
Encapsulation Proposal DRAFT

1

ebXML Encapsulation

Proposal to the DGI Interoperability Test
Team

v4

11/27/01

David Fischer
DRUMMOND GROUP, Inc.

Encapsulation Proposal DRAFT

2

Table of Contents
1 Encapsulation ...2
2 General Rules ...2

2.1 Creating an Encapsulated Message... 3
2.1.1 SOAP Extension Headers ... 3

2.1.1.1 MessageHeader ... 3
2.1.1.2 Manifest .. 4
2.1.1.3 Other SOAP Extension Headers ... 4

3 Profiles ..4
3.1 Profile 1 – Forwarding .. 4

3.1.1 Forwarding Rules.. 4
3.1.2 Forwarding Example... 4

3.2 Profile 2 – Signature/Payload Addition .. 6
3.3 Profile 3 – Encryption... 6

3.3.1 Example: ... 6
3.3.2 Example Code... 7

1 Encapsulation
Some implementations may require that ebXML messages be Encapsulated into the payload of another
ebXML message in a recursive fashion. This might be needed for encrypting a message where the
headers need to be included in the encryption with the payloads. This might be useful when an
intermediary node needs to add a payload to an existing message without disturbing a signature. This
might also be used to break very large messages, or messages with large numbers of payloads, into
smaller pieces for transmission (how this is done is outside the scope of this specification). These
examples highlight some possible uses for Encapsulation but do not encompass all possible uses.

When the Encapsulation process is applied, the MSH shall put the original message with the normal
Multipart/Related content-type, as the payload of another ebXML message. If required, this
Multipart/Related MIME structure may be encrypted using an approved encryption process
(XMLEncryption, S/MIME, etc.). A minimal set of headers shall be constructed, or copied from the
original message, for this message with:

∙a Service element set to urn:oasis:names:tc:ebxml-msg:service

∙an Action element set to Encapsulate

These settings are NOT REQUIRED if the Receiving MSH can understand other settings and correctly
process the Encapsulated message.

When the Receiving MSH parses this message, the Encapsulated payload should be reprocessed as a
new message.

2 General Rules
Encapsulation can be used in a variety of situations, but there are some basic processes, which
are common to most situations. These may be modified as necessary, particularly in cases where
Encapsulation is used to provide more than one service, such as Encryption with an Intermediate
TimeStamp.

Encapsulation Proposal DRAFT

3

2.1 Creating an Encapsulated Message
An Encapsulated Message can be constructed by preceding the original Multipart/Related MIME header
(the first MIME header after the transport headers but before the SOAP headers) with a new
Multipart/Related MIME header and a new set of SOAP Headers as described below. This new
Multipart/Related will require a new "boundary" value placed immediately after the MIME headers,
immediately before the original Multipart/Related and at the end of the message.

2.1.1 SOAP Extension Headers
The new SOAP headers will be similar to the original message headers.

2.1.1.1 MessageHeader
In most cases, the MessageHeader To/From, CPAId and ConversationId headers will not change, this
would not be true in the case of Forwarding (see section 3.1). The Service/Action will be as specified in
section 1, or as agreed between the parties. MessageData SHOULD contain a new MessageId and
Timestamp. In some cases, such as Encryption, it may be possible to use the original MessageId and
Timestamp; however, this has a potential for conflict and is not recommended.

Figure 1 The original ebXML Message becomes the payload of another ebXML Message.

Encapsulation Proposal DRAFT

4

2.1.1.2 Manifest
The Manifest header will contain a single Reference element pointing to the Multipart/Related of the
original message, or to the header where the original message is contained, as in the case of Encryption.

2.1.1.3 Other SOAP Extension Headers
Since this is a standard ebXML/SOAP message, any other ebXML headers could also be included, such
as AckRequested, ds:Signature, etc. These should be processed as usual by the Receiving MSH prior
to un-encapsulating the payload.

3 Profiles
The following examples provide some typical uses for Encapsulation although they do not represent all
possible applications for Encapsulation.

3.1 Profile 1 – Forwarding
There are uses for Intermediary Nodes in the ebXML Message chain. In most cases, Forwarding may be
accomplished by creating a message with the end recipient's ID or URI in the MessageHeader + To field
and introducing the Intermediary's address into the Transport Header fields. This assumes that the
Intermediary can correctly parse and forward based upon the MessageHeader fields. If this is not
possible, or if the Intermediary cannot, or will not, accept and process a message intended for another
recipient, such as may be the case if the Intermediary wishes to validate the signature, then Forwarding
might be accomplished using the Encapsulation process. Using Encapsulation, a Signature element can
be applied to the outside headers destined for the Intermediary using a signature key for which the
Intermediary has the appropriate public-key.

