

I suggest that the current sections 5 and 6 be deleted. Section 6.3 should be moved into
section 4.4. The following text should be used as a new section 5 and other sections
should be re-numbered accordingly.

5. Concept of Operation for Message Servicing

5.1 Scope

The ebXML Message Service [ebMS] defines the message enveloping and header
document schema used to transfer ebXML messages over a communications protocol
such as HTTP or SMTP and the behavior of the software that sends and receives ebXML
messages1. The ebMS is defined as a set of layered extensions to the base Simple Object
Access Protocol [SOAP] and SOAP Messages with Attachments [SOAPATTACH]
specifications. The ebMS provides security and reliability features necessary to support
international electronic business. These security and reliability features are not provided
in the SOAP or SOAPATTACH specifications.

The ebXML infrastructure is composed of several independent, but related, components.
Specifications for the individual components are fashioned as stand-alone documents.
The specifications are totally self-contained; nevertheless, design decisions within one
document can and do impact the other documents. Considering this, the ebMS is a
closely coordinated definition for an ebXML message service handler [MSH].

The ebXML Messaging Service [ebMS] component provides the message packaging,
routing, and transport facilities for the ebXML infrastructure. The ebMS is not defined as
a physical component, but rather as an abstraction of a2 process. An implementation of
this specification could be delivered as a wholly independent software application or an
integrated component of some larger business process.

5.1 Background and Objectives

Traditional business information exchanges have conformed to a variety of standards-
based syntaxes. These exchanges were largely based on electronic data interchange
(EDI) standards born out of mainframe and batch processing. Some of the standards
defined bindings to specific communications protocols. These EDI techniques worked
well; however, they were difficult and expensive to implement. Therefore, use of these
systems was normally limited to large enterprises that possessed mature information
technology capabilities.

The proliferation of XML-based business interchanges served as the catalyst for defining
a new global paradigm that ensured all business activities, regardless of size, could
engage in electronic business activities. The prime objective of ebMS is to facilitate the
exchange of electronic business messages within an XML framework. Business

1 David Burdett comment, phrase added
2 Chris Ferris comment, phrase added

messages, identified as the ‘payloads’ of the ebXML messages, are not necessarily
expressed in XML. XML-based messages, as well as traditional EDI formats, are
transported by the ebMS. Actually, the ebMS payload can take any digital form—XML,
ASC X12, HL7, AIAG E5, database tables, or binary image files.

The ebXML architecture requires that the ebXML transport mechanism be free to
communicateMessage Service protocol be capable of being carried over any available
transport protocol. Therefore, the ebMS does not mandate use of a specific transport
protocol. This version of the specification provides bindings to HTTP and SMTP, but
other protocols can and reasonably will be used3.

The ebXML Requirements Specification [ebRS] mandates the need for secure, reliable
communications. The ebXML work focuses on leveraging existing and emerging
technology—attempts to create new protocols are discouraged. Therefore, the ebMS
defines security within the context of existing security standards and protocols. Those
requirements that can be satisfied with existing standards are specified in the ebMS,
others must be deferred until new technology technologies or standards are available, for
example encryption of individual message header elements4.

Reliability requirements defined in the ebRS relate to delivery of ebXML messages over
the communications channels. The ebMS provides mechanisms to satisfy the ebRS
requirements. The reliable messaging elements of the ebMS supply reliability to the
communications layer; they are not intended as business-level 5acknowledgments to the
applications that are supported by the ebMS. This is an important distinction. Business
processes often 6anticipate responses to messages they generate. The responses may7
take the form of a simple acknowledgment of message receipt by the application that
received the message 8or a companion message that reflects action on the original
message. Those messages are outside of the requirements defined for the MSH. The
acknowledgment defined in this specification does not indicate that the payload of the
ebXML message was syntactically correct. It does not acknowledge the accuracy of the
payload information. It does not indicate business acceptance of the information or
agreement with the content of the payload. The ebMS is designed to provide the sender
is with the confidence that the receiving MSH has received the message intact9.

The underlying architecture of the MSH assumes that messages are exchanged between
two ebXMLebMS-compliant MSH nodes10. This pair of MSH nodes provides a hop-to-
hop model that is extended as required to support a multi-hop environment. The multi-
hop environment allows for the final destination of the message to be an intermediary11

3 All changes to this paragraph were derived from comments from Chris Ferris
4 These changes reflect the combined contribution of David Burdett and Arvola Chan
5 Arvola Chan change
6 David Burdett change
7 Arvola Chan change
8 David Burdett change
9 David Burdett and Arvola Chan both made recommended changes to this sentence
10 Chris Ferris requested the addition of the term NODE
11 Change requested by Bruec Pedretti to clarify sentence

MSH other than the ‘receiving MSH’ identified by the original sending MSH. The
ebXML ebMS architecture assumes that the sender of the message MAY be unaware of
the specific path used to deliver a message. However, it MUST be assumed that the
original sender has knowledge of the final recipient of the message and the first of one or
more intermediary hops. The architecture also supports a business requirement to specify
an ordered-set of discrete parties to whom a message is routed. The multi-hop and
ordered-set options obfuscate the acknowledgment message identified in the paragraph
above. It is understood that the acknowledgment does not assure delivery of the message
to the final destination, only to the receiving MSH of the MSH pair.

