OASIS ebXML Messaging Services

Version 3.0

Edited by Matthew MacKenzie and Jeff Turpin
lan Jones
British Telecom

<ian.c.jones@t.conp

Doug Bunting
Sun Microsystems

<doug. bunti ng@un. cone

Dale Moberg
Cyclone Commerce

<dnmober g@ycl onecomer ce. con®

Jacques Durand
Fujitsu Software

<j durand@s. fujitsu. conr

Pete Wenzel
SeeBeyond

<pet e@eebeyond. com
>

Subversion ID: 35
HTML
PDF
http://www.oasis-open.org/committees/ebxml-msg
Copyright © 2004 OASIS Open, Inc. All Rights Reserved.

Status

ThisisaWorking Draft.
Current SYN Infoidis: 35

Committee members should submit comments to the ebxml-msg@lists.oasis-open.org list.
Others should submit comments by filling out the form at
http://www.oasi s-open.org/committees'comments/form.phpawg_abbrev=ebxml-msg

1 October 2004

wd-ebms-3_0-01.html
http://www.oasis-open.org/committees/comments/form.php?wg_abbrev=ebxml-msg

OASIS ebXML Messaging Services

This specification focuses on defining a communi cations-protocol neutral method for ex-
changing el ectronic business messages. It defines specific enveloping constructs supporting
reliable, secure delivery of business information. Furthermore, the specification defines a flex-
ible envel oping technique, permitting messages to contain payloads of any format type. This
versatility ensures legacy el ectronic business systems employing traditional syntaxes (i.e. UN/
EDIFACT, ASC X12, or HL7) can leverage the advantages of the ebXML infrastructure along
with users of emerging technologies.

Table of Contents

O 0 g1 oo [T o o PP 4
A = 11011 0o oo |V PR PPRPRRN 4
S AUIEIICE ..ttt e e e et e e e e e e eeene 4
O V= (A AN S W 1410140 4
5. CONCEPL OF OPEFALION ...ieiiiiii et e ettt e e e et e e e et e eeeaa s 4
ST S oo o= PP PP 4

5.2. Background and OBJECLIVESiiiiiiiei e 5

5.3. Operational Policiesand CONSIIAINESc..iieeiiiieiie e eees 6
5.3.1. MSH Operational PalramMetersc.ueviiiieiiiieiiieeiiiee e e e s e e et e et e e et e eaaneees 6

X Y/ Toe (=Y o @ o= - (o) o 7

6. Abstract Message EXChange PatterNSoooviuiiiiiiiii et 7
6.1. Assumed SOAP Message EXChange Patternsooovevuiiieiiiiiiieeieeece e 8

6.2. Unidirectional Message EXChange Patternsc..uuveiiiiiiieeiiiieece e 8
6.2.1. Push Message EXChange Patternc..oviiiiiiiiiiie e 8

6.2.2. Pull Message EXChange Patterncccuiviiiiiiiiii i 9

6.3. Bidirectional Message EXChange Patternsccuviiiiiiiiiiiiiiieen e eee e e e 9
6.3.1. Synchronous Message Exchange Patternoovveiiiiiniiiiiinee e 9

6.4. Aggregate Message EXChange PatterNsovviiiiiiiiiii e 10
6.4.1. Push/Push Message EXChange Patterncoouuviiiiiiieiiiiecc e 10

6.4.2. Push/Pull Message EXchange Patterncc..vvieiiiiiiiii e 10

6.4.3. Pull/Push Message EXchange Patternc.ovevuiiiiiiiiiii e 11

O] o117 o RSP PPTTSS 11
7.1. Minimum Reguirements for CONfOrMAaNCEuviviiiiiiiiiii e 11

8. Message Package SPECITICAIIONviieeiieiiii e 12
8.1. SOAP Structural CONFOIMANCEuuiiiieei e e et eeanaeees 14

8.2. MESSAgE PACKAOE ... ieeiieiii e 14

8.3. HEater CONLAINETieeiiiiiii ettt ettt e et e e et e et e e e e e e e e enbne s 14

S T I O 1= | 1Y/ = 14

8.3.2. Header Container EXamMPIeiiiiiiiiiiii e 15

8.4. Payl0a CONLAINESiiiiii ettt e e et e e e e e e e 15
8.4.1. Attachment Payload EXamPIeiiiiiiiiiiii e 15

8.4.2. Embedded Payload CONtAINESccuuiiiiiiiiie e 15

Bl 3. e 15

8.4.4. MIME CONSIAEIGHONSuiieeeiieiiiriiis ettt e e e e e 15

84D, XML PrOIOQ ... eeeetiieeeiit ettt et 16

8.4.6. ebXML SOAP ENVElOPE EXIENSIONSiiiviieiiiii et 16

8.4.7. ebXML SOAP EXIENSIONSceiiiiiiiiiiieieeeeee ettt e e ee it e e e e e eebabb e e e e e e 18

8.4.8. #wildcard Element CONLENEccevuuiiieiiie et 18

8.4.9. T ATITDULE ... 18

8.4.10. VErsion ALIHDULEevvriiiie e 18

8.4.11. SOAP mustUnderstand AtrDULEoovuiiiiiii e 19

8.4.12. ebXML "Next MSH" rol@ URIooeiiiiiiii e 19

8.4.13. ebXML "To Party MSH" rol@ URIcoooiiiiiiiiiiii e 19

9. Core EXtENSION EIEBMENTSoeiiiii e 19
9.1. MessageHeader EIEMENT oo e e 19

9.1.1. From and TO ElEMENESuuieeiiiiieiie e 20

9.1.2. CollaborationINfo EIeMeNtoiieeiriieie e e e e 21

9.1.3. Messagel NfO EIEMENtiiiie e 22

9.1.4. PayloadInfo EIEMENtIScoeiiiie e 23

OASIS ebXML Messaging Services

9.1.5. DESCIPtioN EIEMENLccouuiiiiiiie et 25
9.1.6. MessageHeader SamMPIeouuiiiii i 25

10. COTEMOUUIES ...ttt ettt e e e et e b e e e e e et e e e b e e e e e e e e enabne s 25
0 S o Y01, oo [V = 25
10.1.1. SIGNAUrE EIEMENEuiiit e 26
10.1.2. Security and ManagemeNtooeeeuiiiiiiii e 26
10.1.3. SIGNAEUIE GENEIEIION ...cevveietiiiieeeeeti ettt ettt e et e e e e e e e e e enenas 26
10.1.4. Countermeasure TECNNOIOGIESccuuiiuiiiiii e 28
10.1.5. Security CONSIAEIELIONSccuuuiiiiiieii eaens 30

10.2. Error Handling MOQUIEcoveiiii et e e e e e e e e e 31
0 200 R = 1 o 31
10.2.2. TYPES OF EFTOIS ...ttt ettt e e eaaans 31
10.2.3. ErrOrList EI@MENt ...cueeeeee et e 31
10.2.4. Implementing Error Reporting and Handlingcocooiiiiiiiiiiiiiieeeeeeen, 33

10.3. Payload ServiceSMOTUIEuiiiiieie e 34
02 ¢ I oo (1ot o TSP PPTTTT 34
10.3.2. Example Use Cases for Payload SErVIiCEScoeuviiiiiiiiiiiiiiiiie e 34
10.3.3. Payload Service INVOCALTIONvieiiiiiiiiiii e 35
10.3.4. REQUITEA SEIVICESeieiiieeeiii ettt ettt ettt ettt e e n e eenenas 35

10.4. Message Service Handler PiNg SEIVICEc.uuiieiiiiiiei et 36
10.4.1. Message Service Handler PING MESSAgEvvvnviiniiiiiieiieeeie e e e e 36
10.4.2. Message Service Handler PONg MESSA0Euvvvniiiiiieiiieeiiieeeeeeieeei e e eaens 37
10.4.3. SeCUrity CONSIEIELIONSueeieti ettt e e eaenas 38

O 1Y oo 1= PRI 39
10.5.1. PUll MESSA0E SETUCKUE ...ttt eneans 39

10.6. Reliable Messaging MOGUIEc.uuiii e e 39
10.6.1. WS-Reliability Implementation ReQUIrEMENEScocevveviiiiiiiiieiieeee e, 39
10.6.2. Reliahility of SOAP REQUESEScvvnieiiiieiie et e e e e e e e 39
10.6.3. Reliability Of SOAP RESPONSESccvvviiiiiiiiee et 40
10.6.4. Reliability of Pull Message Exchange Patternscc.uvvvviiiinnieiiiineieiiineecenennn 40
10.6.5. Message DeEliVEry SEMAaNTICSocveeriiiiiiiie et 40
10.6.6. FaUIt HBNAIING ...ttt e e 40

11. Combining eébXML SOAP EXtension EIeMENtSccovuiiiiiiiiiiiicii e 41
11.1. MessageHeader Element INtEraCtionccuveiiiiiiiiiiiii e e e e e 41
11.2. Payloadinfo Element INEEraCtionoveeeuuiiiiiiiiee e 41
11.3. Signature Element INEEraCtionooouuiiiiiuiieiiiii e 41
11.4. Errorlist Element INEEraCtionoeeuniiiiiiiii e e e 41
11.5. PayloadServices Element INtEractioncouuiiiiiiiiiiiiii e 41
12. Additional (OptioNal) FEAIUMNESccuuiiiiiieiii et e e e e e e st e e e e e e eeaens 41
12.1. MESSAYE SEALUS SEIVICE ... evueiiieeei e e e et ettt e e e e e e e e e et e e et e e e e e et e e et e eetnaeranaaees 41
12.1.1. MeSSagE SEAUS IMESSAOES ...cvvuierieeei ettt ettt et et e e e e e e eeens 42
12.1.2. StatusRequest EIEMENTcoouuiiiii e 43
12.1.3. StatUSRESPONSE ETEMENTceeeiiiieeie e 44

12.2. MUII-HOP MOUIE ... e 45
A. The ebXML SOAP Extension ElementS SChema.uuviiiiiiiiiiiiii e 45
B. Communications Protocol BiNAINGScc.uiiiiiiiii e e e e e 50
O g 0o [1 o o 50
12 o I I PP 50
2.1. Minimum Level of HTTP ProtoCOlcoouiiiiiiiiiiii e 50

2.2. Sending ebXML Service Messages over HTTP ..o 50

2.3 HTTP RESPONSE COUEScvvneiiieiiii et e et e e e e e e et e e e e e e e e e e e et e e eanaas 52

2.4. SOAP Error Conditions and Synchronous EXChangesccoovvviveiiiieviineiiineeennnn, 52

2.5. SynchronOUS VS. ASYNCAIONOUScceuuuneieii et e et e e e e e e e et e e 53

2.6. ACCESS COMLION ..uieteeii ettt e e e e e e e e e e e aa e e ean e eean s 53

2.6.1. Basic & Digest AUtNENtiCAtIONcocveviiiiiiiiieiii e 53

2.6.2. SSL Client (Digital Certificate) Authenticationccooeveieiiiiiiiiieennns 53

2.7. Confidentiality and Transport Protocol Level Securitycoevvviviiiiieiiinecieeeen, 53
TS I PRSPPI 53
3.1. Minimum Level of Supported ProtOCOISoevveviieiiiiieeec e 54

3.2. Sending ebXML Service Messages over SMTPuiiiiiiiiiiiii e 54

3.3. RESPONSE MESSAGES ...cevuiiitiie ittt ettt 56

34, ACCESS CONEIOL ...ttt e et e e e e 56

3.5. Confidentiality and Transport Protocol Level Securitycovvvvviviiiiieiiineiieeeeen, 56

3

OASIS ebXML Messaging Services

3.8 SMTP MOUE ... 56

3.7. Communication Errors during Reliable Messagingccoovviuiiiiiiiiiiineiieceeeen, 57

e I = PO PP PPPTTTTR 57

4.1. Minimum Level of Supported ProtoCoISiveuiiiiiiii e 57

4.2. Sending ebXML Service MessageS over FTPcoouviiiiiiiiecii e 57

4.3. REPONSE IMESSAGES ..eeuueeeiniieti ettt et et et et e et e e et et e e e et e e e e eenaeee 58

4.4. Access Control CONSIAEIAHIONSceuuneiieei e e e e e e eaaeees 58

4.5. Confidentiality and Transport Protocol Level Security.c.oocvviiiiiiiiiiniiiiiieiis 58

C. SUPPOIEd SECUNTY SEIVICESivieiiiieeii e et et e e e e e e e et e e e et e e et e e aan s 58
D. ReAiONSNIP IO WSDL ..iiiiiiii i e e e e e e e e e et e et e e et e e et e e e eeanns 58
E. WS- COMPLIANCE ...ttt e e et e e et e e et e e e eaanns 58
Lo 58
G REVISION HISIOMY ...ttt ettt e et e e et eeenb s 59
REFEIENCES ...t 59

1. Introduction

This specification focuses on defining a communications-protocol neutral method for exchanging electronic
business messages. It defines specific enveloping constructs supporting reliable, secure delivery of businessin-
formation. Furthermore, the specification defines a flexible enveloping technique, permitting messages to con-
tain payloads of any format type. This versatility ensures legacy electronic business systems employing tradi-
tional syntaxes (i.e. UN/EDIFACT, ASC X12, or HL7) can leverage the advantages of the ebXML infrastruc-
ture along with users of emerging technologies.

2. Terminology

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,SHOULD NOT , RECOM-
MENDED, MAY, and OPTIONAL in this document are to be interpreted as described in [RFC 2119].

This specification uses capitalization to help make these key words stand out.

3. Audience

The target audience for this specification is the community of software developers who will implement the
ebXML Message Service.

4. Caveats & Assumptions

It is assumed the reader has an understanding of communications protocols, MIME, XML, SOAP, SOAP Mes-
sages with Attachments and security technologies.

All examples are to be considered non-normative. If inconsistencies exist between the specification and the ex-
ampl es, the specification supersedes the examples.

It is strongly RECOMMENDED implementors read and understand the Collaboration Protocol Profile/ Agree-
ment [ebCPPA] specification and its implications prior to implementation.

5. Concept of Operation
5.1. Scope

The ebXML Message Service(ebMS) defines the message enveloping and header document schema used to
transfer ebXML messages over a communications protocol such as HTTP or SMTP and the behavior of soft-
ware sending and receiving ebXML messages. The ebMS is defined as a set of layered extensions to the base
[SOAP] and [SOAP w/ Attachments] specifications. This document provides security and reliability features
necessary to support international electronic business. These security and reliability features are not provided in
the SOAP or SOAP with Attachments specifications.

OASIS ebXML Messaging Services

The ebXML infrastructure is composed of several independent, but related, components. Specifications for the
individual components are fashioned as stand-alone documents. The specifications are totally self-contained;
nevertheless, design decisions within one document can and do impact the other documents. Considering this,
theebMSisaclosely coordinated definition for an ebXML message service handler (MSH).

The ebMS provides the message packaging, routing and transport facilities for the ebXML infrastructure. The
ebMS is not defined as a physical component, but rather as an abstraction of a process. An implementation of
this specification could be delivered as a wholly independent software application or an integrated component of
some larger business process.

5.2. Background and Objectives

Traditional business information exchanges have conformed to a variety of standards-based syntaxes. These ex-
changes were largely based on electronic data interchange (EDI) standards born out of mainframe and batch
processing. Some of the standards defined bindings to specific communications protocols. These EDI tech-
niques worked well; however, they were difficult and expensive to implement. Therefore, use of these systems
was normally limited to large enterprises possessing mature information technology capabilities.

The proliferation of XM L-based business interchanges served as the catalyst for defining a new global paradigm
that ensured all business activities, regardless of size, could engage in electronic business activities. The prime
objective of ebMS is to facilitate the exchange of electronic business messages within an XML framework.
Business messages, identified as the ‘ payloads’ of the ebXML messages, are not necessarily expressed in XML.
XML-based messages, as well as traditional EDI formats, are transported by the ebMS. Actually, the ebM S pay-
load can take any digital form—XML, ASC X12, HL7, AIAG E5, database tables, binary image files, etc.

An objective of ebXML Messaging protocol is to be capable of being carried over any available communica-
tions protocol. Therefore, this document does not mandate use of a specific communications protocol. This ver-
sion of the specification provides bindings to HTTP, SMTP and FTP, but other protocols can, and reasonably
will, be used.

Another primary objective of ebXML Messaging is to provide a reliable messaging facility. The reliable mes-
saging elements of the ebM S supply reliability to the communications layer; they are not intended as business-lev-
el acknowledgments to the applications supported by the ebMS. This is an important distinction. Business pro-
cesses often anticipate responses to messages they generate. The responses may take the form of a simple ac-
knowledgment of message receipt by the application receiving the message or a companion message reflecting
action on the original message. Those messages are outside of the MSH scope. The acknowledgment defined in
this specification does not indicate the payload of the ebXML message was syntactically correct. It does not ac-
knowledge the accuracy of the payload information. It does not indicate business acceptance of the information
or agreement with the content of the payload. The ebMS is designed to provide the sender with the confidence
the receiving M SH has received the message securely and intact.

The underlying architecture of the MSH assumes messages are exchanged between two ebM S-compliant MSH
nodes. This pair of MSH nodes provides a hop-to-hop model extended as required to support a multi-hop envi-
ronment. The multi-hop environment allows the next destination of the message to be an intermediary MSH oth-
er than the ‘receiving MSH’ identified by the original sending MSH. The ebM S architecture assumes the sender
of the message MAY be unaware of the specific path used to deliver a message. However, it MUST be assumed
the original sender has knowledge of the final recipient of the message and the first of one or more intermediary
hops.

The MSH supports the concept of an "Agreement"”. The flow of a message exchange is controlled by an agree-
ment existing between the parties directly involved in the message exchange. In practice, multiple agreements
may be required between the two parties. The agreements might be tailored to the particular needs of the busi-
ness exchanges. For instance, business partners may have a contract defining the message exchanges related to
buying products from a domestic facility and another defining the message exchanges for buying from an over-
seas facility. Alternatively, the partners might agree to follow the agreements developed by their trade associa-
tion. Multiple agreements may also exist between the various parties handling the message from the origina
sender to the final recipient. These agreements could include:

1. anagreement between the MSH at the message origination site and the MSH at the final destination; and

2. agreement between the MSH at the message origination site and the MSH acting as an intermediary; and

OASIS ebXML Messaging Services

3. an agreement between the MSH at the final destination and the MSH acting as an intermediary. There
would, of course, be agreements between any additional intermediaries; however, the originating site MSH
and final destination MSH MAY have no knowledge of these agreements.

An ebMS-compliant MSH shall respect the in-force agreements between itself and any other ebM S-compliant
MSH with which it communicates. In broad terms, these agreements are expressed as Collaboration Protocol
Agreements (CPA). This specification identifies the information that must be agreed in Section 5.3,
“Operational Policies and Constraints’. It does not specify the method or form used to create and maintain these
agreements. It is assumed, in practice, the actual content of the contracts may be contained in initialization/con-
figuration files, databases, or XML documents complying with the ebXML Collaboration Protocol Profile and
Agreement Specification [ebCPPA].