3.1.1 Forwarding Rules
An Encapsulated message sent to an Intermediary, should parse the message, removing the
encapsulation headers, creating and sending any requested MSH signals, then recreate a new set of
ebXML message headers consistent with the requirements of the next hop. For the next hop, the sender
MUST NOT leave the previous encapsulation headers on the message. The Sender and the
Receiver/Intermediary should agree on a Service/Action pair consistent with the next MSH's
environment, such as:

• a Service element set to urn:oasis:names:tc:ebxml-msg:service

• an Action element set to Encapsulate-Forward

3.1.2 Forwarding Example
. . . Transport Headers
SOAPAction: "ebXML"
Content-Type: Multipart/Related; boundary="Encapsulation-boundary1"

––Encapsulation-boundary1
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>
<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:eb="http://oasis-open.org/committees/ebxml-msg/schemas/msg-header-2_0.xsd">
 <SOAP:Header>
 <eb:MessageHeader eb:version="2.0" SOAP:mustUnderstand="1">
 <eb:From>
 <eb:PartyId>http://17.3.67.128/ebXML/receive.dll:8080</eb:PartyId>
 <eb:PartyId type="Name">CompanyA</eb:PartyId>
 </eb:From>
 <eb:To>

Encapsulation Proposal DRAFT

5

 <eb:PartyId>http://18.3.67.128/ebXML/receive.dll:8080</eb:PartyId>
 <eb:PartyId type="Name">CompanyB</eb:PartyId>
 </eb:To>
 <eb:CPAid>CompanyA-CompanyB</eb:CPAid>
 <eb:ConversationId>20011001-160101-00321</eb:ConversationId>
 <eb:Service>urn:oasis:names:tc:ebxml-msg:service</eb:Service>
 <eb:Action>Encapsulation-Forward</eb:Action>
 <eb:MessageData>
 <eb:MessageId>20011001-160101-003479@companyA.com</eb:MessageId>
 <eb:TimeStamp>2001-10-01T16:01:02</eb:TimeStamp>
 </eb:MessageData>
 </eb:MessageHeader>
 </SOAP:Header>
 <SOAP:Body>
 <eb:Manifest eb:version="2.0">
 <eb:Reference xlink:href="cid:Encapsulated-Payload"/>
 </eb:Manifest>
 </SOAP:Body>
</SOAP:Envelope>

––Encapsulation-boundary1
Content-ID: <Encapsulated-Payload>
Content-Type: Multipart/Related; boundary="ebXML-boundary1"

––ebXML-boundary1
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>
<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:eb="http://oasis-open.org/committees/ebxml-msg/schemas/msg-header-2_0.xsd">
 <SOAP:Header>
 <eb:MessageHeader eb:version="2.0" SOAP:mustUnderstand="1">
 <eb:From>
 <eb:PartyId>http://17.3.67.128/ebXML/receive.dll:8080</eb:PartyId>
 <eb:PartyId type="Name">CompanyA</eb:PartyId>
 </eb:From>
 <eb:To>
 <eb:PartyId>http://19.3.67.128/ebXML/receive.dll:8080</eb:PartyId>
 <eb:PartyId type="Name">CompanyC</eb:PartyId>
 </eb:To>
 <eb:CPAid>CompanyA-CompanyC</eb:CPAid>
 <eb:ConversationId>20011001-160101-00321</eb:ConversationId>
 <eb:Service type="Test">FileTransfer</eb:Service>
 <eb:Action>Receive</eb:Action>
 <eb:MessageData>
 <eb:MessageId>20011001-160101-003478@companyA.com</eb:MessageId>
 <eb:TimeStamp>2001-10-01T16:01:01</eb:TimeStamp>
 </eb:MessageData>
 </eb:MessageHeader>
 </SOAP:Header>
 <SOAP:Body>
 <eb:Manifest eb:version="2.0">
 <eb:Reference xlink:href="cid:Payload-1" xlink:type="simple">
 <eb:Description xml:lang="en-US">Test Data - XML File</eb:Description>
 </eb:Reference>
 </eb:Manifest>
 </SOAP:Body>
</SOAP:Envelope>

––ebXML-boundary1
Content-ID: "Payload-1"
Content-Type: text/xml

 <<Data omitted>>
––ebXML-boundary1––

––Encapsulation-boundary1––

Encapsulation Proposal DRAFT

6

3.2 Profile 2 – Signature/Payload Addition
There are some cases, which require an Intermediary to change the content of an ebXML message en
route, such as the addition of a payload or the application of a TimeStamp/Signature. These specific
requirements can be accomplished by creating an Encapsulated message as previously described. The
MSH/Application will create new Encapsulation headers, placing the original message in a payload as
required. The sender should utilize appropriate Service/Action values, such as:

a Service element set to urn:oasis:names:tc:ebxml-msg:service

∙an Action element set to Encapsulate-TimeStamp

3.3 Profile 3 – Encryption
It may be necessary in some instances to protect the SOAP Headers during transmission. Encapsulating
an Encrypted message also solves problems with security order (sign before encrypting) and confusion
with potentially application-encrypted payloads (how does the MSH know whether to decrypt a PKCS7
encrypted payload or to pass the payload to an application – encrypted payloads of a message with the
Encapsulation Service/Action is always encrypted by the MSH).

