1.1 The Test Script

A Test Case is a workflow of Test Threads. Test Threads can be thought of as containers of test operations used to perform some specific testing function. For example, a Thread MAY be used to send a message, receive a response and evaluate the content of that message response (to test a single “business transaction activity”. Or, a Thread MAY be used as a container of other Threads (performing a higher-level role in testing “binary collaboration activity” between two parties.

Threads MAY contain a number of test operations, including message construction and transmission, message reception and evaluation, assertion testing and logic control operations. Section 8 provides the syntactic rules and semantic meaning of the XML schema used to define Test Cases and their Threads.

However, before introducing the technical details of the IIC Test Framework scripting language, it would be helpful to understand how Threads can be used in an abstract sense in 3 sample Test Cases:

1.1.1 Test Case #1: Basic Transaction Send/Receive within specified TimeToAcknowledge and TimeToPerform

This Test Case illustrates a typical “send/receive” testing scenario, in which time plays a critical role in determining whether the candidate business application “passes” or “fails”.

· The Test Driver (acting in the role of the “Buyer”) sends a Purchase Order document to the candidate business application (the “Seller”).
· The Seller must respond with a “business Acknowledgment message” within 120 seconds.

· Lastly, either a Confirmation or Rejection (but not both) message must be received by the Test Driver within 180 seconds of sending the Purchase Order message.

· Test Driver then sends a Receipt Ack for the confirmation/rejection

Below is an abstract representation of how test Threads would be constructed and executed in a test script:

Test Case Begin “main” execution Thread
PutMessage() Send a message containing a Purchase Order attachment

Split (thread_01)

Thread

Sleep(180) Fork a “sleep” Thread that waits for 3 minutes.
End Thread
GetMessage() Concurrently check for a business Acknowledgment response. Filter any business Ack response message with same ConversationId as PurchaseOrder.

TestAssertion Verify that message is an 'ReceiptAcknowledgment with a Purchase order Reference corresponding to the ConversationId'. If the TestAssertion operation returns a Boolean result of “false”, exit the Test Case with a final result of “fail”.

TestAssertion Verify that Receipt Acknowledgment occured within specified 'TimeToAcknowledgeReceipt' period of 120 seconds (comparing the Receipt Acknowledgment Timestamp against the Timestamp of the request message (generated by the Test Driver at runtime). If the TestAssertion operation returns a Boolean result of “false”, exit the Test Case with a final result of “fail”.

Join (thread_01) Synchronize script execution, proceeding if both Threads successfully complete.
GetMessage() Retrieve Response message(s). Filter any business response message (either Confirmation or Rejection)” with same ConversationId as PurchaseOrder.
TestAssertion Verify that result contains either a single Confirmation or Rejection (but not both). If the TestAssertion operation returns a Boolean result of “false”, exit the Test Case with a final result of “fail”.
PutMessage() Send a business Receipt Acknowledgment

End Test Case End “main” execution Thread
1.1.1.1 Semantics of Thread Execution:

 A “main” Thread is invoked by default when a Test Case is executed. This main Thread contains one sub-thread. Within this main Thread, a “PutMessage” operation sends a Purchase Order request to a candidate business application. Also within this main Thread, a sub-thread (thread_01) is invoked “in parallel” using the Split operation. This thread simply instructs the Test Driver to “sleep” for 3 minutes.
Continued execution of the Test Case is predicated upon the successful completion of thread 01 (which is determined by a successful “Join” test operation. Assuming that thread_01 completes successfully, the Test Driver will continue script execution. A final TestAssertion operation is done to determine if a sin Confirmation or Rejection message (but not both) was received by the Test Driver. If one or the other was received, then a final Acknowledgment signal is sent back to the “Seller” application and Test Case execution is complete. A Test Case result of “pass” results from the successful completion of the final Receipt Acknowledgment send operation.

1.1.2 Test Case #2: Basic Error Error Handling Test Scenario

This Test Case illustrates a scenario in two concurrent Threads synchronize two separet operations by of the Test Driver. The “Buyer” (Test Driver) sends a Purchase Order document to the candidate business application (the “Seller”). The Seller responds with an Acceptance or Rejection message (but not both). An error MAY occur at any point within 5 minutes of the initial Purchase Order request (either before, during or after receiving the Acceptance or Rejection response).

Below is an abstract representation of how test Threads would be constructed and executed in a test script:

Test Case Begin “main” execution Thread

PutMessage() Send a message containing a Purchase Order attachment

Split (thread_01) Fork“sleep” Thread that waits for 5 minutes then checks for an Error message

Thread
Sleep(300)

GetMessage() Check for any received Error Messages. Filter a specific Error message referring to this PurchaseOrder ID.
TestAssertion() Verify an Error message was received. If the TestAssertion operation returns a Boolean result of “true”, exit the Test Case with a final result of “fail”.

