/wsdl/" xmlns:soap =

"http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns = "urn:oasis:names:tc:ebxml-

iic:testse rvice:wsdl:2.0" xmlns:wsdl = "http://schemas.xmlsoap.org/wsdl/" xmlns:xsd1 =

"http://www.oasis- open.org/tc/ebxml- iic/tests/messages" targetNamespace =

"urn:oasis:names:tc:ebxml-iic:testservice:wsdl:2.0" name = "RegistryService">

 <wsdl:import namespace = "http://www.oasis-open.org/tc/ebxml- iic/tests/messages"

location = "schemas/ebXMLServiceMessages.xsd"/>

 <wsdl:message name = "ConfiguratorRequest">

 <wsdl:part name = "ConfiguratorRequest" element = "xsd1:ConfiguratorRequest"/>

 </wsdl:message>

 <wsdl:message name = "ConfiguratorResponse">

 <wsdl:part name = "ConfiguratorResponse" element =

"xsd1:ConfiguratorResponse"/>

 </wsdl:message>

 <wsdl:portType name = "ConfigurationPortType">

 <documentation>Maps to the Configurator interface of Test Framework

spec.</documentation>

 <wsdl:operation name = "configurator">

 <wsdl:input message = "tns:ConfiguratorRequest"/>

 <wsdl:output message = "tns:ConfiguratorResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name = "ConfiguratorSOAPBinding" type = "tns:ConfigurationPortType">

 <soap:binding style = "document" transport =

"http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name = "configurator">

 <soap:operation soapAction =

"uri:oasis:ebxml:iic:testservice:Configuration:configurator"/>

 <wsdl:input>

 <soap:body use = "literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use = "literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name = "TestService">

 <documentation>The QueryManager service of OASIS ebXML Test Framework version

1.1</documentation>

 <wsdl:port name = "ConfiguratorSOAPBinding" binding =

"tns:ConfiguratorSOAPBinding">

 <soap:address location =

"http://your_URL_to_your_ConfigurationService"/>

 </wsdl:port>

 </wsdl:service>

 <documentation>This is the the normative abstract WSDL service definition for the

OASIS ebXML Test Service</documentation>

</wsdl:definitions>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 201 of 213

Test Driver notify

<!-- edited with XMLSPY v2004 rel. 3 U (http://www.xmlspy.com) by Mike Kass (Personal)

-->

<wsdl:definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="urn:oasis:names:tc:ebxml-

i ic:testservice:wsdl:2.0" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd1="http://www.oasis- open.org/tc/ebxml- iic/tests/messages"

targetNamespace="urn:oasis:names:tc:ebxml-iic:testservice:wsdl:2.0"

name="RegistryService">

 <wsdl:import namespace="http://www.oasis-open.org/tc/ebxml- iic/tests/messages"

location="schemas/ebXMLServiceMessages.xsd"/>

 <wsdl:message name="Notification">

 <wsdl:part name="Notification" element="xsd1:Notification"/>

 </wsdl:message>

 <wsdl:message name="NotificationResponse">

 <wsdl:part name="NotificationResponse" element="xsd1:NotificationResponse"/>

 </wsdl:message>

 <wsdl:portType name="NotificationPortType">

 <documentation>Maps to the Notification interface of Test Framework

spec.</documentation>

 <wsdl:operation name="Notify">

 <wsdl:input message="tns:Notification"/>

 <wsdl:output message="tns:NotificationResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="NotificationSOAPBinding" type="tns:NotificationPortType">

 <soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="Notify">

 <soap:operation

soapAction="uri:oasis:ebxml:iic:testservice:Receive:Notification"/>

 <wsdl:input>

 <mime:multipartRelated>

 <mime:part>

 <soap:body parts="Notification" use="literal"/>

 </mime:part>

 <mime:part/>

 </mime:multipartRelated>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="TestDriverReceiveService">

 <documentation>The Receive service of OASIS ebXML Test Framework version

1.1</documentation>

 <wsdl:port name="NotifySOAPBinding" binding="tns:NotificationSOAPBinding">

 <soap:address location="http://your_URL_to_your_ReceiveService"/>

 </wsdl:port>

 </wsdl:service>

 <documentation>This is the the normative abstract WSDL service definition for the

OASIS ebXML Test Service</documentation>

</wsdl:definitions>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 202 of 213

Appendix I Terminology

Several terms used in this specification are borrowed from the Conformance Glossary (OASIS,

[ConfGlossary]) and also from the Standards and Conformance Testing Group at NIST.