5.3. Operational Policies and Constraints

The ebMS is a service logically positioned between one or more business applications and a communications
service. This requires the definition of an abstract service interface between the business applications and the
MSH. This document acknowledges the interface, but does not provide a definition for the interface. Future ver-
sions of the ebMS MAY define the service interface structure.

Bindings to two communications protocols are defined in this document; however, the MSH is specified inde-
pendent of any communications protocols. While early work focuses on HTTP for transport, no preference is

being provided to this protocol. Other protocols may be used and future versions of the specification may pro-
vide details related to those protocols.

5.3.1. MSH Operational Parameters

ebXML MSHs rely on externa configuration information to drive message exchanges. Throughout this docu-
ment, we refer to these abstract operational parameters which are defined below.

In a production environment, an MSH may obtain these operational parameters from a CPA or some other
source of configuration.

5.3.1.1. OpParam_ToPartyValue
Identifier(s) of the receiving party in a message exchange.
5.3.1.2. OpParam_FromPartyValue
Identifier(s) of the sending party in a message exchange.
5.3.1.3. OpParam_ConversationID

A message's conversation ID.

5.3.1.4. OpParam_ServiceValue

A message's service identifier.

5.3.1.5. OpParam_AgreementRef

A message's AgreementRef.

5.3.1.6. OpParam_ActionValue

A message's action identifier.

5.3.1.7. OpParam_SecurityProfile

A message's security profile, which contains the following child parameters:
TBD

OASIS ebXML Messaging Services

5.3.1.8. OpParam_ReliabilityProfile

A message's reliability profile, which contains the following child parameters:
TBD

5.3.1.9. OpParam_MEPMode

A message's MEP Mode.

5.4. Modes of Operation

This specification does not mandate how the MSH will be installed within the overall ebXML framework. It is
assumed some MSH implementations will not implement al functionality defined in this specification. All
MSH implementations shall comply with the specification with regard to the functions supported in the specific
implementation and provide error notifications for functionality requested but not supported. Documentation for
aMSH implementation SHALL identify all ebM S features not satisfied in the implementation.

The ebXML Message Service may be conceptually broken down into the following three parts:

1. anabstract Service Interface,

2. functions provided by the MSH and

3. the mapping to underlying transport service(s).

Figure 1, “Component Relationships’ depicts a logical arrangement of the functional modules existing within
one possible implementation of the ebXML Message Services architecture. These modules are arranged in a
manner to indicate their inter-rel ationships and dependencies.

Following is a description of each module illustrated above. It should be noted that the stack diagram above is
abstract, and this specification does not mandate that implementations adopt the architecture suggested by it.

» ebXML Application - Thisiswhere the business |ogic for a message exchange / business process exists.

» Message Service I nterface - Thisis the interface through which messages are channelled between the MSH
core and the the ebXML Application.

e Authentication, Authorization & Non-Repudiation - This module performs any authentication and autho-
rization checks, and verifies the sender or receiver'sidentity.

» ebMS Packaging & Payload Services - Handling, (de)enveloping and execution of Payload Services are
performed by this module.

» Reliability Processing - This module fulfills the WS-Reliability requirements for a message.

» Digital Signature / Cryptography Processing - Verification of any digital signatures occurs in this mod-
ule.

* Message Transceiver / Transport Liasion - This module manages interaction with the available transport
bindings, acting as a normalizing layer between the MSH and its various transports.

e Transport Bindings - These are the actual transport bindings. This specification defines bindings for HTTP

(Section 2, “HTTP"), FTP (Section 4, “FTP") and SMTP (Section 3, “SMTP”") and supports the addition of
other protocols.

6. Abstract Message Exchange Patterns

This section defines the Abstract Message Exchange Patterns (MEP) that are supported by this specification.

7

OASIS ebXML Messaging Services

An ebMS MEP has two characteristics:

» Thetype of businesslevel exchange: Unidirectional, Bidirectional.

e Themode of transfer: Push, Pull.

Each MEP defined below is a combination of these two characteristics, although not all possible combinations
have been specified.

Unidirectional exchange means that a message is sent without the expectation of arelated response message.
Bidirectional exchange means that a response message is expected.

Sending a message in Push mode means that the message is sent as either a SOAP one-way MEP instance or as
a SOAP Request in a SOAP request-response M EP instance.

Sending a message in Pull mode means that the message is sent as a SOAP reponse over a SOAP request-re-
sponse MEP instance, where the SOAP request contains the ebM S PullRequest signal.

6.1. Assumed SOAP Message Exchange Patterns

SOAP One-way MEP:

From an RMP perspective, support for this MEP assumes the following:

» The Sending RMP (as a SOAP node) is able to initiate the sending of a SOAP envelope over the underlying
protocaol (i.e., not as aresult of aprevious protocol action such asan HTTP GET or POST).

» No response containing a SOAP envelope is sent back — although a non-SOAP response (e.g., an HTTP er-
ror code) may be returned.

SOAP Request-response MEP:

From an RMP perspective, support for this MEP assumes the following:

» The Sending RMP is able to initiate the sending of a SOAP envel ope over the underlying protocol.

» The Receiving RMP can send back a message with a SOAP envelope (called a response) after somehow as-
sociating the response with the request.

The full definition of this MEP can be found in [SOAP] part 1, Adjunct.

6.2. Unidirectional Message Exchange Patterns

The following unidirectional (one-way) message exchange patterns are defined:

6.2.1. Push Message Exchange Pattern

Requesting MSH transmits a SOAP Request. Responding MSH does not return a SOAP response.

Figure 2. Push Sequence

OASIS ebXML Messaging Services

|@L&Eﬂngﬂ5ﬂ | | Responding MSH |

S0AP Reguest

6.2.2. Pull Message Exchange Pattern
Requesting MSH transmits a SOAP "Pull" message, and the message requested in the "Pull" message is returned
as a SOAP response by the Responding M SH.

Figure 3. Pull Sequence

|@L&Eﬂngﬂ5ﬂ | | Responding MSH |

Pull Signal

M
A

Response

6.3. Bidirectional Message Exchange Patterns

The following bidirectional (two-way) message exchange patterns are defined:

6.3.1. Synchronous Message Exchange Pattern

The Requesting MSH transmits a SOAP request messages, and the Responding M SH responds with a SOAP re-
sponse message over the same SOAP Message Exchange Pattern instance.

Figure 4. Synchronous Sequence

OASIS ebXML Messaging Services

|@L&Eﬂngﬂ5ﬂ | | Responding MSH |

Request

M
A

Response

6.4. Aggregate Message Exchange Patterns

An aggregate message exchange pattern is not limited to the examples in this section, and can be arbitrarily
complex. Any sequence of messages correlated by RefToMessageld consititutes a Aggregate Message Ex-
change Pattern instance.

The following are possible combinations of the unidirectional and bidirectional patterns described earlier.

6.4.1. Push/Push Message Exchange Pattern

The Requesting MSH transmits a SOAP request. The Responding MSH sends a SOAP request containing the
business payload to the original Requesting MSH over a new SOAP Message Exchange Pattern instance.

Figure 5. Push/Push Sequence

[Beguesting MSH | |_Responding MSH_|

Request

Response

6.4.2. Push/Pull Message Exchange Pattern

The Requesting MSH transmits a SOAP request containing a business payload. Later, the Requesting MSH
transmits a SOAP request containing a " PollForResponse” signal over another SOAP Message Exchange Pattern
instance and the Responding M SH sends the SOAP response on the same SOAP Message Exchange Pattern in-
stance as the "PollForResponse" signal.

10

OASIS ebXML Messaging Services

Figure 6. Push/Pull Sequence

|@L&Eﬂngﬂ5ﬂ | | Responding MSH |

Request

PollForResponse Signal
= -
Response

6.4.3. Pull/Push Message Exchange Pattern

The Responding MSH transmits a SOAP request containing a " PollForRequests* signal to the Requesting MSH.
The Requesting MSH sends a SOAP request containing a business payload over the same SOAP Message Ex-
change Pattern instance. Responses are transmitted in SOAP requests over a new SOAP Message Exchange Pat-
tern instance(s).

Figure7. Pull/Push Sequence

Iguﬁsﬂngﬂﬁlﬂ | | Eﬂswl_ngjdﬁﬂ |
PollForReguest Signal

- -

Request

Response

7. Conformance

7.1. Minimum Requirements for Conformance

An implementation of this specification MUST satisfy ALL of the following conditions to be considered a con-
forming implementation:

11

OASIS ebXML Messaging Services

1. It supports al the mandatory syntax, features and behavior (as identified by the [RFC 2119] key words
MUST, MUST NOT, REQUIRED, SHALL and SHALL NOT) defined in Section 10, “Core Modules’.

2. It supportsal the mandatory syntax, features and behavior defined for each of the additional module(s), de-
fined in Section 12, “ Additional (optional) Features’, the implementation has chosen to implement.

3. It complies with the following interpretation of the keywords OPTIONAL and MAY: When these key-
words apply to the behavior of the implementation, the implementation is free to support these behaviors or
not, as meant in [RFC 2119]. When these keywords apply to message contents relevant to a module of fea-
tures, a conforming implementation of such a module MUST be capable of processing these optional mes-
sage contents according to the described ebXML semantics.

4. If it has implemented optional syntax, features and/or behavior defined in this specification, it MUST be
capable of interoperating with another implementation that has not implemented the optional syntax, fea
tures and/or behavior. It MUST be capable of processing the prescribed failure mechanism for those op-
tional features it has chosen to implement.

5. It is capable of interoperating with another implementation that has chosen to implement optional syntax,
features and/or behavior, defined in this specification, it has chosen not to implement. Handling of unsup-
ported features SHALL be implemented in accordance with the prescribed failure mechanism defined for
the feature.

More details on Conformance to this specification — conformance levels or profiles and on their recommended
implementation — are described in a companion document, "M essage Service |mplementation Guidelines" from
the OASIS ebXML Implementation, Interoperability and Conformance (11C) Technical Committee.

8. Message Package Specification

The ebXML Message Service Specification defines a set of namespace-qualified SOAP Header element exten-
sions within the SOAP Envelope. These can be packaged as a plain [SOAP] message, or within a MIME multi-
part to allow payloads or attachments to be included with the SOAP extension elements. Because either packag-
ing option can be used, Implementations MUST support non-multipart messages. In general, separate ebXML
SOAP extension elements are used where;

different software components may be used to generate ebXML SOAP extension el ements,

an ebXML SOAP extension element is not always present or,

the data contained in the ebXML SOAP extension element MAY be digitally signed separately from the other
ebXML SOAP extension elements.

An ebXML Message is a communications protocol independent standard [SOAP] message, or MIME/Multipart
message envelope. The MIME/Multipart message envelope MUST be structured in compliance with the SOAP
Messages with Attachments [SOAP w/ Attachments] W3C Note, referred to as a M essage Package.

There are two logical MIME parts within the Message Package:

The first MIME part, referred to as the Header Container, containing one SOAP 1.2 compliant message. This
XML document is referred to as a SOAP Message for the remainder of this specification,

zero or more additional MIME parts, referred to as Payload Containers, containing application level payloads.

The general structure and composition of an ebXML Message is described in Figure 8, “ Structure and Composi-
tion of an ebXML Message’.

Figure 8. Structure and Composition of an ebXML M essage

12

OASIS ebXML Messaging Services

Communications Protocol Envelope (HTTP, SMTP, ...)

Payload(s)

Payload(s)

The SOAP Message is an XML document consisting of a SOAP Envelope element. This is the root element of
the XML document representing a SOAP Message. The SOAP Envelope element consists of:

One SOAP Header element. This is a generic mechanism for adding features to a SOAP Message, including
ebXML specific header elements.
One SOAP Body element. This can be a container for the payload parts of the message.

13

OASIS ebXML Messaging Services

8.1. SOAP Structural Conformance

The ebXML Message packaging complies with the following specifications:

Simple Object Access Protocol (SOAP) 1.1 [SOAP]
SOAP Messages with Attachments [SOAP w/ Attachments)

Carrying ebXML headersin SOAP Messages does not mean ebXML overrides existing semantics of SOAP, but
rather the semantics of ebXML over SOAP maps directly onto SOAP semantics.

8.2. Message Package

All MIME header elements of the Message Package are in conformance with the SOAP Messages with Attach-
ments [SOAP w/ Attachments] W3C Note. In addition, the Content-Type MIME header in the M essage Package
contain a type attribute matching the MIME media type of the MIME body part containing the SOAP Message
document. In accordance with the [SOAP] specification, the MIME media type of the SOAP Message has the
value "text/xml".

Itisstrongly RECOMMENDED theinitial headers contain a Content-1D MIME header structured in accordance
with MIME [RFC 2045], and in addition to the required parameters for the Multipart/Related media type, the
start parameter (OPTIONAL in MIME Multipart/Related [RFC 2387]) always be present. This permits more ro-
bust error detection. The following fragment is an example of the MIME headers for the multipart/related Mes-
sage Package:

Example 1. MIME Header fragment for the multipart/related M essage Package
Content-Type: multipart/related; type="text/xm";
boundar y="boundar yVal ue"; st art =" <messagepackage- 123@xanpl e. comr»"

- - boundar yVal ue
Content-1D: <messagepackage- 123@xanpl e. con>

Because implementations MUST support non-multipart messages, an ebXML message with no payload may be
sent either as aplain SOAP message or as a[SOAP w/ Attachments] multipart message with only one body part.

8.3. Header Container

The root body part of the Message Package is referred to in this specification as the Header Container. The
Header Container is a MIME body part consisting of one SOAP Message as defined in the SOAP Messages
with Attachments [SOAP w/ Attachments] W3C Note.

8.3.1. Content-Type

The MIME Content-Type header for the Header Container MUST have the value "text/xml" to match the MIME
media type of the MIME body part containing the [SOAP] Message document. The Content-Type header MAY
contain a"charset" attribute. For example:

Cont ent - Type: text/xm ; charset="UTF-8"

8.3.1.1. charset Attribute

The MIME charset attribute identifies the character set used to create the SOAP Message. The semantics of this
attribute are described in the "charset parameter / encoding considerations' of text/xml as specified in XML
[XMLMedia]. Thelist of valid values can be found at http://www.iana.org/.

If both are present, the MIME charset attribute SHALL be equivaent to the encoding declaration of the SOAP
Message. If provided, the MIME charset attribute MUST NOT contain a value conflicting with the encoding
used when creating the SOAP Message.

14

http://www.iana.org/

OASIS ebXML Messaging Services

For maximum interoperability it is RECOMMENDED UTF-8 [UTF-8] be used when encoding this document.
Due to the processing rules defined for media types derived from text/xml [XMLMedia], this MIME attribute
has no defaullt.

8.3.2. Header Container Example

The following fragment represents an example of a Header Container:

Content-1D: <messagepackage- 123@xanpl e. con»>
Cont ent - Type: text/xm ; charset="UTF-8"

<SOAP: Envel ope
xm ns: SOAP="htt p: / / schemas. xm soap. or g/ soap/ envel ope/ " >
<SOAP: Header >

</ SOAP: Header >
<SQAP: Body>

</ SOAP: Body>
</ SOAP: Envel ope>
- - boundar yVal ue

8.4. Payload Container

Zero or more Payload Containers MAY be present within a Message Package in conformance with the SOAP
Messages with Attachments [SOAP w/ Attachments] specification. Alternatively, payload(s) may be placed
within the SOAP Body element, in conformance with [SOAP]

If the Message Package contains an application payload, it SHOULD be enclosed within a Payload Container.
If thereis no application payload within the M essage Package then a Payload Container MUST NOT be present.

The contents of each Payload Container MUST be identified in the ebXML Message Payloadinfo element with-
in the SOAP Header (see Section 9.1.4, “ Payloadinfo Elementls’).

The ebXML Message Service Specification makes no provision, nor limits in any way, the structure or content
of application payloads. Payloads MAY be simple-plain-text objects or complex nested multipart objects. The
specification of the structure and composition of payload objects is the prerogative of the organization defining
the business process or information exchange using the ebXML Message Service.

8.4.1. Attachment Payload Example

The following fragment represents an application payload as an Attachment:

Content-1D: <donmi nnane. exanpl e. con®
Cont ent - Type: applicati on/ xm

<?xm version="1.0"?>
<l nvoi ce>

<l nvoi cedat a>

</ | nvoi cedat a>

</l nvoi ce>

8.4.2. Embedded Payload Container

The following fragment represents an application payload nested within the SOAP Body element:

<SOAP- ENV: Body>

<AppNS: | nvoi ce xm ns: AppNS="http:// nmy. app. conf ns" >
<AppNS: | nvoi cedat a/ >

</ AppNS: | nvoi ce>

</ SOAP- ENV: Body>

8.4.4. MIME Considerations

15

OASIS ebXML Messaging Services

8.4.4.1. Additional MIME Parameters

Any MIME part described by this specification MAY contain additional MIME headers in conformance with
the MIME [RFC 2045] specification. Implementations MAY ignore any MIME header not defined in this speci-
fication. Implementations MUST ignore any MIME header they do not recognize.

For example, an implementation could include content-length in a message. However, a recipient of a message
with content-length could ignoreit.

8.4.4.2. Reporting MIME Errors

If aMIME error is detected in the Message Package then it MUST be reported as specified in SOAP with At-
tachments. [SOAP w/ Attachments].

8.4.5. XML Prolog

The SOAP Message's XML Prolog, if present, MAY contain an XML declaration. This specification has de-
fined no additional comments or processing instructions appearing in the XML prolog. For example:

Cont ent - Type: text/xm ; charset="UTF-8"

<?xm version="1.0" encodi ng="UTF- 8" ?>

8.4.5.1. XML Declaration
The XML declaration MAY be present in a SOAP Message. If present, it MUST contain the version specifica

tion required by the XML Recommendation [XML] and MAY contain an encoding declaration. The semantics
described below MUST be implemented by a compliant eobXML Message Service.

8.4.5.2. Encoding Declaration

If both the encoding declaration and the Header Container MIME charset are present, the XML prolog for the
SOAP Message SHALL contain the encoding declaration SHALL be equivalent to the charset attribute of the
MIME Content-Type of the Header Container (see Section 8.3.1.1, “charset Attribute”).

If provided, the encoding declaration MUST NOT contain a value conflicting with the encoding used when cre-
ating the SOAP Message. It is RECOMMENDED UTF-8 be used when encoding the SOAP Message.

If the character encoding cannot be determined by an XML processor using the rules specified in section 4.3.3

of XML [XML], the XML declaration and its contained encoding declaration SHALL be provided in the
ebXML SOAP Header Document.

Note

The encoding declaration is not required in an XML document according to XML v1.0 specification
[XML].

8.4.6. eb XML SOAP Envelope extensions

In conformance with the [SOAP] specification, al extension element content is namespace qualified. All of the
ebXML SOAP extension element content defined in this specification is namespace qualified to the ebXML
SOAP Envelope extensions namespace as defined in Section 8.4.6.1, “ Namespace pseudo attribute”.

Namespace declarations (xmiIns psuedo attributes) for the ebXML SOAP extensions may be included in the
SOAP Envelope or Header elements, or directly in each of the ebXML SOAP extension elements.