The MSH supports the concept of ‘quality of service.’ The degree of service quality is
controlled by a contract an agreement12 existing between the parties directly involved in
the message exchange. In practice, multiple contracts agreements may be required
between the two parties. The contracts agreements would might be tailored to the
particular needs to the business exchanges. For instance, a set of business partners may
have a contract that defines the message exchanges related to buying products from a
domestic facility and another that defines the message exchanges for buying from an
overseas facility. Alternatively, the partners might agree to follow the agreements
developed by their trade association.13 Multiple contracts agreements may also exist
between the various parties that handle the message from the original sender to the final
recipient. These contracts agreements could include:14

• an contract agreement between the MSH at the message origination site
and the MSH at the fFinal destination; and

• contracts agreements between the MSH at the message origination site
and the MSH acting as an intermediary; and and

• a contractan agreement between the MSH at the final destination and the
MSH acting as an intermediary. There would, of course, be contracts
agreements between any additional intermediaries; however, the
originating site MSH and final destination MSH MAY have no
knowledge of these contractsagreements.

The important point is that an ebXMLebMS-compliant MSH shall respect the in-force
contracts agreements between itself and any other ebXMLebMS-compliant MSH with
which it communicates. In broad terms, these contracts agreements are expressed as
Collaborative Profile Agreements (CPA). This specification identifies the information
that must be agreed. It does not specify Tthe method of or form used to create and
maintain these agreements is beyond the scope of this specification.15 It is assumed that,
in practice, the actual content of the contracts may be contained in

12 David Burdett objected to the term ‘contract’ as being too strong, all references to contract were changed
to agreement
13 Sentence added by David Burdett
14 Bruce Pedretti recommended listing the specific examples to simplify the sentence
15 Sentence change suggested by David Burdett

initialization/configuration files, databases, or XML documents that comply with the
[ebCPP] specification.

5.3 Operational policies and constraints

The ebMS is a service that is logically positioned between one or more business
applications and a communications service. This requires the definition of an abstract
service interface between the business applications and the MSH. This document
acknowledges the interface, but does not provide a definition for the interface. Future
versions of the ebMS MAY dictate define16 the service interface structure. Bindings to
two communications protocols are defined in this document; however, the MSH is
specified independent of any communications protocols. While early work focuses on
HTTP for transport, no preference is being provided to this protocol. Other protocols
may be used and future versions of the specification may provide details related to those
protocols.

The ebMS relies on external business and 17communications configuration information.
This information is determined either through defined business processes or trading
partner agreements. These data are captured for use within a collaboration protocol
profile [CPP] or collaboration protocol agreement [CPA]. The ebXML Collaborative-
Protocol Profile and Agreement Specification [ebCPP] provides definitions for the
information constituting the agreements. The ebXML architecture defines the
relationship between this component of the infrastructure and the ebMS. As regards the
MSH, the information composing a CPP/CPA must be available to support normal
operation. However, the method used by a specific implementation of the MSH does not
mandate the existence of a discrete instance of a CPA. The CPA is expressed as an XML
document. Some implementation may elect to populate a database with the information
from the CPA and then use the database. This specification does not prescribe how the
CPA information is derived, stored, or used: it only states that specific information items
must be available for the MSH for successful operations.

This specification MUST distinguish between acknowledgments and delivery receipts.
This specification restricts the term acknowledge to mean recognition that a message has
been accepted into the persistent storage of the receiving MSH—not necessarily the final
destination. The delivery receipt is understood by the MSH to mean that the MSH at the
final destination has accepted the message into its persistent storage.

5.4 Modes of operation

This specification does not mandate how the MSH will be installed within the overall
ebXML framework. It is assumed that some MSH implementations will not implement
all functionality defined in this specification. For instance, a set of trading partners may

16 David Burdett thought that ‘dictate’ was too strong and requested a substitution using define
17 David Burdett recommends that only communications information be referred to here, delete the
reference to business

not require reliable messaging services; therefore, no reliable messaging capabilities exist
within their MSH. But, all MSH implementations shall comply with the specification
with regard to the functions supported in the specific implementation and provide error
notifications for functionality that has been requested but is not supported.18
Documentation for an MSH implementation SHALL identify all ebMS requirements that
are not satisfied in the implementation.

The ebXML Message Service may be conceptually broken down into following three
parts: (1) an abstract Service Interface, (2) functions provided by the Message Service
Handler (MSH), and (3) the mapping to underlying transport service(s).

Figure 1 depicts a logical arrangement of the functional modules that exist within one
possible implementation of the ebXML Message Services architecture. These modules
are arranged in a manner to indicate their inter-relationships and dependencies.

• Header Processing - the creation of the ebXML Header elements for the ebXML
Message uses input from the application, passed through the Message Service
Interface, information from the Collaboration Protocol Agreement (CPA defined
in [EBXMLTP]) that governs the message, and generated information such as
digital signature, timestamps and unique identifiers.

• Header Parsing - extracting or transforming information from a received ebXML
Header element into a form that is suitable for processing by the MSH
implementation.

• Security Services - digital signature creation and verification, authentication and
authorization. These services MAY be used by other components of the MSH
including the Header Processing and Header Parsing components.

• Reliable Messaging Services - handles the delivery and acknowledgment of
ebXML Messages sent with deliverySemantics of OnceAndOnlyOnce. The
service includes handling for persistence, retry, error notification and
acknowledgment of messages requiring reliable delivery.

• Message Packaging - the final enveloping of an ebXML Message (ebXML
header elements and payload) into its SOAP Messages with Attachments
[SOAPATTACH] container.

• Error Handling - this component handles the reporting of errors encountered
during MSH or Application processing of a message.

• Message Service Interface - an abstract service interface that applications use to
interact with the MSH to send and receive messages and which the MSH uses to
interface with applications that handle received messages.

18 additional clause recommended by David Burdett

Figure -1 Typical Relationship between ebXML Message Service Handler Components

5.5 User classes and others involved