[ConfCertModelNIST]. They are not reported in this glossary, which only reflects (1) terms that are

believed to be specific to – and introduced by - the ebXML Test Framework, or (2) terms that have a well

understood meaning in testing literature (see above references) and may have additional properties in the

context of the Test Framework that is worth mentioning.

Term Definition

Asymmetric testing Interoperability testing where all parties are not equally tested for the

same features. An asymmetric interoperability test suite is typically

driven from one party, and will need to be executed from every other

party in order to evenly test for all interoperability features between

candidate parties.

Base CPA Required by both the conformance and interoperabililty test suites

that describe both the Test Driver and Test Service Collaboration

Protocol Profile Agreement. This is the “bootstrap” configuration for

all messaging between the testing and candidate ebXML

applications. Each test suite will define additional CPAs. How the

base CPA is represented to applications is implementation specific.

Candidate Implementation
 (or Implementation Under test): The implementation (realization of a

specification) used as a target of the testing (e.g. conformance

testing).

Conformance
Fulfillment of an implementation of all requirements specified;

adherence of an implementation to the requirements of one or more

specific standards or specifications.

Connection mode (Test Driver in) In connection mode and depending on the test harness, the test

driver will interact with other components by directly generating

ebXML messages at transport level (e.g. generates HTTP

envelopes).

Interoperability profile
A set of test requirements for interoperability which is a subset of all

possible interoperability requirements, and which usually exercises

features that correspond to specific user needs.

Interoperability Testing
Process of verifying that two implementations of the same

specification, or that an implementation and its operational

environment, can interoperate according to the requirements of an

assumed agreement or contract. This contract does not belong

necessarily to the specification, but its terms and elements should

be defined in it with enough detail, so that such a contract, combined

with the specification, will be sufficient to determine precisely the

expected behavior of an implementation, and to test it.

Local Reporting mode (Test

Service in)

In this mode (a sub-mode of Reporting), the Test Service is installed

on the same host as the Test Driver it reports to, and executes in the

same process space. The notification uses the Receive interface of

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 203 of 213

the Test Driver, which must be operating in service mode.

Loop mode (Test Service in)
When a test service is in loop mode, it does not generate

notifications to the test driver. The test service only communicates

with external parties via the message handler.

MSH
Message Service Handler, an implementation of ebXML Messaging

Services

Reporting mode (Test Service in) A test service is deployed in reporting mode, when it notifies the test

driver of invoked actions. This notification usually contains material

from received messages.

Profile
A profile is used as a method for defining subsets of a specification

by identifying the functionality, parameters, options, and/or

implementation requirements necessary to satisfy the requirements

of a particular community of users. Specifications that explicitly

recognize profiles should provide rules for profile creation,

maintenance, registration, and applicability.

Remote Reporting mode (Test

Service in)

In this mode (a sub-mode of Reporting), the Test Service is

deployed on a different host than the Test Driver it reports to. The

notification is done via messages to the Test Driver, which is

operating in connection mode.

Service mode (Test Driver in) The Test Driver invokes actions in the test service via a

programmatic interface (as opposed to via messages). The Test

Service must be in local reporting mode.

Specification coverage Specifies the degree that the specification requirements are satisfied

by the set of test requirements included in the test suite document.

Coverage can be full, partial or none.

Test actions (Or Test Service actions). Standard functions available in the test

service to support most test cases.

Test case In the TestFramework, a test case is a sequence of discrete test

steps, aimed at verifying a test requirement.

Test Requirements coverage Specifies the degree that the test requirements are satisfied by the

set of test cases listed in the test suite document. Coverage can be

full, contingent, partial or none.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 204 of 213

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 205 of 213

Appendix J References

J.1 Normative References

[ConfCertModelNIST] Conformance Testing and Certification Model for Software Specifications. L.