8.4.6.1. Namespace pseudo attribute

The namespace declaration for the ebXML SOAP Envelope extensions (xmins pseudo attribute) (see
[XMLNS]) has a REQUIRED value of:

http://ww. oasi s- open. org/ conmi tt ees/ ebxm - meg/ schema/ nsg- header - 3_0. xsd

16

OASIS ebXML Messaging Services

8.4.6.2. xsi:schemalocation attribute
The SOAP namespace:
http://schemas. xm soap. or g/ soap/ envel ope/

resolves to a W3C XML Schema specification. All ebXML MSH implementations are strongly RECOM-
MENDED to include the XML Schema-instance namespace qualified schemal ocation attribute in the SOAP En-
velope element to indicate to validating parsers a location of the schema document that should be used to vali-
date the document. Failure to include the schemal ocation attribute could prevent XML schema validation of re-
celved messages.

For example:

<SOAP: Envel ope xm ns: SOAP="htt p: // schemas. xm soap. or g/ soap/ envel ope/ "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance"
xsi : schemalLocati on="http://schenmas. xm soap. or g/ soap/ envel ope/
http://schemas. xnl soap. or g/ soap/ envel ope/ " >

In addition, ebXML SOAP Header extension element content may be similarly qualified so as to identify the lo-
cation where validating parsers can find the schema document containing the ebXML namespace qualified
SOAP extension element definitions. The ebXML SOAP extension element schema has been defined using the
W3C Recommendation version of the XML Schema specification [XML Schema] (see Appendix A, The ebXML
SOAP Extension Elements Schema). The XML Schemarinstance namespace qualified schemal ocation attribute
should include a mapping of the ebXML SOAP Envelope extensions namespace to its schema document in the
same element that declares the ebXML SOAP Envel ope extensions namespace.

The schemal_ocation for the namespace described above in Section 8.4.6.1, “Namespace pseudo attribute” is:
http://www.0asi s-open.org/committees/ebxml-msg/schema/msg-header-3_0.xsd

Separate schemalocation attribute are RECOMMENDED so tools, which may not correctly use the schemalo-
cation attribute to resolve schema for more than one namespace, will still be capable of validating an ebXML
SOAP message. For example:

<SQAP: Envel ope xm ns: SOAP="ht t p: // schenmas. xm soap. or g/ soap/ envel ope/ "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://schemas. xm soap. or g/ soap/ envel ope/
http://schemas. xnl soap. or g/ soap/ envel ope/ " >
<SQOAP: Header
xm ns: eb="http://ww. oasi s- open. or g/ conmi tt ees/ ebxm - nsg/ schenma/ nsg- header - 3_0. xsd"
xsi : schemalLocat i on="htt p://ww. oasi s- open. or g/ commi t t ees/ ebxm - nsg/ schena/ nsg- header - 3_0. xsd
http://ww. oasi s- open. or g/ conmi tt ees/ ebxm - nsg/ schenma/ nsg- header - 3_0. xsd" >
<eb: MessageHeader ...>
<eb: Payl oadl nfo eb: versi on="3.0">. .. </ eb: Payl oadl nf o>

</ eb: MessageHeader >
</ SCAP: Header >
<SQOAP: Body
xm ns: eb="http://ww. oasi s- open. or g/ conmi tt ees/ ebxm - msg/ schema/ nsg- header - 3_0. xsd"
Xsi : schemalLocat i on="htt p://ww. oasi s- open. or g/ comi tt ees/ ebxm - nsg/ schena/ nsg- header - 3_0. xsd
http://ww. oasi s- open. or g/ conmi tt ees/ ebxm - nsg/ schema/ nsg- header - 3_0. xsd" >

</ SOAP: Body>
</ SOAP: Envel ope>

8.4.6.3. SOAP Header Element
The SOAP Header element is the first child element of the SOAP Envelope element. It MUST have a names-

pace qualifier that matches the SOAP Envelope namespace declaration for the namespace
"http://schemas.xmlsoap.org/soap/envel ope/”.

8.4.6.4. SOAP Body Element

The SOAP Body element is the second child element of the SOAP Envelope element. It MUST have a names-
pace qualifier that matches the SOAP Envelope namespace declaration for the namespace
"http://schemas.xmlsoap.org/soap/envel ope/”.

17

http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-3_0.xsd

OASIS ebXML Messaging Services

8.4.7. ebXML SOAP Extensions

An ebXML Message extends the SOAP Message with the following principal extension elements:
8.4.7.1. SOAP Header Extensions

MessageHeader — a REQUIRED element containing routing information for the message (To/From, etc.) as
well as other context information about the message.

Payloadinfo — an element pointing to any data present either in the Payload Container(s) or elsewhere, e.g. on
the web. This element MAY also contain optional payload services elements. This element MAY be omitted.
see Section 10.3, “Payload Services Modul€e”

8.4.7.2. SOAP Body Extensions
ebXML Messaging does not define any extension elements for SOAP Body.
8.4.7.3. Core ebXML Modules

e Error Handling Module

ErrorList - a SOAP Header element containing alist of the errors being reported against a previous message.
The ErrorList element is only used if reporting an error or warning on a previous message. This element
MAY be omitted.

» Security Module

Security — an element that contains a digital signature that conformsto [XMLDSIG] that signs data associat-
ed with the message. This element MAY be omitted.

8.4.8. #wildcard Element Content

Some ebXML SOAP extension elements, as indicated in the schema, allow for foreign namespace-qualified ele-
ment content to be added for extensibility. The extension element content MUST be namespace-qualified in ac-
cordance with XMLNS [XMLNS] and MUST belong to a foreign namespace. A foreign namespace is one that
is NOT
http://ww. oasi s- open. or g/ conmi tt ees/ ebxm - meg/ schema/ nsg- header - 3_0. xsd.
The wildcard elements are provided wherever extensions might be required for private extensions or future ex-
pansions to the protocol.

An implementation of the MSH MAY ignore the namespace-qualified element and its content.

8.4.9. id Attribute

Each of the ebXML SOAP extension elements defined in this specification has an id attribute which is an XML
ID that MAY be added to provide for the ability to uniquely identify the element within the SOAP Message.
This MAY be used when applying a digital signature to the ebXML SOAP Message as individual ebXML
SOAP extension elements can be targeted for inclusion or exclusion by specifying a URI of "#<i dval ue>"in
the Reference element.

8.4.10. version Attribute

The REQUIRED version attribute indicates the version of the ebXML Message Service Header Specification to
which the ebXML SOAP Header extensions conform. Its purpose is to provide future versioning capabilities.
For conformance to this specification, al of the version attributes on any SOAP extension elements defined in
this specification MUST have avalue of "3.0". An ebXML message MAY contain SOAP header extension ele-
ments that have a value other than "3.0". An implementation conforming to this specification that receives a
message with ebXML SOAP extensions qualified with aversion other than "3.0" MAY process the message if it
recognizes the version identified and is capable of processing it. It MUST respond with an error (details TBD) if
it does not recognize the identified version. The version attribute MUST be namespace qualified for the ebXML

18

OASIS ebXML Messaging Services

SOAP Envelope extensions namespace defined above.
Use of multiple versions of ebXML SOAP extensions elements within the same ebXML SOAP document, while

supported, should only be used in extreme cases where it becomes necessary to semantically change an element,
which cannot wait for the next ebXML Message Service Specification version release.

8.4.11. SOAP mustUnderstand Attribute

The REQUIRED SOAP mustUnderstand attribute on SOAP Header extensions, namespace qualified to the
SOAP namespace (http://schemas.xmlsoap.org/soap/envelope/), indicates whether the contents of the element
MUST be understood by a receiving process or else the message MUST be rejected in accordance with SOAP
[SOAP]. This attribute with avalue of "1" indicates the element MUST be understood or rejected. This attribute
with avalue of "0", the default, indicates the element may be ignored if not understood.

8.4.12. ebXML "Next MSH" role URI

The URI ur n: oasi s: names: tc: ebxnl - nsg: rol e: next MSH when used in the context of the SOAP
actor attribute value SHALL be interpreted to mean an entity that assumes the role of an instance of the ebXML
MSH conforming to this specification.

This role URI has been established to allow for the possibility that SOAP nodes that are NOT ebXML MSH
nodes MAY participate in the message path of an ebXML Message. An example might be a SOAP node that
digitally signs or encrypts a message.

All ebXML MSH nodes MUST assume thisrole.

8.4.13. ebXML "To Party MSH" role URI

The URI urn: oasi s: nanes: tc: ebxm -nsg: rol e: toPart yMsH when used in the context of the
SOAP actor attribute value SHALL be interpreted to mean an instance of an ebXML MSH node, conforming to
this specification, assuming the role of the Party identified in the MessageHeader/To/Partyld element of the
same message. An ebXML MSH MAY be configured to play in this role. How thisis done is outside the scope
of this specification.

The MSH that is the ultimate destination of ebXML messages MUST assume the role of the To Party MSH ac-
tor URI in addition to assuming the standardized "next" role as defined by SOAP.

9. Core Extension Elements

9.1. MessageHeader Element

The MessageHeader element is REQUIRED in all ebXML Messages. It MUST be present as a child element of
the SOAP Header element.

The MessageHeader element is a composite element comprised of the following subordinate elements:

e anid attribute (see section 3.3.7 for details).

* aversion attribute (see section 3.3.8 for details).

e aSOAP mustUnderstand attribute with avalue of "1" (see section 3.3.9 for details).
* From element.

* Toelement.

* Collaborationlnfo element.

e Messagelnfo element.

19

OASIS ebXML Messaging Services

e Payloadinfo element.

e Description element.

9.1.1. From and To Elements

The REQUIRED From element identifies the Party that originated the message. The REQUIRED To element
identifies the Party that is the intended recipient of the message. Both To and From can contain logical identi-
fiers, such asa DUNS number, or identifiers that also imply a physical location such as an eMail address.

The From and the To elements each contains:

» Partyld elements — occurs one or more times.

* Role element — occurs zero or one times.

If either the From or To elements contains multiple Partyld elements, all members of the list MUST identify the
same organization. Unless a single type value refers to multiple identification systems, the value of any given
type attribute MUST be unique within the list of Partyld elements contained within either the From or To ele-
ment.

Note

This mechanism is particularly useful when transport of a message between the parties may involve
multiple intermediaries. More generally, the From Party should provide identification in al domains it
knows in support of intermediaries and destinations that may give preference to particul ar identification
systems.

The From and To elements contain zero or one Role child element that, if present, SHALL immediately follow
the last Partyld child element.

9.1.1.1. Partyld Element

The Partyld element has a single attribute, type and the content is a string value. The type attribute indicates the
domain of names to which the string in the content of the Partyld element belongs. The value of the type at-
tribute MUST be mutually agreed and understood by each of the Parties. It is RECOMMENDED that the value
of the type attribute be a URI. It is further recommended that these values be taken from the EDIRA (1SO 6523),
EDIFACT ISO 9735 or ANSI ASC X12 105 registries.

If the Partyld type attribute is not present, the content of the Partyld element MUST be a URI [RFC2396], oth-
erwise the Receiving MSH SHOULD report an error (see section 5.1.5) with errorCode set to Inconsistent and
severity set to Error. It is strongly RECOMMENDED that the content of the Partyld element be a URI.

9.1.1.2. Role Element

The Role element identifies the authorized role (fromAuthorizedRole or toAuthorizedRole) of the Party sending
(when present as a child of the From element) and/or receiving (when present as a child of the To element) the
message. The value of the Role element is a non-empty string, which is specified in the CPA.

Note
Roleis better defined as a URI — e.g. http://rosettanet.org/roles/buyer.

The following fragment demonstrates usage of the From and To elements.

<eb: Fron»
<eb: Partyld eb:type="urn: duns">123456789</ eb: Partyl d>
<eb: Partyl d eb:type="SCAC' >RDW(</ Partyl d>
<eb: Rol e>http://rosettanet. org/rol es/ Buyer </ eb: Rol e>
</ eb: Fr om>

20

OASIS ebXML Messaging Services

<eb: To>

<eb: Partyl d>mai | t 0: j oe@xanpl e. conx/ eb: Partyl d>

/<eg: Rol e>http://rosettanet.org/rol es/ Sell er</eb: Rol e>
</ eb: To>

9.1.2. CollaborationIinfo Element

The required Collaborationinfo Element identifies the parameters governing the exchange of messages between
the parties.

The Collaborationlnfo element contains;

» AgreementRef element.
* Service element.

e Action element.

9.1.2.1. AgreementRef Element

The REQUIRED AgreementRef element is a string that identifies the entity or artifact governing the exchange
of messages between the parties. The recipient of a message MUST be able to resolve the AgreementRef to an
individual set of parameters, taking into account the sender of the message.

The value of a AgreementRef element MUST be unique within a namespace mutually agreed by the two parties.
This could be a concatenation of the From and To Partyld values, a URI prefixed with the Internet domain name
of one of the parties, or a namespace offered and managed by some other naming or registry service. It is REC-
OMMENDED that the AgreementRef be a URI.

The AgreementRef MAY reference an instance of a CPA as defined in the ebXML Collaboration Protocol Pro-
file and Agreement Specification [ebCPPA]. An example of the CPAId element follows:

<eb: Agr eenent Ref >ht t p: / / exanpl e. coni cpas/ our cpawi t hyou. xm </ eb: Agr eenent Ref >

The messaging parameters are determined by the appropriate elements from the CPA, as identified by the
Agr eenent Ref element.

If areceiver determines that a message is in conflict with the CPA, the appropriate handling of this conflict is
undefined by this specification. Therefore, senders SHOULD NOT generate such messages unless they have
prior knowledge of the receiver's capability to deal with this conflict.

If a Receiving MSH detects an inconsistency, then it MUST report it with an er r or Code of | nconsi s-

t ent and aseverity of Error. If the Agr eenent Ref is not recognized, then it MUST report it with an error-
Code of Not Recogni zed and a severity of Error.

9.1.2.2. Service Element

The REQUIRED Service element identifies the service that acts on the message and it is specified by the de-
signer of the service. The designer of the service may be:

» astandards organization, or

* anindividual or enterprise.

Note

In the context of an ebXML business process model, an action equates to the lowest possible role based
activity in the Business Process (see [BPSS]) (requesting or responding role) and a service is a set of
related actions for an authorized role within a party.

21

OASIS ebXML Messaging Services

An example of the Service element follows:

<eb: Servi ce>ur n: servi ces: Suppl i er Or der Processi ng</ eb: Ser vi ce>

Note

URIs in the Service element that start with the namespace
urn: oasi s: names: tc: ebxm - meg: servi ce arereserved for use by this specification.

The Ser vi ce element hasasinglet ype attribute.
9.1.2.2.1. 9.1.2.2.1 type Attribute

If the type attribute is present, it indicates the parties sending and receiving the message know, by some other
means, how to interpret the content of the Ser vi ce element. The two parties MAY use the value of thet ype
attribute to assist in the interpretation.

If thet ype attribute is not present, the content of the Ser vi ce element MUST be a URI (see [RFC 2396]). If
it is not a URI then report an error with er r or Code of | nconsi st ent and severity of Err or (see Sec-
tion 10.2, “Error Handling Modul€e™).

9.1.2.3. Action Element
The REQUIRED Action element identifies a process within a Service that processes the Message. Action

SHALL be unique within the Service in which it is defined. The value of the Action element is specified by the
designer of the service. An example of the Action element follows:

<eb: Acti on>NewOr der </ eb: Acti on>

If the value of either the Service or Action element are unrecognized by the Receiving MSH, then it MUST re-
port the error with an errorCode of NotRecognized and a severity of Error.

9.1.3. Messagelnfo Element

The REQUIRED Messagelnfo element provides a means of uniquely identifying an ebXML Message. It con-
tains the following:

e Messageld element.

» RefToMessageld element.

» Conversationld element.

» Timestamp element

The following fragment demonstrates the structure of the Messagelnfo element:

<eb: Messagel nf 0>
<eb: Messagel d>20001209- 133003- 28572@xanpl e. conx/ eb: Messagel d>
<eb: Ref ToMessagel d>20001209- 133003- 28571 @xanpl e. conx/ eb: Ref ToMessagel d>
<eb: Conver sati onl d>20001209- 133003- 28572</ eb: Conver sat i onl d>
<eb: Ti nest anp>2004- 06- 15T11: 12: 12</ eb: Ti mest anp>
</ eb: Messagel nf 0>

9.1.3.1. Messageld Element

The REQUIRED element Messageld is a globally unique identifier for each message conforming to Messageld
[RFC2822].

Note

22

OASIS ebXML Messaging Services

In the Message-ld and Content-ld MIME headers, values are always surrounded by angle brackets.
However references in mid: or cid: scheme URI's and the Messageld and RefToMessageld elements
MUST NOT include these delimiters.

9.1.3.2. RefToMessageld Element

The RefToMessageld element has a cardinality of zero or one. When present, it MUST contain the Messageld
value of an ebXML Message to which this message relates.

For Error messages, the RefToMessageld element is REQUIRED and its value MUST be the Messageld value
of the message in error (as defined in Section 10.2, “Error Handling Modul€e”).

9.1.3.3. Conversationld Element

The REQUIRED Conversationld element is a string identifying the set of related messages that make up a con-
versation between two Parties. It MUST be unique within the context of the specified CPAId. The Party initiat-
ing a conversation determines the value of the Conversationld element that SHALL be reflected in all messages
pertaining to that conversation.

The Conversationld enables the recipient of a message to identify the instance of an application or process that
generated or handled earlier messages within a conversation. It remains constant for all messages within a con-
versation.

The value used for a Conversationld is implementation dependent. An example of the Conversationld element
follows:

<eb: Conver sat i onl d>20001209- 133003- 28572</ eb: Conver sati onl d>

Note

Implementations are free to choose how they will identify and store conversational state related to a
specific conversation. Implementations SHOULD provide afacility for mapping between their identifi-
cation scheme and a Conversationld generated by another implementation.

9.1.3.4. Timestamp Element

The REQUIRED Timestamp is a value representing the time that the message header was created conforming to
a dateTime (see [XMLSchema]) and MUST be expressed as UTC. Indicating UTC in the Timestamp element
by including the ‘Z’ identifier is optional.

9.1.4. PayloadInfo Elementls

The Payloadinfo element MAY be present as a child of the SOAP Header element. The Payloadinfo element is
a composite element consisting of one or more Payload elements. Each Payload element identifies payload data

associated with the message, whether included as part of the message as payload document(s) contained in a
Payload Container, or remote resources accessible viaa URL. The purpose of the Payloadinfois:

» tomakeit easier to directly extract a particular payload associated with this ebXML Message,
» toallow an application to determine whether it can process the payload without having to parse it.

» todefine pre and post processing payload services to be performed by the MSH.
The Payloadinfo element is comprised of the following:

* anid attribute (see Section 8.4.9, “id Attribute” for details)

e aversion attribute (see Section 8.4.10, “version Attribute” for details)

23

OASIS ebXML Messaging Services

» oneor more Payload elements

9.1.4.1. Payload Element

The Payload element is a composite element consisting of the following subordinate elements:

» zero or more Schema elements — information about the schema(s) that define the instance document identi-
fied in the parent Reference element

» zero or more Description elements — a textual description of the payload object referenced by the parent Ref-
erence element

» zero or one PreProcessing elements - alist of pre processing steps to be performed by the MSH

» zero or one PostProcessing elements - alist of post processing steps to be performed by the MSH

The Reference element itself is asimple link [XLINK]. It should be noted that the use of XLINK in this context
is chosen solely for the purpose of providing a concise vocabulary for describing an association. Use of an
XLINK processor or engineis NOT REQUIRED, but may prove useful in certain implementations.