3.3.1 Example

Figure 2 Encrypt before Encapsulate

Encapsulation Proposal DRAFT

7

3.3.2 Encryption Rules
Encryption via Encapsulation is accomplished by encrypting the entire ebXML message and
encapsulating the result as the payload of another ebXML message. This allows the original payload and
headers to be protected with only minimal routing headers visible. This requires an extra step in the
encapsulating process to create a PKCS7-MIME object.

Once the message is encrypted, it becomes a single bodypart of a new ebXML message. The headers of
this new message would be similar to the original message, with the same To/From and the same
ConversationId and CPAId. The message SHOULD have a new MessageId, different from the original
message, and it SHOULD have a Service and Action set as:

∙a Service element set to urn:oasis:names:tc:ebxml-msg:service

∙an Action element set to Encapsulate-Encrypted

The new headers will include a new Manifest with a single entry pointing to the encrypted
payload.

3.3.3 Example Code

. . . Transport Headers
SOAPAction: "ebXML"
Content-Type: Multipart/Related; boundary="Encapsulation-boundary1"

––Encapsulation-boundary1
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>
<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:eb=" http://oasis-open.org/committees/ebxml-msg/schemas/msg-header-2_0.xsd">
 <SOAP:Header>
 <eb:MessageHeader eb:version="2.0" SOAP:mustUnderstand="1">
 <eb:From>
 <eb:PartyId>http://17.3.67.128/ebXML/receive.dll:8080</eb:PartyId>
 <eb:PartyId type="Name">ZZCompanyA</eb:PartyId>
 </eb:From>
 <eb:To>
 <eb:PartyId>http://18.3.67.128/ebXML/receive.dll:8080</eb:PartyId>
 <eb:PartyId type="Name">ZZCompanyB</eb:PartyId>
 </eb:To>
 <eb:CPAid>CompanyA-CompanyB</eb:CPAid>
 <eb:ConversationId>20011001-160101-00321</eb:ConversationId>
 <eb:Service>urn:oasis:names:tc:ebxml-msg:service</eb:Service>
 <eb:Action>Encapsulation-Encrypted</eb:Action>
 <eb:MessageData>
 <eb:MessageId>20011001-160101-003479@companyA.com</eb:MessageId>
 <eb:TimeStamp>2001-10-01T16:01:02</eb:TimeStamp>
 </eb:MessageData>
 </eb:MessageHeader>
 </SOAP:Header>
 <SOAP:Body>
 <eb:Manifest eb:version="2.0">
 <eb:Reference xlink:href="cid:Encapsulated-Payload"/>
 </eb:Manifest>
 </SOAP:Body>
</SOAP:Envelope>

––Encapsulation-boundary1
Content-ID: <Encapsulated-Payload>
Content-Type: application/pkcs7-mime

 <<Encrypted portion>>

Encapsulation Proposal DRAFT

8

Content-Type: Multipart/Related; boundary="ebXML-boundary1"

––ebXML-boundary1
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>
<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:eb="http://www.ebxml.org/namespaces/messageheader">
 <SOAP:Header>
 <eb:MessageHeader eb:version="1.0" SOAP:mustUnderstand="1">
 <eb:From>
 <eb:PartyId>http://17.3.67.128/ebXML/receive.dll:8080</eb:PartyId>
 <eb:PartyId type="Name">ZZCompanyA</eb:PartyId>
 </eb:From>
 <eb:To>
 <eb:PartyId>http://18.3.67.128/ebXML/receive.dll:8080</eb:PartyId>
 <eb:PartyId type="Name">ZZCompanyB</eb:PartyId>
 </eb:To>
 <eb:CPAid>CompanyA-CompanyB</eb:CPAid>
 <eb:ConversationId>20011001-160101-00321</eb:ConversationId>
 <eb:Service type="Test">FileTransfer</eb:Service>
 <eb:Action>Receive</eb:Action>
 <eb:MessageData>
 <eb:MessageId>20011001-160101-003478@companyA.com</eb:MessageId>
 <eb:TimeStamp>2001-10-01T16:01:01</eb:TimeStamp>
 </eb:MessageData>
 </eb:MessageHeader>
 </SOAP:Header>
 <SOAP:Body>
 <eb:Manifest eb:version="2.0">
 <eb:Reference xlink:href="cid:Payload-1" xlink:type="simple">
 <eb:Description xml:lang="en-US">Test Data - XML File</eb:Description>
 </eb:Reference>
 </eb:Manifest>
 </SOAP:Body>
</SOAP:Envelope>

––ebXML-boundary1
Content-ID: "Payload-1"
Content-Type: text/xml

 <<Data omitted>>

––ebXML-boundary1––
 <<Encrypted portion>>
––Encapsulation-boundary1–-

Note: Code lines in bold are readable. Code lines not in bold are encrypted and
non-readable.

	Encapsulation
	General Rules
	Creating an Encapsulated Message
	SOAP Extension Headers

	Profiles
	Profile 1 – Forwarding
	Forwarding Rules
	Forwarding Example

	Profile 2 – Signature/Payload Addition
	Profile 3 – Encryption
	Example
	Encryption Rules
	Example Code