Carnahan, L. Rosenthal, M. Skall. ISACC '98 Conference. March 1998

[ConfCertTestFrmk] Conformance Testing and Certification Framework. L. Rosenthal, M. Skall, L. Carnahan.

April 2001

[ConfReqOASIS] Conformance Requirements for Specifications. OASIS Conformance Technical

Committee. March 2002.

 [ConfGlossary] Conformance Glossary. OASIS Conformance TC, L. Rosenthal. September 2000.

[RFC2119] Key Words for use in RFCs to Indicate Requirement Levels, Internet Engineering Task

Force, March 1997

[RFC2045] Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message

Bodies, N Freed & N Borenstein, Published November 1996

[RFC2046] Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types. N. Freed, N.

Borenstein. November 1996.

[RFC2387] The MIME Multipart/Related Content-type. E. Levinson. August 1998.

[RFC2392] Content-ID and Message-ID Uniform Resource Locators. E. Levinson, August 1998

[RFC2396] Uniform Resource Identifiers (URI): Generic Syntax. T Berners-Lee, August 1998

[RFC2821] Simple Mail Transfer Protocol, J. Klensin, Editor, April 2001 Obsoletes RFC 821

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and T. Berners-Lee,

"Hypertext Transfer Protocol, HTTP/1.1", June 1999.

[SOAP] W3C-Draft-Simple Object Access Protocol (SOAP) v1.1, Don Box, DevelopMentor; David

Ehnebuske, IBM; Gopal Kakivaya, Andrew Layman, Henrik Frystyk Nielsen, Satish

Thatte, Microsoft; Noah Mendelsohn, Lotus Development Corp.; Dave Winer, UserLand

Software, Inc.; W3C Note 08 May 2000,

[SOAPAttach] SOAP Messages with Attachments, John J. Barton, Hewlett Packard Labs; Satish Thatte

and Henrik Frystyk Nielsen, Microsoft, Published Oct 09 2000

http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211

[XLINK] W3C XML Linking Recommendation, http://www.w3.org/TR/2001/REC-xlink-20010627/

[XML] W3C Recommendation: Extensible Markup Language (XML) 1.0 (Second Edition),

October 2000, http://www.w3.org/TR/2000/REC-xml-20001006

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 206 of 213

http://www.itl.nist.gov/div897/ctg/conformance/conf&certpaper.html
http://www.itl.nist.gov/div897/ctg/conformProject.shtml
http://www.oasis-open.org/committees/ioc/documents/conformance_requirements-v05.pdf
http://www.oasis-open.org/committees/ioc/glossary.htm
http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.rfc-editor.org/rfc/rfc2045.txt
http://www.rfc-editor.org/rfc/rfc2046.txt
http://www.rfc-editor.org/rfc/rfc2387.txt
http://www.rfc-editor.org/rfc/rfc2392.txt
http://www.rfc-editor.org/rfc/rfc2396.txt
http://www.rfc-editor.org/rfc/rfc2821.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211
http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2001/REC-xml-c14n-20010315

[XMLC14N] W3C Recommendation Canonical XML 1.0,

http://www.w3.org/TR/2001/REC-xml-c14n-20010315

 [XMLNS] W3C Recommendation for Namespaces in XML, World Wide Web Consortium, 14

January 1999, http://www.w3.org/TR/1999/REC-xml-names-19990114/

[XMLDSIG] Joint W3C/IETF XML-Signature Syntax and Processing specification,

http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/

[XPointer] XML Pointer Language (XPointer) Version 1.0, W3C Candidate Recommendation 11

September 2001, http://www.w3.org/TR/2001/CR-xptr-20010911/

J.2 Non-Normative References

[ebTestFramework] ebXML Test Framework specification, Version 1.0, Technical Committee

Specification, March 4, 2003,

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-iic

[ebMS] ebXML Messaging Service Specification, Version 2.0,

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-msg

[ebMSInteropTests] ebXML MS V2.0 Basic Interoperability Profile Test Cases,

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-iic

[ebMSConfTestSuite] ebXML MS V2.0 Conformance Test Suite,

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-iic

[ebMSInteropReqs] ebXML MS V2.0 Interoperability Test Requirements,

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-iic

[XMLSchema] W3C XML Schema Recommendation,

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

[ebCPP] ebXML Collaboration Protocol Profile and Agreement specification, Version 1.0,

published 10 May, 2001,

http://www.ebxml.org/specs/ebCCP.doc

[ebBPSS] ebXML Business Process Specification Schema, version 1.0, published 27 April 2001,

http://www.ebxml.org/specs/ebBPSS.pdf.