See http:/imww.w3.org/ TR/xptr-framework/ for fragment identifier definition. Replaced the xlink:* attributes
with URI for now. JWT.

The Reference element has the following attribute content in addition to the element content described above:

» id—an XML ID for the Payload element,

» payloadRef —this REQUIRED attribute has a value that is the CID URI or fragment identifier of the payload
object referenced. For example "cid:foo" or "#idref".

* Any other namespace-qualified attribute MAY be present. A Receiving MSH MAY choose to ignore any
foreign namespace attributes other than those defined above.

The designer of the business process or information exchange using ebXML Messaging decides what payload

datais referenced by the Manifest and the values to be used for xlink:role.

9.1.4.1.1. Schema Element

If the item being referenced has schema(s) of some kind that describe it (e.g. an XML Schema, DTD and/or a

database schema), then the Schema element SHOULD be present as a child of the Reference element. It pro-

vides a means of identifying the schema and its version defining the payload object identified by the parent Ref-

erence element. The Schema element contains the following attributes:

 location —the REQUIRED URI of the schema

» version—aversion identifier of the schema

9.1.4.1.2. Description Element

See Section 9.1.5, “Description Element” for more information.

9.1.4.2. PayloadInfo Validation

If an eb:payloadRef attribute contains a URI that is a content id (URI scheme "cid") then a MIME part with that
content-id MUST be present in the corresponding Payload Container of the message. If it is not, then the error
SHALL be reported to the From Party with an errorCode of MimeProblem and a severity of Error.

If an eb:payloadRef attribute contains a hash mark (‘#) followed by a string value then an XML element con-

24

OASIS ebXML Messaging Services

taining an xml:id attribute with its value matching the string value, excluding the hash mark MUST be present
in the SOAP Body element. If it is not, then the error SHALL be reported to the From Party with an errorCode
of MimeProblem and a severity of Error.

If an eb:payloadRef attribute contains a URI, not a content id (URI scheme "cid"), and the URI cannot be re-
solved, it is an implementation decision whether to report the error. If the error is to be reported, it SHALL be
reported to the From Party with an errorCode of MimeProblem and a severity of Error.

Note: If a payload exists, which is not referenced by the Manifest, that payload SHOULD be discarded.

9.1.4.3. PayloadInfo Sample

<eb: Payl oadl nf o>
<eb: Payl oad eb:id="."" eb:payl oadRef="cid:foo | # dref">
<eb: Schema eb: | ocati on="http://foo/bar.xsd" eb:version="1.0"/>
<eb: Description xm : | ang="en- US">Pur chase Order for 100,000 foo w dgets</eb: Descripti on>
<eb: Processi ng>
<eb: Step eb: sequence="0" eb:i d="urn: foo: ps: Conpressi onSvc" >
<eb: Par anet er eb: name="conmand" eb: val ue="unconpress" />
<eb: Par anet er eb: name="al gorithn' eb:val ue="gzip" />
</ eb: St ep>
</ eb: Post Pr ocessi ng>
<eb: Payl oad>
</ eb: Payl oadl nf 0>

9.1.5. Description Element

The Description element may be present zero or more times. Its purpose is to provide a human readable descrip-
tion of the purpose or intent of the message. The language of the description is defined by a required xml:lang
attribute. The xml:lang attribute MUST comply with the rules for identifying languages specified in XML
[XML]. Each occurrence SHOULD have a different value for xml:lang.

9.1.6. MessageHeader Sample

The following fragment demonstrates the structure of the MessageHeader element within the SOAP Header:

<eb: MessageHeader eb:id=".." eb:version="3.0" SOAP: nust Under st and="1">
<eb: Fron®
<eb: Partyl d>uri: exanpl e. conx/ eb: Partyl d>
<eb: Rol e>http://rosettanet. org/ rol es/ Buyer </ eb: Rol e>
</ eb: Fron®
<eb: To>
<eb: Partyl d eb:type="soneType">QRS543</ eb: Partyl d>
<eb: Rol e>http://rosettanet.org/rol es/ Sel | er</ eb: Rol e>
</ eb: To>
<eb: Col | abor ati onl nf 0>
<eb: Agr eenment Ref >ht t p: / / ww. oasi s- open. or g/ cpa/ 123456</ eb: Agr eenent Ref >
<eb: Servi ce eb:type="nyservi cetypes">Quot eToCol | ect </ eb: Servi ce>
<eb: Act i on>NewPur chaseOr der </ eb: Act i on>
</ eb: Col | abor at i onl nf 0>
<eb: Messagel nf 0>
<eb: Messagel d>UUl D- 2@xanpl e. conk/ eb: Messagel d>
<eb: Ref ToMessagel d>UUI D- 1@xanpl e. conx/ eb: Ref ToMessagel d>
<eb: Conver sat i onl d>987654321</ eb: Conver sat i onl d>
<eb: Ti mest anp>2000- 07- 25T12: 19: 05</ eb: Ti nmest anp>
</ eb: Messagel nf 0>
</ eb: MessageHeader >

10. Core Modules
10.1. Security Module

Currently reworking this section to reflect the use of WS-Security. JWT : MM->JT: remove ebTA refs, reeval
risk statements.

The ebXML Message Service, by its very nature, presents certain security risks. A Message Service may be at
risk by means of:

25

OASIS ebXML Messaging Services

» Unauthorized access
» Dataintegrity and/or confidentiality attacks (e.g. through man-in-the-middle attacks)

e Denia-of-Service and spoofing

Each security risk is described in detail in the ebXML Technical Architecture Risk Assessment Technical Re-
port [secRISK].

Each of these security risks may be addressed in whole, or in part, by the application of one, or a combination,
of the countermeasures described in this section. This specification describes a set of profiles, or combinations
of selected countermeasures, selected to address key risks based upon commonly available technologies. Each
of the specified profiles includes a description of the risks that are not addressed. See Appendix C, Supported
Security Services for atable of security profiles.

Application of countermeasures SHOULD be balanced against an assessment of the inherent risks and the value
of the asset(s) that might be placed at risk. For this specification, a Signed Message is any message containing a
Signature element.

10.1.1. Signature Element

An ebXML Message MAY be digitally signed to provide security countermeasures. Zero or more Signature ele-
ments, belonging to the XML Signature [XMLDSIG] defined namespace, MAY be present as a child of the
SOAP Header. The Signature element MUST be namespace qualified in accordance with XML Signature
[XMLDSIG]. The structure and content of the Signature element MUST conform to the XML Signature
[XMLDSIG] specification. If there is more than one Signature element contained within the SOAP Header, the
first MUST represent the digital signature of the ebXML Message as signed by the From Party MSH in confor-
mance with section 5.1. Additional Signature elements MAY be present, but their purpose is undefined by this
specification.

Refer to Section 10.1.3, “Signature Generation” for a detailed discussion on how to construct the Signature ele-
ment when digitally signing an ebXML Message.

10.1.2. Security and Management

No technology, regardless of how advanced it might be, is an adequate substitute to the effective application of
security management policies and practices.

It is strongly RECOMMENDED that the site manager of an ebXML Message Service apply due diligence to the

support and maintenance of its security mechanisms, site (or physical) security procedures, cryptographic proto-
cols, update implementations and apply fixes as appropriate. (See http://www.cert.org/ and http://ciac.linl.gov/)

10.1.2.1. Collaboration Protocol Agreement

The configuration of Security for MSHs is specified in the CPA. Two areas of the CPA have security definitions
asfollows:

» The Document Exchange section addresses security to be applied to the payload of the message. The MSH
is not responsible for any security specified at thislevel but may offer these services to the message sender.

» The Transport section addresses security applied to the entire ebXML Document, which includes the header
and the payload(s).

10.1.3. Signhature Generation

An ebXML Messageis signed using [XMLDSIG] following these steps:

1. Create a Signedinfo element with SignatureMethod, CanonicalizationMethod and Reference elements for

26

OASIS ebXML Messaging Services

the SOAP Envelope and any required payload objects, as prescribed by XML Signature [XMLDSIG].

2. Canonicalize and then calculate the SignatureVaue over Signedinfo based on algorithms specified in
Signedinfo as specified in XML Signature [XMLDSIG].

3. Construct the Signature element that includes the Signedinfo, Keylnfo (RECOMMENDED) and Signa-
tureValue elements as specified in XML Signature [XMLDSIG].

4. Include the namespace qualified Signature element in the SOAP Header just signed.

The Signedinfo element SHALL have a CanonicalizationMethod element, a SignatureMethod element and one
or more Reference elements, as defined in XML Signature [XMLDSIG].

The RECOMMENDED canonicalization method applied to the datato be signed is

<Canoni cal i zati onMet hod Al gorithm="http://ww. w3. or g/ TR/ 2001/ REC- xm - c14n- 20010315"/ >

described in [XMLC14N]. This algorithm excludes comments.

The SignatureMethod element SHALL be present and SHALL have an Algorithm attribute. The RECOM-
MENDED value for the Algorithm attributeiis:

<Si gnat ur eMet hod Al gorithn="http://ww. w3. or g/ 2000/ 09/ xml dsi g#dsa- shal"/ >

This RECOMMENDED value SHALL be supported by all compliant eobXML Message Service software imple-
mentations.

The [XMLDSIG] Reference element for the SOAP Envel ope document SHALL have a URI attribute value of ""
to provide for the signature to be applied to the document that contains the Signature element.

The [XMLDSIG] Reference element for the SOAP Envelope MAY include a Type attribute that has a value
"http://ww w3. or g/ 2000/ 09/ xm dsi g#Cbj ect " in accordance with XML Signature [XMLDSIG].
This attribute is purely informative. It MAY be omitted. Implementations of the ebXML MSH SHALL be pre-
pared to handle either case. The Reference element MAY include the id attribute.

The [XMLDSIG] Reference element for the SOAP Envelope SHALL include a child Transforms element. The
Transforms element SHALL include the following Transform child elements.

Thefirst Transform element has an Algorithm attribute with a value of:

<Transform Al gorithm="http://ww. w3. or g/ 2000/ 09/ xm dsi g#envel oped- si gnat ure"/ >

Theresult of this statement excludes the parent Signature element and all its descendants.

The second Transform element has a child X Path el ement that has a value of:

<Transform Al gorithm="http://ww.w3. or g/ TR/ 1999/ REC- xpat h- 19991116" >
<XPat h> not (ancestor-or-self::()[@QOAP: act or ="ur n: oasi s: names: t c: ebxml - msg: act or : next MSH"]
ancestor-or-sel f:: ()[@QOAP: actor="http://schemas. xm soap. or g/ soap/ act or/ next"])</ XPat h>
</ Tr ansf or n»

The result of this [XPath] statement excludes all elements within the SOAP Envelope which contain a
SOAP:actor attribute targeting the nextMSH, and all their descendants. It also excludes all elements with actor
attributes targeting the element at the next node (which may change en route). Any intermediate node or MSH
MUST NOT change, format or in any way modify any element not targeted to the intermediary. Intermediate
nodes MUST NOT add or delete white space. Any such change may invalidate the signature.

Thelast Transform element SHOULD have an Algorithm attribute with a value of:
<Transform Al gorithm="http://ww. w3. or g/ TR/ 2001/ REC- xml - c14n-20010315"/ >

The result of this agorithm is to canonicalize the SOAP Envelope XML and exclude comments.

27

OASIS ebXML Messaging Services

Note

These transforms are intended for the SOAP Envelope and its contents. These transforms are NOT in-
tended for the payload objects. The determination of appropriate transforms for each payload is left to
the implementation.

Each payload object requiring signing SHALL be represented by a [XMLDSIG] Reference element that SHALL
have a URI attribute resolving to the payload object. This can be either the Content-Id URI of the MIME body
part of the payload object, or a URI matching the Content-L ocation of the MIME body part of the payload ob-
ject, or aURI that resolves to a payload object external to the Message Package. It is strongly RECOMMEND-
ED that the URI attribute value match the xlink:href URI value of the corresponding Manifest/Reference ele-
ment for the payload object.

Note

When a transfer encoding (e.g. base64) specified by a Content-Transfer-Encoding MIME header is
used for the SOAP Envelope or payload objects, the signature generation MUST be executed before
the encoding.

Example of digitally signed ebXML SOAP Message:

<?xm version="1.0" encodi ng="utf-8"?>

<SOAP: Envel ope xm ns: x| i nk="http://ww. w3. or g/ 1999/ xI i nk" xm ns: SOAP="htt p: / / schemas. xm soap. or g/ soap/ env
xm ns: eb="http://wwv. oasi s- open. or g/ conmi tt ees/ ebxm - nsg/ schena/ nsg- header - 3_0. xsd"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="htt p://schemas. xm soap. or g/ soap/ envel ope/

http: //ww. oasi s- open. or g/ comm t t ees/ ebxm - msg/ schema/ soapl2. xsd
http://ww. oasi s-open. or g/ commi tt ees/ ebxm - nsg/ schenma/ msg- header-3_0. x
http://ww. oasi s-open. or g/ commi tt ees/ ebxm - nsg/ schenma/ nsg- header-3_0. x

<SQAP: Header >
<eb: MessageHeader eb:id="..." eb:version="2.0" SOAP: must Under st and="1">... </ eb: MessageHeader >
<eb: Mani f est eb: i d="Mani 01" eb: version="2.0">
<eb: Ref erence xlink: href="cid://bl ahbl ahbl ah/" xlink:role="http://ebxm .org/gci/invoice">
<eb: Schema eb: versi on="2.0" eb:|ocation="http://ebxm .org/gci/busdocs/invoice.dtd"/>
</ eb: Ref er ence>
</ eb: Mani f est >
<Si gnature xm ns="http://ww. w3. or g/ 2000/ 09/ xm dsi g#" >
<Si gned| nf 0>
<Canoni cal i zati onMet hod Al gorithm="http://ww. w3. or g/ TR/ 2001/ REC- xm - c14n- 20010315"/ >
<Si gnat ur eMet hod Al gorithn¥"http://ww. w3. or g/ 2000/ 09/ xm dsi g#dsa- shal"/ >
<Ref erence URI ="">
<Tr ansf or ns>
<Transform Al gorithnm="http://ww. w3. or g/ 2000/ 09/ xm dsi g#envel oped- si gnature"/>
<Transform Al gorithne"http://ww. w3. or g/ TR/ 1999/ REC- xpat h- 19991116" >
<XPat h> not (ancestor-or-sel f:: ()[@QOAP: act or =" ; ur n: oasi s: nanes: t c: ebxmnl - nsg: act or : next MsH"
ancestor-or-sel f::()[@QOAP: act or =" ; htt p: // schemas. xnl soap. or g/ soap/ act or/ next " ;]) <
</ Tr ansf or n»
<Transform Al gorithn¥"http://ww.w3. or g/ TR/ 2001/ REC- xmi - c14n- 20010315"/ >
</ Tr ansf or ms>
<Di gest Met hod Al gorithne"htt p://ww. w3. or g/ 2000/ 09/ xm dsi g#shal"/ >
<Di gest Val ue>. . . </ Di gest Val ue>
</ Ref erence>
<Ref erence URI ="ci d:// bl ahbl ahbl ah/ ">
<Di gest Met hod Al gorithm="http://ww. w3. or g/ 2000/ 09/ xm dsi g#shal"/>
<Di gest Val ue>. . . </ Di gest Val ue>
</ Ref erence>
</ Si gnedl nf 0>
<Si gnat ur eVal ue>. . . </ Si gnat ur eVal ue>
<Keyl nf 0>. . . </ Keyl nf 0>
</ Si gnat ur e>
</ SOAP: Header >
<SOAP: Body>

</ SOAP: Body>
</ SOAP: Envel ope>

10.1.4. Countermeasure Technologies

10.1.4.1. Persistent Digital Signature

The only available technology that can be applied to the purpose of digitally signing an ebXML Message (the
ebXML SOAP Header and Body and its associated payload objects) is provided by technology that conformsto

28

OASIS ebXML Messaging Services

the W3C/IETF joint XML Signature specification [XMLDSIG]. An XML Signature conforming to this specifi-
cation can selectively sign portions of an XML document(s), permitting the documents to be augmented (new
element content added) while preserving the validity of the signature(s).

If signatures are being used to digitaly sign an ebXML Message then XML Signature [XMLDSIG] MUST be
used to bind the ebXML SOAP Header and Body to the ebXML Payload Container(s) or data el sewhere on the
web that relate to the message.

An ebXML Message requiring a digital signature SHALL be signed following the process defined in this sec-
tion of the specification and SHALL bein full compliance with XML Signature [XMLDSIG].

10.1.4.2. Persistent Signed Receipt

An ebXML Message that has been digitally signed MAY be acknowledged with an Acknowledgment Message
that itself is digitally signed in the manner described in the previous section. The Acknowledgment Message
MUST contain a[XMLDSIG] Reference element list consistent with those contained in the [XMLDSIG] Signa-
ture element of the original message.

10.1.4.3. Non-persistent Authentication

Non-persistent authentication is provided by the communications channel used to transport the ebXML Mes-
sage. This authentication MAY be either in one direction or bi-directional. The specific method will be deter-
mined by the communications protocol used. For instance, the use of a secure network protocol, such as TLS
[RFC 2246] or IPSec [RFC 2402] provides the sender of an ebXML Message with a way to authenticate the
destination for the TCP/IP environment.

10.1.4.4. Non-persistent Integrity

A secure network protocol such as TLS [RFC 2246] or IPSec [RFC 2402] MAY be configured to provide for di-
gests and comparisons of the packets transmitted via the network connection.

10.1.4.5. Persistent Confidentiality

XML Encryption is a W3C/IETF joint activity actively engaged in the drafting of a specification for the selec-
tive encryption of an XML document(s). It is anticipated that this specification will be completed within the
next year. The ebXML Transport, Routing and Packaging team for v1.0 of this specification has identified this
technology as the only viable means of providing persistent, selective confidentiality of elements within an
ebXML Message including the SOAP Header.

Confidentiality for ebXML Payload Containers MAY be provided by functionality possessed by a MSH. Pay-
load confidentiality MAY be provided by using XML Encryption (when available) or some other cryptographic
process (such as SSIMIME [SMIME], [SMIMEV 3], or PGP MIME [PGPMIME]) hilaterally agreed upon by the
parties involved. The XML Encryption standard shall be the default encryption method when XML Encryption
has achieved W3C Recommendation status.

Note
When both signature and encryption are required of the MSH, sign first and then encrypt.
10.1.4.6. Non-persistent Confidentiality

A secure network protocol, such as TLS [RFC 2246] or IPSEC [RFC 2402], provides transient confidentiality of
amessage asit is transferred between two ebXML adjacent MSH nodes.