 End Thread
Split (thread_02) Fork“sleep” Thread that waits for 3 minutes

Thread

Sleep(180)

 End Thread
Join (thread_02) Synchronize script execution, proceeding after thread_02 completes successfully (i.e 3 minutest have passed since the request message was sent).
GetMessage() Retrieve Response message(s). Filter any business response message with same ConversationId as PurchaseOrder.
TestAssertion() Verify that result contains either a single Confirmation or Rejection(but not both). If the TestAssertion operation returns a Boolean result of “false”, exit the Test Case with a final result of “fail”.
Join (thread_01) Synchronize script execution, proceeding after thread_01 completes successfully.
End Test Case End “main” execution Thread
1.1.2.1 Semantics of Thread Execution:

A “main” Thread is invoked by default when a Test Case is executed. This main Thread contains two sub-threads. Within this main Thread, a “PutMessage” operation sends a Purchase Order request to a candidate business application. Concurrently, thread_01 (a Thread that simply sleeps for 5 minutes, then tests for any received Error messages) is executed via the Split operation. Additionally, as second Thread is forked that sleeps for a shorter period of time (3 minutes).
Continued execution of the Test Case is predicated upon the successful completion of thread 02 (which is determined by a successful “Join” test operation). Assuming that thread_02 completes successfully, Test Case execution continues with a retrieval of the response message from the candidate MSH. A TestAssertion operation verifies that either a single Confirmation or Rejection (but not both) message is received by the Test Driver. If neither is received, the Test Case ends with a final result of “fail”.

Lastly, thread_01 (the Error checking Thread) is Joined as the final determinant of success/failure of the Test Case. If thread_01 completes execution, the final Test Case result is “pass”. Failure of thread_01 to complete would result ina final Test Case state of “undetmined”.

1.1.3 Test Case #3: Conditional Branching Scenario

This Test Case illustrates a scenario in branching of Test Case logic is dependent upon the outcome of a TestAssertion operation. The Test Driver (acting in the role of the “Buyer”) sends a Request for Quote document to the candidate business application (the “Seller”). The Seller responds with an Approval or Rejection message. An error may occur at any point after the initial of the initial Request for Quote, and must be caught by the Test Driver.

Below is an abstract representation of how test Threads would be constructed and executed in a test script:

Test Case Begin “main” execution Thread

PutMessage() Send a message containing a Request For Quote

Split (thread_01)

Sleep(300) Instruct Test Driver to “sleep” for 5 minutes

GetMessage() Wake up and check for any received Error Messages. Filter a specific Error message referring to this PurchaseOrder ID.
TestAssertion () Verify that no Error message was received. . If the TestAssertion operation returns a Boolean result of “false”, exit the Test Case with a final result of “fail”.
GetMessage() Retrieve Response message(s). Filter any business response message with same ConversationId as Request For Quote.

TestAssertion() Verify that result contains an “Approval” or “Rejection” document. If the TestAssertion operation returns a Boolean result of “false”, exit the Test Case with a final result of “fail”.
TestAssertion() Verify that result contains an “Approval” document.

WhenTrue

Split (thread_02) Process the Approval document by forking the “Approval” Thread (02)

Thread

TestAssertion () Validate the Approval document. If the TestAssertion operation returns a Boolean result of “false”, exit the Test Case with a final result of “fail”.
GetMessage () Retrieve a Quote message with corresponding, filtering messages of type “Quote and having the same ConversationId as the Approval document.
End Thread
PutMessage () Send an Appproval of Quote message response. Message created reuses the same ConversationId. Message created reuses the same ConversationId as the Approval document.
Join (thread_02) Synchronize script execution, proceeding after thread_02 completes successfully. If thread_02 does not complete, exit the Test Case with a final state of “undetermined”, since execution cannot proceed for an unknown reason.
WhenFalse
Continue()“Continue” to next Test Operation. Explicitly continue execution if the TestAssertion operation fails (i.e. do not abort the Test Case), because the response is a “Rejection”.
TestAssertion() Verify that result contains a “Rejection” document.

WhenTrue Process the Rejection document by forking the “Rejection” Thread (03)

Split (thread_03) Process the Rejection document by forking the “Rejection” Thread (03)

Thread
TestAssertion () Verify that this is a Rejection document. TestAssertion operation returns a Boolean result of “false”, exit the Test Case with a final result of “fail”.
GetMessage () Retrieve the “alternative” message , filtering messages of type with same corresponding ConversationId as the Rejection document.