[ebRS] ebXML Registry Services Specification, version 2.0, published 6 December 2001

http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf,

published, 5 December 2001.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 207 of 213

http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.w3.org/TR/2001/CR-xptr-20010911/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-iic	 "_blank"
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-msg
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-iic	 "_blank"
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-iic	 "_blank"
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-iic	 "_blank"
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.ebxml.org/specs/ebCCP.doc
http://www.ebxml.org/specs/ebBPSS.pdf
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf

Appendix K Acknowledgments

The authors wish to acknowledge the support of the members of the OASIS ebXML IIC TC who

contributed ideas, comments and text to this specification by the group’s discussion eMail list, on

conference calls and during face-to-face meetings.

K.1 IIC Committee Members

Jacques Durand, Fujitsu <jdurand@fsw.fujitsu.com>

Jeffery Eck, Global Exchange Services <Jeffery.Eck@gxs.ge.com>

Hatem El Sebaaly, IPNet Solutions <hatem@ipnetsolutions.com>

Aaron Gomez, Drummond Group Inc. <aaron@drummondgroup.com>

Michael Kass, NIST <michael.kass@nist.gov>

Matthew MacKenzie, Individual <matt@mac-kenzie.net>

Monica Martin, Sun Microsystems <monica.martin@sun.com>

Tim Sakach, Drake Certivo <tsakach@certivo.net>

Jeff Turpin, Cyclone Commerce <jturpin@cyclonecommerce.com>

Eric van Lydegraf, Kinzan <ericv@kinzan.com>

Pete Wenzel, SeeBeyond <pete@seebeyond.com>

Steven Yung, Sun Microsystems <steven.yung@sun.com>

Boonserm Kulvatunyou, NIST <serm@nist.gov>

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 208 of 213

mailto:Jeffery.Eck@gxs.ge.com
mailto:hatem@ipnetsolutions.com
mailto:%20aaron@drummondgroup.com
mailto:michael.kass@nist.gov
mailto:matt@mac-kenzie.net
mailto:monica.martin@sun.com
http://www.oasis-open.org/apps/org/workgroup/ebxml-iic/members/wg_person.php?workgroup_person_id=5041mailto:%20tsakach@certivo.net
mailto:jturpin@cyclonecommerce.com
mailto:ericv@kinzan.com
mailto:pete@seebeyond.com
mailto:steven.yung@sun.com
mailto:serm@nist.gov

Appendix L Revision History

Rev Date By Whom What

cs-10 2003-03-07 Michael Kass Initial version

cs-11 2004-03-30 Michael Kass First revision (DRAFT)

cs-12 2004-04-12 Michael Kass Second revision (DRAFT)

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 209 of 213

Appendix M Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that

might be claimed to pertain to the implementation or use of the technology described in this document or

the extent to which any license under such rights might or might not be available; neither does it

represent that it has made any effort to identify any such rights. Information on OASIS's procedures with

respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights

made available for publication and any assurances of licenses to be made available, or the result of an

attempt made to obtain a general license or permission for the use of such proprietary rights by

implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications,

or other proprietary rights which may cover technology that may be required to implement this

specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2003. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that

comment on or otherwise explain it or assist in its implementation may be prepared, copied, published

and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice

and this paragraph are included on all such copies and derivative works. However, this document itself

does not be modified in any way, such as by removing the copyright notice or references to OASIS,

except as needed for the purpose of developing OASIS specifications, in which case the procedures for

copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to

translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors

or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS

DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY

WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR

ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 210 of 213