10.1.4.7. Persistent Authorization

The OASIS Security Services Technica Committee (TC) is actively engaged in the definition of a specification
that provides for the exchange of security credentials, including Name Assertion and Entitlements, based on Se-
curity Assertion Markup Language [SAML]. Use of technology based on this anticipated specification may pro-
vide persistent authorization for an ebXML Message once it becomes available.

[[[DALE TO PROVIDE NEW DETAILS]]]

29

OASIS ebXML Messaging Services

10.1.4.8. Non-persistent Authorization

A secure network protocol such as TLS [RFC 2246] or IPSEC [RFC 2402] MAY be configured to provide for
bilateral authentication of certificates prior to establishing a session. This provides for the ability for an ebXML
MSH to authenticate the source of a connection and to recognize the source as an authorized source of ebXML

Messages.
10.1.4.9. Trusted Timestamp

At the time of this specification, services offering trusted timestamp capabilities are becoming available. Once
these become more widely available, and a standard has been defined for their use and expression, these stan-
dards, technologies and services will be evaluated and considered for use in later versions of this specification.

[[[INVESTIGATE]]]

10.1.5. Security Considerations

Implementers should take note, there is a vulnerability present even when an XML Digital Signature is used to
protect to protect the integrity and origin of ebXML messages. The significance of the vulnerability necessarily
depends on the deployed environment and the transport used to exchange ebXML messages.

The vulnerability is present because ebXML messaging is an integration of both XML and MIME technologies.
Whenever two or more technologies are conjoined there are always additional (sometimes unique) security is-
sues to be addressed. In this case, MIME is used as the framework for the message package, containing the
SOAP Envelope and any payload containers. Various elements of the SOAP Envelope make reference to the
payloads, identified via MIME mechanisms. In addition, various labels are duplicated in both the SOAP Enve-
lope and the MIME framework, for example, the type of the content in the payload. The issue is how and when
all of thisinformation is used.

Specifically, the MIME Content-1D: header is used to specify a unique, identifying label for each payload. The
label is used in the SOAP Envelope to identify the payload whenever it is needed. The MIME Content-Type:
header is used to identify the type of content carried in the payload; some content types may contain additional
parameters serving to further qualify the actual type. Thisinformation is available in the SOAP Envelope.

The MIME headers are not protected, even when an XML-based digital signature is applied. Although XML
Encryption is not currently available and thus not currently used, its application is developing similarly to XML
digital signatures. Insofar as its application is the same as that of XML digital signatures, its use will not protect
the MIME headers. Thus, an ebXML message may be at risk depending on how the information in the MIME
headers is processed as compared to the information in the SOAP Envelope.

The Content-1D: MIME header is critical. An adversary could easily mount a denial-of-service attack by mixing
and matching payloads with the Content-1D: headers. As with most denial-of-service attacks, no specific protec-
tion is offered for this vulnerability. However, it should be detected since the digest calculated for the actual
payload will not match the digest included in the SOAP Envelope when the digital signature is validated.

The presence of the content type in both the MIME headers and SOAP Envelopeis a problem. Ordinary security
practices discourage duplicating information in two places. When information is duplicated, ordinary security
practices require the information in both places to be compared to ensure they are equal. It would be considered
asecurity violation if both sets of information fail to match.

An adversary could change the MIME headers while a message is en route from its origin to its destination and
this would not be detected when the security services are validated. This threat is less significant in a peer-
to-peer transport environment as compared to a multi-hop transport environment. All implementations are at
risk if the ebXML message is ever recorded in along-term storage area since a compromise of that area puts the
message at risk for modification.

The actual risk depends on how an implementation uses each of the duplicate sets of information. If any pro-
cessing beyond the MIME parsing for body part identification and separation is dependent on the information in
the MIME headers, then the implementation is at risk of being directed to take unintended or undesirable ac-
tions. How this might be exploited is best compared to the common programming mistake of permitting buffer
overflows: it depends on the creativity and persistence of the adversary.

30

OASIS ebXML Messaging Services

Thus, an implementation could reduce the risk by ensuring that the unprotected information in the MIME head-
ersis never used except by the MIME parser for the minimum purpose of identifying and separating the body
parts. This version of the specification makes no recommendation regarding whether or not an implementation
should compare the duplicate sets of information nor what action to take based on the results of the comparison.

10.2. Error Handling Module

This section describes how one ebXML Message Service Handler (MSH) reports errors it detects in an ebXML
Message to another MSH. The ebXML Message Service error reporting and handling module is to be consid-
ered as alayer of processing above the SOAP processor layer. This means the ebXML MSH is essentially an ap-
plication-level handler of a SOAP Message from the perspective of the SOAP Processor. The SOAP processor
MAY generate a SOAP Fault message if it is unable to process the message. A Sending MSH MUST be pre-
pared to accept and process these SOAP Fault values.

It is possible for the ebXML MSH software to cause a SOAP Fault to be generated and returned to the sender of
a SOAP Message. In this event, the returned message MUST conform to the [SOAP] specification processing
guidelines for SOAP Fault values.

An ebXML SOAP Message reporting an error with a highestSeverity of Warning SHALL NOT be reported or
returned as a SOAP Faullt.

10.2.1. Definitions

For clarity, two phrases are defined for use in this section:

* "messagein error" — A message containing or causing an error or warning of some kind
* "message reporting the error" — A message containing an ebXML ErrorList element that describes the warn-

ing(s) and/or error(s) found in amessage in error (also referred to as an Error Message elsewhere in this doc-
ument).

10.2.2. Types of Errors

One MSH needs to report errors to another MSH. For example, errors associated with:

e ebXML namespace qualified content of the SOAP Message document (see Section 8.4.6.1, “Namespace
pseudo attribute™)

» reliable messaging failures [[[(see section 7.5.7)]]]

* security (see Section 10.1, “ Security Modul€”)

Unless specified to the contrary, all references to "an error" in the remainder of this specification imply any or

all of the types of errors listed above or defined elsewhere.

Errors associated with data communications protocols are detected and reported using the standard mechanisms
supported by that data communications protocol and do not use the error reporting mechanism described here.

10.2.3. ErrorList Element

The existence of an ErrorList extension element within the SOAP Header element indicates the message identi-
fied by the RefToMessageld in the MessageHeader element has an error.

The ErrorList element consists of:

* id attribute (see Section 8.4.9, “id Attribute” for details)

31

OASIS ebXML Messaging Services

e aversion attribute (see Section 8.4.10, “version Attribute” for details

* a SOAP mustUnderstand attribute with a value of "1" (see Section 8.4.11, “SOAP mustUnderstand At-
tribute” for details)

» highestSeverity attribute

e oneor more Error elements

If there are no errorsto be reported then the ErrorList element MUST NOT be present.

10.2.3.1. highestSeverity attribute

The highestSeverity attribute contains the highest severity of any of the Error elements. Specificaly, if any of
the Error elements have a severity of Error, highestSeverity MUST be set to Error; otherwise, highestSeverity
MUST be set to Warning.

10.2.3.2. Error Element

An Error element consists of :

id attribute (see Section 8.4.9, “id Attribute” for details)
» codeContext attribute

* errorCode attribute

e severity attribute

» location attribute

» Description element

10.2.3.2.1. codeContext Attribute

The codeContext attribute identifies the namespace or scheme for the errorCodes. It MUST be a URI. Its default
value is urn:oasis:names:tc:ebxml-msg:service:errors. If it does not have the default value, then it indicates an
implementation of this specification has used its own errorCode attribute values.

Use of a codeContext attribute value other than the default is NOT RECOMMENDED. In addition, an imple-
mentation of this specification should not use its own errorCode attribute values if an existing errorCode as de-
fined in this section has the same or very similar meaning.

10.2.3.2.2. errorCode attribute

The REQUIRED errorCode attribute indicates the nature of the error in the message in error. Valid values for
the errorCode and a description of the code’ s meaning are given in the next section.

10.2.3.2.3. severity Attribute

The REQUIRED severity attribute indicates the severity of the error. Valid values are:

* Warning — This indicates other messages in the conversation could be generated in the normal way in spite
of this problem.

e Error — This indicates there is an unrecoverable error in the message and no further message processing

should occur. Appropriate failure conditions should be communicated to the Application.

10.2.3.2.4. location Attribute

32

OASIS ebXML Messaging Services

The location attribute points to the part of the message containing the error.

If an error existsin an ebXML element and the containing document is "well formed" (see XML [XML]), then
the content of the location attribute MUST be an X Pointer [X Pointer].

If the error is associated with an ebXML Payload Container, then location contains the content-id of the MIME
part in error, using URI scheme "cid".

If the error is associated with Payload Services, the location should contain the value of the sequence attribute of
the Processing Step that caused the error.

10.2.3.2.5. id Attribute
If the error isa part of an ebXML element, theid of the element MAY be provided for error tracking.
10.2.3.2.6. Description Attribute

The content of the Description element provides a narrative description of the error in the language defined by
the xml:lang attribute. The XML parser or other software validating the message typicaly generates the mes-
sage. The content is defined by the vendor/developer of the software that generated the Error element (See Sec-
tion 10.2.3.2, “Error Element”).

10.2.3.3. ErrorList Sample

An example of the ErrorList element is given below.

<eb: ErrorlList eb:id="3490sdo", eb: highestSeverity="error"
eb: version="3. 0" SOAP: nust Under st and="1">
<eb: Error eb: errorCode="SecurityFail ure"
eb: severity="Error" eb:|ocation="URl _of ds: Si gnature">
<eb: Description xm : |l ang="en-US">Val i dati on of signature fail ed<eb: Descri pti on>
</ eb: Error>
<eb:Error ...> ... </eb:Error>
</ eb: ErrorlList>

10.2.3.4. errorCode Values

This section describes the values for the errorCode attribute used in a message reporting an error. They are de-
scribed in atable with three headings:

» thefirst column contains the value to be used as an errorCode, e.g. SecurityFailure.

» the second column contains a "Short Description” of the errorCode. This narrative MUST NOT be used in
the content of the Error element.

» thethird column contains a"Long Description” that provides an explanation of the meaning of the error and
provides guidance on when the particular errorCode should be used.

10.2.3.4.1. Errors in the eb XML Elements

[[[todo table]]]

10.2.3.4.2. Non-XML Document Errors

[[[todo table]]]
10.2.4. Implementing Error Reporting and Handling

10.2.4.1. When to Generate Error Messages

When a MSH detects an error in a message it is strongly RECOMMENDED the error is reported to the MSH
that sent the message in error. Thisis possible when:

33

OASIS ebXML Messaging Services

» the Error Reporting Location (see Section 10.2.4.2, “Identifying the Error Reporting Location”) to which the
message reporting the error should be sent can be determined.

» themessagein error does not have an ErrorList element with highestSeverity set to Error.

« If the Error Reporting Location cannot be found or the message in error has an ErrorList element with high-
estSeverity set to Error, it is RECOMMENDED:

The error islogged, and/or the problem is resolved by other means, and no further action is taken.

10.2.4.2. Identifying the Error Reporting Location

The Error Reporting Location is a URI specified by the sender of the message in error that indicates where to
send a message reporting the error.

The ErrorURI implied by the CPA, identified by the CPAId on the message, SHOULD be used. Otherwise, the
recipient MAY resolve an ErrorURI using the From element of the message in error. If neither is possible, no
error will be reported to the sending Party.

Even if the message in error cannot be successfully analyzed, MSH implementers MAY try to determine the Er-
ror Reporting Location by other means. How thisis done is an implementation decision.

10.2.4.3. Service and Action Element Values

An ErrorList element can be included in a SOAP Header that is part of a message being sent as a result of pro-
cessing of an earlier message. In this case, the values for the Service and Action elements are set by the designer
of the Service. This method MUST NOT be used if the highestSeverity is Error.

An ErrorList element can also be included in an independent message. In this case the values of the Service and
Action elements MUST be set as follows:

* The Serviceelement MUST be set to: ur n: oasi s: names: tc: ebxnl - nsg: servi ce

» TheAction element MUST be set to MessageError.

10.3. Payload Services Module
10.3.1. Introduction

Payload services refers to functionality implemented by the messaging server to automatically perform some
manipulation on payload content either before envelope digital signing (if non repudiation is being used) and
message transmission, or after digital signature verification (if non repudiation is being used) and before passing
the payload(s) in question to the application.

Payload services are not meant to be used as application level message handlers, rather, they should be treated
as "filters'.

10.3.2. Example Use Cases for Payload Services

10.3.2.1. Transparently converting XML content to ASN.1 and vice-versa

There are cases where it is desireable to use a more compact format, such as Abstract Syntax Notation to trans-
mit data between partners, while still maintaining the easy-to-process and display qualities of XML. By using
ASN.1's XML Encoding Rules (X ER), it is possible to convert between ASN.1 and XML.

Payload services could be used to automatically create ASN.1 representations of XML payloads prior to the
message being transmitted. On the receiver's side, the same payload service could be used to convert back to
XML. The net result being that th e application developers only see XML on both sides.

34

OASIS ebXML Messaging Services

10.3.2.2. Compression

Sometimes, using a specialized compression algorithm can yield impressive reductions in a server's network uti-
lization.

Payload services could be used to automatically compress and decompress payload content.

10.3.2.3. Encryption

Users often apply encryption at the payload level to ensure confidentiality of their payloads. Often, al that is
needed to ensure confidentiality is to encrypt a single payload, as oposed to heavy weight approaches such as
using SIMIME to encrypt an ent ire message.

Payload services could be used to encrypt and decrypt payloads.
10.3.2.4. XSL Transforms

As XML vocabularies evolve, business processes making use of XML messages will need to evolve with
changes to their XML vocabularies. In cases where it would be too costly to modify the application(s) producing
and consuming the XML, XSL can be used to p erform structural transformations.

Payload services could be used to automatically execute an XSL stylesheet prior to transmission, or before be-
ing delivered to the application.

10.3.3. Payload Service Invocation
Payload service invocation can be requested using two methods: SOAP Header Extensions, or CPA entries.

In cases where invocation requests are specified in both the CPA and the SOAP header, the CPA takes prece-
dence. If the CPA entry explicitly forbids the use of payload services, then the Payload Services SOAP Headers
MUST be ignored.

Payload services MAY NOT be invoked on the Oth attachment -- the SOAP envelope.

10.3.3.1. Invocation by SOAP Header Extension

Payload services may be invoked upon payloads by inserting the Processing element into the Payload entry
within the message's Payloadinfo block. See Section 9.1.4.3, “Payloadinfo Sample” and Appendix A, The
ebXML SOAP Extension Elements Schema for more information. The Processing element that is inserted into
the Payloadinfo header block is meant to define the processing step, if any, required to be performed on the re-
ceiving end of amessaging exchange.

It is anticipated that implementations of Payload Services will export the concept of Pre and Post processing
steps via their message service interfaces, although specifying in the Payload element what action was taken on
the sending side is not required.

As the example above illustrates, it is possible to chain payload services together using the sequence attribute.
When interpreting the order attribute, lower numbers have higher priorities, and must be executed first. The val-

ue of the sequence attribute does not have to start at 0, although that convention is recommended for the sake of
simplicity.

10.3.3.2. Error Handling
If an error is encountered during the payload services processing phase, it must be reported back to the sender

with an errorCode attribute value of PayloadServicesFailure and severity of Error. The location attribute of the
Error element should refer to the value of the sequence attribute of the Processing Step causing the error.

10.3.4. Required Services
This section defines services that every ebM S 3.0 compliant message handler must implement.

10.3.4.1. Compression Service

35

OASIS ebXML Messaging Services

This service, named urn: oasi s-open: committees; ebxml-msg: ps: compression: 3_0 provides away of compressing

payloads using a variety of algorithms. This specification defines that the gzip compression method, which is a

variation of Lempel-Ziv (LZ77), MUST be supported.

The compression service defines the following mandatory parameters:

» al gori t hm- specify which compression algorithm will be used by the compression service. The default is
'gzi p'.

In addition to the mandatory parameters above, the following parameters MAY be used to configure the default

compression method (gzip):

» conpression-| evel -avauebetween 1 and 9, where 1 is faster and less CPU intensive, while 9 pro-
vides the best compression at the cost of speed.

Example 2. Sample CPA entry

TODO

10.4. Message Service Handler Ping Service

The OPTIONAL Message Service Handler Ping Service enables one MSH to determine if another MSH is oper-
ating. It consists of one MSH sending a Message Service Handler Ping message to a MSH, and another MSH,
receiving the Ping, responding with a Message Service Handler Pong message.

If a Receiving MSH does not support the service requested, it SHOULD return an Error Message with an error-
Code of NotSupported and a highestSeverity attribute set to Error.

10.4.1. Message Service Handler Ping Message

A Message Service Handler Ping (MSH Ping) message consists of an ebXML Message containing no ebXML
Payload Container and the following:

* aMessageHeader element containing the following:

e aFrom eement identifying the Party creating the MSH Ping message.

* aToelement identifying the Party being sent the MSH Ping message.

» aCollaborationinfo element containing:

¢ aAgreementRef element.
* aService element containing: urn:oasis.names:tc:ebxml-msg:service [[[WHAT @type??9]]

e anAction element containing Ping.
» aMessagelnfo element containing:

e aMessageld element.

36

OASIS ebXML Messaging Services

¢ aConversationld element.

e aTimestamp element.
* an[XMLDSIG] Signature element (see Section 10.1, “ Security Module” for details).

The message is then sent to the To Party.

An example Ping:

. . .Transport Headers
SOAPAct i on: "ebXWM."
Content-type: multipart/rel ated; boundary="ebXM. Boundary"

- - ebXM_Boundar y
Cont ent - Type: text/xm

<?xm version="1.0" encodi ng="UTF- 8" ?>
<SOAP: Envel ope xml ns: xsi ="http://ww:. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: SOAP="htt p: / / schemas. xm soap. or g/ soap/ envel ope/"
xsi : schemaLocat i on="htt p://schemas. xm soap. or g/ soap/ envel ope/
http://schemas. xn soap. or g/ soap/ envel ope/ " >
<SQOAP: Header xm ns: eb="http://wwmv. oasi s- open. or g/ conmi tt ees/ ebxm - msg/ schema/ nsg- header - 3_0. xsd"
Xsi : schemalLocat i on="http://ww. oasi s- open. or g/ commi tt ees/ ebxm - nsg/ schena/ nsg- header - 3_0. xsd
http://ww. oasi s- open. or g/ conmi tt ees/ ebxm - nsg/ schema/ nsg- header - 3_0. xsd" >
<eb: MessageHeader versi on="3.0" SOAP: nust Under st and="1">
<eb: Fron»
<eb: Part yl d>ur n: duns: 123456789</ eb: Partyl d>
</ eb: From>
<eb: To>
<eb: Partyl d>ur n: duns: 912345678</ eb: Partyl d>
</ eb: To>
<eb: Col | abor at i onl nf 0>
<eb: Agr eenment Ref >20001209- 133003- 28572</ eb: Agr eenent Ref >
<eb: Servi ce>ur n: oasi s: nanes: tc: ebxm - msg: servi ce</ eb: Servi ce>
<eb: Acti on>Pi ng</ eb: Acti on>
</ eb: Col | abor at i onl nf 0>
<eb: Messagel nf 0>
<eb: Messagel d>20010215-111212- 28572@xanpl e. conx/ eb: Messagel d>
<eb: Conver sati onl d>20010215- 111213- 28572</ eb: Conver sat i onl d>
<eb: Ti mest anp>2001- 02- 15T11: 12: 12</ eb: Ti mest anp>
</ eb: Messagel nf 0>
</ eb: MessageHeader >
</ SOAP: Header >
<SQOAP: Body/ >
</ SOAP: Envel ope>

- - ebXMLBoundar y—

Note

The above example shows a Multipart/Related MIME structure with only one bodypart.