TestAssertion () Verify that it is not a ‘Quote’ message.. exit Test Case with a result of “fail” if it is. . If the TestAssertion operation returns a Boolean result of “false”, exit the Test Case with a final result of “fail”.

End Thread
Join (thread_03) Synchronize script execution, proceeding after thread_03 completes successfully. If thread_03 does not complete successfully, exit the Test Case with a final state of “undetermined”, since test execution cannot proceed for an unknown reason.
WhenFalse Not a Rejection
Continue ()“Continue” to next Test Operation. Explicitly continue execution if the TestAssertion operation fails (i.e. do not exit the Test Case), because the response is an “Approval”.
OrJoin(thread_01, thread_02) Synchronize script execution to make sure that either an Approval or Rejection was successfully processed before doing proceeding to a final synchronization of the “Error Checking” thread.
Join (thread_01) Synchronize script execution, proceeding after thread_01 completes, signifying that no Errors were generated. If thread_01 does not complete, exit the Test Case with a final state of “undetermined”, since test execution cannot proceed for an unknown reason.
End Test Case End “main” execution Thread

1.1.3.1 Semantics of Thread Execution:

 A “main” Thread is invoked, which contains three sub-threads (01, 02 and 03) and their test operations. It is a RECOMMENDED practice that a “main” Thread be used to control execution of the entire Test Case

The main Thread executes a simple Request for Quote request to the candidate business application.

Following the PutMessage test operation one sub-thread (thread_01) is invoked “in parallel” using the Split operation. This thread constantly checks for any received messages throughout the execution of the entire Test Case.

Next, the main Thread does a GetMessage test operation to retrieve any response messages having the same ConversationId from the Test Driver Message Store.
Continued execution of the Test Case is predicated upon the successful retrieval of either an Approval or a Rejection message from the candidate application.

This can be expressed as two boolean expressions, whose true result causes the execution of a sub-thread of test operations (either Acceptance thread_02 or Rejection thread_03). Again, continued execution of the Test Case is predicated on the results of the TestAssertion operations within each Thread.

Continued Test Case script execution is predicated upon the completion of thread_02 OR thread_03 (via the OrJoin instruction). If one or the other completes, then script execution continues. Otherwise, the Test Driver exits with a final Test Case result of “undetermined”.

Lastly, a final Join operation verifies that thread_01 (the “error checking Thread”) completes. If thread_01 runs to completion, then the entire Test Case script has run to completion, and the final Test Case state is “pass”, since no further execution is possible.
1.1.4 Final Test Case Result Rules

A Test Assertion may specify a particular action to be taken by the Test Driver, based upon its “true” or “false” result value. Such an action could be (1) exit test case on either “fail”, “pass”, or “undetermined”, (2) return from this thread (complete it), (3) continue to the next step in this thread. In case no action statement is specified for either boolean value of the Test Assertion, the following default rules apply:

· The default action for a boolean value of “true” is “continue”.

· The default action for a boolean value of “false” is exit test case with a final result of “fail”)
The final outcome of a Test Case follows these rules:

 A final Test Case state of "pass" occurs when:

a) The Test Driver encounters an explicit "exit/pass" instruction from within a TestAssertion

b) Logical Test Case execution proceeds from beginning to end without the Test Driver encountering:

1) An explicit "exit/fail" or "exit/undetermined" instruction

2) A system "exception" condition occurs (such as an HTTP timeout, network protocol error, or improper test scripting (e.g. an invalid XPath expression in a TestAssertion operation) that precludes continuation of Test Case execution.
 A final Test Case state of "fail" is given to a TestCase when:
a) A TestAssertion boolean operation returns a result of "false" (default behavior) (i.e. it is assumed by default that a TestAssertion is a meaningful condition of conformance/interoperability that must pass.

* Note however, that this default behavior can overriden by the test writer in such cases where a different meaning is given to the TestAssertion, such as when a TestAssertion verifies a "precondition" to further testing, in which case the test writer may wish to "exit" the Test Case with a final state of "undetermined". Additionally, the test writer may wish to "continue" if the failed result of the TestAssertion is used to alter the flow of Test Case execution.

b) The Test Driver encounters an explicit "exit/fail" instruction within a TestAssertion operation.
 A final Test Case state of "undetermined" occurs when:

a) The Test Driver encounters an explicit "exit/undetermined" instruction within a TestAssertion operation.
b) A system "exception" condition occurs (such as an HTTP timeout, network protocol error, or improper test scripting (e.g. an invalid XPath expression in a TestAssertion operation) that precludes continuation of Test Case execution.
