This is an attempt to clarify the notion of “application” (and by complementation, of MSH implementation), as the specification refers to it but is short of defining it even abstractly:

The MSH, or “implementation”:

Is an entity (software and /or hardware) that may support all functions and behaviors described in this specification, at the exception of the functions that are explicitly described as supported by the “application”. It supports at least the core features.

The “Application”:

Is an entity (software and /or hardware) that uses the MSH for sending and receiving messages.

Relationship between Application and MSH:

The most fundamental contract between an application and an MSH is:

· the application submits a message payload to the MSH, intended for the consumption of an other application. The MSH must send this message to the MSH which supports the other application.

· The MSH receives a message intended to an application it supports. The MSH must make the message payload available to the application it is destined to.

This contract may be realized via an abstract interface between MSH and application, which is outside the scope of ebMS.

Additional details about this contract between application and MSH are described throughout the specification (see below). They can be classified as:

· Behavior about error notifications, from MSH to application.

· Behavior about delivery of message to application (in case of duplicate detection, in case of exceeded time-to-live, in case of message ordering)

· Behavior about what should / should not be the visibility of MSH internals (signals, operations) to the application.

See several places in spec that refer to “application”, illustrating the contract above:

Section 1.2.3 (ln 362):

The ebMS is a service logically positioned between one or more business applications and a communications service.

Section 1.2.4 (ln 398):

Header Processing – the creation of the ebXML Header elements for the ebXML Message uses input from the application, passed through the Message Service Interface, information from the Collaboration Protocol Agreement governing the message, and generated information such as digital signature, timestamps and unique identifiers.

Section 1.2.4 (ln 423):

Message Service Interface – an abstract service interface applications use to interact with the MSH to send and receive messages and which the MSH uses to interface with applications handling received messages (Delivery Module).

Section 1.2.2 (ln 322):

The reliable messaging elements of the ebMS supply reliability to the communications layer; they are not intended as business-level acknowledgments to the applications supported by the ebMS.

Section 1.2.4 (ln 472):

zero or more additional MIME parts, referred to as Payload Containers, containing application level payloads.

Section 1.2.4 (ln 553):

If the Message Package contains an application payload, it SHOULD be enclosed within a Payload Container.

If there is no application payload within the Message Package then a Payload Container MUST NOT be present.

Section 3.1.3 (ln 829):

The ConversationId enables the recipient of a message to identify the instance of an application or process that generated or handled earlier messages within a conversation. It remains constant for all messages within a conversation.

Section 3.2 (ln 944):

The purpose of the Manifest is:

· to make it easier to directly extract a particular payload associated with this ebXML Message,

· to allow an application to determine whether it can process the payload without having to parse it.

Section 4.2.3.2.4 (ln 1318):

The REQUIRED severity attribute indicates the severity of the error. Valid values are:

· Warning – This indicates other messages in the conversation could be generated in the normal way in spite of this problem.

· Error – This indicates there is an unrecoverable error in the message and no further message processing should occur. Appropriate failure conditions should be communicated to the Application.

 Section 6.1 (ln 1451):

 It is also RECOMMENDED the following be kept in persistent storage:

· the complete message, at least until the information in the message has been passed to the application or other process needing to process it,

Section 6.3.2.5 (ln 1564):

Upon receipt of an end-to-end Acknowledgment Message, the From Party MSH MAY notify the application of successful delivery for the referenced message. This MSH SHOULD ignore subsequent Error or Acknowledgment Messages with the same RefToMessageId value.

Section 6.4.1 (ln 1586):

DuplicateElimination

The DuplicateElimination element MUST be used by the From Party MSH to indicate whether the Receiving MSH MUST eliminate duplicates (see section Error! Reference source not found. for Reliable Messaging behaviors). If the value of duplicateElimination in the CPA is never, DuplicateElimination MUST NOT be present.

· If DuplicateElimination is present – The To Party MSH must persist messages in a persistent store so duplicate messages will be presented to the To Party Application At-Most-Once, or

Section 6.5.1 (ln 1649):

Sending Message Behavior

If a MSH is given data by an application needing to be sent reliably, the MSH MUST do the following:

1. Create a message from components received from the application.

2. Insert an AckRequested element as defined in section Error! Reference source not found..

3. Save the message in persistent storage (see section Error! Reference source not found.).

4. Send the message to the Receiving MSH.
Section 6.5.2 (ln 1665):

If an AckRequested element is present (not an Acknowledgment Message) then:

If the message is a duplicate (i.e. there is a MessageId held in persistent storage containing the same value as the MessageId in the received message), generate an Acknowledgment Message (see section Error! Reference source not found.). Follow the procedure in section Error! Reference source not found. for resending lost Acknowledgment Messages. The Receiving MSH MUST NOT deliver the message to the application interface

Section 6.5.2 (ln 1675):

Generate an Acknowledgment Message in response (this may be as part of another message). The Receiving MSH MUST NOT send an Acknowledgment Message until the message has been safely stored in persistent storage or delivered to the application interface. Delivery of an Acknowledgment Message constitutes an obligation by the Receiving MSH to deliver the message to the application or forward to the next MSH in the message path as appropriate.

If there is no AckRequested element then do the following:

1 If there is a DuplicateElimination element, and the message is a duplicate, then do nothing.

Otherwise, deliver the message to the application interface

Section 6.5.4 (ln 1722):

If the Sending MSH does not receive an Acknowledgment Message after the maximum number of retries, the Sending MSH SHALL notify the application and/or system administrator function of the failure to receive an Acknowledgment Message (see also section Error! Reference source not found. concerning treatment of errors).

Section 6.5.6 (ln 1756):
1) The recipient of the message (Party B MSH) MUST NOT forward the message a second time to the application/process.

Section 6.5.7 (ln 1767):

It is possible an error message with an Error element having an errorCode set to DeliveryFailure cannot be delivered successfully for some reason. If this occurs, then the From Party, the ultimate destination for the Error Message, MUST be informed of the problem by other means.

Section 9 (ln 2001):

). If a sequence is sent and one message fails to arrive at the To Party MSH, all subsequent messages will also fail to be presented to the To Party Application (see status attribute section Error! Reference source not found.).

Section 9.1.1 (ln 2020):

A MSH that receives a message with a SequenceNumber element MUST NOT pass the message to an application until all the messages with a lower SequenceNumber have been passed to the application.