10.4.2. Message Service Handler Pong Message

Once the To Party receives the MSH Ping message, they MAY generate a Message Service Handler Pong (MSH
Pong) message consisting of an ebXML Message containing no ebXML Payload Container and the following:

A MessageHeader element containing the following:

» aFrom element identifying the creator of the MSH Pong message.
» aTo element identifying a Party that generated the MSH Ping message.

» aCoallaborationinfo element containing:

e aAgreementRef element.

37

OASIS ebXML Messaging Services

* aService element containing: urn:oasis.names:tc:ebxml-msg:service [[[WHAT @type??7]]]

* an Action element containing Pong.
* aMessagelnfo element containing:

e aMessageld element.
» aRefToMessageld identifying the MSH Ping message.
e aConversationld element.

e aTimestamp element.

* an[XMLDSIG] Signature element (see Section 10.1, “ Security Module” for details).

An example Pong:

. . .Transport Headers
SOAPAct i on: "ebXM."
Content-type: multipart/rel ated; boundary="ebXM Boundary"

- - ebXMLBoundar y
Cont ent - Type: text/xn

<?xm version="1.0" encodi ng="UTF-8" ?>
<SQAP: Envel ope xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: SOAP="ht t p: / / schenas. xnl soap. or g/ soap/ envel ope/ "
xsi : schemaLocat i on="htt p://schenmas. xnl soap. or g/ soap/ envel ope/
http://schemas. xm soap. or g/ soap/ envel ope/ " >
<SQOAP: Header xml ns: eb="http://ww. oasi s- open. or g/ conmi tt ees/ ebxnl - neg/ schema/ nsg- header - 3_0. xsd"
xsi : schemaLocati on="htt p: // ww. oasi s- open. or g/ conmi tt ees/ ebxm - nsg/ schenw/ nsg- header - 3_0. xsd
htt p: // ww. oasi s- open. or g/ conmi t t ees/ ebxnl - neg/ schena/ nsg- header - 3_0. xsd" >
<eb: MessageHeader version="3.0" SOAP: nust Under st and="1">
<eb: Fron»
<eb: Partyl d>ur n: duns: 912345678</ eb: Partyl d>
</ eb: Fron»
<eb: To>
<eb: Partyl d>ur n: duns: 123456789</ eb: Part yl d>
</ eb: To>
<ebh: Col | abor ati onl nf 0>
<eb: Agr eenent Ref >20001209- 133003- 28572</ eb: Agr eenent Ref >
<eb: Servi ce>urn: oasi s: nanes: t c: ebxnl - nsg: servi ce</ eb: Servi ce>
<eb: Act i on>Pong</ eb: Act i on>
</ eb: Col | abor at i onl nf 0>
<eb: Messagel nf 0>
<eb: Messagel d>20010215- 111315- 28573 @xanpl e. conx/ eb: Messagel d>
<eb: Ref ToMessagel d>20010215-111212- 28572@xanpl e. conx/ eb: Ref ToMessagel d>
<eb: Conver sati onl d>20010215-111213- 28572</ eb: Conver sat i onl d>
<eb: Ti mest anp>2001- 02- 15T11: 12: 12</ eb: Ti nmest anp>
</ eb: Messagel nf 0>
</ eb: MessageHeader >
</ SCAP: Header >
<SQOAP: Body/ >
</ SOAP: Envel ope>

- - ebXM_Boundar y——

Note

This example shows a non-multipart MIME structure.

10.4.3. Security Considerations

Parties who receive a MSH Ping message SHOULD aways respond to the message. However, there is a risk

38

OASIS ebXML Messaging Services

some parties might use the MSH Ping message to determine the existence of a Message Service Handler as part
of asecurity attack on that MSH. Therefore, recipients of aMSH Ping MAY ignore the message if they consider
that the sender of the message received is unauthorized or part of some attack. The decision process that results
in this course of action isimplementation dependent.

10.5. Pull Module

TBD

10.5.1. Pull Message Structure

A Pull Message consists of the following:

* The Service element MUST contain "urn:oasis;:names.tc:msh:service".
* TheAction element MUST contain "Pull".
* The PullRequest element, can occur zero or onetime.

e The PullResponse element, can occur zero or one time. (The PullRequest and PullResponse elements are
mutually exclusive)

10.6. Reliable Messaging Module

This ebXML Messaging Specification relies on the WS-Reliability 1.1 specification for its reliable messaging
functionality. This module MUST be implemented by a conforming implementation.

10.6.1. WS-Reliability Implementation Requirements
This specification places the following constraints upon the use of WS-Réliahility:

The following RM features MUST be supported:

e GuaranteedDelivery

* NoDuplicateDelivery

e OrderedDelivery

* GroupMaxidieDuration
e GroupExpiryTime

» ExpiryTime

* ReplyPattern
The following Reply patterns MUST be supported:

* Response RM-Reply Pattern.
» Calback RM-Reply Pattern.

» Synchronous Poll RM-Reply.

10.6.2. Reliability of SOAP Requests

39

OASIS ebXML Messaging Services

To achieve Reliahility of a SOAP request message a Sending MSH MUST enable the WS-Reliability 1.1 Guar-
anteedDelivery RM Agreement item.

10.6.3. Reliability of SOAP Responses

The WS-Reliability 1.1 specification does not support the Reliability of the response portion of the SOAP Re-
quest-response MEP.

As a consequence of this restriction, the Reliability of ebXML messages returned in the SOAP response of the
Pull MSH Signal is not supported.

10.6.4. Reliability of Pull Message Exchange Patterns

To achieve Reliability of a Pull MEP instance the following WS-Réliability 1.1 RM Agreement items MUST be
enabled for the ebM S MSH PullRequest Signal:

* GuaranteedDélivery
» NoDuplicateDelivery

* Response RM-Reply Pattern

Although WS-Reliability 1.1 does not support the Reliability of SOAP responses, the MSH Pull Acknowledg-
ment Signal is used for acknowledging an ebXML message returned in the response of a Pull request. The MSH
Pull Acknowledgment Signal supports acknowledging multiple responsesin a single Signal message.

Figure 9. Reliable Pull Sequence

|@L&Eﬂngﬂ5ﬂ | | Responding MSH |

Pull Signal

M
A

Response + Acknowledgement

Pull Acknowledgement Signal

10.6.5. Message Delivery Semantics

Message Delivery is an abstract operation that transfers a payload from the Receiving MSH to the Consumer. A
message is only acknowledged after successful Message Delivery. The interpretation of the WS-Reliability 1.1
RMP "Déliver" operation MUST be asfollows:

The RMP "Déliver" operation includes the MSH Message Delivery operation. Failure of the MSH Message De-
livery operation resultsin the failure of the RMP "Deliver" operation.

10.6.6. Fault Handling

40

OASIS ebXML Messaging Services

Any processing error that results in the received message not being delivered to the consumer MUST be report-
ed as an RMP delivery failure as defined in WS-Reliability 1.1, generating a MessageProcessingFailure Fault to
the sending RMP.

11. Combining ebXML SOAP Extension Ele-
ments

This section describes how the various ebXML SOAP extension elements may be used in combination.

11.1. MessageHeader Element Interaction

The MessageHeader element MUST be present in every message.

11.2. Payloadinfo Element Interaction

The Payloadinfo element MUST be present if there is any data associated with the message not present in the
Header Container. This applies specifically to data in the Payload Container(s), the SOAP Body or elsewhere,
e.g. on the web.

11.3. Signature Element Interaction

One or more XML Signature [XMLDSIG] Signature elements MAY be present on any message.

11.4. Errorlist Element Interaction

If the highestSeverity attribute on the ErrorList is set to Warning, then this element MAY be present with any
element.

If the highestSeverity attribute on the ErrorList is set to Error, then this element MUST NOT be present with the
Manifest element.

11.5. PayloadServices Element Interaction

The PayloadServices element MAY be present on any message sent or received.

12. Additional (optional) Features

12.1. Message Status Service

The Message Status Request Service consists of the following:

* Message Status Request message containing details regarding a message previously sent is sent to a Mes-
sage Service Handler (MSH).

» The Message Service Handler receiving the request responds with a Message Status Response message.

A Message Service Handler SHOULD respond to Message Status Requests for messages that have been sent re-

liably and the Messageld in the RefToMessageld is present in persistent storage (see Section 12.1.1, “Message

Status Messages”).

A Message Service Handler MAY respond to Message Status Requests for messages that have not been sent re-
liably.

A Message Service SHOULD NOT use the Message Status Request Service to implement Reliable Messaging.

41

OASIS ebXML Messaging Services

If a Receiving MSH does not support the service requested, it SHOULD return an Error Message with an error-
Code of NotSupported and a highestSeverity attribute set to Error. Each service is described below.

12.1.1. Message Status Messages

12.1.1.1. Message Status Request Message

A Message Status Reguest message consists of an ebXML Message with no ebXML Payload Container and the
following:

A MessageHeader element containing:

» aFrom element identifying the Party that created the Message Status Request message.
» aTo element identifying a Party who should receive the message.

» aCollaborationinfo element containing:

¢ an AgreementRef element.
e aService element that contains: urn:oasis:names:tc.ebxml-msg:service

* anAction element that contains StatusRequest.
» aMessagelnfo element containing:

e aMessageld element.
* aConversationld element.

e aTimestamp element.

e A StatusRequest element (see Section 12.1.2, “ StatusRequest Element”) containing:

* aRefToMessageld element in StatusRequest element containing the Messageld of the message whose
status is being queried.

* an[XMLDSIG] Signature element (see Section 10.1, “Security Module” for more details).

The message is then sent to the To Party.

12.1.1.2. Message Status Response Message

Once the To Party receives the Message Status Request message, they SHOULD generate a Message Status Re-
sponse message with no ebXML Payload Container consisting of the following:

A MessageHeader element containing:

» aFrom element that identifies the sender of the Message Status Response message.

e aTo element set to the value of the From element in the M essage Status Request message

42

OASIS ebXML Messaging Services

e aCollaborationinfo element containing:

e an AgreementRef element.
* aService element that contains: urn:oasis:names:tc:ebxml-msg:service.

e an Action element that contains StatusResponse.

* AnAction element that contains StatusResponse

» A Messagelnfo element containing a RefToMessagel d that identifies the M essage Status Request message.

* aMessageld element.
* aRefToMessageld element that identifies the Message Status Request message.
» aConversationld element.

e aTimestamp element.

e StatusResponse element (see Section 12.1.3, “ StatusResponse Element”)

* an[XMLDSIG] Signature element (see Section 10.1, “Security Module” for more details).

The message is then sent to the To Party.

12.1.1.3. Security Considerations

Parties who receive a Message Status Request message SHOULD always respond to the message. However,
they MAY ignore the message instead of responding with messageStatus set to UnAuthorized if they consider

the sender of the message to be unauthorized. The decision process resulting in this course of action is imple-
mentation dependent.

12.1.2. StatusRequest Element

The OPTIONAL StatusReguest element is an immediate child of a SOAP Body and is used to identify an earlier
message whose status is being requested (see Section 12.1.3.5, “ StatusResponse Element Interaction”).

The StatusRequest element consists of the following:

* anid attribute (see Section 8.4.9, “id Attribute” for details)
e aversion attribute (see Section 8.4.10, “version Attribute” for details)

» aRefToMessageld element

12.1.2.1. RefToMessageld Element

A REQUIRED RefToMessageld element contains the Messageld of the message whose status is being request-
ed.

12.1.2.2. StatusRequest Sample

An example of the StatusRequest element is given below:

<eb: St at usRequest eb: version="3.0" >
<eb: Ref ToMessagel d>323210: e52151ec74: - 7f f c@t acy</ eb: Ref ToMessagel d>
</ eb: St at usRequest >

43

OASIS ebXML Messaging Services

12.1.2.3. StatusRequest Element Interaction

A StatusRequest element MUST NOT be present with the following elements:

» aPayloadinfo element
» aStatusResponse element

e anErrorList e ement

12.1.3. StatusResponse Element

The OPTIONAL StatusResponse element is an immediate child of a SOAP Body and is used by one MSH to
describe the status of processing of a message.

The StatusResponse element consists of the following elements and attributes:

e anid attribute (see Section 8.4.9, “id Attribute” for details).

* aversion attribute (see Section 8.4.10, “version Attribute” for details).
e aRefToMessageld element.

» aTimestamp element.

e amessageStatus attribute.

12.1.3.1. RefToMessageld Element

A REQUIRED RefToMessageld element contains the Messageld of the message whose status is being reported.
Ref ToMessageld element child of the Messagelnfo element of a message containing a StatusResponse element
SHALL have the Messageld of the message containing the StatusRequest element to which the StatusResponse

element applies. The RefToMessageld child element of the StatusRequest or StatusResponse element SHALL
contain the Messageld of the message whose status is being queried.

12.1.3.2. Timestamp Element
The Timestamp element contains the time the message, whose status is being reported, was received (see Sec-

tion 9.1.3.4, “Timestamp Element”). This MUST be omitted if the message, whose status is being reported, is
NotRecognized or the request was UnA uthorized.

12.1.3.3. messageStatus attribute

The REQUIRED messageStatus attribute identifies the status of the message identified by the RefToMessageld
element. It SHALL be set to one of the following values:

» UnAuthorized — the Message Status Request is not authorized or accepted.

* NotRecognized — the message identified by the RefToMessageld element in the StatusResponse element is
not recognized.

» Received — the message identified by the RefToMessageld element in the StatusResponse element has been
received by the MSH.

e Processed — the message identified by the RefToMessagel d element in the StatusResponse element has been
processed by the MSH.

» Forwarded — the message identified by the RefToMessageld element in the StatusResponse element has

44

OASIS ebXML Messaging Services

been forwarded by the MSH to another MSH.

Note

If a Message Status Request is sent after the elapsed time indicated by PersistDuration has passed since
the message being queried was sent, the Message Status Response may indicate the Messageld was
NotRecognized — the Messageld is no longer in persistent storage.

12.1.3.4. StatusResponse Sample

An example of the StatusResponse element is given below:

<eb: St at usResponse eb: versi on="3. 0" eb: nessageSt at us="Recei ved" >
<eb: Ref ToMessagel d>323210: e52151ec74: - 7f f c@t acy</ eb: Ref ToMessagel d>
<eb: Ti nest anp>2001- 03- 09T12: 22: 30</ eb: Ti mest anp>

</ eb: St at usResponse>

12.1.3.5. StatusResponse Element Interaction

This element MUST NOT be present with the following elements:

* aManifest element.
* aStatusReguest element.

« anErrorList element with a highestSeverity attribute set to Error.

12.2. Multi-Hop Module

The ebXML SOAP Extension Elements
Schema

The OASIS ebXML Messaging Technical Committee has provided a version of the SOAP 1.1 envelope schema
specified using the schema vocabulary that conforms to the W3C XML Schema Recommendation specification
[XMLSchema].

SOAPL.1- http://www.0asi s-open.org/committees/ebxml-msg/schemal/envel ope.xsd

It was necessary to craft a schema for the XLINK [XLINK] attribute vocabulary to conform to the W3C XML
Schema Recommendation [XML Schema]. This schema is referenced from the ebXML SOAP extension ele-
ments schema and is available from the following URL: Xlink -
http://www.0oasi s-open.org/committees/ebxml-msg/schemal/xlink.xsd

<?xm version="1.0" encodi ng="UTF-8" ?>
<I-- Sone parsers may require explicit declaration of xmns:xm ="http://ww.w3. org/ XM/ 1998/ nanespace".
In that case, a copy of this schema augnented with the above decl arati on shoul d be cached and used
for the purpose of schenma validati on on ebXM. nmessages. -->
<schemm attri but eFornDefaul t="qual i fi ed" el ement For nDef aul t ="qual i fi ed"
t ar get Nanespace="htt p: // ww. oasi s- open. or g/ conm tt ees/ ebxnl - nsg/ schema/ nsg- header - 3_0. xsd"
version="1.0" xm ns="http://ww.w3. org/ 2001/ XM_Schema"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns:tns="http://ww. oasi s- open. or g/ conmi tt ees/ ebxm - nsg/ schena/ nsg- header - 3_0. xsd"
xm ns: ns2="htt p: // ww. w3. or g/ 1999/ xht m "
xm ns: ns="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns: hf p="http://ww. wW3. or g/ 2001/ XM_Schena- hasFacet AndPr operty"
xm ns: ds="http://ww. w3. or g/ 2000/ 09/ xm dsi g#" >
<i nport nanmespace="htt p://wwmv. W3. or g/ XM_/ 1998/ nhanespace"
schemalLocati on="htt p://ww. wW3. or g/ 2001/ 03/ xm . xsd"/ >

45

OASIS ebXML Messaging Services

<i nport nanespace="http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-wssecurity-utility-1.0.xsd"
schenmalLocati on="http://docs. oasi s-open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-wssecurity-utility-1.0

<i nport nanespace="http://docs. oasi s-open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss- wssecuri ty-secext-1. 0. xsd"
schemalLocati on="htt p: // docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-wssecurity-secext-1.0.x

<conpl exType nane="Header BaseType" >
<sequence>
<any maxQOccur s="unbounded" m nCccurs="0" nanespace="##ot her"
processCont ent s="1 ax"/ >
</ sequence>

<attri buteG oup ref="tns: header Ext ensi on. grp"/>
</ conpl exType>

<conpl exType nane="MessageHeader Type" >
<conpl exCont ent >
<ext ensi on base="t ns: Header BaseType" >
<sequence>
<el ement ref="tns: Froni/>

<el ement ref="tns: To"/>

<el ement ref="tns: Col | aborati onl nfo"/>
<el ement ref="tns: Messagel nfo"/>

<el ement ref="tns: Payl oadl nf 0"/ >

<el ement maxCOccur s="unbounded" mi nCccurs="0" ref="tns: Description"/>
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

<el enent nanme="To">
<conpl exType>
<sequence>
<el enent maxCccur s="unbounded" ref="tns: Partyld"/>

<el ement m nCccurs="0" nane="Rol e" type="tns: non-enpty-string"/>
</ sequence>
</ conmpl exType>
</ el ement >

<el emrent nane="Froni' >
<conpl exType>
<sequence>
<el ement maxCccur s="unbounded" ref="tns: Partyl d"/>

<el enent m nCccurs="0" nanme="Rol e" type="tns:non-enpty-string"/>
</ sequence>
</ conpl exType>
</ el ement >

<I-- Payl oadl nfo, for use in soap: Header elenment -->

<el emrent nane="Payl oadl nf 0" >
<conpl exType>
<conpl exCont ent >
<ext ensi on base="t ns: Header BaseType" >
<sequence>
<el ement maxCccur s="unbounded" ref="tns: Payl oad"/ >
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conmpl exType>
</ el ement >

<el emrent nane="Payl oad" >
<conpl exType>
<conpl exCont ent >
<ext ensi on base="t ns: Header BaseType" >
<sequence>
<el ement maxCccur s="unbounded" m nCccurs="0" ref="tns: Schema"/ >

<el emrent maxCccur s="unbounded" m nCccurs="0" ref="tns: Description"/>

<el ement maxCccurs="1" m nCccurs="0" ref="tns: Processing"/>
</ sequence>

<attribute ref="tns: payl oadRef" use="required"/>
</ ext ensi on>
</ conpl exCont ent >

46

OASIS ebXML Messaging Services

</ conmpl exType>
</ el ement >

<el enent nanme="Schena" >
<conpl exType>
<attribute ref="tns:|location" use="required"/>

<attribute ref="tns:version"/>
</ conmpl exType>
</ el emrent >

<el ement nanme="Processi ng">
<conpl exType>
<conpl exCont ent >
<ext ensi on base="t ns: Header BaseType" >
<sequence>
<el ement maxCccur s="unbounded" m nCccurs="0" ref="tns: Step"/>
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>
</ el ement >

<el ement nane="Step">
<conpl exType>
<conpl exCont ent >
<ext ensi on base="t ns: Header BaseType" >
<sequence>
<el ement maxCccur s="unbounded" m nCccurs="0" ref="tns: Paraneter"/>
</ sequence>

<attribute ref="tns:sequence" use="required"/>

<attribute ref="tns:service" use="required"/>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>
</ el ement >

<el enent nane="Par aneter">
<conpl exType>
<attribute ref="tns:name" use="required"/>

<attribute ref="tns:val ue" use="required"/>
</ conmpl exType>
</ el ement >

<l -- MESSAGEHEADER, for use in soap: Header el enent -->

<el ement nanme="MessageHeader" type="tns: MessageHeader Type"/>
<el ement nanme="Agreenent Ref" type="tns: non-enpty-string"/>
<el ement nane="Conversationld" type="tns:non-enpty-string"/>

<el emrent nane="Service">
<conpl exType>
<si npl eCont ent >
<ext ensi on base="tns: non-enpty-string"/>
</ si npl eCont ent >
</ conpl exType>
</ el ement >

<el ement nanme="Action" type="tns:non-enpty-string"/>

<el ement nane="Messagel nf 0" >
<conpl exType>
<sequence>
<el ement ref="tns: Messagel d"/>

<el ement m nCccurs="0" ref="tns: Ref ToMessagel d"/ >
<el ement ref="tns: Conversationld"/>

<el ement ref="tns: Ti nestanp"/>
</ sequence>
</ conpl exType>
</ el ement >

<el ement nane="Col | abor ati onl nf 0" >
<conpl exType>
<sequence>
<el ement ref="tns: Agreenent Ref "/ >

47

OASIS ebXML Messaging Services

<el enent ref="tns: Service"/>

<el ement ref="tns: Action"/>
</ sequence>
</ conpl exType>
</ el ement >

<el ement nane="Messagel d" type="tns: non-enpty-string"/>
<I-- ERROR LI ST, for use in soap: Header el enent -->

<el ement nane="ErrorlList">
<conpl exType>
<conpl exCont ent >
<ext ensi on base="t ns: Header BaseType" >
<sequence>
<el ement maxCccur s="unbounded" ref="tns:Error"/>
</ sequence>

<attribute name="hi ghest Severity" type="tns:severity.type"
use="requi red"/ >
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>
</ el ement >

<el ement name="Error">
<conpl exType>
<conpl exCont ent >
<ext ensi on base="t ns: Header BaseType" >
<sequence>
<el ement m nCccurs="0" ref="tns: Description"/>
</ sequence>

<attribute default="urn:oasis:nanes:tc:ebxm -nsg: service: errors"
nane="codeCont ext" type="anyURI "/>

<attribute name="errorCode" type="tns:non-enpty-string"
use="required"/>

<attribute name="severity" type="tns:severity.type" use="required"/>

<attribute name="|ocation" type="tns:non-enpty-string"/>
</ ext ensi on>
</ conpl exCont ent >
</ conmpl exType>
</ el ement >

<el emrent nane="Pul | Request " >
<conpl exType>
<conpl exCont ent >
<ext ensi on base="t ns: Header BaseType" >
<sequence>
<choi ce>
<el ement ref="tns: To"/>

<el ement ref="tns: Ref ToMessagel d"/ >
</ choi ce>
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>
</ el ement >

<l-- STATUS RESPONSE, for use in soap: Header el enent -->

<el ement nane="St at usResponse" >
<conpl exType>
<conpl exCont ent >
<ext ensi on base="t ns: Header BaseType" >
<sequence>
<el ement ref="tns: Ref ToMessagel d"/ >

<el ement m nCccurs="0" ref="tns: Ti mestanp"/>
</ sequence>

<attribute name="nmessageSt atus" type="tns: nessageSt at us. t ype"
use="requi red"/ >
</ ext ensi on>
</ conpl exCont ent >
</ conmpl exType>
</ el ement >

<!-- STATUS REQUEST, for use in soap: Header el enment -->

48

OASIS ebXML Messaging Services

<el ement nanme="St at usRequest " >
<conpl exType>
<conpl exCont ent >
<ext ensi on base="t ns: Header BaseType" >
<sequence>
<el ement ref="tns: Ref ToMessagel d"/>
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>
</ el enent >

<!-- COWON TYPES -->
<si npl eType name="stat us. type">
<restriction base="NMIOKEN' >
<enuneration val ue="Reset"/>
<enuner ati on val ue="Conti nue"/>
</restriction>
</ si npl eType>
<si npl eType nane="nessageSt at us. t ype" >
<restriction base="NMIOKEN'>
<enuner at i on val ue="UnAut hori zed"/ >
<enuner at i on val ue="Not Recogni zed"/ >
<enuner ati on val ue="Recei ved"/>
<enuner ati on val ue="Processed"/ >
<enuner ati on val ue="Forwar ded"/ >
<enuner ati on val ue="MessageNot Avai | abl e"/ >
</restriction>
</ si npl eType>
<si npl eType nanme="non-enpty-string">
<restriction base="string">
<m nLengt h val ue="1"/>
</restriction>
</ si npl eType>
<si npl eType nanme="non-negati ve-i nt eger">
<restriction base="nonNegativel nteger"/>
</ si npl eType>
<si npl eType name="severity.type">
<restriction base="NMIOKEN'>
<enuner ati on val ue="Warni ng"/ >
<enuneration val ue="Error"/>
</restriction>
</ si npl eType>
<!-- ATTRI BUTES and ATTRI BUTE GROUPS -->
<attribute name="id" type="ID"'/>
<attribute name="version" type="tns:non-enpty-string"/>

<attri but eG oup nanme="header Ext ensi on. gr p" >
<attribute ref="tns:id"/>

<attribute ref="tns:version" use="required"/>

<anyAttri bute nanespace="##ot her" processContents="|ax"/>
</attributeG oup>

<attribute name="sequence" type="tns:non-negative-integer"/>

<attribute name="service" type="anyURl "/>

<attribute name="nane" type="tns:non-enpty-string" use="required"/>
<attribute name="val ue" type="tns:non-enpty-string" use="required"/>
<attribute name="location" type="anyURl " use="required"/>

<attribute name="payl oadRef" type="tns:non-enpty-string" use="required"/>

<!-- COMMON ELEMENTS -->

49

OASIS ebXML Messaging Services

<el ement nanme="Partyld">
<conpl exType>
<si npl eCont ent >
<ext ensi on base="tns: non-enpty-string">
<attribute name="type" type="tns:non-enpty-string"/>
</ ext ensi on>
</ si npl eCont ent >
</ conmpl exType>
</ el ement >

<el ement nane="Descri ption">
<conpl exType>
<si npl eCont ent >
<ext ensi on base="tns:non-enpty-string">
<attribute ref="xm:|lang" use="required"/>
</ ext ensi on>
</ si npl eCont ent >
</ conmpl exType>
</ el ement >

<el ement nane="Ref ToMessagel d" type="tns: non-enpty-string"/>

<el ement nane="Ti mest anp" type="dateTi ne"/>
</ schema>

Communications Protocol Bindings

1. Introduction

One of the goals of this specification is to design a message handling service usable over a variety of network
and application level transport protocols. These protocols serve as the "carrier" of ebXML Messages and pro-
vide the underlying services necessary to carry out a complete ebXML M essage exchange between two parties.
HTTP, FTP, Java Message Service (JMS) and SMTP are examples of application level transport protocols. TCP
and SNA/LUG.2 are examples of network transport protocols. Transport protocols vary in their support for data
content, processing behavior and error handling and reporting. For example, it is customary to send binary data
in raw form over HTTP. However, in the case of SMTP it is customary to "encode” binary datainto a 7-bit rep-
resentation. HTTP is equally capable of carrying out synchronous or asynchronous message exchanges whereas
it islikely that message exchanges occurring over SMTP will be asynchronous.

This section describes the technical details needed to implement this abstract ebXML Message Handling Service
over particular transport protocols.

This section specifies communications protocol bindings and technical details for carrying ebXML Message
Service messages for the following communications protocols:

» Hypertext Transfer Protocol [RFC 2616], in both asynchronous and synchronous forms of transfer.
* Simple Mail Transfer Protocol [RFC 2821], in asynchronous form of transfer only.

e File Transfer Protocol [RFC 949], in asynchronous form of transfer only.

2. HTTP
2.1. Minimum Level of HTTP Protocol

Hypertext Transfer Protocol Version 1.1 [RFC2616] is the minimum level of protocol that MUST be used.

2.2. Sending ebXML Service Messages over HTTP

50

OASIS ebXML Messaging Services

Even though several HTTP request methods are available, this specification only defines the use of HTTP POST
requests for sending ebXML Message Service messages over HTTP. The identity of the ebXML MSH (e.g.
ebxmlhandler) may be part of the HTTP POST request:

POST /ebxmlhandler HTTP/1.1

Prior to sending over HTTP, an ebXML Message MUST be formatted according to ebXML Message Service
Specification. Additionally, the messages MUST conform to the HTTP specific MIME canonical form con-
straints specified in section 19.4 of the [RFC 2616] specification.

HTTP protocol natively supports 8-bit and Binary data. Hence, transfer encoding is OPTIONAL for such parts
in an ebXML Service Message prior to sending over HTTP. However, content-transfer-encoding of such parts
(e.g. using base64 encoding scheme) is not precluded by this specification.

Therules for forming an HTTP message containing an ebXML Service Message are as follows:

» The Content-Type MIME header with the associated parameters, from the ebXML Service Message Enve-
lope MUST appear as an HTTP header.

» All other MIME headers that constitute the ebXML Message Envelope MUST also become part of the
HTTP header.

e The mandatory SOAPAction HTTP header field must also be included in the HTTP header and MAY have a
value of "ebXML"

Further, it is recomended that sending MSHs act liberally in allowing the prescence and/or absence of the
SOAPAction header in synchronous responses, and that implementers refer to the SOAP 1.1 specifications
for guidance.

» Other headers with semantics defined by MIME specifications, such as Content-Transfer-Encoding, SHALL
NOT appear as HTTP headers. Specificaly, the "MIME-Version: 1.0" header MUST NOT appear as an
HTTP header. However, HTTP-specific MIME-like headers defined by HTTP 1.1 MAY be used with the
semantic defined in the HT TP specification.

* All ebXML Service Message parts that follow the ebXML Message Envelope, including the MIME bound-
ary string, congtitute the HTTP entity body. This encompasses the SOAP Envelope and the constituent
ebXML parts and attachments including the trailing MIME boundary strings.

The example below shows an example instance of an HTTP POST ebXML Service Message:

ExampleB.1. HTTP POST Example

POST /servl et/ ebXM.handl er HTTP/ 1.1

Host: www. exanpl e2. com

SQAPAct i on: "ebXM."

Content-type: multipart/rel ated; boundary="BoundarY"; type="text/xm";
st art =" <ebxhnmheader 111@xanpl e. con»"

- - Boundar Y
Content-ID: <ebxhmheader 111@xanpl e. con>
Cont ent - Type: text/xm

<?xm version="1.0" encodi ng="UTF- 8" ?>

<SQAP: Envel ope xm ns: x| i nk="htt p://ww. w3. or g/ 1999/ x| i nk"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schenma- i nst ance"
xm ns: SOAP="ht t p: // schenas. xm soap. or g/ soap/ envel ope/ "
xm ns: eb="http://ww. oasi s- open. or g/ conmi tt ees/ ebxm - msg/ schema/ nsg- header - 2_0. xsd"
xsi : schemalLocati on="http://schenas. xm soap. or g/ soap/ envel ope/
http://ww. oasi s- open. or g/ conmi tt ees/ ebxm - nsg/ schenma/ envel ope. xsd
htt p: //ww. oasi s- open. or g/ conmi tt ees/ ebxm - nsg/ schena/ nsg- header - 2_0. xsd
http://ww. oasi s- open. or g/ conmi tt ees/ ebxm - nsg/ schenma/ nsg- header - 2_0. xsd" >
<SQOAP: Header >
<eb: MessageHeader eb:id="." eb:version="3.0" SOAP: nust Under st and="1">
<eb: Fron
<eb: Partyl d>uri: exanpl e. conx/ eb: Partyl d>

51

OASIS ebXML Messaging Services

<eb: Rol e>http://rosettanet. org/rol es/ Buyer </ eb: Rol e>
</ eb: Fron»
<eb: To>
<eb: Partyl d eb:type="soneType" >QRS543</ eb: Partyl d>
<eb: Rol e>http://rosettanet.org/rol es/ Sel | er </ eb: Rol e>
</ eb: To>
<eb: Col | abor at i onl nf 0>
<eb: Agr eenent Ref >ht t p: / / ww. oasi s- open. or g/ cpa/ 123456</ eb: Agr eenent Ref >
<eb: Servi ce eb:type="nyservi cetypes">Quot eToCol | ect </ eb: Servi ce>
<eb: Act i on>NewPur chaseOr der </ eb: Acti on>
</ eb: Col | abor at i onl nf 0>
<eb: Messagel nf 0>
<eb: Messagel d>UUI D- 2@xanpl e. conx/ eb: Messagel d>
<eb: Ref ToMessagel d>UUlI D- 1@xanpl e. conx/ eb: Ref ToMessagel d>
<eb: Conver sat i onl d>987654321</ eb: Conver sat i onl d>
<eb: Ti mest anp>2000- 07- 25T12: 19: 05</ eb: Ti nest anp>
</ eb: Messagel nf 0>
<eb: Payl oadl nf 0>
<eb: Payl oad eb:id="." eb: payl oadRef ="ci d: ebxnl payl oadlll@xanpl e. com' >
<eb: Schema eb: | ocation="http://foo/bar.xsd" eb:version="1.0"/>
<eb: Descripti on xm : | ang="en-US">Pur chase O der 1</eb: Descripti on>
<eb: Processi ng>
<eb: Step eb: sequence="0" eb:id="urn: foo: ps: Conpr essi onSvc" >
<eb: Par anet er eb: nane="command" eb: val ue="unconpress" />
<eb: Par anet er eb: nane="al gorit hnl eb: val ue="gzip" />
</ eb: St ep>
</ eb: Post Processi ng>
<eb: Payl oad>
</ eb: Payl oadl nf 0>
</ eb: MessageHeader >
</ SCAP: Header >
<SOAP: Body/ >
</ SOAP: Envel ope>

- - Boundar Y
Content-ID: <ebxm payl oadlll@xanpl e. conr
Cont ent - Type: text/xn

<?xm version="1.0" encodi ng="UTF- 8" ?>
<pur chase_or der >
<po_nunber >1</ po_nunber >

<part _numnber >123</ part _nunber >

<price currency="USD'>500. 00</ pri ce>
</ pur chase_or der >

- - Boundar Y—

2.3. HTTP Response Codes

In general, semantics of communicating over HTTP as specified in [RFC 2616] MUST be followed, for return-
ing the HTTP level response codes. A 2xx code MUST be returned when the HT TP Posted message is success-
fully received by the receiving HTTP entity. However, see exception for SOAP error conditions below. Similar-
ly, other HTTP codes in the 3xx, 4xx, 5xx range MAY be returned for conditions corresponding to them. How-
ever, error conditions encountered while processing an ebXML Service Message MUST be reported using the
error mechanism defined by the ebXML Message Service Specification.

2.4. SOAP Error Conditions and Synchronous Exchanges
The SOAP 1.1 specification states:

"In case of a SOAP error while processing the request, the SOAP HTTP server MUST issue
an HTTP 500 "Internal Server Error" response and include a SOAP message in the response
containing a SOAP Fault element indicating the SOAP processing error. "

However, the scope of the SOAP 1.1 specification is limited to synchronous mode of message exchange over
HTTP, whereas the ebXML Message Service Specification specifies both synchronous and asynchronous modes
of message exchange over HTTP. Hence, the SOAP 1.1 specification MUST be followed for synchronous mode
of message exchange, where the SOAP Message containing a SOAP Fault element indicating the SOAP pro-
cessing error MUST be returned in the HTTP response with a response code of "HTTP 500 Internal Server Er-
ror". When asynchronous mode of message exchange is being used, a HTTP response code in the range 2xx
MUST be returned when the message is received successfully and any error conditions (including SOAP errors)

52

OASIS ebXML Messaging Services

must be returned via separate HTTP Post.

2.5. Synchronous vs. Asynchronous

When a synchronous transport is in use, the MSH response message(s) SHOULD be returned on the same
HTTP connection as the inbound request, with an appropriate HTTP response code, as described above. When
the syncReplyM ode parameter is set to values other than none, the application response messages, if any, are a-
so returned on the same HTTP connection as the inbound request, rather than using an independent HTTP Post
request. If the syncReplyMode has a value of none, an HTTP response with a response code as defined in Sec-
tion 2.3, “HTTP Response Codes’ above and with an empty HTTP body MUST be returned in response to the
HTTP POST.

2.6. Access Control

2.6.1. Basic & Digest Authentication

Implementers MAY protect their ebXML Message Service Handlers from unauthorized access through the use
of an access control mechanism. The HTTP access authentication process described in "HTTP Authentication:
Basic and Digest Access Authentication" [RFC 2617] defines the access control mechanisms allowed to protect
an ebXML Message Service Handler from unauthorized access.

Implementers MAY support all of the access control schemes defined in [RFC 2617] including support of the
Basic Authentication mechanism, as described in [RFC 2617] section 2, when Access Control is used.

Implementers that use basic authentication for access control SHOULD also use communications protocol level
security, as specified in the section titled "Confidentiality and Transport Protocol Level Security” in this docu-
ment.

2.6.2. SSL Client (Digital Certificate) Authentication

2.7. Confidentiality and Transport Protocol Level Security

An ebXML Message Service Handler MAY use transport layer encryption to protect the confidentiality of
ebXML Messages and HTTP transport headers. The IETF Transport Layer Security specification TLS [RFC
2246] provides the specific technical details and list of allowable options, which may be used by ebXML Mes-
sage Service Handlers. ebXML Message Service Handlers MUST be capable of operating in backwards compat-
ibility mode with SSL [SSL 3], as defined in Appendix E of TLS [RFC 2246].

ebXML Message Service Handlers MAY use any of the allowable encryption algorithms and key sizes specified
within TLS[RFC 2246]. At a minimum ebXML Message Service Handlers MUST support the key sizes and al-
gorithms necessary for backward compatibility with [SSL3].

The use of 40-bit encryption keys/algorithms is permitted, however it is RECOMMENDED that stronger en-
cryption keys/a gorithms SHOULD be used.

Both TLS [RFC 2246] and SSL [SSL3] require the use of server side digital certificates. Client side certificate

based authentication is also permitted. All ebXML Message Service handlers MUST support hierarchical and
peer-to-peer or direct-trust trust models.

3. SMTP

The Simple Mail Transfer Protocol (SMTP) [RFC 2821] specification is commonly referred to as Internet Elec-
tronic Mail. This specifications has been augmented over the years by other specifications, which define addi-
tional functionality "layered on top" of this baseline specifications. These include:

e Multipurpose Internet Mail Extensions (MIME) [RFC 2045], [RFC 2046], [RFC 2387].

» SMTP Service Extension for Authentication [RFC 2554].

e SMTP Service Extension for Secure SMTP over TLS[RFC 2487].

53

OASIS ebXML Messaging Services

Typically, Internet Electronic Mail Implementations consist of two "agent" types:

Message Transfer Agent (MTA): Programs that send and receive mail messages with other MTA's on behalf of
MUA's. Microsoft Exchange Server, Postfix and Sendmail are all MTAs.

Mail User Agent (MUA): Electronic Mail programs are used to construct electronic mail messages and commu-
nicate with an MTA to send/retrieve mail messages. Microsoft Outlook, Eudora and Evolution are all MUAS.

MTA's often serve as "mail hubs" and can typically service hundreds or more MUA's.

MUA's are responsible for constructing electronic mail messages in accordance with the Internet Electronic
Mail Specifications identified above. This section describes the "binding" of an ebXML compliant message for
transport via eMail from the perspective of a MUA. No attempt is made to define the binding of an ebXML
M essage exchange over SMTP from the standpoint of aMTA.

3.1. Minimum Level of Supported Protocols

» Simple Mail Transfer Protocol [RFC 2821]
* MIME [RFC2045] and [RFC 2046]

« Multipart/Related MIME [RFC 2387]

3.2. Sending ebXML Service Messages over SMTP

Prior to sending messages over SMTP an ebXML Message MUST be formatted according to the ebXML Mes-
sage Service Specification. Additionally the messages must also conform to the syntax, format and encoding
rules specified by MIME [RFC2045], [RFC2046] and [RFC2387].

Many types of data that a party might desire to transport via email are represented as 8bit characters or binary
data. Such data cannot be transmitted over SMTP [RFC2821], which restricts mail messages to 7bit US-ASCII
data with lines no longer than 1000 characters including any trailing CRLF line separator. If a sending Message
Service Handler knows that areceiving MTA, or ANY intermediary MTA's, are restricted to handling 7-bit data
then any document part that uses 8 bit (or binary) representation must be "transformed" according to the encod-
ing rules specified in section 6 of MIME [RFC2045]. In cases where a Message Service Handler knows that a
receiving MTA and ALL intermediary MTA's are capable of handling 8-bit data then no transformation is need-
ed on any part of the ebXML Message.

The rulesfor forming an ebXML Message for transport via SMTP are as follows:

» If using SMTP [RFC2821] restricted transport paths, apply transfer encoding to all 8-hit data that will be
transported in an ebXML message, according to the encoding rules defined in section 6 of MIME
[RFC2045]. The Content-Transfer-Encoding MIME header MUST be included in the MIME envelope por-
tion of any body part that has been transformed (encoded).

» The Content-Type MIME header with the associated parameters, from the ebXML Message Envelope
MUST appear as an eMail MIME header.

e All other MIME headers that constitute the ebXML Message Envelope MUST also become part of the eMail
MIME header.

e The SOAPAction MIME header field must also be included in the eMail MIME header and MAY have the
value of ebXML:

SOAPACction: "ebXML"
e The"MIME-Version: 1.0" header must appear as an eMail MIME header.

» The eMail header "To:" MUST contain the SMTP [RFC2821] compliant eMail address of the ebXML Mes-
sage Service Handler.

OASIS ebXML Messaging Services

e The eMail header "From:" MUST contain the SMTP [RFC2821] compliant eMail address of the senders
ebXML Message Service Handler.

* Construct a"Date:" eMail header in accordance with SMTP [RFC2821]

e Other headers MAY occur within the eMail message header in accordance with SMTP [RFC2821] and
MIME [RFC2045], however ebXML Message Service Handlers MAY choose to ignore them.

The example below shows a minimal example of an eMail message containing an ebXML Message:

From ebXM.handl er @xanpl e. com

To: ebXM_handl er @xanpl e2. com

Date: Thu, 08 Feb 2001 19:32:11 CST

M ME- Version: 1.0

SOAPAct i on: "ebXWM."

Content-type: multipart/rel ated; boundary="BoundarY"; type="text/xm";
st art =" <ebxhnmheader 111@xanpl e. con>"

This is an ebXM. SMIP Exanpl e

- - Boundar Y
Content-I1D: <ebxhnmheader 111@xanpl e. conr
Cont ent - Type: text/xm

<?xm version="1.0" encodi ng="UTF-8" ?>

<SQAP: Envel ope xm ns: x| i nk="htt p://ww. w3. or g/ 1999/ x| i nk"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schenma- i nst ance"
xm ns: SOAP="ht t p: / / schenas. xm soap. or g/ soap/ envel ope/ "
xm ns: eb="http://ww. oasi s- open. or g/ conmi tt ees/ ebxm - nsg/ schenma/ nsg- header - 2_0. xsd"
xsi : schemalLocati on="http://schenmas. xm soap. or g/ soap/ envel ope/
htt p: // ww. oasi s- open. or g/ conmi tt ees/ ebxm - nsg/ schenw/ envel ope. xsd
htt p: //ww. oasi s- open. or g/ conmi tt ees/ ebxm - nsg/ schena/ nsg- header - 2_0. xsd
htt p: // ww. oasi s- open. or g/ conmi tt ees/ ebxnl - neg/ schena/ nsg- header-2_0. xsd" >
<SOAP: Header >
<eb: MessageHeader eb:id=".." eb:version="3.0" SOAP: nust Under st and="1">
<eb: Fron»
<eb: Partyl d>uri: exanpl e. conk/ eb: Partyl d>
<eb: Rol e>http://rosettanet. org/rol es/ Buyer </ eb: Rol e>
</ eb: Fron»
<eb: To>
<eb: Partyl d eb:type="soneType" >QRS543</ eb: Partyl d>
<eb: Rol e>http://rosettanet.org/rol es/ Sel | er</ eb: Rol e>
</ eb: To>
<eb: Col | abor at i onl nf 0>
<eb: Agr eenent Ref >ht t p: / / ww\. oasi s- open. or g/ cpa/ 123456</ eb: Agr eenent Ref >
<eb: Servi ce eb:type="nyservi cetypes"”>Quot eToCol | ect </ eb: Servi ce>
<eb: Act i on>NewPur chaseOr der </ eb: Acti on>
</ eb: Col | abor at i onl nf 0>
<eb: Messagel nf 0>
<eb: Messagel d>UUI D- 2@xanpl e. conx/ eb: Messagel d>
<eb: Ref ToMessagel d>UUl D- 1@xanpl e. conk/ eb: Ref ToMessagel d>
<eb: Conver sat i onl d>987654321</ eb: Conver sat i onl d>
<eb: Ti mest anp>2000- 07- 25T12: 19: 05</ eb: Ti mest anp>
</ eb: Messagel nf 0>
<eb: Payl oadl nf 0>
<eb: Payl oad eb:id=".."" eb: payl oadRef ="ci d: ebxnl payl oad11l1l@xanpl e. cont >
<eb: Schema eb: | ocation="http://fool/ bar.xsd" eb:version="1.0"/>
<eb: Description xm : | ang="en- US">Purchase Order 1</eb: Description>
<eb: Pr ocessi ng>
<eb: Step eb: sequence="0" eb:id="urn:foo: ps: Conpressi onSvc" >
<eb: Par anet er eb: nane="conmmand" eb: val ue="unconpress" />
<eb: Par anet er eb: nane="al gorithni eb: val ue="gzip" />
</ eb: St ep>
</ eb: Post Processi ng>
<eb: Payl oad>
</ eb: Payl oadl nf 0>
</ eb: MessageHeader >
</ SOAP: Header >
<SQOAP: Body/ >
</ SOAP: Envel ope>

- - Boundar Y
Content-1D: <ebxhmheader 111@xanpl e. con®
Cont ent - Type: text/xm

<?xm version="1.0" encodi ng="UTF- 8" ?>
<pur chase_or der >
<po_nunber >1</ po_nunber >

55

OASIS ebXML Messaging Services

<part _nunber >123</ part _nunber >
<price currency="USD'>500. 00</ pri ce>
</ pur chase_or der >

- - Boundar Y- -

3.3. Response Messages

All ebXML response messages, including errors and acknowledgments, are delivered asynchronously between
ebXML Message Service Handlers.

All ebXML Message Service Handlers MUST be capable of receiving a delivery failure notification message
sent by an MTA. A MSH that receives addlivery failure notification message SHOULD examine the message to
determine which ebXML message, sent by the MSH, resulted in a message delivery failure. The MSH
SHOULD attempt to identify the application responsible for sending the offending message causing the failure.
The MSH SHOULD attempt to notify the application that a message delivery failure has occurred. If the MSH
is unable to determine the source of the offending message the MSH administrator should be notified.

MSH's which cannot identify a received message as a valid ebXML message or a message ddivery failure
SHOULD retain the unidentified messagein a"dead letter” folder.

A MSH SHOULD place an entry in an audit log indicating the disposition of each received message.

3.4. Access Control

Implementers MAY protect their ebXML Message Service Handlers from unauthorized access through the use
of an access control mechanism. The SMTP access authentication process described in "SMTP Service Exten-

sion for Authentication" [RFC2554] defines the ebXML recommended access control mechanism to protect a
SMTP based ebXML Message Service Handler from unauthorized access.

3.5. Confidentiality and Transport Protocol Level Security
An ebXML Message Service Handler MAY use transport layer encryption to protect the confidentiality of

ebXML messages. The IETF "SMTP Service Extension for Secure SMTP over TLS' specification [RFC2487]
provides the specific technical details and list of allowable options, which may be used.

3.6. SMTP Model

All ebXML Message Service messages carried as mail in an SMTP [RFC2821] Mail Transaction:

FigureB.1. SMTP M odel

56

OASIS ebXML Messaging Services

Sarudar Foa cxaie i
Sender MEH MEH ‘ Recalver

Party S | =mMTR Handir | Party

abXML Message

Fayinsd [ais }3—.{ Mml Trarescion

Favinad Ciata ;::":- "

hiML Maseage

W
-:::E.lal"a'saz:im |'I -l:: Pasioed Dita F"

-l-'..'.: Paioad Data

3.7. Communication Errors during Reliable Messaging

When the Sender or the Receiver detects a communications protocol level error (such as an HTTP, SMTP or
FTP error) and Reliable Messaging is being used then the appropriate transport recovery handler will execute a
recovery sequence. Only if the error is unrecoverable, does Reliable Messaging recovery take place.

Jeff: Please make sure thisjives with new RM.

4. FTP

This section defines the File Transfer Protocol binding for ebXML Messaging.

4.1. Minimum Level of Supported Protocols

Implementations of the ebXML Messaging FTP transport binding MUST conform with [RFC 949].

4.2. Sending ebXML Service Messages over FTP

Message transmission via FTP is accomplished by having the sender connect to the recipient's FTP server, and
uploading the message contents into a file located in the FTP server's root directory, named thusly: <message
i d>. ebmrs.

Messages MAY be placed in a directory other than the root directory of the FTP filesystem depending on values
defined in the CPA.
TODO: Dale, how's this work?

The example below illustrates a probably command sequence for transferring an ebXML Message using FTP.

Example B.2. Sample FTP Session

Connected to ftp.partner.com

220 ebMs-FTP Server (ftp.partner.com FTP) [ftp]
Nane (ftp.partner.com anonynous): anonynous
331 Password required for anonynous.
Passwor d:

230 User anonynous | ogged in.

Renpte systemtype is UNI X

Using binary node to transfer files.

ftp> cdup

250 CDUP command successful .

ftp> put nessage@d. ebns

57

OASIS ebXML Messaging Services

| ocal : nessage@d. ebns renpnte: message@d. ebns

502 Command not i npl enent ed.

227 Entering Passive Mde (10, 36, 3,5, 67, 144)

150 File status okay; about to open data connection.

100% | R RS SRR R RS SRR R SRR S R RS R SRR SRR RS RS SRR SRR R RS RS E SRR SRR SRR RS R R SRR R EEEEEEEEEEEEEEEEEEEEEEEEESESES

226 Transfer conplete, closing data connection.
10 bytes sent in 00:00 (0.13 KB/ s)

ftp> bye

221 Service closing control connection.

4.3. Response Messages

Since FTP is designed for one way file transfer sessions, all response and error messages will be returned asyn-
chronousdly via the transport that is configured in the CPA. Transmission and FTP protocol level errors will,
however, be handled as specified in [RFC 959].

4.4. Access Control Considerations

If the CPA defines access control settings (username and password), that information MUST be used to perform
the login operation at the start of the FTP session. Otherwise, username anonymous should be used with the
password set as the same value as the From header field of the ebXML Service Message.

4.5. Confidentiality and Transport Protocol Level Security.

Security extensions to FTP such as those defined by RFC 2228 (Security Extensions for FTP) have not been
widely adopted by vendors of FTP software. To achieve confidentiality during message transmission, it is rec-
ommended that security be enforced at a higher level, possibly viaa VPN connection or SSL tunnel. These ap-
proaches to confidentiality can be setup so asto be completely transparent to the message service handler.

Supported Security Services
Relationship to WSDL
WS-l Compliance

Notices

Copyright © 2002, 2003, 2004 OASIS Open, Inc. All Rights Reserved.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be
claimed to pertain to the implementation or use of the technology described in this document or the extent to
which any license under such rights might or might not be available; neither does it represent that it has made
any effort to identify any such rights. Information on OASIS's procedures with respect to rightsin OASIS speci-
fications can be found at the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license or per-
mission for the use of such proprietary rights by implementors or users of this specification, can be obtained
from the OASIS Executive Director.

OASISinvites any interested party to bring to its attention any copyrights, patents or patent applications, or oth-
er proprietary rights which may cover technology that may be required to implement this specification. Please
address the information to the OA SIS Executive Director.

This document and trandlations of it may be copied and furnished to others, and derivative works that comment

58

OASIS ebXML Messaging Services

on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are
included on al such copies and derivative works. However, this document itself may not be modified in any
way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of de-
veloping OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual
Property Rights document must be followed, or as required to trandlate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or as-
signs.

This document and the information contained herein is provided on an “AS IS’ basis and OASIS DISCLAIMS
ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY
THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY M-
PLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS has been notified of intellectual property rights claimed in regard to some or all of the contents of this
specification. For more information consult the online list of claimed rights.

Revision History

Revision History

Revision 01 5 May 2004 mm
Create outline, document structure, added payload services.

Revision 01-1 14 May 2004 mm
Moved content over from 2.0/2.1 document source.

Revision 02 1 Oct 2004 mm

Integrated Reliable messaging, many editorial changes also.

References

Normative

NOTE: Most of these references are not correct, and are just placeholders.

[ebCPPA] OASIS ebXML CPP/A TC. DNSSD: OAS S ebXML Collaboration-Protocol Profile and Agreement
Foecification . OASIS Open. 2002.

[RFC 2119] S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. IETF (Internet Engineering
Task Force). 1997.

[RFC 2045] N Freed, N Borenstein. Multipurpose Internet Mail Extensions (MIME) Part One: Format of Inter-
net Message Bodies . IETF (Internet Engineering Task Force). 1996.

[RFC 2046] N Freed, N Borenstein. Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types .
IETF (Internet Engineering Task Force). 1996.

[RFC 2387] E. Levinson. The MIME Multipart/Related Content-type . IETF (Internet Engineering Task Force).
1998.

[XMLMedia] A. Person. XML Media Types . SomeConsortia. 1998.

[SOAP w/ Attachments] John J. Barton, Hewlett Packard Labs;, Satish Thatte and Henrik Frystyk Nielsen.
SOAP Messages with Attachments . W3C. 2000.

[SOAP] W3C SOAP Work Group SOAP [TODO] . W3C. 2002.
[XML] W3C XML Work Group XML [TODO] . W3C. 2002.

59

http://www.faqs.org/rfcs/rfc2119.html
http://www.faqs.org/rfcs/rfc2045.html
http://www.faqs.org/rfcs/rfc2045.html
http://www.faqs.org/rfcs/rfc2046.html
http://www.faqs.org/rfcs/rfc2387.html
http://www.faqs.org/rfcs/rfc2119.html
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211
#
#

OASIS ebXML Messaging Services

[XMLNS] W3C XML Work Group XMLNS[TODQ] . W3C. 2002.

[XMLDSIG] W3C DSIG Work Group XMLDS G [TODO] . W3C. 2002.

[XML Schema] W3C XML Schema Work Group XMLSchema [TODO] . W3C. 2002.
[BPSS] BPSS Work Group BPSS[TODO] . W3C. 2002.

[XPath] W3C XPath Work Group XMLNS[TODO] . W3C. 2002.

[RFC 2396] 2396 Work Group XMLNS[TODO] . W3C. 2002.

[RFC 2246] W3C XML Work Group 2246 [TODO] . W3C. 2002.

[XMLC14N] W3C XML Canonicalization Work Group XMLNS[TODOQ] . W3C. 2002.
[RFC 2402] W3C XML Work Group 2402 [TODO] . W3C. 2002.

[SMIME] SMIME Work Group SMIME [TODO] . W3C. 2002.

[SMIMEV3] SMIME Work Group SMIMEV3 [TODO] . W3C. 2002.

[PGPMIME] SMIME Work Group PGPMIME [TODO] . W3C. 2002.

[SSL3] SSL3 Work Group SSL [TODO] . W3C. 2002.

[RFC 2821] rfc Work Group rfc [TODO] . W3C. 2002.

[RFC 2554] rfc Work Group rfc [TODO] . W3C. 2002.

[RFC 2487] rfc Work Group rfc [TODO] . W3C. 2002.

[RFC 949] rfc Work Group rfc [TODQ] . W3C. 2002.

[RFC 959] rfc Work Group rfc [TODQ] . W3C. 2002.

[RFC 2616] rfc Work Group rfc [TODO] . W3C. 2002.

[RFC 2617] rfc Work Group rfc [TODO] . W3C. 2002.

[XPointer] xpointer Work Group xpointer [TODO] . W3C. 2002.

60

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

